Online Stochastic Optimization Under Time Constraints

Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Brown University, Box 1910, Providence, Rl 02912

Abstract. This paper considers online stochastic optimization gnwoisl where uncertainties are
characterized by a distribution that can be sampled andenigre constraints severely limit
the number of offline optimizations which can be performedeatision time and/or in between
decisions. It proposes a generic framework for online ststib optimization and several of its in-
stantiations. In particular, it studies the expectatigodathm E that evaluates all choices against
all samples at each decision step and introduces the carsséhand regret R algorithms that
only solve each sample once per step. Both theoretical guetiexental results are presented on
the algorithms. The theoretical results indicate thatemmdasonable and practical assumptions,
the expected quality loss of algorithm E d$1), while algorithm R provides @(1 + o(1))-
approximation when its underlying regret function ig-approximation. The experimental re-
sults are presented on three problems of fundamentallgrdiit nature: packet scheduling and
multiple vehicle routing (MVR) with and without time wind@wvThey clearly show the benefits
of stochastic information and the practical value of thesemsus and regret algorithms under
severe time constraints.

1 Introduction

Online scheduling and routing problems arise naturally anynapplication areas and have received
increasing attention in recent years. Contrary to offlinémization, the data is not available a priori
in online optimization. Rather it is incrementally revetiuring algorithm execution. In many online
optimization problems, the data is a sequence of requegts fmckets in network scheduling or
customers in vehicle routing) which are revealed over timée #he algorithm must decide which
request to process next.

This paper considers an online stochastic optimizatiomésork which assumes the distribution
of future requests, or an approximation thereof, is a blaak-available for sampling. This is typi-
cally the case in many applications, where either histbdaga or predictive models are available.
The framework assumes that the distribution of future retpuis independent of current decisions,
an assumption which holds in a great variety of applicatammthas significant computational advan-
tages. Indeed, there is no need to explore trees of scelaadidsr sequences of decisions. In addition,
this research focus primarily on online stochastic optation under time constraints, which assumes
that the time to make a decision is severely constrainedhaamhly a few offline optimizations can be
performed at decision time and/or in between decisionsin@mroblems of this kind arise in many
applications, including vehicle routing, taxi dispachipgcket scheduling, and online deliveries.

This paper summarizes our recent progress in this area asems new theoretical and experi-
mental results. All results are presented in a unified fraarkyabstracting the contributions spread
accross multiple papers and crystallizing the intuitiogdral the algorithmic design decisions. Its
starting point is the generic online algorithm, initiallygposed in [4], which can be instantiated to a
variety of oblivious and stochastic approaches. When ne tianstraints are present, the generic algo-
rithm naturally leads to the “traditional” expectation atghm E. When time constraints are present,

2 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

the critical issues faced by the online algorithms is howd® their time wisely, since only a few sam-
ples can be optimized within the time constraints. The pépem introduces two novel algorithms,
i.e, consensus C and regret R, to approximate algorithm lEsighificantly fewer offline optimations
[4,5]. In addition, the paper shows that the generic onligerithm can be elegantly generalized to
accommodate many features that are critical in practicpliegtions: precomputation (to make im-
mediate decisions), least-commitment (to avoid suboptidraisions), service guarantees (to serve
all accepted requests), and agregate decisions (to sefm@beequests simultaneously) [6].

The various instantiations of the generic online algoritdma evaluated theoretically and experi-
mentally. The theoretical results show that, under reasierend practical assumptions, the expected
quality loss of algorithm E (when compared to the offline oyt solution) iso(1) with a total of
n|R|2(log(n|R|)) offline optimizations, where: is the number of decision steps aftlare the
possible choices at each iteration. Moreover, algorithns Bhown to be an expectedl + o(1))-
approximation algorithm (whenever its underlying reguatdtion is ap-approximation) and requires
a total ofnf2(log(n|R|)) offline optimizations. The experimental results evaluadlgorithms on
three fundamentally different applications: packet sciiad and multiple vehicle routing with and
without time windowns. These three applications represéfgrent extremes in the landscape of
online stochastic optimization. Packet scheduling is térest because of its simplicity: its offline
problem is polynomial and the number of possible actionsaahdime step is small. As a conse-
quence, it is possible to study how consensus and regrebéprate expectation, as well as how all
these algorithms behave under severe and less severe tisigatots. Multiple vehicle routing is of
interest because of its complexity: their offline problemes[dP-hard and feature many of the mod-
eling complexities of practical applications. The expeirtal results clearly demonstrate the benefits
of stochastic information and the practical value of theeeglgorithm.

The rest of this paper is organized as follows. Sections 23apdesent the online stochastic
framework and the generic online algorithm. Section 4 presthe expectation algorithm for loose
time constraints and Section 5 shows how this algorithm esapiproximated by consensus and regret
under strict time constraints. Section 6 presents the #tieaf analysis for the expectation and regret
algorithms and Section 7 compares the algorithms expetatigon packet scheduling under various
time constraints. Section 8 generalizes the online algorito incorporate precomputation, service
guarantees, least-commitment and pointwise consengtetir8ections 9 and 10 present experimental
results of the generalized algorithm on complex multipleigte routing applications. Sections 11 and
12 present related work and conclude the paper.

2 The Online Stochastic Framework

The Offline ProblenThe framework assumes a discrete model of time. The offliakblpm considers
atime horizonH = [H, H] and a number of requests Each request is associated with a weight
w(r) which represents the gain if the request is served. A saluticthe offline problem serves a
request- at each timg¢ € H and can be viewed as a functiéh — R. Solutions must satisfy the
problem-specific constraints which are left unspecifiethenftamework. The goal is to find a feasible
solutiony maximizingW () = >, ; w(~(t)). In the online version, the requests are not available
initially and become progressively available at each titep.s

The Online ProblenThe online algorithms have at their disposal a procedurelt@sor approximate,
the offline problem. They have also access to the distributfofuture requests. The distribution is

Online Stochastic Optimization Under Time Constraints 3

ONLINEOPTIMIZATION(H)

1 R+ @;

2 w0

3 forte H

do R «+— AVAILABLE REQUESTSR, t) U NEWREQUESTSt);
r < CHOOSEREQUESTR, t);
SERVEREQUEST(r, t);
w — w + w(r);

R« R\ {r}

o ~NO O A

Fig. 1. The Generic Online Algorithm

seen as a black-box and is available for sampling. In pmciticmay not be practical to sample
the distribution for the entire time horizon and hence thesiof the samples is an implementation
parameter.

Time ConstraintsPractical applications often include severe time constsabn the decision time
and/or on the time between decisions. To model this req@irénthe algorithms may only use the
offline procedure times at each time step.

Properties of the Frameworkhe framework is general enough to model a variety of prattp-
plications, yet it has some fundamental computational aidgges compared to other moddlke key
observation is that, in many practical applications, theertainty does not depend on the decisions.
There is no need to explore sequences of decisions andéasrdfescenarios: the distribution can be
sampled to provide scenarios of the future without congideihe decisions. As a consequence, the
framework provides significant computational advantages more general models such as multi-
stage stochastic programming [7] and partially observitaiekov decision processes [12].

3 The Generic Online Algorithm

The algorithms in this paper share the same online optimizachema depicted in Figure 1. They
differ only in the way they implement functiobdHOOSEREQUEST. The online optimization schema
simply considers the set of available and new requests htteae step and chooses a requestich

is then served and removed from the set of available requasitstionAvAILABLE REQUEST(R, t)
returns the set of requests available for service at timed functionSERVEREQUEST(r, t) simply
serves at timet (i.e.,y(t) < r). To implement functiotHOOSEREQUEST, the algorithms have at
their disposal two black-boxes:

1. a functionoPTIMALSOLUTION(R, t, A) that, given a seR of requests, a timg, and a number
A, returns an optimal solution fa® over[t, t + AJ;

2. afunctionGETSAMPLE([ts, t.]) that returns a set of requests over the intefiat.| by sampling
the arrival distribution.

To illustrate the framework, we specify two oblivious aliloms as instantiations of the generic algo-
rithm. These algorithms will serve as a basis for comparison

4 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Greedy (G): This algorithm serves the available request with highesghtelt can be specified for-
mally as

CHOOSEREQUESTG(R, t)
1 A« READY(R,1);
2 return argmax(r € A) w(r);

Local Optimal (LO): This algorithm chooses the next request to serve attibydinding the optimal
solution for the available requeststatt can be specified as

CHOOSEREQUESTFLO(R, t)
1 ~ < OPTIMALSOLUTION(R,t);
2 return (¢);

4 Online Stochastic Optimization without Time Constraints

This section presents a stochastic algorithm that optisréz@ectation. The algorithm is appropriate
when time constraints are loose, i.e., wi@is large enough to produce high-quality results.

Expectation (E): Algorithm E chooses the action maximizing expectation @heéme step. Infor-
mally speaking, the method generates future requests lylisanand evaluates each available request
against that sample. A simple implementation can be spdagdollows:

CHOOSEREQUESTE(R, t)
1 A« READY(R,1);

2 forre A
3 do f(r) « 0;
4 fori—1...0/|A|

doS — R U GETSAMPLE([t + 1,t + A]);
forre A
do f(r) « f(r) + (w(r) + W(OPTIMALSOLUTION(S \ {r}, ¢+ 1)));
return argmaz(r € A) f(r);

o0 ~N O Ol

Line 1 computes the requests which can be served atitiaral removes dominated requests from
consideration (which is important for performance reagdrises 2-3 initialize the evaluation func-
tion f(r) for each request. The algorithm then generates a number of samples for fuagpeests
(line 4). For each such sample, it computes thelgeff all available and sampled requests at time
t (line 5). The algorithm then considers each available regusuccessively (line 6), it implicitly
schedules at timet, and applies the optimal offline algorithm usiSg\ {r} and the time horizon.
The evaluation of requestis updated in line 7 by incrementing it with its weight and ere of the
corresponding optimal offline solution. All scenarios avalaated for all available requests and the
algorithm then returns the request A with the highest evaluation. Observe Line 4 of Algorithm E
which distributes the available offline optimizations awall available requests.

5 Online Stochastic Algorithms under Time Constraints

This section studies online optimization under time caists, i.e., when the number of optimizations
at each time stepis small. As mentioned earlier, algorithm E distributesakiailable optimizations

Online Stochastic Optimization Under Time Constraints 5

O across all requests (line 4). Whéhis small (due to the time constraints), each request is only
evaluated with respect to a small number of samples and tjogiim does not yield much infor-
mation. This is precisely why online vehicle routing algloms [2] cannot use algorithm E, since the
number of requests is very large (about 50 to 100), the tinhed®n decisions is relatively short, and
optimization is computationally demanding. The sectioovehhow algorithm E can be approximated
and presents two approximation algorithms, consensusesndtr Before going into the algorithm, it

is important to introduce the concept of local loss betwesmisg an optimal and a given request at
a specific step.

Definition 1 (Local Loss).Let R be the set of requests at timandr € R. The local loss of wrt R
andt, denoted by ocaLLosgr, R, t), is defined as

| W(OPTIMALSOLUTION(R,t)) — (w(r) + W(OPTIMALSOLUTION(R\ {r},t +1))) | .

Consensus (C)The consensus algorithm C was introduced in [4] as an alisinaaf the sampling
method used in online vehicle routing [2]. Its key idea isdtve each sample once and thus to exam-
ine © samples instead @ /| A|. More precisely, instead of evaluating each possible retatdimet
with respect to each sample, algorithm C executes the offlgparithm on the available and sampled
requests once per sample. The request scheduled at tinegtimal solutiony is creditediV () and

all other requests receive no credit. Algorithm C can beifipdas follows:

CHOOSEREQUESTFC(R, t)

1 forreR

2 do f(r) « 0;

3 fori—1...0

4 doS «— R U GETSAMPLE([t + 1,t + A]);
5 7 < OPTIMALSOLUTION(S, t);

FO@) < fF(v(#) + W();
7 return argmaz(r € R) f(r);

()]

Observe line 5 which calls the offline algorithm with all deble and sampled requests and a time
horizon starting at and line 6 which increments the number of times requgéstis scheduled first.
Line 7 simply returns the request with the largest score.mhim appeal of Algorithm C is its ability
to avoid partitioning the available samples between theiests, which is a significant advantage
when the number of samples is small. Its main limitationdglitism Only the best request is given
some credit for a given sample, while other requests arelgiigipored. It ignores the fact that several
requests may be essentially similar with respect to a giaempse. Moreover, it does not recognize
that a request may never be the best for any sample, but nllalyeséxtremely robust overall. The
regret algorithm shows how to gather that kind of informatfoom the sample solutions without
solving additional optimization problenis.

Regret (R): The key insight in Algorithm R is the recognition that, in nyapplications, it is possible
to estimate the local loss of a requestt timet quickly. In other words, once the optimal solution
of a sample is computed, it is easy to compute the local loal tfe requests, thus approximating E
with one optimization. This intuition can be formalizedngsithe concept ofegret

! The consensus algorithms behaves very well on many vehialing applications because, on these applica-
tions, the objective function is first to serve as many cust@mas possible. As a consequence, at a timetstep
the difference between the optimal solution and a non-adtsulution is rarely greater than 1. It is over time
that significant differences between the algorithms acdareu

6 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Definition 2 (Regret).A regret is a function that, given a requesta setR (r € R), atimet, and an
optimal solutiory = OPTIMALSOLUTION(R, t), over-approximates the local loss ofvrt R andt,
ie.,

REGRETr, R,t,7) > LoCALLOSHr, R,).

Moreover, there exists two functiofisand f,. such that

— OPTIMALSOLUTION(R, t) runs in timeO(f, (R, A));
— REGRET(r, R, t,7) runs in timeO(f,(R, A));
— |RIf+(R, A)is O(fo(R, A)).

Intuitively, the complexity requirement states that thenpoitation of thelR| regrets does not take
more time than the optimization. Regrets typically exigpviactical applications. In an online facility
location problem, the regret of opening a faciljtycan be estimated by evaluating the cost of closing
the selected facility/(¢) and opening’. In vehicle routing, the regret of serving a customaext can
evaluated by swappingwith the first customer on the vehicle servingn packet scheduling, the re-
gret of serving a packetcan be estimated by swapping and/or serving a constant mohpackets.

In all cases, the cost of computing the regret is small coegptr the cost of the offline optimization
and satisfy the above requirements. Note that there is aresting connection to local search, since
computing the regret may be viewed as evaluating the cosiozdmove for the application at hand.
We are now ready to present the regret algorithm R:

CHOOSEREQUESTFR(R, t)
1 A« READY(R,1);
2 forreA
do f(r) < 0;
fori—1...0
doS — R U GETSAMPLE([t + 1,t + A]);
~ < OPTIMALSOLUTION(S, t);
FO() — F(4(8) + W ();
forr e A\ {y(t)}
do f(r) < f(r) + (W(y) — REGRET, 7, R, 1));
10 return argmax(r € A) f(r);

©oOo~NO O w

Its basic organization follows algorithm C. However, irmgteof assigning some credit only to the
request selected at timdor a given sample, algorithm R (lines 7-8) uses the regrets to compute, for
each available request an approximation of the best solution©fervingr at timet, i.e., W (y) —
REGRET(v,r, R, t). Hence every available request is given an evaluation feryesample at time

for the cost of a single offline optimization (asymptotigallObserve that algorithm R perfornd
offline optimizations at time¢ and that it is easy to adapt algorithm R to approximate atigariH.

6 Theoretical Analysis

This section analyzes the solution quality and the runtimegomance of the algorithms. Both of
these properties depend on the number of samples used byrttigoh CHOOSEREQUESTIN each
iteration. A large number of samples results in high-quaitlutions and long execution, while a
small sample size may lead to solutions that are far frommugdtiThe main results in this section
relate the sample size and the solution quality: They shaty tinder natural assumptions, a relatively

Online Stochastic Optimization Under Time Constraints 7

small number of samples per iteration suffices for achieviigh solution quality in the expected
senseThe analysis is generic: it does not depend on any particpitaperty of the input distribution.
One can get significantly stronger results for well-behastedses of input distribution3he section
first focuses on the expectation algorithm E, from which #mults of the regret algorithm R can be
derived.

Expected LossConsider a run of the algorithm with an input sequefce i1, ...,14, drawn from
a distributionF'. Let S = s4,...,s, denote the sequence of steps taken by the algorithm and let
2 =uw,...,w, bethe optimal offline solution faf. We are interested in bounding the expected loss

E; L [W(2) - W(S)]

between the profits of the optimal offline solution and tharanalgorithm, where the expectation is
taken over both the input distribution and the random ctwicef the algorithm.

Definition 3 (Expected Loss)Let] be an input sequencg), be an optimal solution fof, and.S be
the output of an online algorithtd on . The expected loss of algorithris defined a¥; 1, [W(£2)—
W (S)], where the expectation is taken over both the input distidibuand the random choices of
the algorithm.

Notations For simplicity, in the following, we omitf and L. when it is clear from the context. In
addition,I; denotes the inputs revealed during the firsteps of the run anf, denotes the sequence
of steps taken by the algorithm in the fitfteps. Given a sequen8efor the firsti steps, the optimal
sequence of steps following these firsteps is denoted by

Q(Sl) = Wi+1 (Si)a e awn(si)

In particular, the sum

n

W(R2(Si1) = > wwi(Si-1))

t=1
gives the optimal profit of the — i 4 1 steps given the first— 1 stepsS;_. Similarly,

n

W(R(Si—1 7)) = > wwi(Si1:7))

t=1

is the optimal profit of the: — i steps given the sequen§e._; : r, i.e., the concatenation of sequence
S;—1 with request. For simplicity, we will also usey; as an abbreviation af;(.S;_1).

Expected Local Los$Ve now define the expected local loss, i.e., the expecteeluaded by chosing
a request (instead of an optimal request) in stepf the algorithm.

Definition 4 (Expected Local Loss).The expected local loss of a requesat stepi, denoted by
A;(r), is defined as

Ai(r) = (w(w;) + E[W(2(S;-1 1 wi))]) — (w(r) + E[W(£2(Si—1 : 7))]).

Observe that the expected local loss at stesypcomputed with respect to the optimal steps following
S;. Nevertheless, we show that the expected loss is the sure ekitected local losses.

8 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Lemma 1. Let I be an input sequencé} be an optimal solution fo¥, and .S be the output of an
online algorithmA onI. Then,

Proof. Observe first that
E[W(£2(5i-1))] = E[w(w;)] + E[W (£2(Si—1 : wi))]

where the expectation is taken over the input revealed mistds a consequence, by definition of
expected local losses,

E[Ai(s:)] = EW(2(5i-1))] — (E[w(s:)] + E[W (£2(5:))]).

and

n n

> E[Ai(s)] = EW(2)] = Y Elw(s)] = E[W(2) - W(S)]. O

=1 =1

Bounding Expected Local Loss&%e now bound the expected local losses for algorithm E. Itigar
ular, we show that N
E[Ai(s:)] < Y Ai(r)emm(A)7/20
rER

wherem is the number of samples taken at each stepaans a bound on the standard deviation of
the samples.

Lemma 2. Let I be an input sequence of length {2 be an optimal solution for, and S be the
output of the online algorithrk on 1. The expected local losses in stegf the algorithm satisfy

BA(s)] < Y Ai(r)e /2
reR

whenn — oo, wherem denotes the number of samples taken at each steaisda bound on the
standard deviation of the samples.

Proof. To make the decision at stépthe algorithm computes, for alle R, an estimate
Y(Si—1:7) = E[W(2(Si—1 :)]
of the expectatio®[W (£2(S;_1 : 7))]. Since the algorithm chose actiep it follows that
w(s;) + Y (Si—1:8) > w(w;) + Y (Si—1 : w;).
or, equivalently,
w(w;) —w(s;) <Y (Si—1:8) —Y(Si1,w;).
By definition of expected local losses, it follows that

AZ(Sl) S Y(Si,1 : Si) - Y(Si,1 : wi) - (E[W(Q(SZ,1 : Sl))] - E[W(Q(51,1 : wl))]), (1)

Online Stochastic Optimization Under Time Constraints 9

giving us a necessary condition for requesto be served at step To estimateE[A; (s;)], we write

ZA)Pr(s; =r),

reR

and denote
Zip =Y (Sic1 0 8i) = Y(Sic1 i wi) — (E[W(2(Si1 ¢ 8i))] = E[W(£2(Si—1 : wi))]).
Since (1) is a necessary condition for an optimal requeftildws that
Pr(r =s;) < Pr(Ai(r) < Z; ;).

Now Y (S;—1 : s;) — Y(S;—1 : w;) is the average ofn independent, identically distributed, random
variables, each with mean

E[W(.Q(SZ,1 . Sl)] — E[W(Q(S1,1 . wl])

wherem is the number of samples. Because we have no knowledge dfsimput distribution, by
the central limit theorent, we can argue that

\/EZZ',T/O'i ~ N(O, 1)

whereo; is a bound on the standard deviation of the sample. Applyiftharnoff bound for the
standard normal random variable (see [18][p. 416)), itciel that

Pr(A(r) < Z;p) < e mAim)? /207

and

reR

<> Ai(r) Pr(Ai(r) < Zi)
r€ER

<3 Aufr)e (M)?2/207
r€ER

Bounding Expected Lossa&&ke are now in position to present the main result of this sacti

Theorem 1. Let I be an input sequence of length 2 be an optimal solution fof, and.S be the
output of the online algorithriz on I. The expected loss of Algorithnis bounded by

E[W(< Z Z A 7m (Ai(r)) /20’12

1=1reR

whenn — oo, wherem denotes the number of samples taken at each stepaisda bound on the
standard deviation of the samples.

2 Reference [14] presents an alternative approach not usengentral limit theorem. Both approaches lead to
the same result.

10 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Proof. Direct consequence of Lemmas 1 and 2]

This result has some interesting consequences. In pati@adsuming that; is O(1), the expected
loss of algorithm E is(1) when the number of samples taken at each stepl€og(n|R|)) inducing
£2(|R|log(n|R])) offline optimizations per step.

Corollary 1. Assume that the standard deviations on the sample®ére Then, algorithnE, using
2(log(n|R|)) samples per iteration, has an expected los® (@) and performs?2(|R| log(n|R]))
offline optimizations per step.

Consider now the algorithm R. Denote by TIMALSOLUTION(r, R, t) the optimal solution forR
andt whenr is scheduled at time(assuming it can) and lIREGRETSOLUTION(r, R, t) the algorithm
approximatingPTIMAL SOLUTION(r, R, t) using regrets. Assume that algoritiRBGRETSOLUTION
is ap-approximation, i.e.,

p X REGRETSOLUTION(r, R, t) > OPTIMALSOLUTION(r, R, t)

for all », R, and timet such thatr can be scheduled at time Under this assumption, algorithm
R returns an expectegd1 + o(1))-approximation of the optimal solution usidg(log(n|R|)) offline
optimizations per step. Indeed, Theorem 1 also holds wreesdlutions? and.S are replaced by their
approximations? andS that use algorithrREGRETSOLUTION. As a consequencE[IV (2)—W (S)]

is o(1) for 2(log(n|R|)) samples. SincglV (2) > W (£2), it follows that

p(1+0(1)) W(S) > W(£).

Similarly, if algorithm REGRETSOLUTION is a bounded approximation with boupdf OPTIMAL-
SOLUTION, i.e.,

REGRETSOLUTION(7, R, t) + p > OPTIMALSOLUTION(r, R, t)
then, algorithm R returns a solution whose expected lossusded by + o(1).

Corollary 2. Assume that algorithrREGRETSOLUTION is a p-approximation and that the standard
deviations on the samples atg1). Then, algorithnR, usingf2(log(n|R|)) samples per iteration, is
a (p(1+ o(1)))-approximation of the optimal solution and it perforif2§log(n|R|)) offline optimiza-
tions per step. Moreover, if algorithREGRETSOLUTION is an bounded approximation with bound
p, algorithmR, using2(log(n|R|)) samples per iteration, has an expected losg af o(1) and it
performsf2(nlog(n|R|)) offline optimizations per step.

This result is very important in practice, since it meang tigorithm R approximates algorithm E
while reducing the number of offline optimizations by a fadt8|. In general, it is not possible to
obtain a similar result for consensus. However, we will cdmaek to this issue in the context of
vehicle routing applications, which have special struesur

7 Packet Scheduling

This section reports experimental results on the onlin&gizscheduling problem studied in [9]. This
networking application is of interest experimentally €r(@) the number of requests to consider at
each timet is small and (2) the offline algorithm can be solved in polymdrtime. As a result,

it is possible to evaluate all the algorithms experimeptalbntrary to vehicle routing applications
where this is not practical. The packet scheduling is alser@sting as it features a complex arrival
distribution for the packets based on Markov Models (MMs).

Online Stochastic Optimization Under Time Constraints 11

7.1 The Offline Problem

We are given a set of jobs partitioned into a set of class€s Each jobj is chararacterized by its
weightw(y), its arrival datea(j), and its class:(j). Jobs in the same class have the same weight
(but different arrival times). We are also given a schedwgzon H = [H, H| during which jobs
must be scheduled. Each jglrequires a single time unit to process and must be schedulgsl i
time window [a(5), a(j) + d], whered is the same constant for all jobs (i.€.represents the time

a job remains available to schedule). In addition, no twasjoln be scheduled at the same time
and jobs that cannot be served in their time windows are drdpphe goal is to find a schedule of
maximal weight, i.e., a schedule which maximizes the surh@fteights of all scheduled jobs. This
is equivalent to minimizing weighted packet loss. More fatly) assume, for simplicity and without
loss of generality, that there is a job scheduled at each sieye of the schedule horizon. Under this
assumption, a schedule is a functign H — J which assigns a job to each time in the schedule
horizon. A schedule is feasible if

th,tg € H:t }é to — 'Y(tl) #’}/(tg)
Vte H:a(y(t) <t<a(y(t))+d

The weight of a schedule, denoted byw (), is given byw(y) = >, w(v(t)). The goal is to
find a feasible schedulg maximizingw(+). This offline problem can be solved in quadratic time
O(|J]1H) [9].

7.2 The Online Problem

The experimental evaluation is based on the problems ol,[9ere all the details can be found. In
these problems, the arrival distributions are specifiechdgpendent MMs, one for each job class. The
results are given for the reference 7-class problems anahfenline schedule consisting of 200,000
time steps. Because it is unpractical to sample the futuresdomany steps, the algorithms use a
sampling horizon of 50, which seems to be an excellent com@®between time and quality.

7.3 The Regret Function

We now specify the regret function which consists of swag@rconstant number of packets in the
optimal schedule and is based on a simple case analysisidéoagobr € READY (R, t).

If job r is not scheduled (i.er, ¢ 7), the key idea is to try reschedulingt) instead of the job of
smallest weight iny. The regret becomes

min(s € [t,a(v(t)) + d]) w(v(s)) — w(r),

since the replaced job is removed frgmandr is added to the schedule. In the worst case, the replaced
jobis~(¢) and the regretis(v(t)) — w(r).

If job r is scheduled at time,, the regret function first tries to swapand~(¢) in which case
the regret is 0. If this is not possible, the function triescleedulingy(t) instead of the job of small-
est weight iny. If v(¢) cannot be rescheduled, the regret function simply selbetdést possible
unscheduled job which may be scheduled.and the regret now becomes

w(vy(t)) — max(u € U,) w(u)

12 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

where
U, = {J € READY(R,tT) | J ¢ 7}a

since joby(t) is lost in the schedule. H(t) is rescheduled at timg, then the regret concludes by
selecting the best possible unscheduled job which may leslsitdd at,. and the regret now becomes

w(vy(s)) — max(u € Uy s) w(u)

where
Urs ={j EREADY(R,t.) | j ¢~ V j=(s)}

This regret function take®(max(d, |C|)) time, which is sublinear inJ| and|H| and essentially
negligible for this application. We now prove that it prog&a 2-approximation.

Theorem 2. The regret function for packet scheduling is a 2-approxiorat

Proof. Let R be the set of requests at timand letr € R be a request that can be scheduled at time
t. Lety* be an optimal solution, i.e3* = OPTIMALSOLUTION(R, t), let,- be an optimal solution
whenr is scheduled at time, i.e.,y, = OPTIMALSOLUTION(r, R, t), and let, be the solution
obtained by the regret function. We show that

w('Yr)
w(7r)

Most of the proof consists of showing that, for each lost patkhere is another packet i whose
weight is at leasty(l) giving us a 2-approximation sinee(~,.) < w(y*).

First observe that the result holds whefr) < w(r) since, in the worst case, the regret function
only loses packet. So we restrict attention te(x) > w(r). If € +,, i.e., if the regret function
swapsz with another packey (case 1), the result also holds sineéy) < w(x). If 2 ¢ v, andz
can be scheduled after timeit means that there exists a packeat each of these times satisfying
w(y) > w(x) and the result holds. It thus remains to consider the caseawtman only be scheduled
at timet and is thus lost iny,. If » ¢ ~*, the regret function is optimal, since otherwisavould
be in the optimal schedule after tinte Otherwise, it is necessary to reason about a collection of
packets. Indeedy(y*) = w(z) + w(r) + w(S), whereS = {p € v* | p # = & p # y}. We also
know thatw(v,-) > w(r) + w(S) since, in the worst case, the regret function loses packenally,
w(vr) = w(r)+w(Z), whereZ are the packets scheduled after titn8incey* is optimal, it follows
thatw(Z) < w(r) + w(S) and the result follows. O

<2.

7.4 Experimental Results

Figure 2 depicts the average packet loss as a function ofuimdar of available optimizatior® for
the various algorithms on a variety of 7-class problemdsti gives the optimal, a posteriori, packet
loss (O). The results indicate the value of stochastic informatisralgorithm E significantly outper-
forms the oblivious algoritms G and LO and bridge much of thp between these algorithms and
the optimal solution. Note that LO is worse than G, illustrgtthe (frequent) pathological behavior
of over-optimizing.

The results also indicate that consensus outperforms E evieefiew optimizations are available
(e.g.,< 15). The improvement is particularly significant when there aery few available optimiza-
tions. Consensus is dominated by E when the number of alaitgdtimizations increases, although

Online Stochastic Optimization Under Time Constraints 13

105

100

nome
500

Predd|

Average Weighted Loss

.)
5 10 15 20 25 30 35 40 45 50
Maximum Number of Offline Optimizations

Fig. 2. The Regret Algorithm on Packet Scheduling

it still produces significant improvements over the oblidalgorithms. This is of course pertinent,
since E is not practical for many problems with time constiiThe benefits of the regret algorithm
are clearly apparent. Algorithm R indeed dominates all ttieeioalgorithms, including consensus
when there are very few offline optimizations (strong timasteaints) and expectation even when
there are a reasonably large number of them, (weak time redmts).

Finally, it is interesting to observe that algorithm R witB &ffline optimizations produces the
same solution quality as algorithm E with 50 iterations.c8ithe number of ready requests at each
timet is about 5 in average, the experimental results nicely agitbethe theoretical analysis.

8 The Online Stochastic Algorithm Revisited

This section considers four important generalizationeédtamework: precomputation, service guar-
antees, least-commitment, and multiple decisions.

8.1 Precomputation

Some applications are characterized by very short decisios, either because of problem require-
ments or to produce solutions of higher quality. These apfibns however allow for some limited
number of optimizations in between decisions. For instaookne vehicle routing and deliveries are
applications exhibiting these features. The generic endilyorithm can be generalized to provide
these functionalities. The key idea is to maintain a set ofda solutions during execution. At de-
cision time, these solutions can then be used to choose anm@gie request to serve. The set of
solutions can then be updated to remove solutions that aogripatible with the selected decisions
and to include newly generated solutions. Figure 3 defietgéeneralized online algorithm and shows
how to instantiate it with consensus. The set of solutibris initialized in Line 2. The request is se-
lected in line 5 by functiotHOOSEREQUESTWhich now received™ as input as well. Lines 9 and
10 remove the infeasible solutions and generates new ohesfufctionGENERATESOLUTIONS is
also depicted in Figure 3. It is essentially the core of ¢t OSEREQUEST implementation in al-
gorithms C and R with the logic to make decisions abtractedyawhe decision code is what is

14 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

ONLINEOPTIMIZATION(H, R)
1 w0
2 I« GENERATESOLUTIONS(R, 0);
3 forte H
4 do R < AVAILABLE REQUESTSR,t) UNEWREQUESTSR, t);

5 r < CHOOSEREQUESTR, t,I');

6 SERVEREQUEST(r, t);

7 w — w + w(r);

8 R—R\{rh

9 I'e—{yel [y{t)=r}

10 I' — I' U GENERATESOLUTIONS(R, t);

GENERATESOLUTION(R, t)

1 I« 0;

2 repeat

3 S «— R U GETSAMPLE([t + 1,t + A]);
4 7 < OPTIMALSOLUTION(S, t);

5 I' —« 'u{v};

6 until until time¢ + 1

7 return I

CHOOSEREQUESTC(R, t,I")
forr € R

do f(r) < 0;

foryer

do f(r) «— f(r) +w(");
return argmaz(r € R) f(r);

A~ WNPEF

Fig. 3. The Generic Online Algorithm with Precomputation

left in the instantiations of functiodHOOSEREQUEST. The figure also gives the implementation of
CHOOSEREQUESTfor algorithm C to illustrate the instantiations.

8.2 Service Guarantees

Many applications require service guarantees. The algarinay decide to accept or reject a new
request but, whenever a request is accepted, the requeshensisrved. The online algorithm can be
enhanced to include service guarantees. It suffices todnt®a new function to accept/request new
requests and to keep only those solutions which can accowrtmtite requests. Of course, to accept
a request, at least one solution must be able to serve it iti@udb the current requests. The new
online generic algorithm with service guarantees is degigt Figure 4. The changes are in lines 4-6.
FunctionAcCEPTREQUESTS(line 4) selects the new requests to serve using the existihgionsI”

and functionrREMOVEINFEASIBLESOLUTIONS removes those solutions which cannot accommodate
the new requests.

8.3 Least-Commitment

In the packet scheduling application, it is always subogltinot to serve a packet at each time step.
However, in many online applications, it may be advisabletaserve a specific request, since this

Online Stochastic Optimization Under Time Constraints 15

ONLINEOPTIMIZATION(H, R)
1 w0
2 I« GENERATESOLUTIONS(R, 0);
3 forte H
4 do N «— ACCEPTREQUESTSR, t,I');
5 I" — REMOVEINFEASIBLESOLUTIONS(R, t, N, I');
6 R «— AVAILABLE REQUESTSR,t) U N;
7 r < CHOOSEREQUESTR, t,I');
8 SERVEREQUEST(r, t);
9 w — w + w(r);
10 R+— R\ {r};
11 I'—{yel [~(t)=r}
12 I' — I' U GENERATESOLUTIONS(R, t);

Fig. 4. The Generic Online Algorithm with Precomputation and SezvGuarantees

may reduce further choices and/or make this algorithm ldaptave. The ability to avoid or to delay a
decision is critical in some vehicle routing applicatioas shown later in the paper. It is easy to extend
the framework presented so far to accommodate this feditievery step, the algorithm may select a
requestL which has no effect and no profit/cost. It suffices to as®@0OSEREQUESTR U { L}, ¢, I")

in line 5 of the algorithm.

8.4 Multiple Decisions and Pointwise Consensus

Many practical applications have the ability to serve seMerquests at the same time, since resources
(e.g., machines or vehicles) are often available in madtiplits. The online algorithm naturally gener-
alizes to multiples decisions. Assume that a solutiai timet returns a tuple/(t) = (r1,...,r,) =
(m1(%),...,va(¢)). It suffices to replace in the online algorithm by a tuplé-,...,r,) to obtain

a generic algorithm over tuples of decisions. However, itriportant to reconsider how to choose
requests in this new context. A straighforward generabpratf consensus would give

CHOOSEREQUESTFC(R, t)

1 foree R"

2 do f(e) < 0;

3 fori—1...0

4 doS «+ R U GETSAMPLE([t + 1,t + A]);
5 ¥ < OPTIMAL SOLUTION(S, t);
6
7

FOy(@) «— f(v()) + W (7);

return argmaz(e € R™) f(e);

Unfortunately, this generalized implementation of corsssnis not particularly effective, especially
when there are many requests and few samples. Indeed, timatfon about decisions is now dis-
tributed over tuples of requests instead of over individagliests and consensus does not capture the
desirability of serving particular requests. This limitatcan be remedied by evaluating the decisions
independently accross all samples and by selecting thecbapting available among the solutions.
This pointwise consensuan be formalized as follows:

CHOOSEREQUESFP(QR, t)

16 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

1 forreR,icl.n

2 do f;(r) « 0;

3 fori«—1...0

4 doS «+ R U GETSAMPLE([t + 1,t + A]);
5 ¥ < OPTIMAL SOLUTION(S, t);

6 foriel.n

7 do fi(7i(t)) — fi(yi(t)) + W(7);
8 " =argmax(y€I') 321 fi(v(1));

9 return v*(t);

Note that pointwise consensus reduces to consensus avken and that pointwise regret could be
derived in the same fashion.

9 Vehicle Routing

This section describes the applications of the online gemdgorithm with precomputation, service
guarantees, pointwise consensus, and least-commitmentoltiple vehicle routing applications.
Contrary to the applications in [2] where the focus is on itality, the difficulty here lies in the
lexicographic objective function, i.e., serving as mangtomers as possible and minimizing travel
distance. The interesting result is that approximatiorexpgctation perform remarkably in these two
“orthogonal” applications.

9.1 The Problem

The application is based on the model proposed in [16] whestmers are distributed in a 20kr20km
region and must be served by vehicles with uniform speed &h@. Service times for the customers
are generated according to a log-normal distribution wihameters (.8777, .6647). With this distri-
bution, the mean service time is 3 min. and the variance isrb Titie service times were chosen to
mimic the service times of long-distance courier mail se#si[16]. We use: to denote the expected
number of customers anH to denote the time horizon (8 hours). Problems are geneweaitbda
degree of dynamism (DOD) (i.e, the ratio of known customeex gtochastic customers) in the set
{0%, 5%, ...,100%}. For a DODz, there arex(1 —) known customers. The remaining customers
are generated using an exponential distribution with patam = 57 for their inter-arrival times. It
follows from the corresponding Poisson distribution (wirameten\ H) that the expected number
of unknown customers isz, the expected number of customersiisand the expected DOD is.
The results given here assume that 4 vehicles amd 160 custofaeh vehicle can serve at most 50
customers and the vehicle must return to the depot by thehorieon. The customers are generated
using 2-D Gaussians centered at two points in the regiomil@iresults are obtained under other
distributions). The objective function consists in minaing the number of missed customers and
minimizing the travel distance. The experimental resuléshased on 15 instances and an average of
5 runs on each instances. See Reference [3] for a more coernsigh evaluation.

9.2 Setting of the Algorithms

The online generic algorithm is run with the following segs. Initially, 25 different scenarios are
created and optimized for 1 minute using large-scale neigidnd search (LNS) [19, 1]. These initial

Online Stochastic Optimization Under Time Constraints 17

16 -5 Offline /

141 x

\

Avg Unserviced Customers
5

Expected Dynamism

Fig. 5. Results on the Number of Serviced Customers

<
8
8

E—— RS

- c
— C(NN)

c-Lc
800 22 e

Avg Travel Distance
Py o
3 3
8 8

a
g
8

N
&
8

9
g
8

N e

8 5 B8—8—5 8

o B—e—F—a s O

. ,
10 20 30 40 60 70 80 90 100
Expected Dynamism

Fig. 6. Results on Travel Distance

solutions are used to determine the first customer for eabltiee An additional 25 scenarios are
created and optimized for 1 minute with the first customersdidt was verified experimently that
this second step improves the quality of the final solutiGuhsequent scenarios are optimized for
about 10 seconds using LNS. The parameters for LNS are asviIBO for the maximum number of
customers to remove at one time, 100 attempts at remavgagtomers without improvement before
removingc + 1 customers, 15 for the determinism factor of the relatedfigsstion, and 4 discrep-
ancies. A simple insertion heuristic is used to decide wérethnew request should be accommo-
dated. The online algorithm uses precomputations to deiggher to accept requests immediately
and to avoid delaying the dispatching of vehicles, servicargntees to serve all accepted requests,
least-commitment to be able to postpone vehicle departar@scommodate future requests more ef-
fectively, and pointwise consensus to gather as much irdtiom as possible from the small number
of scenarios available in this application. Note that theesimental results do not discuss the regret
algorithm, since the quality of pointwise consensus alsnargely sufficient for these applications.

18 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

9.3 Experimental Results

The online generic algorithm is compared with the NearegjiN#r (NN) heuristic proposed in [16]
and generalized to providing guarantees on servicing meste. Whenever a request arrives, the NN
algorithm is simulated to determine if it can accommodagertbw request. If it cannot, the request
is rejected. More generally, the results compare NN and thieealgorithm instantiated with local
optimization (LO), consensus (C), consensus with leastroiment (C-LC), and consensus using
NN instead of LNS (C(NN)) to find solutions to the scenariokeTigures will also give the offline
solution found using LNS, which represents the “best” sotuthe various online algorithm could
hope to achieve.

Figure 5 describes the experimental results concerninguh#er of serviced customers for var-
ious degrees of dynamism. The results clearly indicatetlieastochastic approaches are superior to
LO which is unable to service as many customers. A detailel & the trace of the decisions per-
formed by LO indicate that it waits too long to deploy someha vehicles. This is because optimal
solutions use as few vehicles as possible to minimize tidigédnce and LO believes it can use fewer
vehicles than necessary until late in the simulation. Theaiaing approaches service a comparable
number of customers. With higher degrees of dynamism, thefiie of using a consensus function
for ranking are clear, as it reduces the number of missedess significantly compared to using
travel distance. The online stochastic algorithm do natdsignificant benefits in terms of serviced
customers compared to NN. C(NN) is generally superior to WhNile C is roughly similar to NN
(except for very high degrees of dynamism). Note that C-L&sdwot perform as well as C for these
very high degrees of dynamism: It has a tendency to wait tog,levhich could be addressed easily
by building some slack in C-LC.

Figure 6 depicts the results for the travel distance, whieheatremely interesting. No results are
given for LO, since it is far from being competitive for custer service. The results indicate that the
stochastic instantiations of the online algorithm sigaifity reduce travel distance compared to NN.
The results are particularly impressive for C-LC, whosedtaistance is essentially not affected by
the degree of dynamism. Observe also that the comparisarebatC(NN) and the other stochastic
approaches tend to indicate that it seems beneficial foetpbesblems to use more sophisticated
optimization algorithms on fewer samples than a weaker atktin more samples.

9.4 Robustness

It is natural to question how the algorithms behave when tbehsstic information is noisy. This
situation could arise from faulty historical data, preains, and/or approximations in machine learn-
ing algorithms. Figure 7 shows some results when run or2@e and50% dynamism instances of
M3 (32 and 80 expected new customers respectively). It erésting to see that, in both cases, it
is better to be optimistic when estimating the number of dyicacustomers. For example, @0%
dynamism, C-LC is able to service roughly the same numbeustomers when it expects between
20 and 100 dynamic customers. However, it performs the hedstins of travel distance when it ex-
pects 50 dynamic customers, slightly more than the 32 oBhptoblem sets themselves. In addition,
these results show that, even in the presence of signifiease nstochastic approaches are still able
to achieve high-quality results.

Online Stochastic Optimization Under Time Constraints 19

32 Exp. New Customers 32 Exp. New Customers
550

25 —<— C-LC |] 500

450

Customers
=
(62}
Distance

400

0.5
0 350
0 50 100 150 0 50 100 150
Estimated Unknown Requests Estimated Unknown Requests
80 Exp. New Customers 80 Exp. New Customers

750
mo---——-——-—-—-—-—-——-—-——-—-—- - -
650
600
550
500
450§
400
0 5‘0 160 150 3500 56 160 léO
Estimated Unknown Requests Estimated Unknown Requests

Customers
Distance

Fig. 7. Robustness Results

9.5 Visualizing the Algorithms

This section presents a visualization of the algorithms tisee. The goal is to explain the experimen-
tal results intuitively in terms of the actual decisionsemlby the algorithms and to provide insights
on the differences in behavior and solution quality.

The visualizations only consider one run of the algorithritl{80% DOD), although other runs
typically exhibit similar behaviors. They report three ggahots for each algorithm, which depict the
routes visited after 1 hour, 4 hours, and 8 hours respegtikelch snapshot shows the four vehicles,
one in each quadrant. The customers that are known and adcapthe time of the snapshot are
shown in yellow and those who are rejected by the algorithensliown in red. All accepted and
rejected customers are shown in all quadrants, since ittislear which vehicles will actually serve
them. Note that the right side of each snapshot will provimlaes interesting information. It depicts
the expected number of customers, the degree of dynamiemuimber of plans available at this
stage, the number of unserviced and rejected customershanavel costs. The available plans
show the projected travel cost as well. Finally, the arcsalioy show the current solution used by
the algorithms to make decisions which, of course, thatterlevolves over time.

Algorithm NN Figures 8, 9, and 10 visualize algorithm NN. After 1 hourgaithm NN has travelled
133.8km and expects to travel 232km. It still has 42 unsed/itustomers and has not rejected any
request. After 4 hours, algorithm NN has travelled 382.2kah laas visited all the known customers.

20 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

£ Dynamic Vehicle Routing Visualization: ITR DMI-0121495

Vehicle 1 Vehicle 2 Ep.Custs: |10 |

Travel Gost: (1319

s Cust] Con Cust] Con S ’E
Distribution |Uni
Plans: [
Unserviced: |4 |
Rejected: ’ni
.

Rank] Time | 70 |
2320 683 |2020

Vehicle 3 Vehicle 4

Cust] con F cust] con]

@ & Ciele (e (o @ NN
J 0 60 420 180 240 300 360 420 480 [ShowPian

Fig. 8. Algorithm NN after 1 Hour

After 8 hours, algorithm NN has rejected 3 customers anatieat 580.7km. An interesting observa-
tion about algorithm NN is that it becomes essentially a-fimnhe/first-serve algorithm after 4 hours,
since all known cuistomers have been served at that pointviMeome back to this observation later
on when we discuss consensus. Finally, note the travelrpaité the vehicles. Each of which visits a
significant region of the space and features many crossings.

Algorithm LO Figures 11, 12, and 13 visualize algorithm LO, whose behani® particularly in-
teresting. After 1 hour, algorithm LO has travelled 63.5knd &xpects to travel 182km in its best
solution? It still has 67 unserviced customers and has not rejectedeauest. In other words, it has
travelled less than algorithm NN and anticipates a smatied travel time. Moreover, it has only
deployed two vehicles at this stage, since using fewer \ehtgpically mean smaller travel times in
these problems. After 4 hours, algorithm LO has travelletl Pdm, deployed three vehicles, and still
has 26 customers to serve for an antipicated travel distaini2®5.5km. After 8 hours, algorithm LO
has rejected 6 customers, travelled 423.1km, and finalljogled its last vehicle to serve only one
customer. As the experimental results showed, algorithmd i@t competitive with NN as far as as
customer service is concerned. The main reason is now agpalgorithm LO over-optimizes travel
distance and leaves little room to accommodate new reqaetts end of the routing. In particular, it
deploys its vehicles too late, believing that it can sereegkisting customers with fewer of them. As
a consequence, they are not well positioned to accommodateayuests.

Algorithm C Figures 8, 9, and 10 visualize algorithm C. After 1 hour, &lhon C has travelled
121.9km and expects to travel 273.3km. It still has 47 urisedvcustomers and has not rejected any
request. After 4 hours, algorithm C has travelled 348.2kuh lzas visited all the known customers

8 Algorithm LO generates as many solutions as possible inltbeed time. It generalizes the seminal work in
[11].

Online Stochastic Optimization Under Time Constraints 21

Dynamic Vehicle Routing Visualization: TR DMI-01214

Fig. 9. Algorithm NN after 4 Hours

Fig. 10. Algorithm NN after 8 Hours

22 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

£ Dynamic Vehicle Routing Visualization: ITR DMI-0121495
Vehicle 1 Vehicle 2

Cust] Con Cust] Con

jected:
ravel Cost: |~
Rank] Time | 70 |
- 1820 [57.1_|1e20
1822 512 1622

1948 544 [1848

1953 485 [1853
1858 00 [1853

Vehicle 3 Vehicle 4

ust] con cust] Gon]

@ & Qele (Oc @Lo NN
J 0 60 420 180 240 300 360 420 480 [Show Plan

Fig. 11.The LO Algorithm after 1 Hour

but one. After 8 hours, algorithm C has rejected 3 customedstiavelled 518.2km. Interestingly,
algorithm C also becomes a greedy algorithm after 4 hounsesall known customers have been
served at that point. This indicates that algorithm C has lbee eager to serve the existing requests
and is not able to amortize some of their travel with futuiguessts. This behavior clearly illustrates
the need to generalize traditional offline algorithm to anowdate some of the structures present
in online algorithms. Observe also how the “nice” traveltpats after 4 hours deteriorate in the
second half of the day, travelling to customers that ardively remote and exhibiting some signicant
crossings.

Algorithm C-LC Figures 17, 18, and 19 visualize algorithm C-LC. After 1 haigorithm C-LC
has only travelled 21.6km and expects to travel around 23Tkstill has 83 unserviced customers
and has not rejected any request. Observe how the vehidedaavly deployed and do not rush to
serve customers since they expect to have plenty of timerte shem. After 4 hours, algorithm
C-LC has travelled 150.4km, has 62 unserviced customedsaaticipate a travel distance around
283km. Recall that algorithm C has served all known custsratthis point (but one). After 8 hours,
algorithm C-LC has rejected 3 customers and travelled 068.%&m. Observe the nice patterns of
the vehicles and the relatively small number of crossings.

10 Vehicle Routing with Time Windows

We now evaluate various algorithms on online multiple vihiouting with time windows. This
problem was studied initially in [2] to show the value of dtastic information in vehicle routing. It is
particularly interesting because the feasibility coristeaare much stronger than in the previous ap-
plication. The challenge then is not on reducing travekdises, but rather to serve as many customers
as possible.

Online Stochastic Optimization Under Time Constraints 23

Dynamic Vehicle Routing Visualization: ITR DMI-0121495

Fig. 12. The LO Algorithm after 4 Hours

Fig. 13. The LO Algorithm after 8 Hours

24 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Dynamic Vehicle Routing V ation: ITR DMI-0121495

Fig. 14.The C Algorithm after 1 Hour

ation: ITR DMI-0121495

E

ST FE

Fig. 15.The C Algorithm after 4 Hours

Online Stochastic Optimization Under Time Constraints 25

Dynamic Vehicle Routing Visualization: TR 0121495

Fig. 16. The C Algorithm after 8 Hours

Fig. 17.The C-LC Algorithm after 1 Hour

26 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Fig. 18.The C-LC Algorithm after 4 Hours

= Dynamic Vehicle Routing Visualizati . 0121495

Fig. 19.The C-LC Algorithm after 8 Hours

Online Stochastic Optimization Under Time Constraints 27
10.1 Problem Formulation

These vehicle routing problems are specified formally infBEre all the details can be found. Each
problem contains a depot, a number of customer regions andh@er of customer service requests
from the regions. Each request has a demand, a service tidea me window specified by an
intervall[e, I], which represents the earliest and latest possible atiinals respectively. There are a
number of identical vehicles available for use, each withecity Q. A vehicle route starts at the depot,
serves some customers at most once, and returns to the @bpatemand of a route is the summation
of the demand of its customers. A routing plan is a set of séevicing each customer exactly once.
A solution to the offline VRPTW is a routing plan that satisties capacity constraints on the vehicle
and the time window constraints of the requests. The obgdito find a solution maximizing the
number of served customers or, equivalently, minimizing nlumber of rejected customers. In the
online version, customer requests are not known in advamdéacome available during the course
of the day. In general, a number of requests are availahlalipi

Note that the VRPTW is a hard NP-complete problem whoserigstare extremely difficult
to solve optimally. Only 2 to 10 offline optimizations can h#ved in between two events and the
number of events is large (e.g., 50 different requests)celesgorithm E is not practical at all, since
it would not even be able to evaluate each request on a sirapipls.

10.2 Experimental Setting

The experimental results are based on the class-4 probtemg2], where all details can be found.
They are derived from the Solomon benchmarks which are vieajlenging and involve 100 cus-
tomers. The 15 instances exhibit various degrees of dymariie., the ratio between known and
dynamic customers), different distributions of early aaie requests, as well as time windows of very
different sizes. Hence they cover a wide spectrum of pdasbkiand structures. The number of ve-
hicles available for the online algorithms was determingddiving the offline problems and adding
two vehicles.

10.3 The Regret Function

The regret function is simple and fast. Consider the degisiochoosing which customer to serve
next on vehiclev and lets be the first customer on the route of vehieleTo evaluate the regret of
another customer on a vehiclev, the key idea is to determine if there is a feasible swap afids
onw, in which case the regret is zero. Otherwise, if such a swalatés the time window constraints,
the regret is 1The main benefit of this regret function is to recognize tohate choices of customers
are essentially equivalent.

The regret function is a 2-approximation, since it loses astnone additional customer. More-
over, when the objective function is viewed as minimizing ttumber of rejected customers, the
regret function provided a bounded approximation with lmb@inInterestingly, on this application,
consensus is also a bounded approximation, since it inigleessumes the systematical rejection of
one additional customer. Note that this is also the casehfoffitst component of the optimization
function in the application described in the previous secti

28 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Problem DOD |Vehicleg LO | C R
20-20-60-rc101-M6.3% 16 33| 3 |[3.48
20-20-60-rc101-@5.8%4 15 |5.84|4.32|4.84
20-20-60-rc101-%H0.0% 16 3.02| 3.24| 3.46
20-20-60-rc101-#5.6%4 17 |6.96|5.08|5.32
20-20-60-rc101-p17.4% 16 6.2 [6.08]|5.72

20-20-60-rc102-69.0% 15 |2.12| 1.1 |1.94
20-20-60-rc102-57.5% 15 |7.06|3.66| 3.7
20-20-60-rc102-%56.09% 15 |6.52|4.12| 3.6
20-20-60-rc102-/62.0% 14 |2.76|2.58|3.12
20-20-60-rc102-57.6%9 15 |5.08|2.88| 2.9

20-20-60-rc104-76.1% 13 |22.4|13.38 9.68
20-20-60-rc104-75.6% 14 |25.5813.86 12.1q
20-20-60-rc104-¥6.1%9 13 |19.3|10.64 8.98
20-20-60-rc104-%2.2% 12 |21.1614.339.42
20-20-60-rc104-74.4% 11 |17.1813.3§ 10.2

Table 1. Regret on Online Vehicle Routing with Time Windows

10.4 Experimental Results

Table 1 depicts the results on the 15 instances of the Soldmanochmarks. Each instance is solved
50 times because of the nondeterministic nature of the saghphd LNS algorithms. The second
column gives the degree of dynamism and the third columnsgive number of vehicles. The last
columns specify the number of missed customer by algorith®sC, and R. First observe that the
regret algorithm produces significant benefits over LO, eigiig on the problems where the degree of
dynamism is high (about 70%) inducing stricter time coristsa On these highly dynamic problems,
R may reduce the number of missed customers by 225% and apragaces a reduction of at least
69%. regret algorithm does not bring any benefit over consefus the first two classes of problems
with lower degrees of dynamism. However, it produces soraendtic improvements on the highly
dynamic instances. On these problems, the regret algoriékoces the number of missed customers
by up to 52% and always produces reductions above 18%. Tlasveyy interesting result, since
consensus is particularly effective on these problems #sul@ovides a bounded approximation.
However, by recognizing “equivalent” choices, the regigbethm further improves the approxima-
tion and produces significant benefits for the most time-raimed instances.

11 Related Work

Online algorithms (e.qg., [10]) have been addressed for mounseyears but research has traditionally
focused on techniques oblivious to the future and on conineetatios [13]. It is only recently that re-
searchers have begun to study how information about futwertainty may improve the performance
of algorithms. This includes scheduling problems [9], wéhrouting problems [2, 8] and elevator dis-
patching [17] to name a few. Research on these problems hiasl vadely, but the unifying theme is
that probabilistic information about the future signifitlgiincreases quality. The expectation method
was the primary method used in [9], They also pointed out WyVBPs are too general for this

Online Stochastic Optimization Under Time Constraints 29

class of problems. The consensus approach was motivatedlimg gtochastic vehicle routing [2]
and applied to online packet scheduling in [4]. The regr@rapach was derived from our desire to
obtain theoretical results on the solution quality [5].

12 Conclusion

This paper considers online stochastic optimization gnwisl where uncertainties are characterized
by a distribution that can be sampled and where time conssragverely limit the number of offline
optimizations which can be performed at decision time anitdetween decisions. It proposes a
generic framework for online stochastic optimization aedesal of its instantiations, including algo-
rithm E, C, and R. The theoretical results indicate that,anmdasonable and practical assumptions,
the expected quality loss of algorithm Edi§l) for a total ofn|R|£2(log(n|R|)) offline optimizations,
while algorithm R is ap(1 + o(1))-approximation whenever its underlying regret functioris-
approximation and requires a totalef?(log(n|R|)) offline optimizations. The experimental results,
on packet scheduling and multiple vehicle routing withautet windows, confirm the theoretical re-
sults. They clearly show the benefits of stochastic infoimmedind the practical value of algorithms C
and R under severe time constraints.

Acknowledgments

This research is partially supported by NSF ITR Award DMRQ495.

References

1. R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Localr&e#or the Vehicle Routing Problem with
Time Windows.Transportation Scien¢e&8(4), 515-530, 2004.
2. R. Bent and P. Van Hentenryck 2001. Scenario Based PlgurioinPartially Dynamic Vehicle Routing
Problems with Stochastic Custome@perations Resear¢b2(6), 977-987, 2004.
3. R.Bent and P. Van Hentenryck. 2003. Dynamic Vehicle Rautiith Stochastic Requests Technical Report
CS-03-10, Brown University.
4. R. Bent and P. Van Hentenryck. 2004. The Value of ConsendDsline Stochastic Scheduling. IBAPS
2004
5. R.Bentand P. Van Hentenryck. 2004. Regrets Only! Onltoel&stic Optimization under Time Constraints.
In AAAI 2004
6. R. Bent and P. Van Hentenryck. 2004. Online StochasticRuttlist Optimization. IfProceedings of the
Ninth Asian Computing Science Conference (ASIAN'Ghiang Mai University, Thailand.
7. J.Birge and F. Louveaux. 1997. Introduction to Stochdtogramming. Springer Verlag.
8. A. Cambell, and M. Savelsbergh. 2002. Decision Supper€tmsumer Direct Grocery InitiativefReport
TLI-02-09, Georgia Institute of Technolagy
9. H. Chang, R. Givan, and E. Chong. 2000. On-line SchedMiagsampling. InAIPS’2000 62-71.
10. Fiat, A., and Woeginger, Gnline Algorithms: The State of the ASpringer Verlag, 1998.
11. M. Gendreau and F. Guertin and J. Y. Potvin and E. TailRedallel Tabu Search for Real-Time Vehicle
Routing and Dispatchinglransportation Science&3(4), 381-390, 1999.
12. L. Kaelbling, M. Littman, and A. Cassandra. Planning &uating in Partially Observable Stochastic Do-
main. Artificial Intelligence, 101(1-2), 99-124, 1998.

30

13.

14.

15.

16.

17.

18.
19.

Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Karlin, A.; Manasse, M.; Rudolph, L.; and Sleator, D. 89& ompetitive Snoopy CachingAlgorithmica
3:79-119.

A.J. Kleywegt, A. Shapiro, and T. Homer-De-Mello. Thenfpde Average Approximation Method for
Stochastic Discrete OptimizatioSIAM j. on Optimization12:479-502, 2001.

P. Kouvelis and G. YuRobust Discrete Optimization and Its Applicatior§luwer Academic Publishers,
1997.

A. Larsen, O. Madsen, and M. Solomon. Partially Dynanghitle Routing-Models and Algorithmdour-
nal of Operational Research SocieBB:637—646, 2002.

Nikovski, D., and Branch, M. 2003. Marginalizing Out &t Passengers in Group Elevator Control. In
UAI'03.

S. RossA First Course in ProbabilityFifth Edition. Prentice Hall, New Jersey, 1997.

P. Shaw. 1998. Using Constraint Programming and LocalcBeMethods to Solve Vehicle Routing Prob-
lems. INnCP’98, 417-431.

