
Alternating local search based VNS

for linear classification

Frank Plastria, Steven De Bruyne
MOSI, Vrije Universiteit Brussel, Belgium.

{Frank.Plastria,Steven.De.Bruyne}@vub.ac.be
Emilio Carrizosa

Universidad de Sevilla, Spain.

ecarrizosa@us.es

June 29, 2007

Abstract

We consider the linear classification method consisting of separating two sets of points
in d-space by a hyperplane. We wish to determine the hyperplane which minimises the sum
of distances from all misclassified points to the hyperplane. To this end two local descent
methods are developed, one grid-based and one optimisation-theory based, and are embed-
ded in several ways into a VNS metaheuristic scheme. Computational results show these
approaches to be complementary, leading to a single hybrid VNS strategy which combines
both approaches to exploit the strong points of each. Extensive computational tests show
that the resulting method performs well.

Keywords. Data Mining, Classification, Linear Classification, Heuristic Minimisation, Norm-
distance, Variable Neighbourhood Search, Variable Neighborhood Search, VNS, Local Search,
Grid Search, Cell Search.

1 Introduction

The goal of classification is to find a simple rule to classify objects into one of given classes. The
simplest rules are linear rules, and in this paper we study such rules for the separation of two
classes of numerical data A,B ⊂ Rd.

Several criteria may be applied, e.g. the popular minimisation of the number of misclassi-
fieds. Here we rather explore the criterion proposed by Mangasarian [9]: minimise the (possibly
weighted) sum of misclassification distances, i.e. the distance to the separating hyperplane for
each misclassified point of A and B. This is a nonconvex criterion, which for separable A and B
is evidently optimized by any separating hyperplane with objective value 0, but for non separable
classes turns out to admit very many local optima. The aim of this work is to develop an efficient
algorithm to solve the resulting global optimization problem, so in all what follows we assume
implicitly that A and B cannot be linearly separated.

Mangasarian [9] has described an exact solution algorithm when distances are measured by
the L1-norm, based on solving two LP-subproblems per dimension, but this approach cannot be
generalized to other norms, in particular to the Euclidean norm. For this latter case, exact solution
approaches of branch-and-cut type were developed by Audet et al. [1]; see also Karam [7] for the
L∞-norm. To the best of our knowledge the only further algorithmic work on this problem is the
heuristic approach of Karam et al [8], who use a Variable Neighbourhood Search (VNS, see [10, 5])
to solve problems with any Lp-norm.

1

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 2

In this paper we report on an independent study of several heuristic approaches of VNS-type
to solve the problem under any norm. First we discuss a relatively simple adaptive grid-based
VNS approach, which turns out to be very quick, but does not behave too well in all cases.
Then we develop a more complex local optimisation method based on two theoretical necessary
optimality conditions, which yields local optima from any starting point, but, when built into a
VNS framework, is much more time-consuming with somewhat disappointing results. Finally it
is by combining these two search strategies into a single framework that we obtain a quite stable
method which yields high quality results in acceptable times.

2 Problem formulation

Let there be given two finite datasets A,B ⊂ Rd . Together these data form the training set of
the rule, and their number will be denoted by p

def= |A ∪B|.
We work with halfspaces and hyperplanes in Rd . These are defined by some pair σ

def= (u, β) ∈
Rd \ {0} × R by

H#(σ) = H#(u, β) def= { x ∈ Rd | 〈 u ; x 〉#b }

where # ∈ {≤, <, =,≥, >}, and 〈 u ; x 〉 denotes the scalar product. Note that these sets all
remain the same when σ is multiplied by any strictly positive constant, but not when its sign is
inversed.

Any σ = (u, β) defines the following linear classification rule:

For a new object x ∈ Rd :
If 〈 u ; x 〉 > b then we classify x in A,
If 〈 u ; x 〉 < b then we classify x in B,
If 〈 u ; x 〉 = b then we consider x as non classified.

This means in fact that we use the halfspaces H>(σ) and H<(σ) to discriminate elements from A,
considered to have to be Above the hyperplane H=(σ), i.e. in H>(σ), as opposed to the elements
of B, that should be Below, i.e. in H<(σ). Therefore we say that we separate by a halfspace (or
oriented hyperplane), and the sign of σ is thus part of the information. We will also speak of the
‘rule’ or ‘halfspace σ’ by an abuse of terminology.

In order to derive a good rule σ we must be able to differentiate between well and wrongly
classified points by σ. Therefore we also need to define similarly following sets for any subset
C ⊂ Rd

C#(σ) = C ∩H#(σ)

The set A>(σ) (resp. B<(σ)) is thus the set of correctly classified points from A (resp. B), the
set A<(σ) (resp. B>(σ)) is the set of misclassified points from A (resp. B), and the set A=(σ)
(resp. B=(σ)) contains the non-classified points from A (resp. B).

According to the criterion proposed in [9], we say that a halfspace σ∗ is an optimal separating
halfspace, if it minimizes the sum of distances from all misclassified points A<(σ∗)∪B>(σ∗) to the
boundary hyperplane H=(σ∗) . Thus, determining an optimal rule means solving the following
optimization problem

σ∗ ∈ arg min{ f(σ) | σ ∈ Rd \ {0} × R }

where
f(σ) def=

∑
a∈A<(σ)

d(a,H=(σ)) +
∑

b∈B>(σ)

d(b, H=(σ)) (1)

We denote the set of all halfspaces in Rd by H. As mentioned above, for any λ > 0 we have
H#(λσ) = H#(σ), so the function

H< : Rd \ {0} × R → H : σ = (u, β) 7→ H<(σ)

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 3

is surjective, with inverse image of each halfspace a ray R+
0 (u, β) for some u 6= 0 in Rd . In

particular each such ray contains a single (u, β) with ‖u‖ = 1.
We will assume throughout that distance is measured by a given norm γ. It is known that the

distance of a point a ∈ Rd to a hyperplane H(u, β) (u 6= 0) is then calculated as (see e.g. [13])

dγ(a,H(u, β)) =
|〈 u ; a 〉 − β|

γ◦(u)
(2)

where γ◦ is the dual norm of γ.
This expression allows to rewrite the objective function at σ = (u, β) as

f(u, β) =
1

γ◦(u)

 ∑
a∈A<(σ)

(β − 〈 u ; a 〉) +
∑

b∈B>(σ)

(〈 u ; b 〉 − β)

 (3)

and it can be seen there will always be an optimal solution (u, β) for which

f(u, β) =
∑

a∈A<(σ)

(β − 〈 u ; a 〉) +
∑

b∈B>(σ)

(〈 u ; b 〉 − β)

by choosing γ◦(u) = 1.

3 Local descent methods

In this section we describe three local descent approaches which attempt to improve upon some
starting solution. All three can be considered as simple descent strategies through a finite space of
candidate solutions, a subset of all possible solutions but of quite different type for each method.
The first method may be seen as a quick but ‘blind’ grid method, while the others are more
involved, exploiting structural properties an optimal solution is known to satisfy.

Observe that each objective value evaluation f(u, β) by (3) involves checking the sign of
〈 u ; c 〉 − β for each datapoint c ∈ A ∪ B. Therefore all of these values have to be calcu-
lated, regardless of whether they will be used or not. However, the values not used are exactly
those that are to be used in the evaluation of the complementary half-space f(−u,−β). This
means that each pair of complementary halfspaces may be evaluated together at virtually the
same cost as a single evaluation of each of them. Therefore in all our codes both complementary
halfspaces are always evaluated together and compared, so as to always choose the better one.

3.1 Grid-descent

We consider regular grids in Rd \ {0} × R defined by some ‘maximum coefficient’ parameter
m ∈ N. This search space H(m) consists of all (u, β) with integer coefficients in the interval
[−m,m] (excluding those with u = 0). It should be noted, that H(m) does not necessarily contain
an optimal separating halfspace. But thanks to the surjectivity of the map H<, an arbitrarily
good approximation may be found in H(m) by choosing a sufficiently large m.

On such a space we search as follows:

Grid(m,∆)

• Choose a random solution σ = (u, β) ∈ H(m)

• Sequentially for each steplength δ starting from ∆ and halving downto 1

– Cyclically for every coefficient, until a full cycle without change occurs
∗ try adding and subtracting δ from this coefficient
∗ check when this solution is in H(m) and update σ if it is better

A one-parameter Grid(m) corresponds to Grid(m,m).

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 4

3.2 Cell-descent

By extension of the results on median hyperplanes obtained in [13], it was shown in [14] that for
any norm distance measure, there always exists an optimal halfspace determined by a hyperplane
satisfying the following two properties:

1. it is blocked, i.e. passes through d affinely independent points of the training set A ∪B.

2. it balances the misclassified datapoints, i.e. both for A and B the number of their misclas-
sified points cannot exceed the number of non-wellclassified points of the other class

Since in Rd any d affinely independent points determine a unique hyperplane that passes
through them, which generates two halfspaces, the set of blocked halfspaces Hb is finite. According
to the first property we may restrict search to Hb without loss of optimality.

The second property may be used for any fixed u 6= 0 to find the best solution of type (u, β)
by translation: choose β among the set of values 〈 u ; A ∪ B 〉 def= { 〈 u ; c 〉 | c ∈ A ∪ B } in
such a way that it balances the number of values of 〈 u ; A 〉 lower than β against the number of
values of 〈 u ; B 〉 higher than β. This can be easily done in O(p log p) by a single sweep after
sorting 〈 u ; A ∪B 〉. Another method of linear complexity is described in [2].

Such a translation, even when started from a blocked hyperplane, does not necessarily result
in a hyperplane in Hb. Therefore we also need a blocking step that allows to construct a blocked
hyperplane starting from any σ ∈ H, preferably one that does not deteriorate the objective value.
This may be obtained by a cell-move as explained next.

For any σ0 ∈ H we define the cell C(σ0) ⊂ H as all halfspaces that classify points similarly to σ,
or, more precisely, that do not classify correctly any points of A∪B which were also misclassified
by σ0, and do not misclassify any other points:

C(σ0)
def= { σ ∈ H | A<(σ) ⊂ A≤(σ0), A≥(σ) ⊂ A≥(σ0), B>(σ) ⊂ B≥(σ0), B≤(σ) ⊂ B≤(σ0) }

For a halfspace (u, β) ∈ H to belong to this cell is expressed by the following linear inequalities:

〈 u ; a 〉 ≤ β ∀a ∈ A<(σ0)
〈 u ; a 〉 ≥ β ∀a 6∈ A<(σ0)
〈 u ; b 〉 ≥ β ∀b ∈ B>(σ0)
〈 u ; b 〉 ≤ β ∀b 6∈ B>(σ0)

Note that σ0 ∈ C(σ0).
By (3) the constraint

f(u, β) = f(σ0) (4)

is a linear equality constraint not satisfied by (0, 0), and each halfspace in C(σ0) has exactly one
representative satisfying this constraint. Therefore this constraint may be added in the definition
of C(σ0) without loss of generality, and it was proven in [14] that the polyhedral subset of Rd

0 ×R
we then obtain is nonempty and bounded. We will also call it C(σ0).

By (4) and (3) we see that minimising f on C(σ0) is equivalent to maximising γ◦(u) on C(σ0),
and, by convexity of γ◦ the optimum will be reached at some extreme point σ∗ of C(σ0), and such
a σ∗ is always a blocked solution (for details see [14]). Furthermore, since σ0 ∈ C(σ0), we will
have f(σ∗) ≤ f(σ0), as sought.

However, finding a maximum of γ◦(u) on C(σ0) is a hard global optimisation problem (see e.g.
[6], chapter I.2), and therefore we propose to solve the following linear approximation instead. At
σ0 = (u0, β0) let p0 ∈ ∂γ◦(u0) be any subgradient of the dual norm γ◦ at u0. Then 〈 p0 ; u 〉 =
〈 p0 ; u − u0 〉 + γ◦(u0) ≤ γ◦(u) for all u, because γ◦ is a norm for which it is well-known that
〈 p0 ; u0 〉 = γ◦(u0). Therefore, maximising the linear function 〈 p0 ; u 〉 on C(σ0) will also yield
an extreme point of C(σ0), i.e. a blocked halfspace, with objective value no higher than f(σ0).

In case finding a subgradient p0 ∈ ∂γ◦(u0) is not easy, one may use the direction of increase
p0 = u0 of γ◦ at u0 instead. Note that for the euclidean norm this choice is a positive multiple

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 5

of a subgradient, so will perform as expected. For general norms, however, this does not fully
guarantee that the new extreme point that will be obtained by solving the LP does not deteriorate
the objective as compared to σ0.

We can now describe our cell-descent as follows:

Cell-Descent

• Choose d random points of A∪B, and find the σ = (u, β) ∈ Hb passing through these points.

• Repeat until no new solution is found

– Construct by translation the optimal solution σ0 = (u0, β0) with fixed u0 = u.

– Choose p0 ∈ ∂γ◦(u0) or, if not available, take p0 = u0

– Construct a new solution (u, β) ∈ Hb by solving the following LP:

max 〈 p0 ; u 〉
〈 u ; a 〉 ≤ β ∀a ∈ A<(σ0)
〈 u ; a 〉 ≥ β ∀a 6∈ A<(σ0)
〈 u ; b 〉 ≥ β ∀b ∈ B>(σ0)
〈 u ; b 〉 ≤ β ∀b 6∈ B>(σ0)
f(u, β) = f(σ0)
u ∈ Rd, β ∈ R

3.3 Translation-descent

One may also consider the following much simpler local search method, solely based on translation.

Translation-Descent

• Choose a random solution σ = (u, β) ∈ H(m)

• Construct by translation the optimal solution σ0 = (u0, β0) with fixed u0 = u.

This descent-search will be inoperative if started on a balanced solution, and always ends with
a balanced solution. Therefore it is useless to try to repeat it.

Grid-descent includes several trials of changes of the β-coefficient in a solution, which may
be seen as an approximate form of Translation-descent. Cell-descent fully includes a Translation
descent step in each of its loops. One may conclude that Cell-descent will certainly be more
powerful than Translation-descent, while Grid descent will probably be so.

The algorithm described by Karam et al [8] is based on such a translation-descent. However,
it does not use the balancing property to find the best β-value for fixed u, but rather uses an
updating method of the objective while sweeping the sorted sets 〈 u ; A 〉 and 〈 u ; B 〉.

3.4 Comparison of descent-methods

All three search methods were first coded in Matlab 7. For solving the LP’s in Cell-descent the
built-in function ‘linprog’ could not be used, because it sometimes gave unexpected errors, and
systematically malfunctioned when over 500 constraints were present. Therefore our code called
CPLEX 9 by way of the CPLEXINT library [4].

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 6

Tests were performed on the six datasets derived from the UCI Machine Learning Repository
[12] for which Audet et al [1] published exact optimal solutions, unfortunately with only 4 sig-
nificant digits. The details how these data sets were produced are given in that reference. For a
correct interpretation of the results it is useful to know that all data sets, including the artificially
produced ones discussed later, are always linearly standardised to [0, 1]. All our tests are based
on the euclidean distance L2.

100 runs were done on each of the six datasets. The average results of these 100 runs are listed
in table 1. Here d denotes the dimension of the data-space, p gives the size of the dataset, Trans
descent, Grid(1000) and Cell-descent shows the resulting objective value when using Translation
descent, Grid-descent with m = ∆ = 1000 or Cell-descent respectively, and the final column gives
the global optimum value as published in [1].

Table 1: Descent methods: average results over 100 trials (Matlab)
Data set d p Trans descent Grid(1000) Cell descent Global optimum
Cancer 9 683 15.207 2.176 3.249 2.067

Diabetes 8 768 35.51 12.65 28.11 12.24
Echocardiogram 7 74 4.289 1.768 1.699 1.207

Glass 9 214 4.5548 0.60043 0.20693 0.03114
Housing 13 506 25.687 2.7770 4.2598 0.8971
Hepatitis 16 150 11.253 2.1717 1.6327 0.8711

As expected, one observes that Translation-descent always gives worse results than both other
descent methods. Grid(1000) and Cell-descent work much better, and give comparable results.
They even seem to be somewhat complementary. Both methods remain however far from obtaining
consistently a good approximation to the global optimum. It is therefore clear that both descent
mechanisms should be extended by a global search framework.

3.5 Comparison of random search methods

Table 2 shows the best results obtained within the same 100 runs. This may be interpreted as
results of repeated (100 trials) local search methods based on each of the three descent methods.

Table 2: Random search methods (100 trials): results (Matlab)
Data set d p Trans search Grid(1000) search Cell search Global optimum
Cancer 9 683 3.277 2.072 2.079 2.067

Diabetes 8 768 16.65 12.26 15.42 12.24
Echocardiogram 7 74 2.182 1.218 1.318 1.207

Glass 9 214 1.2604 0.11016 0.03275 0.03114
Housing 13 506 9.9316 1.0377 0.9685 0.8971
Hepatitis 16 150 6.5964 1.2494 0.8788 0.8711

The Translation descent-based search remains quite poor. Grid-search and Cell-search now
produce quite good results, but still not systematically. Observe, however, that in most cases one
of the two search methods finds a solution which is quite close to optimal, but it is not always the
same one. The computation times for translation search were in the two-hundredth to one-tenth
of second range, for Grid search in the ten to two-hundred seconds range, and for Cell search in
the two-tenth to three seconds range.

It must be observed that our first implementations of Cell-search using the Matlab function
linprog took considerably more time even than Grid-search.

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 7

4 Variable Neighbourhood Searches

4.1 General framework

We propose to use the metaheuristic framework of Variable Neighbourhood Search (VNS) [10, 5],
described in general below. However, in all of our computational testing we use the simpler
Variable Neighbourhood Descent (VND), which consists of a single main loop of VNS (obtained
by choosing as stopping condition simply ‘True’).

VNS

Initialization:

• select the set of neighbourhood structures Nk (k = 1, . . . , kmax) that will be used in the
search

• find an initial solution x

• choose a stopping condition

Main loop: Repeat the following sequence until the stopping condition is met

• Set k to 1.

• Repeat the following steps until k > kmax

Shaking: generate a point x at random from the kth neighbourhood of x (x ∈ Nk(x));
Local search: apply some local descent method with x as initial solution, ending at a

local optimum x.
Move or not if x is better than the incumbent x,

then move there (i.e. set x to x), set k to 1
otherwise, set k to k + 1

By specifying the yet undefined details indicated in italics, we obtain several different heuristics.

4.2 GridVNS

A first method GridVNS(m), operating in the searchspace H(m), uses following specifications:

Initial solution a random halfspace with integer coefficients in the range [−m,m]

Neighbourhoods Nk(σ) contains all halfspaces having d + 1− k coefficients in common with σ
and k new ones. We also take kmax = d + 1

Local descent Grid(m,d
√

m e), and using the current solution as initial solution

The particular choice of ∆ = d
√

m e was dictated by our concern to give a more local search
character to the inner Grid runs.

A first series of tests with this scheme did not give satisfactory results. Furthermore it was
observed that by far most improved solutions were found for very low k-values.

We therefore implemented four variants of this search strategy:

GridNVNS(m) or Narrow Grid VNS: this is the standard Grid VND as described above (thus
with a single main loop).

GridBVNS(m) or Broad Grid VNS: now in the innermost loop each value of k is repeated several
times, in such a way that the total number of coefficients modified while working within Nk

is a constant (set to kmax). This means that k = 1 is used kmax times, k = 2 is used kmax/2
times, etc.

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 8

2S-NVNS(m2) or two-stage Grid NVNS: first GridNVNS(m) is executed , and followed by a
Grid(m2,m2) run

2S-BVNS(m2) as the previous, but using the broad version GridBVNS(m)

We did a comparative test of the following methods: GridNVNS(100), GridBVNS(100), 2S-
NVNS(1000), 2S-BVNS(1000), in other words, the two-stage methods work first on a coarser grid
and secondly on a finer grid than in their one-step variants. Table 3 shows the average results
obtained on the same data sets as before during 5 independent runs of each method, and includes
again for comparison the ‘exact’ global optimal values given by [1]. The best heuristically found
average value is shown in boldface. The last column indicates the relative deviation of this best
value with respect to the ‘true’ optimum.

Table 3: GridVNS: average results over 5 runs (Matlab)
Data set d p NVNS BVNS 2S-NVNS 2S-BVNS Global opt. error
Cancer 9 683 2.086 2.078 2.081 2.081 2.067 0.5%

Diabetes 8 768 12.41 12.30 12.45 12.39 12.24 0.5%
Echocardiogram 7 74 1.267 1.232 1.258 1.286 1.207 2.1%

Glass 9 214 0.2880 0.1370 0.1931 0.1688 0.03114 340.0%
Housing 13 506 2.198 2.175 2.450 2.201 0.8971 142.4%
Hepatitis 16 150 1.122 1.053 1.415 1.157 0.8711 20.9%

We can observe that the best results were systematically obtained with GridBVNS. The im-
provement of BVNS upon NVNS indicates that the more intense search within small neighbour-
hoods is effective, whereas the second stage using a final finer grid-descent seems almost useless.

Observe also that the quality of the solutions found on the first three data sets is relatively
good, but quite bad for the three last data sets.

These conclusions drawn from the objective values reached should be somewhat revised in view
of the computational times taken by the different methods, as shown in table 4.

Table 4: GridVNS: average computation times (s) over 5 runs (Matlab)
Data set d p NVNS BVNS 2S-NVNS 2S-BVNS
Cancer 9 683 205 608 193 442

Diabetes 8 768 349 700 271 406
Echocardiogram 7 74 27 56 17 33

Glass 9 214 69 197 58 126
Housing 13 506 875 1537 394 983
Hepatitis 16 150 175 864 125 388

4.3 PointVNS

The second method PointVNS operates in the searchspace of blocked halfspaces Hb. Recall that
this means that every halfspace is determined by d affinely independent datapoints, and the choice
of an orientation.

Initial solution a random hyperplane going through d affinely independent data points

Neighbourhoods Nk(σ) contains all halfspaces determined by d − k data points common with
σ and k new ones. Evidently kmax = d.

Local descent Cell descent, with the current solution as initial solution

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 9

Note that choosing a new solution in Nk(σ) is not so simple. We have encountered many difficulties
due to degenerate situations. Indeed, simply replacing k datapoints that determine σ by k other
datapoints often yielded a (nearly) affinely dependent set of points, which either led to numerical
difficulties or did not define a single hyperplane. Therefore we had to include affine dependency
tests in the code which was quite detrimental to its computational efficiency.

We have implemented two main variants of this search strategy:

PointNVNS or narrow Point VNS: this is the standard VND as described above.

PointBVNS(r) or broad Point VNS: now in the innermost loop each value of k is repeated as
long as the total number of datapoints modified while working within Nk does not exceed
rd.

Each method was coded in Matlab and run 5 times on each data set. Table 5 shows the results
obtained when applying the first and three instances of the second variant (taking k = 1, 3, 10) on
the same datasets as before, using the same presentation as in table 3.

Table 5: PointVNS: average results over 5 runs (Matlab)
Data set d p NVNS BVNS(1) BVNS(3) BVNS(10) Global opt. error
Cancer 9 683 2.279 2.131 2.096 2.101 2.067 1.4%

Diabetes 8 768 16.74 14.93 14.28 13.49 12.24 10.2%
Echocardiogram 7 74 1.455 1.321 1.225 1.233 1.207 1.5%

Glass 9 214 0.03262 0.03191 0.03154 0.03147 0.03114 1.1%
Housing 13 506 1.045 0.9956 0.9575 0.9194 0.8971 2.5%
Hepatitis 16 150 0.9918 0.9085 0.8917 0.8854 0.8711 1.6%

Here we observe that the broad VNS methods are always better than the narrow version.
Usually (but not systematically) the most intensive search strategy in each neighbourhood gives
the best results, as was to be expected. Concerning the quality, one may see that it is usually
quite good, with a notable exception on the second data set.

Table 6: PointVNS: average computation times (s) over 5 runs (Matlab)
Data set d p NVNS BVNS(1) BVNS(3) BVNS(10)
Cancer 9 683 86 301 675 3724

Diabetes 8 768 47 149 349 1097
Echocardiogram 7 74 3 8 14 104

Glass 9 214 17 55 204 486
Housing 13 506 108 147 936 2728
Hepatitis 16 150 9 47 83 295

The corresponding average computational times are given in table 6. Computation times for
Point-BVNS(k) increase almost linearly with k.

5 Hybrid method: Grid-Cell

As compared to the results obtained with GridBVNS, shown in table 3, the results found by all
PointVNS, shown in table 5, are worse for the two first data sets, but very much better for the
three last ones.

This suggests that the two approaches GridVNS and PointVNS are complementary: when one
performs badly, the other one performs well and vice-versa. This prompted us to combine their
features into a single hybrid method.

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 10

We propose to mix both methods in the following way. The less expensive Grid descent method
is used as the main part of the local descent mechanism working on the quite large search space
H(1024), reserving the much more computationally involved Cell descent method as a kind of final
touch-up step, pressing the solution towards a local minimum in Hb. This resulted in the following
local search scheme

Grid-Cell Descent

Initial solution randomly chosen.

Descent Repeat until a stable solution is obtained

• Rescale the current solution to H(1024)

• Apply Grid(1024) starting from it

• Apply Cell-descent starting with the solution arrived at by Grid

The rescaling is obtained by first multiplying the current solution σ by a constant factor such
that the largest coefficient equals 1024 in absolute value, and then rounding all coefficients to the
nearest integer. This rounding usually produces a slight deterioration of the solution’s quality, but
this may be seen as a feature which enables to move out of a local minimum with reduced basin.

Table 7 summarizes the average results obtained as before during 5 runs of this method.
However, in order to try to avoid the high computation times observed before with Matlab imple-
mentations, the first Descent step was executed using m = 32.

Table 7: Grid-Cell Descent: average results over 5 runs (Matlab)
Data set d p GC-Descent Global opt. descent-error
Cancer 9 683 2.072 2.067 0.2%

Diabetes 8 768 12.25 12.24 0.1%
Echocardiogram 7 74 1.385 1.207 14.7%

Glass 9 214 0.08269 0.03114 165.5%
Housing 13 506 0.8975 0.8971 0.04%
Hepatitis 16 150 0.8722 0.8711 0.1%

One may observe that the hybrid descent gives already often better results than the much more
sophisticated VNS schemes in section 4.

Even better results may be expected when building this descent method into a VND. We
propose the Grid-Cell VNS scheme with following characteristics.

Initial solution Solution obtained by Grid-Cell Descent

Neighbourhoods Nk(σ) contains all halfspaces having d + 1− k coefficients in common with σ
and k new ones.

Local search Grid-Cell Descent, with the current solution as initial solution

Note that by defining our neighbourhoods by modification of coefficients of σ, which are immedi-
ately rescaled to belong to H(1024), we avoid the difficulties mentioned before of having to care
about affine independency.

As the coefficient β is one of the coefficients that is possibly modified in Grid, one may consider
that Grid already includes a kind of translation step. Secondly, when an LP is solved within a cell

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 11

corresponding to a balanced solution, the resulting extreme solution is often also balanced, and
it is therefore useless to apply a translation step. Therefore we totally drop translations from the
Cell-descent steps.

Since our Matlab codes were quite slow in general, we decided to make a completely new
implementation in C. We made use of the GCC compiler, used double precision arithmetic and
calls to CPLEX 9 for LP solving. All results given in the next sections were obtained with this
C-code, and run on an Intel Xeon 3.40GHz processor with 2GB RAM.

6 Computational results

In order to study in detail the behaviour of our final algorithm, we decided to do more extensive
tests on all the data sets used also by Karam et al. [8], which consist of the six UCI data sets
discussed before, and several large scale data sets artificially produced as mixtures of normal
distributions.

6.1 UCI data sets

We ran Grid-Cell VNS 100 times on each of the UCI data sets.
The following table gives statistics concerning the frequency with which certain solution qual-

ities were obtained. Each column shows the number of runs that obtained a solution of given
relative quality as compared to b, the best solution found during these 100 runs. Probably this is
the global optimum, now determined up to 10 digits.

Table 8: Grid-Cell VNS on UCI data sets: 100 runs
Data set d p best (b) # =b < 1.0001b < 1.001b 1.01b < 1.1b < 2b

Cancer 9 683 2.066966216 69 69 96 100 100 100
Diabetes 8 768 12.24317323 4 52 83 100 100 100

Echocardiogram 7 74 1.207301887 88 88 88 97 98 100
Glass 9 214 0.031141906 14 14 40 68 83 100

Housing 13 506 0.897142644 11 45 81 100 100 100
Hepatitis 16 150 0.871132909 47 95 99 100 100 100

These results show that the performance is quite different on different data sets. It seems
that, contrary to the impression obtained from table 7, the echocardiogram data are the easiest
to solve: the global optimum is found in 88% of the runs. Grid-CellVNS performs quite well on
most data-sets, except on Glass.

The next table gives a summary of the observed calculation times. These times are clearly
much lower than the times needed for Matlab implementations of much simpler methods. We
estimate that we obtained a reduction by a factor of over 100 by moving to C.

Table 9: Calc.Times in 100 runs of Grid-Cell VNS on UCI data sets
Data set d p Min Time Avg Time Max Time StDev Time
Cancer 9 683 1.438 2.946 6.281 1.013

Diabetes 8 768 3.938 8.158 17.719 2.875
Echocardiogram 7 74 0.140 0.318 0.625 0.117

Glass 9 214 0.625 1.356 2.860 0.463
Housing 13 506 7.047 11.092 19.016 2.451
Hepatitis 16 150 1.844 2.682 4.421 0.450

We also prepared some graphs to check time versus quality, as shown in figure 1. One easily
recognises that local optima corresponding to different values are found, most of which several

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 12

Table 10: Grid-Cell VNS on artificial data sets: average results over 10 sets
d p MC Distance Time (s)

GC-VNS AHKNP-exact GC-VNS AHKNP-exact CHK-VNS
4 2000 3.1130 3.1096 3.5 5.0 10.5
5 2000 3.4658 3.4577 5.9 11.4 11.1
6 2000 4.3368 4.3304 12.2 34.5 13.9
7 2000 5.0493 5.0387 14.6 118.3 21.8
8 2000 5.9768 5.9641 20.6 557.4 29.2
9 2000 6.3159 6.2936 28.0 1796.3 44.3

10 2000 6.4969 6.4801 40.6 3194.4 56.8
11 2000 11.2930 11.2771 66.6 38530.5 64.0
12 2000 7.2683 7.2610 74.3 NA 78.5
13 2000 9.5310 9.4937 124.9 NA 93.8
6 2000 3.9870 3.9782 11.0 36.0 14.6
6 4000 7.6811 7.6462 30.8 212.6 28.3
6 6000 14.2541 14.2193 36.4 635.5 34.2
6 8000 15.9780 15.9486 48.7 959.7 54.9
6 10000 23.8181 23.7869 69.7 1433.3 77.7
6 12000 27.1247 27.0759 79.1 2593.5 69.6
6 14000 35.9110 35.8001 105.5 2858.2 74.9
6 16000 25.8911 25.7808 90.6 2146.0 112.4
6 18000 36.5834 36.5189 156.6 5915.7 115.5
6 20000 25.0170 24.9326 160.4 5777.2 118.5

times. The echocardiogram data are an exception with one clear global optimum found many
times, and a small number of other local optima, some of which quite bad, found only few times.
However, times needed to find these local optima do not seem to depend strongly on the quality.

6.2 Artificial data sets

The artificial data-sets used by [1, 8] consist of two series of ten sizes with ten data-sets of each
size, all obtained using Musicant’s NDC generator [11], a Matlab program which locates randomly
a given number of centers, assigns them to one of two classes by splitting the set using a randomly
generated separating hyperplane, and finally produces multivariate normally distributed points
from these centers using a random covariance matrix. We made use of the same data-sets made
available by these authors. The first series has always p = 2000 points, but dimensions d =
4, . . . , 13. The second series has fixed dimension d = 6, but numbers of points p = 2000, . . . , 20000,
by steps of 2000.

For each of these artificial data-set we did a single run of Grid-Cell VNS, always using euclidean
distances, and obtaining the results summarized in table 10. The first two columns indicate the
dimension d and size p, the next two columns indicate the average objective values obtained over
the 10 data-sets by Grid-Cell VNS and those published in [1], the next three columns indicate
likewise the average CPU-times used by Grid-Cell VNS, and those published in [1] and in [8].

This shows that Grid-Cell VNS obtains very close to optimal values consistently. Calculation
times of Grid-Cell VNS remain very acceptable even for high dimensions or large datasets, contrary
to the performance of the exact method of [1]. They are very comparable to those of [8], although
have a higher rate of increase with dimension d and/or number of data points p.

6.3 Cross-validation

We finally performed a series of 10 tenfold cross-validations on each of the UCI databases, always
using euclidean distances. The results are summarized in table 11. In this table we have also

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 13

Figure 1: UCI-data: Calculation time versus quality

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 14

attempted to include similar results obtained in [7, 8]. However these are not directly comparable
for two reasons. First [7, see fig2.2 p.34] did only a single tenfold cross-validation, and since we
observed a high degree of variation between our different tenfold cross-validation runs, the results
of which were quite close to optimal, their results may not be reliable. Secondly, if we compare our
results with those approximately given (only graphically) in [8], we find an almost perfect match.

As a reference we also added the averages of 10 tenfold cross-validations of two other popular
classification algorithms. The first one is the SMO algorithm from Weka[16], which we used to
find SVM classifiers using linear kernels. The second one is the J48 algorithm from Weka[16],
which we used to build C4.5 classification trees.

We do want to emphasise that it is not the goal of this paper to prove that the minimisation
of the sum of misclassification distances is in any way superior to other criteria, but only that
given this criterion it is possible to efficiently find a linear classifier that is not inferior to the
guaranteed global optimum from a classification point of view. However, we would also like to
mention that preliminary tests have indicated that by combining this criterion with a dimension
reduction technique, it can be very competitive with the aforementioned industry standards. This
approach will be reported elsewhere.

Table 11: Average of 10 tenfold cross-validations of Grid-Cell VNS on UCI data sets
Data set d p GC-VNS AHKNP-exact CHK-VNS SMO J48
Cancer 9 683 95.24% 95.31% 95.26% 97.00% 95.45%

Diabetes 8 768 74.40% 73.83% 74.05% 76.80% 74.49%
Echocardiogram 7 74 60.30% 56.75% 60.50% 70.95% 70.95%

Glass 9 214 91.74% 92.06% NA 92.20% 93.27%
Housing 13 506 82.23% 81.77% 82.25% 86.42% 81.90%
Hepatitis 16 150 78.40% 76.67% NA 84.60% 77.60%

References

[1] Audet C., Hansen P., Karam A., Ng C.D., Perron S. (2007) Exact L2-norm plane separation.
Technical report, Les Cahiers du GERAD, G-2007-09, Montreal, Canada.

[2] Carrizosa E. and Plastria F. (2007) Optimal expected distance separating halfs-
pace. Mathematics of Operations Research, to appear, Online version: http://www.
optimization-online.org/DB_HTML/2004/10/971.html

[3] Cristianini N. and Shawe-Taylor J. (2000) An introduction to Support Vector Machines and
other kernel-based learning methods. Cambridge University Press.

[4] CPLEXINT - Matlab interface for the CPLEX solver, http://control.ee.ethz.ch/

~hybrid/cplexint.php

[5] Hansen P. and Mladenović N. (2003) Variable neighborhood search. In Glover F. Kochen-
berger G. (Eds.) Handbook of Metaheuristics. Kluwer Academic Publisher. p. 145–184.

[6] Horst R. and Tuy H. (1990) Global optimization: deterministic approaches. Springer.

[7] Karam A., (2005) Essays on Linear Discrimination, PhD thesis at HEC Montréal, Option
Méthodes Quantitatives de Gestion.

[8] Karam A., Caporossi G., Hansen P. (2007) Arbitrary-norm hyperplane separation by vari-
able neighbourhood search. IMA J Management Math 2007 18:173–189.

[9] Mangasarian, O.L. (1999) Arbitrary-Norm Separating Plane. Operations Research Letters
24: 15–23.

Plastria/De Bruyne/Carrizosa / Alternating local search based VNS for linear classification 15

[10] Mladenović N. and Hansen P. (1997) Variable neighborhood search. Computers and Opera-
tions Research 24: 1097–1100.

[11] Musicant D. (1998) NDC: Normally distributed clustered datasets, http://www.mathcs.
carleton.edu/faculty/dmusican/ndc/

[12] Newman D.J., Hettich S., Blake C.L., Merz C.J. (1998). UCI Repository of machine learning
databases http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University
of California, Department of Information and Computer Science.

[13] Plastria F. and Carrizosa E. (2001) Gauge-distances and median hyperplanes. Journal of
Optimization Theory and Applications110: 173–182, .

[14] Plastria F. and Carrizosa E. (2002) Optimal distance separating halfspace. Working Paper:
BEIF/124, Vrije Universiteit Brussel. http://www.optimization-online.org/DB_HTML/
2004/10/970.html

[15] Shawe-Taylor J. and Cristianini N. (2004) Kernel Methods for Pattern Analysis. Cambridge
University Press.

[16] Witten I.H. and Frank E. (2005) Data Mining: Practical machine learning tools and tech-
niques, 2nd Edition Morgan Kaufmann, San Francisco, 2005.
Weka software: http://www.cs.waikato.ac.nz/~ml/weka/index.html

