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Abstract 

 

We study a “hard” optimization problem for metaheuristic search, where a natural neighborhood 

(that consists of moves for flipping the values of zero-one variables) confronts two local optima, 

separated by a maximum possible number of moves in the feasible space. Once a descent 

method reaches the first local optimum, all sequences of feasible moves to reach the second, 

which is the global optimum, must ultimately pass through solutions that are progressively worse 

until reaching the worst solution of all, which is adjacent to the global optimum. 

We show how certain alternative neighborhoods can locate the global more readily, but disclose 

that each of these approaches encounters serious difficulties by slightly changing the problem 

formulation. We also identify other possible approaches that seem at first to be promising but 

turn out to have deficiencies. 

Finally, we observe that a strategic oscillation approach for transitioning between feasible and 

infeasible space overcomes these difficulties, reinforcing recent published observations about the 

utility of solution trajectories that alternate between feasibility and infeasibility. We also sketch 

features of such an approach that have implications for future research. 
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1. Introduction 

 

Consider the following disarmingly simple 0-1 integer linear programming (ILP) 

problem 

 

  (P1)   Maximize      
2

0 1 j

j N

x nx x


     (1.1) 

subject to 

          
2

1( 1) 0j

j N

n x x


     (1.2) 

     Njx j  ,10   (1.3) 

          jx is integer, Nj   (1.4) 

Here N  = {1, …, n } denotes the index set for the x variables and 2N  = {2, 3, 

…, n } (= N – {1}) is the index set for all variables except 1x . This problem has 

the interesting property of being “hard” for a search method that starts from the 

feasible solution where xj = 0 for all jN and uses a search neighborhood that 

consists of flipping (complementing) the values of the 0-1 variables. As we 

consider the outcome of applying such a search method, we begin by imposing the 

requirement of remaining feasible at each step. This requirement reflects a bias 

found in many search procedures, which favor making feasible moves whenever 

possible, and in the present case would seem entirely benign, because there is a 

path through this “feasible flip” neighborhood that leads to the unique globally 

optimum solution, and in fact it is possible to start from any feasible 0-1 solution 

and trace a path in this neighborhood to every other feasible solution. (Such a 

property is not satisfied in many 0-1 ILP problems.) 

 

The feature of this problem that makes it hard  for such a search process is that the 

0 solution is a local optimum in the feasible space, while the global optimum 

occurs by setting xj = 1 for all Nj , and this latter solution is the only locally 

optimal solution outside of the 0 solution.  (The difference in quality between 

these two solutions can be magnified by giving x1 a larger coefficient in the 

objective function.) Still worse, if x is any other feasible solution except for the 

“worst” (smallest xo value) feasible solution that sets x1 = 0 and  xj = 1 for all  

jN2 , then all moves from x that lead to an improved feasible solution consist of 

identifying some xj that currently has a value of 1 and setting it equal to 0, hence 

moving back toward the 0 solution. 

 

In short, a method that starts anywhere in feasible space except at the worst 

feasible solution, or the global optimum itself, and that tries to make improving 

moves, will always be driven to revisit the 0 solution. For example, starting from 
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any feasible solution except the global optimum and the worst feasible solution 

adjacent to it, all improving moves result by flipping some variable with a value 

of 1 to receive a value of 0, and all improving paths hence likewise consist of such 

flips until reaching the local optimum with all xj = 0. 

 

A question that quickly comes to mind is whether a straightforward intervention 

exists to counter this slide back to 0. In fact, the “recency memory” approach 

often used in simple forms of tabu search, which prevents a certain number of the 

most recently chosen moves from being reversed, seems usefully suited for this 

purpose, and on the surface would appear to be capable of removing the difficulty. 

However, in order to ultimately drive the method to find the global optimum it 

would be necessary to maintain an “extreme” tabu restriction that forbids 

reversing each of the last n – 1 moves. If the method is started one step away from 

the worst feasible solution (so that it would first move toward the 0 solution, 

which it would reach in n – 2 steps), then the tabu restriction would need to be 

retained for a succession of 2n – 3 moves. This is not an excessive number of 

moves under most circumstances, but such an extreme tabu restriction creates a 

very rigid search procedure that severely limits the ability to choose among 

available moves, and consequently it would provide an ineffective strategy for 

solving most types of 0-1 ILP problems. We will return to the issue of tabu 

restrictions later, but for the moment we note that such a recency memory strategy 

does not appear to be a good resolution of the difficulty faced. 

 

2. What Can Be Done?  

 

Admittedly, this is a “cooked” example that is purposely designed to be perverse 

for the simple 0-1 flip neighborhood used. However, if we cannot find an 

approach that overcomes the difficulty posed by a problem of such simplicity, 

then we may also anticipate that we will be highly vulnerable to failing when 

confronted with more complex problems. Granting that an example always exists 

that can make any given method perform badly, we may nevertheless ask whether 

there is at least a relatively simple algorithmic design that will resist being 

confounded so readily, and that therefore gives a chance of performing more 

effectively than in the current illustration. 

 

Some of the strategies we explore in our following discussions include: 

1) Specially structured neighborhoods 

2) Multiple flip neighborhoods 

3) Linear programming relaxations 

4) Feasible/infeasible strategies (drawing on strategic oscillation) 

 

As a last ditch effort to avoid having to come up with a more substantive 

response, we might be tempted to “reverse engineer the formulation” – that is, by 
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drawing on the knowledge of a preferable solution to start the search from, we 

might complement the 0-1 variables xj, 2j N (replacing them by variables yj = 1 

– xj). Then the initial “0 solution” would be the worst feasible solution that is one 

move away from the globally optimal solution and the difficulty of this problem 

would go away. But by allowing this kind of trickery we could just as well 

complement all variables and start at the global optimum itself. We seek a more 

useful type of response that does not depend on knowing in advance the 

characteristics of the problem or the location of the best solution. 

 

3. Reasonable Possibilities and Loopholes 

 

A conspicuous first possibility to consider is to change the neighborhood 

employed in attempting to solve the example problem.  To be sure, we do not 

want to propose a neighborhood that is too arcane, because then no one will use it 

and its value would be limited. Instead, we are motivated to find a neighborhood 

that employs some natural search principle, and hence that could “make sense” as 

the basis for a more general approach. 

 

There is a neighborhood that seems to overcome the difficulties encountered 

called the CX neighborhood (as examined, for example, in Reeves, 2006), where 

the neighbors of a given solution consist of the n solutions that simultaneously flip 

all the variables indexed k through n, as k takes the values k = 1 to n. Then the “all 

1” solution is adjacent to the 0 solution (being the neighbor that arises when k = 

1), and hence the CX neighborhood will uncover the global optimum in short 

order.  

 

However, the CX neighborhood runs into two limitations that eliminate it as 

useful in this context. First, it can require much more effort to evaluate than the 

single flip neighborhood (for example requiring O(n
2
) operations versus O(n) 

operations in the application of Glover et al. 1999).  Second, and more to the 

point, we can simply change our formulation slightly so that the best solution is 

not the complement of the 0 solution, and then the CX neighborhood loses its 

ability to uncover the global optimum. For instance, it suffices to add a variable 

xn+1 which has a coefficient of –1 in the objective function (1.1) (in common with 

the variables x2 through xn) and that has a coefficient of 1 (instead of –1) in the 

constraint (1.2). Then xn+1 takes a value of 0 rather than 1 in the global optimum, 

and the CX neighborhood will not help to find this solution. A variety of other 

kinds of formulation variations can also thwart this change of neighborhoods. 

 

Instead of looking for a neighborhood that will stumble on the global optimum by 

blind luck, we are motivated to look for one that can help to find this solution by a 

more systematic means. One of the most commonly used “alternative 
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neighborhood strategies” in 0-1 optimization is to flip the value not just of a single 

variable, but of 2 or more variables simultaneously. In its naïve form such an 

approach is rather costly to execute, since the number of ways to flip k variables 

out of n can become large even for fairly small values of k. To combat this effect, 

in practice multi-flip neighborhoods are employed by restricting attention to 

promising subsets of possibilities through the use of candidate list strategies (see, 

e.g., Chapter 3 of Glover and Laguna, 1997).  Regardless of whether such 

refinements are employed, however, the resulting compound neighborhoods turn 

out to be of little use in the present example. Even if all possible “k flips” could be 

examined in a reasonable time (say for k ≤  4), such a procedure would not be 

immune to the defect of repeatedly falling back into the 0 solution when applied 

to solving problem (1). 

 

An approach that contains a still larger element of “strategy,” and appears to offer 

more hope in the present setting, is to employ a neighborhood based on linear 

programming (LP). In this approach, we would temporarily relax the integer 

requirement (1.4) and solve the problem (1) as an LP problem in the quest for a 

solution that is in some sense closer to an optimal integer solution. The method 

would then continue to solve various amended LP problems, or carry out a search 

by pivoting to adjacent extreme point solutions, in an effort to close the gap 

between the present solution and one that is integer feasible. 

 

In fact, this approach appears to be a splendid strategy in the present case, because 

the primal simplex LP method will quickly find the global ILP solution, without 

bothering to seek to impose the integer requirement (1.4). Specifically, starting 

from the 0 extreme point solution, the first pivot with the primal method is 

degenerate (leading to an LP basis that still gives the 0 solution), but afterward the 

method marches along a path of improving fractional extreme points until 

reaching the optimum that sets all variables to 1. 
1
 

 

Regrettably, however, this strategy is likewise easily thwarted by a minor change 

in the problem formulation. To confound this LP approach, all that is required is 

to replace the constraint (1.2) by the constraint 

 

2

1( 1) j

j N

n h x x h


     

 

where h is selected to be some small positive integer  > 1. (Constraint (1.2) itself 

                                                           

1
 It is possible to use a different formulation that replaces the constraint (1.2) by the collection of 

constraints x1 ≤ xj, 2 ,j N  then the simplex method would make n – 1 degenerate pivots 

followed by a single pivot going from the 0 solution to the “all 1” solution. This alternative 
formulation responds identically to the method introduced in the next section for resolving the 
complications noted here.   
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results when h = 0.) Then the optimum LP solution sets x1 to the fractional value 

h/(n + h – 1) together with setting all xj = 0 for j N2, giving an objective value of 

xo = nh/(n + h – 1), which exceeds 1 when h > 1. For example, when h = 5 and n = 

100, the optimum LP solution yields x1 = 5/104 and xo = 500/104. Rounding this 

solution to its nearest integer neighbor gives the 0 solution again.  Moreover, 

using the LP solution as a starting local optimum, this approach has all the 

deviously bad features for an LP pivoting neighborhood that the “all 0” local 

optimum has for the flip neighborhood.  

 

We can overcome the immediate difficulty if we augment the LP solution 

approach by incorporating special cutting planes (see, e.g., Eckstein and Nediak, 

2007; Glover, 2006, 2008), but it is correspondingly easy to create a formulation 

that disrupts this strategy as well. 

 

Taking stock 

 

At this point, in view of the multiple difficulties that emerge when we try to 

manufacture different types of neighborhoods or to manipulate the problem into 

an exploitable form, we are strongly motivated to step back and take a broader 

perspective. It would be valuable if we could find an approach that retains the 

neighborhood that flips 0-1variables, but rescues it from its deficiencies. The 

rationale underlying such a perspective is that the 0-1 flip neighborhood is 

analogous to a variety of neighborhoods for other kinds of combinatorial 

problems (especially neighborhoods that build on a basic design of “adding” and 

“dropping” solution components), and these neighborhoods additionally arise in 

applications that do not conveniently lend themselves to an ILP formulation. 

(More precisely, such a formulation exists for many of these combinatorial 

problems, but creates a model that is exceedingly difficult to solve using 

customary ILP methods.)  Consequently, we confront the question of whether 

there is any way to salvage the 0-1 flip neighborhood by modifying the way it is 

used.  

 

4. Feasibility/Infeasibility Asymmetry and Strategic 

Oscillation 

 

A useful clue concerning a way to effectively restructure our use of the 0-1 flip 

moves is provided by a recent observation concerning bounded ILP problems 

which has implications for the broad range of combinatorial problems having 

equivalent integer programming formulations. In particular, bounded ILP 

problems exhibit a novel asymmetry, embodied in contrasting properties of their 

feasible and infeasible regions. As demonstrated in Glover (2007), the infeasible 
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space for such problems is always connected when using trajectories that change 

the values of the integer variables by unit amounts (such as the 0-1 flip 

neighborhood in the case of 0-1 problems) – a property that lies in stark contrast 

to the situation for the feasible space, which offers no such guarantee. Even where 

trajectories exist between all integer solutions in feasible space, as they do in our 

illustrated problem (1), the structure of infeasible space can be conducive to 

creating simpler and more direct types of solution paths.  In addition, paths that 

have the latitude to cross back and forth through feasible and infeasible space 

have features that make them particularly attractive.  

A procedure called strategic oscillation, which was initially proposed with the 

purpose of crossing back and forth between feasible and infeasible space, is well 

suited to taking advantage of this asymmetry. Occupying a key position among 

tabu search strategies, strategic oscillation has notably also been used in settings 

for transitioning between multiple neighborhoods, decision rules and search 

regions  (Glover, 1977; Freville and Plateau, 1986;  Kelly, Golden and Assad, 

1993;  Osman, 1993;  Vasquez and Hao, 2001a, 2001b; Hvattum, Lokketangen 

and Glover, 2005). One of the explanations suggested for the success of the 

approach lies in its ability to integrate diversification with intensification, without 

resorting to “randomized” forms of diversification. (Randomized diversification, 

in spite of its popularity in some metaheuristic approaches, will clearly have little 

value in the context of the challenge previously illustrated.)  

5. A Rudimentary Strategic Oscillation Method 

To show the utility of the strategic oscillation approach in the present context, we 

sketch a rudimentary version and examine how it performs in addressing the 

problem (1).  

As a basis for such a method, we will evaluate a prospective move in relation both 

to its “quality” and to the degree of its potential “infeasibility”. For simplicity, we 

will define the quality of a move by reference to the change it induces in the 

objective function. Hence specifically, relative to a specific set of move options, 

we define a “best move” to be a member of the set that improves the objective 

function the most or (in case no improvement is possible) causes it to deteriorate 

the least. The infeasibility evaluation will be expressed as a simple function of the 

constraint violations, such as a weighted sum of such violations. In the setting of 

problem (1), such an evaluation can be taken to be the amount by which the 

solution produced by the move violates the constraint (1.2).   

With these conventions, our simple approach for solving problem (1), starting 

from any feasible or infeasible 0-1 solution, may be described as follows. 
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Simple Strategic Oscillation 

 

I. While the current solution is feasible:  

A. If a move exits to a feasible solution better than the current one, select a 

best move from the set of these options. 

B. If no move exists to a better feasible solution, choose a best move from all 

moves available. (The resulting move may enter infeasible space.) 

 

II. While the current solution is infeasible: 

A. If a move exists that improves the infeasibility measure, select a best move 

from the set of these options. (The resulting move may enter feasible 

space.) 

B. If no move exists that improves the infeasibility measure, select a best 

move from the set that causes this measure to deteriorate the least.  

 

It may be noted that this method does not treat feasibility and infeasibility 

symmetrically, and in this respect accords with the principle underscored in our 

earlier discussion concerning the desirability of a procedure that operates 

differently in feasible and infeasible space.  

 

Applied to problem (1), if we start from an initial feasible solution, the preceding 

method first executes a series of improving moves employing step I.A. that takes 

it to a locally optimal solution. In this case, assuming the starting solution was not 

itself the global optimum or the solution adjacent to it, the solution attained will 

be the 0 solution. Upon reaching this juncture the method applies step I.B. to 

immediately cross into infeasible space, since setting x1 = 1 is the best of all 

available moves (by the simplified definition of “best” used here). The next series 

of moves applies step II.A. to systematically march back to feasibility, setting the 

variables x2 through xn successively equal to 1 (since these are the best moves 

from those that improve the infeasibility measure). At this point the globally 

optimal solution is obtained.  

 

If instead the method starts from an infeasible solution, it will likewise employ a 

series of moves to systematically march back to feasibility, and will obtain the 

global optimum when feasibility is reached.  It is also readily seen that this 

method will perform essentially in the same way when applied to any of the 

modified formulations previously discussed that thwart various attempts to create 

alternative neighborhoods and alternative solution strategies.  

 

In fact, if we change the definition of a best move to use a common “ratio 

definition” (identified below) the method will make the same moves as before 

when starting in infeasible space – or from a local optimum or the worst feasible 

solution – but will require even fewer moves than before in all other cases. It 

suffices to define a best move to be one that yields a maximum ratio of the 
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objective function improvement to the change in resources consumed by the move 

when the current solution is feasible, and to be the one that yields the minimum 

ratio of the objective function deterioration to the reduction of the infeasibility 

measure when the current solution is infeasible.  (This ratio definition should 

appropriately become more subtle for general applications, as discussed in the 

Appendix.) Then starting from any feasible solution the best move will be the one 

that sets x1 = 1, and if this does not immediately give the global optimum the 

solution will then be in infeasible space and will proceed directly to the global 

optimum by the same path previously indicated. 

 

The message provided by this illustrated solution process is not that we are able to 

obtain the global optimum. We have already seen that this solution can be 

obtained by an intervention using a tabu restriction (although a restriction that will 

not work well for solving most problems). Rather, the moral is that we have found 

the global optimum by a strategy that does not make use of advanced knowledge 

about the nature of the optimum (as choosing an extreme tabu restriction does). In 

addition, this method can readily be extended to handle other more general 

problems. We examine some of the details for structuring a convenient and 

effective form of such an extension in the Appendix. 

 

6. Conclusion 

 

Evidently no single strategy is going to prevail when attempting to solve hard 

combinatorial problems. Judicious use of all the weapons in our arsenal for 

battling with recalcitrant problems is essential. At the same time, it can be helpful 

to analyze how to overcome obstacles presented by simple problems that are 

resistant to solution, by means of strategies having broader applicability.  

 

In this spirit, drawing on lessons learned from the challenge posed by problem (1), 

we have identified the limitations of certain popular strategies (such as 

intervention by a rigid tabu restriction, the use of various alternative 

neighborhoods, incorporation of a strategy based on linear programming, and 

making recourse to randomized diversification). To cap these observations, we 

have disclosed that a simple strategy for crossing the feasibility/infeasibility 

boundary can be useful in overcoming these limitations, and can be readily 

generalized to broader settings. 
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Appendix: A More General Strategic Oscillation 

Procedure 

 

We briefly sketch a few of the features of a more general strategic oscillation 

procedure for crossing the feasibility boundary, by looking at some of the possible 

functions of such a procedure. More detailed information on strategic oscillation 

can be found in Glover and Laguna (1997) and Glover (1995, 2000). 

 

Exploiting Asymmetry and the Direction of Oscillation 

 

Our comments will focus on observations that are straightforward in nature, but 

that are nevertheless often overlooked and that can make a significant difference 

in the effectiveness of a strategic oscillation procedure.  

 

Strategic oscillation is often structured to penetrate varying distances beyond the 

boundary between feasible and infeasible space. As a result, there can be a 

difference in the nature of an evaluation that depends not only on the region in 

which a solution lies, but also on whether the search is currently undertaking to 

approach or move away from the boundary. Thus, it is generally advisable to 

employ different evaluations according to direction of search in relation to  the 

feasibility boundary as well as according to the region in which the current 

solution lies.   

 

To set the stage for considering the nature of useful evaluations, and how they 

change under different circumstances, we observe that the notion of moving 

“toward” or “away from” a feasibility boundary must be chiefly restricted to 

considering the role of inequality constraints when the search is in feasible space, 

but will also make reference to equality constraints when the search is in 

infeasible space. If the neighborhood employed does not assure that the equality 

constraints will remain satisfied once feasibility is attained, the oscillation will be 

primarily one-sided, spending most of its time in the infeasible region.  

 

Multi-move combinations are often useful for procedures that seek to satisfy 

equality constraints, and it is particularly worth noting that such move 

combinations become increasingly relevant for finding improved solutions (even 

in the absence of equality constraints) as the search trajectory gets close to the 

feasibility boundary. The importance of “near boundary” conditions for triggering 

more intensive search is highlighted in Glover (1995, 2000) and in Hvattum, 

Lokketangen and Glover (2005). 
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Features of Evaluations 

 

Evaluations within feasible space typically involve creating measures of objective 

function gain (or loss) by comparison to the amount of resources of various 

constraints that are consumed or made available by a move. Evaluations within 

infeasible space involve similar measures but more particularly emphasize the 

changes in an infeasibility measure associated with the constraints. In forming 

such evaluations, it is relevant to differentiate constraints by their relative 

importance, which can be determined by duality analysis involving the use of 

problem relaxations. Both Lagrangean relaxation and surrogate constraint 

relaxation can be of value in such applications, as demonstrated in Beasley 

(1993), Glover (2003) and Rego (2005).   

 

Differentiating constraints by their relative importance can be further aided by a 

form of learning that keeps track of which constraints are most limiting on high 

quality solutions found throughout the search. Useful proposals for doing this are 

given in Rego and Alidaee (2005). Upon approaching feasibility boundaries, 

however, such measures of relative importance should be given progressively less 

weight in comparison with measures that reflect by the current restrictiveness of 

each constraint.  

 

An interesting approach for handling constraints in the setting of constraint 

satisfaction problems is given in Galinier and Hao (2004), by introducing a way of 

defining a penalty function for each predefined constraint. In essence, each 

penalty measures the minimum number of variables that need to be modified to 

reach a consistent assignment. The penalties are then exploited by a tabu search 

approach that creates an evaluation function consisting of a weighted aggregation 

of the penalty terms. This technique helps the search to approach feasibility more 

effectively than other “hand-made” penalties. 

 

Oscillation Over Parameter Settings 

 

The fact that different parameters can be attached to the multiple components of 

evaluations made during strategic oscillation invites the use of an associated type 

of strategic oscillation that varies the values of these parameters.  

 

An extremely simple form of such an approach can be illustrated by considering 

the use of just two basic measures, one identifying the quality of an objective 

function change and the other identifying the “net” satisfaction or violation of the 

constraints. The oscillation then varies the weight attached to the second measure, 

so that a decreased weight on the degree of satisfying constraints will allow the 

search within a feasible region to move toward and ultimately cross the feasibility 

boundary, while an increased weight on satisfying constraints (i.e., on reducing 

their violations) will induce the search to turn around inside the infeasible region 
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and again head toward the feasibility boundary. Depending on the nature of the 

feasible region, the search may then penetrate “further into” this region until the 

weight is shifted to the point where progress back toward the boundary is again 

initiated. 

 

Appreciably more elaborate strategies than this “single parameter oscillation” 

approach are possible, and deserve to be considered when challenging problems 

are confronted. An interesting variant of a multi-parameter procedure has been 

created by Nonobe and Ibaraki (2001) to give a general purpose method that they 

demonstrate in the context of weighted constraint satisfaction problems. In their 

approach, weights are given to all constraints individually, and controlled 

independently of others.  The weight given to a constraint is increased if the 

solutions currently being searched stay infeasible for the constraint, while it is 

decreased in the other case.  In this way, weights make changes up and down 

during computation, establishing an automatic control that creates a strategic 

oscillation between feasibility and infeasibility without setting a preplanned 

scenario.  When applied to the example problem illustrated in this paper their 

method likewise succeeds in uncovering the global optimum solution. 

 

Transitioning Between Ratio Evaluations and Threshold Evaluations 

 

Many oscillation searches make use of evaluations involving ratios that divide 

changes in the objective function by changes in the degree of satisfying or 

violating constraints. As the search draws closer to the feasibility boundary this 

type of evaluation should be shifted into the background, to be replaced by 

evaluation that instead makes use of thresholds. Thus, for example, it can become 

preferable in the vicinity of the boundary to select best moves based strictly on the 

objective function change, subject to satisfying a threshold that limits the amount 

of deterioration in the level of meeting or violating the constraints. Alternatively, 

the criterion for selecting a best move may be based on the degree to which 

constraints are satisfied or violated, subject to meeting some threshold of 

improvement (or of limited deterioration) in the objective function. 

 

Implications for Tabu Restrictions and Associated Memories 

 

The fact that problem (1) can be solved by using an extreme tabu restriction, even 

though such a restriction would be a poor strategy to apply generally, suggests the 

merit of a form of strategic oscillation that varies this restriction – or more 

accurately, that varies the tabu tenure which specifies the number of moves that a 

tabu restriction is maintained in force.  
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Such an oscillating tenure strategy would consist of periodically electing to 

increase the tenure by chosen increments until reaching an extreme value, and 

then to return the tenure to its customary range (either immediately or by a more 

gradual reduction schedule). This type of approach would appropriately be 

executed by superimposing it on ordinary dynamic tabu tenure strategies (Glover 

and Laguna, 1997) and it can likewise be used in conjunction with self-adjusting 

tabu tenure approaches, such as those proposed by Nonobe and Ibaraki (1998) and 

Lü and Hao (2008).  

 

A useful supplement to such an approach occurs by maintaining a reference set 

that consists of high quality solutions (or local optima) previously found. The 

choice of new moves during diversification phases is then made to favor those 

that endow new solutions with attributes (e.g., values of variables) that 

infrequently occur among solutions in the reference set, until a preferred level of 

difference is attained between the current solution and the reference set solutions.  

 

This approach can be further supplemented by keeping a record of moves that 

were often attractive in the past, but that were infrequently or never chosen 

because they did not manage to become the “top pick.”  Such a record may 

include moves that were excluded based on some screening rule but that 

nevertheless had a feature deemed attractive, either in terms of improving the 

objective or of enhancing some other measure of interest. (For example, in the 

strategy first illustrated for solving (1) the move of setting x1 = 1 was excluded on 

the grounds of creating infeasibility, but apart from this basis for exclusion, the 

move would be considered attractive.) Attributes of these moves that did not 

therefore become part of solutions previously visited are valuable to consider as 

components of new moves.  

 

The use of critical event memory and conditional critical event memory, along 

with associated processes for giving improved control by strategic oscillation, are 

discussed in Glover (2000). 

 

 




