
Online Stochastic Optimization Under Time Constraints

Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Brown University, Box 1910, Providence, RI 02912

Abstract. This paper considers online stochastic optimization problems where uncertainties are
characterized by a distribution that can be sampled and where time constraints severely limit
the number of offline optimizations which can be performed atdecision time and/or in between
decisions. It proposes a generic framework for online stochastic optimization and several of its in-
stantiations. In particular, it studies the expectation algorithm E that evaluates all choices against
all samples at each decision step and introduces the consensus C and regret R algorithms that
only solve each sample once per step. Both theoretical and experimental results are presented on
the algorithms. The theoretical results indicate that, under reasonable and practical assumptions,
the expected quality loss of algorithm E iso(1), while algorithm R provides aρ(1 + o(1))-
approximation when its underlying regret function is aρ-approximation. The experimental re-
sults are presented on three problems of fundamentally different nature: packet scheduling and
multiple vehicle routing (MVR) with and without time windows. They clearly show the benefits
of stochastic information and the practical value of the consensus and regret algorithms under
severe time constraints.

1 Introduction

Online scheduling and routing problems arise naturally in many application areas and have received
increasing attention in recent years. Contrary to offline optimization, the data is not available a priori
in online optimization. Rather it is incrementally revealed during algorithm execution. In many online
optimization problems, the data is a sequence of requests (e.g., packets in network scheduling or
customers in vehicle routing) which are revealed over time and the algorithm must decide which
request to process next.

This paper considers an online stochastic optimization framework which assumes the distribution
of future requests, or an approximation thereof, is a black-box available for sampling. This is typi-
cally the case in many applications, where either historical data or predictive models are available.
The framework assumes that the distribution of future requests is independent of current decisions,
an assumption which holds in a great variety of applicationsand has significant computational advan-
tages. Indeed, there is no need to explore trees of scenariosand/or sequences of decisions. In addition,
this research focus primarily on online stochastic optimization under time constraints, which assumes
that the time to make a decision is severely constrained, so that only a few offline optimizations can be
performed at decision time and/or in between decisions. Online problems of this kind arise in many
applications, including vehicle routing, taxi dispaching, packet scheduling, and online deliveries.

This paper summarizes our recent progress in this area and presents new theoretical and experi-
mental results. All results are presented in a unified framework, abstracting the contributions spread
accross multiple papers and crystallizing the intuition beyond the algorithmic design decisions. Its
starting point is the generic online algorithm, initially proposed in [4], which can be instantiated to a
variety of oblivious and stochastic approaches. When no time constraints are present, the generic algo-
rithm naturally leads to the “traditional” expectation algorithm E. When time constraints are present,

2 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

the critical issues faced by the online algorithms is how to use their time wisely, since only a few sam-
ples can be optimized within the time constraints. The paperthen introduces two novel algorithms,
i.e, consensus C and regret R, to approximate algorithm E with significantly fewer offline optimations
[4, 5]. In addition, the paper shows that the generic online algorithm can be elegantly generalized to
accommodate many features that are critical in practical applications: precomputation (to make im-
mediate decisions), least-commitment (to avoid suboptimal decisions), service guarantees (to serve
all accepted requests), and agregate decisions (to serve several requests simultaneously) [6].

The various instantiations of the generic online algorithmare evaluated theoretically and experi-
mentally. The theoretical results show that, under reasonable and practical assumptions, the expected
quality loss of algorithm E (when compared to the offline optimal solution) iso(1) with a total of
n|R|Ω(log(n|R|)) offline optimizations, wheren is the number of decision steps andR are the
possible choices at each iteration. Moreover, algorithm R is shown to be an expectedρ(1 + o(1))-
approximation algorithm (whenever its underlying regret function is aρ-approximation) and requires
a total ofnΩ(log(n|R|)) offline optimizations. The experimental results evaluate the algorithms on
three fundamentally different applications: packet scheduling and multiple vehicle routing with and
without time windowns. These three applications representdifferent extremes in the landscape of
online stochastic optimization. Packet scheduling is of interest because of its simplicity: its offline
problem is polynomial and the number of possible actions at each time step is small. As a conse-
quence, it is possible to study how consensus and regret approximate expectation, as well as how all
these algorithms behave under severe and less severe time constraints. Multiple vehicle routing is of
interest because of its complexity: their offline problems are NP-hard and feature many of the mod-
eling complexities of practical applications. The experimental results clearly demonstrate the benefits
of stochastic information and the practical value of the regret algorithm.

The rest of this paper is organized as follows. Sections 2 and3 present the online stochastic
framework and the generic online algorithm. Section 4 presents the expectation algorithm for loose
time constraints and Section 5 shows how this algorithm can be approximated by consensus and regret
under strict time constraints. Section 6 presents the theoretical analysis for the expectation and regret
algorithms and Section 7 compares the algorithms experimentally on packet scheduling under various
time constraints. Section 8 generalizes the online algorithm to incorporate precomputation, service
guarantees, least-commitment and pointwise consensus/regret. Sections 9 and 10 present experimental
results of the generalized algorithm on complex multiple vehicle routing applications. Sections 11 and
12 present related work and conclude the paper.

2 The Online Stochastic Framework

The Offline ProblemThe framework assumes a discrete model of time. The offline problem considers
a time horizonH = [H, H] and a number of requestsR. Each requestr is associated with a weight
w(r) which represents the gain if the request is served. A solution to the offline problem serves a
requestr at each timet ∈ H and can be viewed as a functionH → R. Solutions must satisfy the
problem-specific constraints which are left unspecified in the framework. The goal is to find a feasible
solutionγ maximizingW (γ) =

∑
t∈H w(γ(t)). In the online version, the requests are not available

initially and become progressively available at each time step.

The Online ProblemThe online algorithms have at their disposal a procedure to solve, or approximate,
the offline problem. They have also access to the distribution of future requests. The distribution is

Online Stochastic Optimization Under Time Constraints 3

ONLINEOPTIMIZATION(H)
1 R← ∅;
2 w← 0;
3 for t ∈ H
4 do R← AVAILABLE REQUESTS(R, t) ∪ NEWREQUESTS(t);
5 r ← CHOOSEREQUEST(R, t);
6 SERVEREQUEST(r, t);
7 w ← w + w(r);
8 R← R \ {r};

Fig. 1. The Generic Online Algorithm

seen as a black-box and is available for sampling. In practice, it may not be practical to sample
the distribution for the entire time horizon and hence the sizes of the samples is an implementation
parameter.

Time ConstraintsPractical applications often include severe time constraints on the decision time
and/or on the time between decisions. To model this requirement, the algorithms may only use the
offline procedureO times at each time step.

Properties of the FrameworkThe framework is general enough to model a variety of practical ap-
plications, yet it has some fundamental computational advantages compared to other models.The key
observation is that, in many practical applications, the uncertainty does not depend on the decisions.
There is no need to explore sequences of decisions and/or trees of scenarios: the distribution can be
sampled to provide scenarios of the future without considering the decisions. As a consequence, the
framework provides significant computational advantages over more general models such as multi-
stage stochastic programming [7] and partially observableMarkov decision processes [12].

3 The Generic Online Algorithm

The algorithms in this paper share the same online optimization schema depicted in Figure 1. They
differ only in the way they implement functionCHOOSEREQUEST. The online optimization schema
simply considers the set of available and new requests at each time step and chooses a requestr which
is then served and removed from the set of available requests. FunctionAVAILABLE REQUEST(R, t)
returns the set of requests available for service at timet and functionSERVEREQUEST(r, t) simply
servesr at timet (i.e.,γ(t) ← r). To implement functionCHOOSEREQUEST, the algorithms have at
their disposal two black-boxes:

1. a functionOPTIMALSOLUTION(R, t, ∆) that, given a setR of requests, a timet, and a number
∆, returns an optimal solution forR over[t, t + ∆];

2. a functionGETSAMPLE([ts, te]) that returns a set of requests over the interval[ts, te] by sampling
the arrival distribution.

To illustrate the framework, we specify two oblivious algorithms as instantiations of the generic algo-
rithm. These algorithms will serve as a basis for comparison.

4 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Greedy (G): This algorithm serves the available request with highest weight. It can be specified for-
mally as

CHOOSEREQUEST-G(R, t)
1 A← READY(R, t);
2 return argmax(r ∈ A) w(r);

Local Optimal (LO): This algorithm chooses the next request to serve at timet by finding the optimal
solution for the available requests att. It can be specified as

CHOOSEREQUEST-LO(R, t)
1 γ ← OPTIMALSOLUTION(R, t);
2 return γ(t);

4 Online Stochastic Optimization without Time Constraints

This section presents a stochastic algorithm that optimizes expectation. The algorithm is appropriate
when time constraints are loose, i.e., whenO is large enough to produce high-quality results.

Expectation (E): Algorithm E chooses the action maximizing expectation at each time step. Infor-
mally speaking, the method generates future requests by sampling and evaluates each available request
against that sample. A simple implementation can be specified as follows:

CHOOSEREQUEST-E(R, t)
1 A← READY(R, t);
2 for r ∈ A
3 do f(r)← 0;
4 for i← 1 . . .O/|A|
5 do S ← R ∪ GETSAMPLE([t + 1, t + ∆]);
6 for r ∈ A
7 do f(r)← f(r) + (w(r) + W (OPTIMALSOLUTION(S \ {r}, t + 1)));
8 return argmax(r ∈ A) f(r);

Line 1 computes the requests which can be served at timet and removes dominated requests from
consideration (which is important for performance reasons). Lines 2-3 initialize the evaluation func-
tion f(r) for each requestr. The algorithm then generates a number of samples for futurerequests
(line 4). For each such sample, it computes the setR of all available and sampled requests at time
t (line 5). The algorithm then considers each available request r successively (line 6), it implicitly
schedulesr at timet, and applies the optimal offline algorithm usingS \ {r} and the time horizon.
The evaluation of requestr is updated in line 7 by incrementing it with its weight and thescore of the
corresponding optimal offline solution. All scenarios are evaluated for all available requests and the
algorithm then returns the requestr ∈ A with the highest evaluation. Observe Line 4 of Algorithm E
which distributes the available offline optimizations across all available requests.

5 Online Stochastic Algorithms under Time Constraints

This section studies online optimization under time constraints, i.e., when the number of optimizations
at each time stept is small. As mentioned earlier, algorithm E distributes theavailable optimizations

Online Stochastic Optimization Under Time Constraints 5

O across all requests (line 4). WhenO is small (due to the time constraints), each request is only
evaluated with respect to a small number of samples and the algorithm does not yield much infor-
mation. This is precisely why online vehicle routing algorithms [2] cannot use algorithm E, since the
number of requests is very large (about 50 to 100), the time between decisions is relatively short, and
optimization is computationally demanding. The section shows how algorithm E can be approximated
and presents two approximation algorithms, consensus and regret. Before going into the algorithm, it
is important to introduce the concept of local loss between serving an optimal and a given request at
a specific step.

Definition 1 (Local Loss).LetR be the set of requests at timet andr ∈ R. The local loss ofr wrt R
andt, denoted byLOCALLOSS(r, R, t), is defined as

|W (OPTIMALSOLUTION(R, t))− (w(r) + W (OPTIMALSOLUTION(R \ {r}, t + 1))) | .

Consensus (C):The consensus algorithm C was introduced in [4] as an abstraction of the sampling
method used in online vehicle routing [2]. Its key idea is to solve each sample once and thus to exam-
ineO samples instead ofO/|A|. More precisely, instead of evaluating each possible request at timet
with respect to each sample, algorithm C executes the offlinealgorithm on the available and sampled
requests once per sample. The request scheduled at timet in optimal solutionγ is creditedW (γ) and
all other requests receive no credit. Algorithm C can be specified as follows:

CHOOSEREQUEST-C(R, t)
1 for r ∈ R
2 do f(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ GETSAMPLE([t + 1, t + ∆]);
5 γ ← OPTIMALSOLUTION(S, t);
6 f(γ(t))← f(γ(t)) + W (γ);
7 return argmax(r ∈ R) f(r);

Observe line 5 which calls the offline algorithm with all available and sampled requests and a time
horizon starting att and line 6 which increments the number of times requestγ(t) is scheduled first.
Line 7 simply returns the request with the largest score. Themain appeal of Algorithm C is its ability
to avoid partitioning the available samples between the requests, which is a significant advantage
when the number of samples is small. Its main limitation is its elitism. Only the best request is given
some credit for a given sample, while other requests are simply ignored. It ignores the fact that several
requests may be essentially similar with respect to a given sample. Moreover, it does not recognize
that a request may never be the best for any sample, but may still be extremely robust overall. The
regret algorithm shows how to gather that kind of information from the sample solutions without
solving additional optimization problems.1

Regret (R):The key insight in Algorithm R is the recognition that, in many applications, it is possible
to estimate the local loss of a requestr at timet quickly. In other words, once the optimal solutionγ
of a sample is computed, it is easy to compute the local loss ofall the requests, thus approximating E
with one optimization. This intuition can be formalized using the concept ofregret.

1 The consensus algorithms behaves very well on many vehicle routing applications because, on these applica-
tions, the objective function is first to serve as many customers as possible. As a consequence, at a time stept,
the difference between the optimal solution and a non-optimal solution is rarely greater than 1. It is over time
that significant differences between the algorithms accumulate.

6 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Definition 2 (Regret).A regret is a function that, given a requestr, a setR (r ∈ R), a timet, and an
optimal solutionγ = OPTIMALSOLUTION(R, t), over-approximates the local loss ofr wrt R andt,
i.e.,

REGRET(r, R, t, γ) ≥ LOCALLOSS(r, R, t).

Moreover, there exists two functionsfo andfr such that

– OPTIMALSOLUTION(R, t) runs in timeO(fo(R, ∆));
– REGRET(r, R, t, γ) runs in timeO(fr(R, ∆));
– |R|fr(R, ∆) is O(fo(R, ∆)).

Intuitively, the complexity requirement states that the computation of the|R| regrets does not take
more time than the optimization. Regrets typically exist inpractical applications. In an online facility
location problem, the regret of opening a facilityf can be estimated by evaluating the cost of closing
the selected facilityγ(t) and openingf . In vehicle routing, the regret of serving a customerc next can
evaluated by swappingc with the first customer on the vehicle servingc. In packet scheduling, the re-
gret of serving a packetp can be estimated by swapping and/or serving a constant number of packets.
In all cases, the cost of computing the regret is small compared to the cost of the offline optimization
and satisfy the above requirements. Note that there is an interesting connection to local search, since
computing the regret may be viewed as evaluating the cost of alocal move for the application at hand.
We are now ready to present the regret algorithm R:

CHOOSEREQUEST-R(R, t)
1 A← READY(R, t);
2 for r ∈ A
3 do f(r)← 0;
4 for i← 1 . . .O
5 do S ← R ∪ GETSAMPLE([t + 1, t + ∆]);
6 γ ← OPTIMALSOLUTION(S, t);
7 f(γ(t))← f(γ(t)) + W (γ);
8 for r ∈ A \ {γ(t)}
9 do f(r)← f(r) + (W (γ)− REGRET(γ, r,R, t));

10 return argmax(r ∈ A) f(r);

Its basic organization follows algorithm C. However, instead of assigning some credit only to the
request selected at timet for a given samples, algorithm R (lines 7-8) uses the regrets to compute, for
each available requestr, an approximation of the best solution ofs servingr at timet, i.e.,W (γ) −
REGRET(γ, r, R, t). Hence every available request is given an evaluation for every sample at timet
for the cost of a single offline optimization (asymptotically). Observe that algorithm R performsO
offline optimizations at timet and that it is easy to adapt algorithm R to approximate algorithm H.

6 Theoretical Analysis

This section analyzes the solution quality and the runtime performance of the algorithms. Both of
these properties depend on the number of samples used by the functionCHOOSEREQUEST in each
iteration. A large number of samples results in high-quality solutions and long execution, while a
small sample size may lead to solutions that are far from optimal. The main results in this section
relate the sample size and the solution quality: They show that, under natural assumptions, a relatively

Online Stochastic Optimization Under Time Constraints 7

small number of samples per iteration suffices for achievinghigh solution quality in the expected
sense.The analysis is generic: it does not depend on any particularproperty of the input distribution.
One can get significantly stronger results for well-behavedclasses of input distributions.The section
first focuses on the expectation algorithm E, from which the results of the regret algorithm R can be
derived.

Expected LossConsider a run of the algorithm with an input sequenceI = i1, . . . , in drawn from
a distributionF . Let S = s1, . . . , sn denote the sequence of steps taken by the algorithm and let
Ω = ω1, . . . , ωn be the optimal offline solution forI. We are interested in bounding the expected loss

EI,L[W (Ω)−W (S)]

between the profits of the optimal offline solution and the online algorithm, where the expectation is
taken over both the input distribution and the random choicesL of the algorithm.

Definition 3 (Expected Loss).Let I be an input sequence,Ω be an optimal solution forI, andS be
the output of an online algorithmA onI. The expected loss of algorithmA is defined asEI,L[W (Ω)−
W (S)], where the expectation is taken over both the input distribution and the random choicesL of
the algorithm.

Notations For simplicity, in the following, we omitI andL when it is clear from the context. In
addition,It denotes the inputs revealed during the firstt steps of the run andSt denotes the sequence
of steps taken by the algorithm in the firstt steps. Given a sequenceSi for the firsti steps, the optimal
sequence of steps following these firsti steps is denoted by

Ω(Si) = ωi+1(Si), . . . , ωn(Si)

In particular, the sum

W (Ω(Si−1)) =

n∑

t=i

w(ωt(Si−1))

gives the optimal profit of then− i + 1 steps given the firsti− 1 stepsSi−1. Similarly,

W (Ω(Si−1 : r)) =

n∑

t=i

w(ωt(Si−1 : r))

is the optimal profit of then− i steps given the sequenceSi−1 : r, i.e., the concatenation of sequence
Si−1 with requestr. For simplicity, we will also useωi as an abbreviation ofωi(Si−1).

Expected Local LossWe now define the expected local loss, i.e., the expected lossentailed by chosing
a requestr (instead of an optimal request) in stepi of the algorithm.

Definition 4 (Expected Local Loss).The expected local loss of a requestr at stepi, denoted by
∆i(r), is defined as

∆i(r) = (w(ωi) + E[W (Ω(Si−1 : ωi))]) − (w(r) + E[W (Ω(Si−1 : r))]).

Observe that the expected local loss at stepi is computed with respect to the optimal steps following
Si. Nevertheless, we show that the expected loss is the sum of the expected local losses.

8 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Lemma 1. Let I be an input sequence,Ω be an optimal solution forI, andS be the output of an
online algorithmA onI. Then,

E[W (Ω)−W (S)] =

n∑

i=1

E[∆i(si)].

Proof. Observe first that

E[W (Ω(Si−1))] = E[w(ωi)] + E[W (Ω(Si−1 : ωi))]

where the expectation is taken over the input revealed in step i. As a consequence, by definition of
expected local losses,

E[∆i(si)] = E[W (Ω(Si−1))]− (E[w(si)] + E[W (Ω(Si))]).

and
n∑

i=1

E[∆i(si)] = E[W (Ω)]−
n∑

i=1

E[w(si)] = E[W (Ω)−W (S)]. �

Bounding Expected Local LossesWe now bound the expected local losses for algorithm E. In partic-
ular, we show that

E[∆i(si)] ≤
∑

r∈R

∆i(r)e
−m(∆i(r))2/2σ2

i

wherem is the number of samples taken at each step andσi is a bound on the standard deviation of
the samples.

Lemma 2. Let I be an input sequence of lengthn, Ω be an optimal solution forI, andS be the
output of the online algorithmE on I. The expected local losses in stepi of the algorithm satisfy

E[∆i(si)] ≤
∑

r∈R

∆i(r)e
−m(∆i(r))2/2σ2

i

whenn → ∞, wherem denotes the number of samples taken at each step andσi is a bound on the
standard deviation of the samples.

Proof. To make the decision at stepi, the algorithm computes, for allr ∈ R, an estimate

Y (Si−1 : r) = Ẽ[W (Ω(Si−1 : r)]

of the expectationE[W (Ω(Si−1 : r))]. Since the algorithm chose actionsi, it follows that

w(si) + Y (Si−1 : si) ≥ w(ωi) + Y (Si−1 : ωi).

or, equivalently,

w(ωi)− w(si) ≤ Y (Si−1 : si)− Y (Si−1, ωi).

By definition of expected local losses, it follows that

∆i(si) ≤ Y (Si−1 : si)− Y (Si−1 : ωi)− (E[W (Ω(Si−1 : si))]−E[W (Ω(Si−1 : ωi))]), (1)

Online Stochastic Optimization Under Time Constraints 9

giving us a necessary condition for requestsi to be served at stepi. To estimateE[∆i(si)], we write

E[∆i(si)] =
∑

r∈R

∆i(r) Pr(si = r),

and denote

Zi,r = Y (Si−1 : si)− Y (Si−1 : ωi)− (E[W (Ω(Si−1 : si))]−E[W (Ω(Si−1 : ωi))]).

Since (1) is a necessary condition for an optimal request, itfollows that

Pr(r = si) ≤ Pr(∆i(r) ≤ Zi,r).

Now Y (Si−1 : si) − Y (Si−1 : ωi) is the average ofm independent, identically distributed, random
variables, each with mean

E[W (Ω(Si−1 : si)]−E[W (Ω(Si−1 : ωi])

wherem is the number of samples. Because we have no knowledge about the input distribution, by
the central limit theorem,2 we can argue that

√
mZi,r/σi ∼ N(0, 1)

whereσi is a bound on the standard deviation of the sample. Applying aChernoff bound for the
standard normal random variable (see [18][p. 416]), it follows that

Pr(∆i(r) ≤ Zi,r) ≤ e−m(∆i(r))2/2σ2

i .

and

E[∆i(si)] =
∑

r∈R

∆i(r) Pr(si = r)

≤
∑

r∈R

∆i(r) Pr(∆i(r) ≤ Zi,r)

≤
∑

r∈R

∆i(r)e
−m(∆i(r))2/2σ2

i . �

Bounding Expected LossesWe are now in position to present the main result of this section.

Theorem 1. Let I be an input sequence of lengthn, Ω be an optimal solution forI, andS be the
output of the online algorithmE on I. The expected loss of AlgorithmE is bounded by

E[W (Ω)−W (S)] ≤
n∑

i=1

∑

r∈R

∆i(r)e
−m(∆i(r))2/2σ2

i

whenn → ∞, wherem denotes the number of samples taken at each step andσi is a bound on the
standard deviation of the samples.

2 Reference [14] presents an alternative approach not using the central limit theorem. Both approaches lead to
the same result.

10 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Proof. Direct consequence of Lemmas 1 and 2.�

This result has some interesting consequences. In particular, assuming thatσi is O(1), the expected
loss of algorithm E iso(1) when the numberm of samples taken at each step isΩ(log(n|R|)) inducing
Ω(|R| log(n|R|)) offline optimizations per step.

Corollary 1. Assume that the standard deviations on the samples areO(1). Then, algorithmE, using
Ω(log(n|R|)) samples per iteration, has an expected loss ofo(1) and performsΩ(|R| log(n|R|))
offline optimizations per step.

Consider now the algorithm R. Denote byOPTIMALSOLUTION(r, R, t) the optimal solution forR
andt whenr is scheduled at timet (assuming it can) and byREGRETSOLUTION(r, R, t) the algorithm
approximatingOPTIMALSOLUTION(r, R, t) using regrets. Assume that algorithmREGRETSOLUTION

is aρ-approximation, i.e.,

ρ× REGRETSOLUTION(r, R, t) ≥ OPTIMALSOLUTION(r, R, t)

for all r, R, and timet such thatr can be scheduled at timet. Under this assumption, algorithm
R returns an expectedρ(1 + o(1))-approximation of the optimal solution usingΩ(log(n|R|)) offline
optimizations per step. Indeed, Theorem 1 also holds when the solutionsΩ andS are replaced by their
approximations̃Ω andS̃ that use algorithmREGRETSOLUTION. As a consequence,E[W (Ω̃)−W (S̃)]
is o(1) for Ω(log(n|R|)) samples. SinceρW (Ω̃) ≥W (Ω), it follows that

ρ(1 + o(1)) W (S̃) ≥ W (Ω).

Similarly, if algorithmREGRETSOLUTION is a bounded approximation with boundρ of OPTIMAL-
SOLUTION, i.e.,

REGRETSOLUTION(r, R, t) + ρ ≥ OPTIMALSOLUTION(r, R, t)

then, algorithm R returns a solution whose expected loss is bounded byρ + o(1).

Corollary 2. Assume that algorithmREGRETSOLUTION is aρ-approximation and that the standard
deviations on the samples areO(1). Then, algorithmR, usingΩ(log(n|R|)) samples per iteration, is
a (ρ(1+ o(1)))-approximation of the optimal solution and it performsΩ(log(n|R|)) offline optimiza-
tions per step. Moreover, if algorithmREGRETSOLUTION is an bounded approximation with bound
ρ, algorithmR, usingΩ(log(n|R|)) samples per iteration, has an expected loss ofρ + o(1) and it
performsΩ(n log(n|R|)) offline optimizations per step.

This result is very important in practice, since it means that algorithm R approximates algorithm E
while reducing the number of offline optimizations by a factor |R|. In general, it is not possible to
obtain a similar result for consensus. However, we will comeback to this issue in the context of
vehicle routing applications, which have special structures.

7 Packet Scheduling

This section reports experimental results on the online packet scheduling problem studied in [9]. This
networking application is of interest experimentally since (1) the number of requests to consider at
each timet is small and (2) the offline algorithm can be solved in polynomial time. As a result,
it is possible to evaluate all the algorithms experimentally, contrary to vehicle routing applications
where this is not practical. The packet scheduling is also interesting as it features a complex arrival
distribution for the packets based on Markov Models (MMs).

Online Stochastic Optimization Under Time Constraints 11

7.1 The Offline Problem

We are given a setJ of jobs partitioned into a set of classesC. Each jobj is chararacterized by its
weight w(j), its arrival datea(j), and its classc(j). Jobs in the same class have the same weight
(but different arrival times). We are also given a schedule horizonH = [H, H] during which jobs
must be scheduled. Each jobj requires a single time unit to process and must be scheduled in its
time window [a(j), a(j) + d], whered is the same constant for all jobs (i.e.,d represents the time
a job remains available to schedule). In addition, no two jobs can be scheduled at the same time
and jobs that cannot be served in their time windows are dropped. The goal is to find a schedule of
maximal weight, i.e., a schedule which maximizes the sum of the weights of all scheduled jobs. This
is equivalent to minimizing weighted packet loss. More formally, assume, for simplicity and without
loss of generality, that there is a job scheduled at each timestep of the schedule horizon. Under this
assumption, a schedule is a functionγ : H → J which assigns a job to each time in the schedule
horizon. A scheduleγ is feasible if

∀ t1, t2 ∈ H : t1 6= t2 → γ(t1) 6= γ(t2)
∀ t ∈ H : a(γ(t)) ≤ t ≤ a(γ(t)) + d.

The weight of a scheduleγ, denoted byw(γ), is given byw(γ) =
∑

t∈H w(γ(t)). The goal is to
find a feasible scheduleγ maximizingw(γ). This offline problem can be solved in quadratic time
O(|J ||H |) [9].

7.2 The Online Problem

The experimental evaluation is based on the problems of [9, 4], where all the details can be found. In
these problems, the arrival distributions are specified by independent MMs, one for each job class. The
results are given for the reference 7-class problems and foran online schedule consisting of 200,000
time steps. Because it is unpractical to sample the future for so many steps, the algorithms use a
sampling horizon of 50, which seems to be an excellent compromise between time and quality.

7.3 The Regret Function

We now specify the regret function which consists of swapping a constant number of packets in the
optimal schedule and is based on a simple case analysis. Consider a jobr ∈ READY(R, t).

If job r is not scheduled (i.e.,r /∈ γ), the key idea is to try reschedulingγ(t) instead of the job of
smallest weight inγ. The regret becomes

min(s ∈ [t, a(γ(t)) + d]) w(γ(s))− w(r),

since the replaced job is removed fromγ andr is added to the schedule. In the worst case, the replaced
job isγ(t) and the regret isw(γ(t)) − w(r).

If job r is scheduled at timetr, the regret function first tries to swapr andγ(t) in which case
the regret is 0. If this is not possible, the function tries reschedulingγ(t) instead of the job of small-
est weight inγ. If γ(t) cannot be rescheduled, the regret function simply selects the best possible
unscheduled job which may be scheduled attr and the regret now becomes

w(γ(t)) −max(u ∈ Ur) w(u)

12 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

where
Ur = {j ∈ READY(R, tr) | j /∈ γ},

since jobγ(t) is lost in the schedule. Ifγ(t) is rescheduled at times, then the regret concludes by
selecting the best possible unscheduled job which may be scheduled attr and the regret now becomes

w(γ(s)) −max(u ∈ Ur,s) w(u)

where
Ur,s = {j ∈ READY(R, tr) | j /∈ γ ∨ j = γ(s)}.

This regret function takesO(max(d, |C|)) time, which is sublinear in|J | and |H | and essentially
negligible for this application. We now prove that it provides a 2-approximation.

Theorem 2. The regret function for packet scheduling is a 2-approximation.

Proof. Let R be the set of requests at timet and letr ∈ R be a request that can be scheduled at time
t. Let γ∗ be an optimal solution, i.e.,γ∗ = OPTIMALSOLUTION(R, t), let γr be an optimal solution
whenr is scheduled at timet, i.e., γr = OPTIMALSOLUTION(r, R, t), and let γ̃r be the solution
obtained by the regret function. We show that

w(γr)

w(γ̃r)
≤ 2.

Most of the proof consists of showing that, for each lost packet l, there is another packet inγ∗ whose
weight is at leastw(l) giving us a 2-approximation sincew(γr) ≤ w(γ∗).

First observe that the result holds whenw(x) ≤ w(r) since, in the worst case, the regret function
only loses packetx. So we restrict attention tow(x) ≥ w(r). If x ∈ γ̃r, i.e., if the regret function
swapsx with another packety (case 1), the result also holds sincew(y) ≤ w(x). If x /∈ γ̃r andx
can be scheduled after timet, it means that there exists a packety at each of these times satisfying
w(y) ≥ w(x) and the result holds. It thus remains to consider the case wherex can only be scheduled
at time t and is thus lost inγr. If r /∈ γ∗, the regret function is optimal, since otherwiser would
be in the optimal schedule after timet. Otherwise, it is necessary to reason about a collection of
packets. Indeed,w(γ∗) = w(x) + w(r) + w(S), whereS = {p ∈ γ∗ | p 6= x & p 6= y}. We also
know thatw(γ̃r) ≥ w(r) + w(S) since, in the worst case, the regret function loses packetx. Finally,
w(γr) = w(r)+w(Z), whereZ are the packets scheduled after timet. Sinceγ∗ is optimal, it follows
thatw(Z) ≤ w(r) + w(S) and the result follows. �

7.4 Experimental Results

Figure 2 depicts the average packet loss as a function of the number of available optimizationsO for
the various algorithms on a variety of 7-class problems. It also gives the optimal, a posteriori, packet
loss (O). The results indicate the value of stochastic informationas algorithm E significantly outper-
forms the oblivious algoritms G and LO and bridge much of the gap between these algorithms and
the optimal solution. Note that LO is worse than G, illustrating the (frequent) pathological behavior
of over-optimizing.

The results also indicate that consensus outperforms E whenever few optimizations are available
(e.g.,≤ 15). The improvement is particularly significant when there are very few available optimiza-
tions. Consensus is dominated by E when the number of available optimizations increases, although

Online Stochastic Optimization Under Time Constraints 13

0 5 10 15 20 25 30 35 40 45 50
65

70

75

80

85

90

95

100

105

A
ve

ra
ge

 W
ei

gh
te

d
Lo

ss

Maximum Number of Offline Optimizations

O
G
LO
E
C
R

Fig. 2. The Regret Algorithm on Packet Scheduling

it still produces significant improvements over the oblivious algorithms. This is of course pertinent,
since E is not practical for many problems with time constraints. The benefits of the regret algorithm
are clearly apparent. Algorithm R indeed dominates all the other algorithms, including consensus
when there are very few offline optimizations (strong time constraints) and expectation even when
there are a reasonably large number of them, (weak time constraints).

Finally, it is interesting to observe that algorithm R with 10 offline optimizations produces the
same solution quality as algorithm E with 50 iterations. Since the number of ready requests at each
time t is about 5 in average, the experimental results nicely agreewith the theoretical analysis.

8 The Online Stochastic Algorithm Revisited

This section considers four important generalizations to the framework: precomputation, service guar-
antees, least-commitment, and multiple decisions.

8.1 Precomputation

Some applications are characterized by very short decisiontimes, either because of problem require-
ments or to produce solutions of higher quality. These applications however allow for some limited
number of optimizations in between decisions. For instance, online vehicle routing and deliveries are
applications exhibiting these features. The generic online algorithm can be generalized to provide
these functionalities. The key idea is to maintain a set of sample solutions during execution. At de-
cision time, these solutions can then be used to choose an appropriate request to serve. The set of
solutions can then be updated to remove solutions that are incompatible with the selected decisions
and to include newly generated solutions. Figure 3 depicts the generalized online algorithm and shows
how to instantiate it with consensus. The set of solutionsΓ is initialized in Line 2. The request is se-
lected in line 5 by functionCHOOSEREQUEST which now receivesΓ as input as well. Lines 9 and
10 remove the infeasible solutions and generates new ones. The functionGENERATESOLUTIONS is
also depicted in Figure 3. It is essentially the core of theCHOOSEREQUEST implementation in al-
gorithms C and R with the logic to make decisions abtracted away. The decision code is what is

14 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

ONLINEOPTIMIZATION(H, R)
1 w ← 0;
2 Γ ← GENERATESOLUTIONS(R, 0);
3 for t ∈ H
4 do R← AVAILABLE REQUESTS(R, t) ∪ NEWREQUESTS(R, t);
5 r ← CHOOSEREQUEST(R, t, Γ);
6 SERVEREQUEST(r, t);
7 w← w + w(r);
8 R← R \ {r};
9 Γ ← {γ ∈ Γ | γ(t) = r};

10 Γ ← Γ ∪ GENERATESOLUTIONS(R, t);

GENERATESOLUTION(R, t)
1 Γ ← ∅;
2 repeat
3 S ← R ∪ GETSAMPLE([t + 1, t + ∆]);
4 γ ← OPTIMALSOLUTION(S, t);
5 Γ ← Γ ∪ {γ};
6 until until time t + 1
7 return Γ ;

CHOOSEREQUEST-C(R, t, Γ)
1 for r ∈ R
2 do f(r)← 0;
3 for γ ∈ Γ
4 do f(r)← f(r) + w(γ);
5 return argmax(r ∈ R) f(r);

Fig. 3. The Generic Online Algorithm with Precomputation

left in the instantiations of functionCHOOSEREQUEST. The figure also gives the implementation of
CHOOSEREQUESTfor algorithm C to illustrate the instantiations.

8.2 Service Guarantees

Many applications require service guarantees. The algorithm may decide to accept or reject a new
request but, whenever a request is accepted, the request must be served. The online algorithm can be
enhanced to include service guarantees. It suffices to introduce a new function to accept/request new
requests and to keep only those solutions which can accommodate the requests. Of course, to accept
a request, at least one solution must be able to serve it in addition to the current requests. The new
online generic algorithm with service guarantees is depicted in Figure 4. The changes are in lines 4-6.
FunctionACCEPTREQUESTS(line 4) selects the new requests to serve using the existingsolutionsΓ
and functionREMOVEINFEASIBLESOLUTIONS removes those solutions which cannot accommodate
the new requests.

8.3 Least-Commitment

In the packet scheduling application, it is always suboptimal not to serve a packet at each time step.
However, in many online applications, it may be advisable not to serve a specific request, since this

Online Stochastic Optimization Under Time Constraints 15

ONLINEOPTIMIZATION(H, R)
1 w ← 0;
2 Γ ← GENERATESOLUTIONS(R, 0);
3 for t ∈ H
4 do N ← ACCEPTREQUESTS(R, t, Γ);
5 Γ ← REMOVEINFEASIBLESOLUTIONS(R, t, N, Γ);
6 R← AVAILABLE REQUESTS(R, t) ∪N ;
7 r ← CHOOSEREQUEST(R, t, Γ);
8 SERVEREQUEST(r, t);
9 w← w + w(r);

10 R← R \ {r};
11 Γ ← {γ ∈ Γ | γ(t) = r};
12 Γ ← Γ ∪ GENERATESOLUTIONS(R, t);

Fig. 4. The Generic Online Algorithm with Precomputation and Service Guarantees

may reduce further choices and/or make this algorithm less adaptive. The ability to avoid or to delay a
decision is critical in some vehicle routing applications,as shown later in the paper. It is easy to extend
the framework presented so far to accommodate this feature.At every step, the algorithm may select a
request⊥ which has no effect and no profit/cost. It suffices to useCHOOSEREQUEST(R ∪ {⊥}, t, Γ)
in line 5 of the algorithm.

8.4 Multiple Decisions and Pointwise Consensus

Many practical applications have the ability to serve several requests at the same time, since resources
(e.g., machines or vehicles) are often available in multiple units. The online algorithm naturally gener-
alizes to multiples decisions. Assume that a solutionγ at timet returns a tupleγ(t) = (r1, . . . , rn) =
(γ1(t), . . . , γn(t)). It suffices to replacer in the online algorithm by a tuple(r1, . . . , rn) to obtain
a generic algorithm over tuples of decisions. However, it isimportant to reconsider how to choose
requests in this new context. A straighforward generalization of consensus would give

CHOOSEREQUEST-C(R, t)
1 for e ∈ Rn

2 do f(e)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ GETSAMPLE([t + 1, t + ∆]);
5 γ ← OPTIMALSOLUTION(S, t);
6 f(γ(t))← f(γ(t)) + W (γ);
7 return argmax(e ∈ Rn) f(e);

Unfortunately, this generalized implementation of consensus is not particularly effective, especially
when there are many requests and few samples. Indeed, the information about decisions is now dis-
tributed over tuples of requests instead of over individualrequests and consensus does not capture the
desirability of serving particular requests. This limitation can be remedied by evaluating the decisions
independently accross all samples and by selecting the bestcoupling available among the solutions.
Thispointwise consensuscan be formalized as follows:

CHOOSEREQUEST-PC(R, t)

16 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

1 for r ∈ R, i ∈ 1..n
2 do fi(r)← 0;
3 for i← 1 . . .O
4 do S ← R ∪ GETSAMPLE([t + 1, t + ∆]);
5 γ ← OPTIMALSOLUTION(S, t);
6 for i ∈ 1..n
7 do fi(γi(t))← fi(γi(t)) + W (γ);
8 γ∗ = argmax(γ ∈ Γ)

P

n

i=1
fi(γi(t));

9 return γ∗(t);

Note that pointwise consensus reduces to consensus whenn = 1 and that pointwise regret could be
derived in the same fashion.

9 Vehicle Routing

This section describes the applications of the online generic algorithm with precomputation, service
guarantees, pointwise consensus, and least-commitment toa multiple vehicle routing applications.
Contrary to the applications in [2] where the focus is on feasibility, the difficulty here lies in the
lexicographic objective function, i.e., serving as many customers as possible and minimizing travel
distance. The interesting result is that approximations ofexpectation perform remarkably in these two
“orthogonal” applications.

9.1 The Problem

The application is based on the model proposed in [16] where customers are distributed in a 20km×20km
region and must be served by vehicles with uniform speed of 40km/h. Service times for the customers
are generated according to a log-normal distribution with parameters (.8777, .6647). With this distri-
bution, the mean service time is 3 min. and the variance is 5 min. The service times were chosen to
mimic the service times of long-distance courier mail services [16]. We usen to denote the expected
number of customers andH to denote the time horizon (8 hours). Problems are generatedwith a
degree of dynamism (DOD) (i.e, the ratio of known customers over stochastic customers) in the set
{0%, 5%, . . . , 100%}. For a DODx, there aren(1 − x) known customers. The remaining customers
are generated using an exponential distribution with parameterλ = nx

H for their inter-arrival times. It
follows from the corresponding Poisson distribution (withparameterλH) that the expected number
of unknown customers isnx, the expected number of customers isn, and the expected DOD isx.
The results given here assume that 4 vehicles amd 160 customers. Each vehicle can serve at most 50
customers and the vehicle must return to the depot by the timehorizon. The customers are generated
using 2-D Gaussians centered at two points in the region. (Similar results are obtained under other
distributions). The objective function consists in minimizing the number of missed customers and
minimizing the travel distance. The experimental results are based on 15 instances and an average of
5 runs on each instances. See Reference [3] for a more comprehensive evaluation.

9.2 Setting of the Algorithms

The online generic algorithm is run with the following settings. Initially, 25 different scenarios are
created and optimized for 1 minute using large-scale neighborhood search (LNS) [19, 1]. These initial

Online Stochastic Optimization Under Time Constraints 17

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

A
vg

 U
ns

er
vi

ce
d

C
us

to
m

er
s

Expected Dynamism

NN
C
LO
C(NN)
C−LC
Offline

Fig. 5.Results on the Number of Serviced Customers

0 10 20 30 40 50 60 70 80 90 100
200

300

400

500

600

700

800

900

A
vg

 T
ra

ve
l D

is
ta

nc
e

Expected Dynamism

NN
C
C(NN)
C−LC
Offline

Fig. 6.Results on Travel Distance

solutions are used to determine the first customer for each vehicle. An additional 25 scenarios are
created and optimized for 1 minute with the first customers fixed. It was verified experimently that
this second step improves the quality of the final solutions.Subsequent scenarios are optimized for
about 10 seconds using LNS. The parameters for LNS are as follows: 30 for the maximum number of
customers to remove at one time, 100 attempts at removingc customers without improvement before
removingc + 1 customers, 15 for the determinism factor of the relatednessfunction, and 4 discrep-
ancies. A simple insertion heuristic is used to decide whether a new request should be accommo-
dated. The online algorithm uses precomputations to decidewhether to accept requests immediately
and to avoid delaying the dispatching of vehicles, service guarantees to serve all accepted requests,
least-commitment to be able to postpone vehicle departuresto accommodate future requests more ef-
fectively, and pointwise consensus to gather as much information as possible from the small number
of scenarios available in this application. Note that the experimental results do not discuss the regret
algorithm, since the quality of pointwise consensus alone is largely sufficient for these applications.

18 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

9.3 Experimental Results

The online generic algorithm is compared with the Nearest Neighbor (NN) heuristic proposed in [16]
and generalized to providing guarantees on servicing customers. Whenever a request arrives, the NN
algorithm is simulated to determine if it can accommodate the new request. If it cannot, the request
is rejected. More generally, the results compare NN and the online algorithm instantiated with local
optimization (LO), consensus (C), consensus with least-commitment (C-LC), and consensus using
NN instead of LNS (C(NN)) to find solutions to the scenarios. The figures will also give the offline
solution found using LNS, which represents the “best” solution the various online algorithm could
hope to achieve.

Figure 5 describes the experimental results concerning thenumber of serviced customers for var-
ious degrees of dynamism. The results clearly indicate thatthe stochastic approaches are superior to
LO which is unable to service as many customers. A detailed look at the trace of the decisions per-
formed by LO indicate that it waits too long to deploy some of the vehicles. This is because optimal
solutions use as few vehicles as possible to minimize traveldistance and LO believes it can use fewer
vehicles than necessary until late in the simulation. The remaining approaches service a comparable
number of customers. With higher degrees of dynamism, the benefits of using a consensus function
for ranking are clear, as it reduces the number of missed customers significantly compared to using
travel distance. The online stochastic algorithm do not bring significant benefits in terms of serviced
customers compared to NN. C(NN) is generally superior to NN,while C is roughly similar to NN
(except for very high degrees of dynamism). Note that C-LC does not perform as well as C for these
very high degrees of dynamism: It has a tendency to wait too long, which could be addressed easily
by building some slack in C-LC.

Figure 6 depicts the results for the travel distance, which are extremely interesting. No results are
given for LO, since it is far from being competitive for customer service. The results indicate that the
stochastic instantiations of the online algorithm significantly reduce travel distance compared to NN.
The results are particularly impressive for C-LC, whose travel distance is essentially not affected by
the degree of dynamism. Observe also that the comparison between C(NN) and the other stochastic
approaches tend to indicate that it seems beneficial for these problems to use more sophisticated
optimization algorithms on fewer samples than a weaker method on more samples.

9.4 Robustness

It is natural to question how the algorithms behave when the stochastic information is noisy. This
situation could arise from faulty historical data, predictions, and/or approximations in machine learn-
ing algorithms. Figure 7 shows some results when run on the20% and50% dynamism instances of
M3 (32 and 80 expected new customers respectively). It is interesting to see that, in both cases, it
is better to be optimistic when estimating the number of dynamic customers. For example, on20%
dynamism, C-LC is able to service roughly the same number of customers when it expects between
20 and 100 dynamic customers. However, it performs the best in terms of travel distance when it ex-
pects 50 dynamic customers, slightly more than the 32 of actual problem sets themselves. In addition,
these results show that, even in the presence of significant noise, stochastic approaches are still able
to achieve high-quality results.

Online Stochastic Optimization Under Time Constraints 19

0 50 100 150
0

0.5

1

1.5

2

2.5

3

C
us

to
m

er
s

Estimated Unknown Requests

32 Exp. New Customers

NN
C
C−LC

0 50 100 150
350

400

450

500

550

D
is

ta
nc

e

Estimated Unknown Requests

32 Exp. New Customers

0 50 100 150
0

2

4

6

8

10

C
us

to
m

er
s

Estimated Unknown Requests

80 Exp. New Customers

0 50 100 150
350

400

450

500

550

600

650

700

750

D
is

ta
nc

e

Estimated Unknown Requests

80 Exp. New Customers

Fig. 7. Robustness Results

9.5 Visualizing the Algorithms

This section presents a visualization of the algorithms over time. The goal is to explain the experimen-
tal results intuitively in terms of the actual decisions taken by the algorithms and to provide insights
on the differences in behavior and solution quality.

The visualizations only consider one run of the algorithm (with 50% DOD), although other runs
typically exhibit similar behaviors. They report three snapshots for each algorithm, which depict the
routes visited after 1 hour, 4 hours, and 8 hours respectively. Each snapshot shows the four vehicles,
one in each quadrant. The customers that are known and accepted at the time of the snapshot are
shown in yellow and those who are rejected by the algorithm are shown in red. All accepted and
rejected customers are shown in all quadrants, since it is not clear which vehicles will actually serve
them. Note that the right side of each snapshot will provide some interesting information. It depicts
the expected number of customers, the degree of dynamism, the number of plans available at this
stage, the number of unserviced and rejected customers, andthe travel costs. The available plans
show the projected travel cost as well. Finally, the arcs in yellow show the current solution used by
the algorithms to make decisions which, of course, that solution evolves over time.

Algorithm NN Figures 8, 9, and 10 visualize algorithm NN. After 1 hour, algorithm NN has travelled
133.8km and expects to travel 232km. It still has 42 unserviced customers and has not rejected any
request. After 4 hours, algorithm NN has travelled 382.2km and has visited all the known customers.

20 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Fig. 8. Algorithm NN after 1 Hour

After 8 hours, algorithm NN has rejected 3 customers and travelled 580.7km. An interesting observa-
tion about algorithm NN is that it becomes essentially a first-come/first-serve algorithm after 4 hours,
since all known cuistomers have been served at that point. Wewill come back to this observation later
on when we discuss consensus. Finally, note the travel patterns of the vehicles. Each of which visits a
significant region of the space and features many crossings.

Algorithm LO Figures 11, 12, and 13 visualize algorithm LO, whose behaviour is particularly in-
teresting. After 1 hour, algorithm LO has travelled 63.5km and expects to travel 182km in its best
solution.3 It still has 67 unserviced customers and has not rejected anyrequest. In other words, it has
travelled less than algorithm NN and anticipates a smaller total travel time. Moreover, it has only
deployed two vehicles at this stage, since using fewer vehicles typically mean smaller travel times in
these problems. After 4 hours, algorithm LO has travelled 214.1km, deployed three vehicles, and still
has 26 customers to serve for an antipicated travel distanceof 255.5km. After 8 hours, algorithm LO
has rejected 6 customers, travelled 423.1km, and finally deployed its last vehicle to serve only one
customer. As the experimental results showed, algorithm LOis not competitive with NN as far as as
customer service is concerned. The main reason is now apparent: algorithm LO over-optimizes travel
distance and leaves little room to accommodate new requestsat the end of the routing. In particular, it
deploys its vehicles too late, believing that it can serve the existing customers with fewer of them. As
a consequence, they are not well positioned to accommodate new requests.

Algorithm C Figures 8, 9, and 10 visualize algorithm C. After 1 hour, algorithm C has travelled
121.9km and expects to travel 273.3km. It still has 47 unserviced customers and has not rejected any
request. After 4 hours, algorithm C has travelled 348.2km and has visited all the known customers

3 Algorithm LO generates as many solutions as possible in the allowed time. It generalizes the seminal work in
[11].

Online Stochastic Optimization Under Time Constraints 21

Fig. 9. Algorithm NN after 4 Hours

Fig. 10.Algorithm NN after 8 Hours

22 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Fig. 11.The LO Algorithm after 1 Hour

but one. After 8 hours, algorithm C has rejected 3 customers and travelled 518.2km. Interestingly,
algorithm C also becomes a greedy algorithm after 4 hours, since all known customers have been
served at that point. This indicates that algorithm C has been too eager to serve the existing requests
and is not able to amortize some of their travel with future requests. This behavior clearly illustrates
the need to generalize traditional offline algorithm to accommodate some of the structures present
in online algorithms. Observe also how the “nice” travel patterns after 4 hours deteriorate in the
second half of the day, travelling to customers that are relatively remote and exhibiting some signicant
crossings.

Algorithm C-LC Figures 17, 18, and 19 visualize algorithm C-LC. After 1 hour, algorithm C-LC
has only travelled 21.6km and expects to travel around 237km. It still has 83 unserviced customers
and has not rejected any request. Observe how the vehicles are slowly deployed and do not rush to
serve customers since they expect to have plenty of time to serve them. After 4 hours, algorithm
C-LC has travelled 150.4km, has 62 unserviced customers, and anticipate a travel distance around
283km. Recall that algorithm C has served all known customers at this point (but one). After 8 hours,
algorithm C-LC has rejected 3 customers and travelled only 363.9km. Observe the nice patterns of
the vehicles and the relatively small number of crossings.

10 Vehicle Routing with Time Windows

We now evaluate various algorithms on online multiple vehicle routing with time windows. This
problem was studied initially in [2] to show the value of stochastic information in vehicle routing. It is
particularly interesting because the feasibility constraints are much stronger than in the previous ap-
plication. The challenge then is not on reducing travel distances, but rather to serve as many customers
as possible.

Online Stochastic Optimization Under Time Constraints 23

Fig. 12.The LO Algorithm after 4 Hours

Fig. 13.The LO Algorithm after 8 Hours

24 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Fig. 14.The C Algorithm after 1 Hour

Fig. 15.The C Algorithm after 4 Hours

Online Stochastic Optimization Under Time Constraints 25

Fig. 16.The C Algorithm after 8 Hours

Fig. 17.The C-LC Algorithm after 1 Hour

26 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Fig. 18.The C-LC Algorithm after 4 Hours

Fig. 19.The C-LC Algorithm after 8 Hours

Online Stochastic Optimization Under Time Constraints 27

10.1 Problem Formulation

These vehicle routing problems are specified formally in [2]where all the details can be found. Each
problem contains a depot, a number of customer regions and a number of customer service requests
from the regions. Each request has a demand, a service time, and a time window specified by an
interval [e, l], which represents the earliest and latest possible arrivaltimes respectively. There are a
number of identical vehicles available for use, each with capacityQ. A vehicle route starts at the depot,
serves some customers at most once, and returns to the depot.The demand of a route is the summation
of the demand of its customers. A routing plan is a set of routes servicing each customer exactly once.
A solution to the offline VRPTW is a routing plan that satisfiesthe capacity constraints on the vehicle
and the time window constraints of the requests. The objective is to find a solution maximizing the
number of served customers or, equivalently, minimizing the number of rejected customers. In the
online version, customer requests are not known in advance and become available during the course
of the day. In general, a number of requests are available initially.

Note that the VRPTW is a hard NP-complete problem whose instances are extremely difficult
to solve optimally. Only 2 to 10 offline optimizations can be solved in between two events and the
number of events is large (e.g., 50 different requests). Hence, algorithm E is not practical at all, since
it would not even be able to evaluate each request on a simple sample.

10.2 Experimental Setting

The experimental results are based on the class-4 problems from [2], where all details can be found.
They are derived from the Solomon benchmarks which are very challenging and involve 100 cus-
tomers. The 15 instances exhibit various degrees of dynamism (i.e., the ratio between known and
dynamic customers), different distributions of early and late requests, as well as time windows of very
different sizes. Hence they cover a wide spectrum of possibilities and structures. The number of ve-
hicles available for the online algorithms was determined by solving the offline problems and adding
two vehicles.

10.3 The Regret Function

The regret function is simple and fast. Consider the decision of choosing which customer to serve
next on vehiclev and lets be the first customer on the route of vehiclev. To evaluate the regret of
another customerr on a vehiclev, the key idea is to determine if there is a feasible swap ofr ands
onv, in which case the regret is zero. Otherwise, if such a swap violates the time window constraints,
the regret is 1.The main benefit of this regret function is to recognize that some choices of customers
are essentially equivalent.

The regret function is a 2-approximation, since it loses at most one additional customer. More-
over, when the objective function is viewed as minimizing the number of rejected customers, the
regret function provided a bounded approximation with bound 1. Interestingly, on this application,
consensus is also a bounded approximation, since it implicitly assumes the systematical rejection of
one additional customer. Note that this is also the case for the first component of the optimization
function in the application described in the previous section.

28 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

Problem DOD Vehicles LO C R
20-20-60-rc101-146.3% 16 3.3 3 3.48
20-20-60-rc101-245.8% 15 5.84 4.32 4.84
20-20-60-rc101-350.0% 16 3.02 3.24 3.46
20-20-60-rc101-445.6% 17 6.96 5.08 5.32
20-20-60-rc101-547.4% 16 6.2 6.08 5.72

20-20-60-rc102-159.0% 15 2.12 1.1 1.94
20-20-60-rc102-257.5% 15 7.06 3.66 3.7
20-20-60-rc102-356.0% 15 6.52 4.12 3.6
20-20-60-rc102-452.0% 14 2.76 2.58 3.12
20-20-60-rc102-557.6% 15 5.08 2.88 2.9

20-20-60-rc104-176.1% 13 22.4 13.38 9.68
20-20-60-rc104-275.6% 14 25.5813.8612.16
20-20-60-rc104-376.1% 13 19.3 10.64 8.98
20-20-60-rc104-472.2% 12 21.1614.32 9.42
20-20-60-rc104-574.4% 11 17.1813.38 10.2

Table 1.Regret on Online Vehicle Routing with Time Windows

10.4 Experimental Results

Table 1 depicts the results on the 15 instances of the Solomonbenchmarks. Each instance is solved
50 times because of the nondeterministic nature of the sampling and LNS algorithms. The second
column gives the degree of dynamism and the third column gives the number of vehicles. The last
columns specify the number of missed customer by algorithmsLO, C, and R. First observe that the
regret algorithm produces significant benefits over LO, especially on the problems where the degree of
dynamism is high (about 70%) inducing stricter time constraints. On these highly dynamic problems,
R may reduce the number of missed customers by 225% and alwaysproduces a reduction of at least
69%. regret algorithm does not bring any benefit over consensus for the first two classes of problems
with lower degrees of dynamism. However, it produces some dramatic improvements on the highly
dynamic instances. On these problems, the regret algorithmreduces the number of missed customers
by up to 52% and always produces reductions above 18%. This isa very interesting result, since
consensus is particularly effective on these problems and also provides a bounded approximation.
However, by recognizing “equivalent” choices, the regret algorithm further improves the approxima-
tion and produces significant benefits for the most time-constrained instances.

11 Related Work

Online algorithms (e.g., [10]) have been addressed for numerous years but research has traditionally
focused on techniques oblivious to the future and on competitive ratios [13]. It is only recently that re-
searchers have begun to study how information about future uncertainty may improve the performance
of algorithms. This includes scheduling problems [9], vehicle routing problems [2, 8] and elevator dis-
patching [17] to name a few. Research on these problems has varied widely, but the unifying theme is
that probabilistic information about the future significantly increases quality. The expectation method
was the primary method used in [9], They also pointed out why POMDPs are too general for this

Online Stochastic Optimization Under Time Constraints 29

class of problems. The consensus approach was motivated by online stochastic vehicle routing [2]
and applied to online packet scheduling in [4]. The regret approach was derived from our desire to
obtain theoretical results on the solution quality [5].

12 Conclusion

This paper considers online stochastic optimization problems where uncertainties are characterized
by a distribution that can be sampled and where time constraints severely limit the number of offline
optimizations which can be performed at decision time and/or in between decisions. It proposes a
generic framework for online stochastic optimization and several of its instantiations, including algo-
rithm E, C, and R. The theoretical results indicate that, under reasonable and practical assumptions,
the expected quality loss of algorithm E iso(1) for a total ofn|R|Ω(log(n|R|)) offline optimizations,
while algorithm R is aρ(1 + o(1))-approximation whenever its underlying regret function isa ρ-
approximation and requires a total ofnΩ(log(n|R|)) offline optimizations. The experimental results,
on packet scheduling and multiple vehicle routing without time windows, confirm the theoretical re-
sults. They clearly show the benefits of stochastic information and the practical value of algorithms C
and R under severe time constraints.

Acknowledgments

This research is partially supported by NSF ITR Award DMI-0121495.

References

1. R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with
Time Windows.Transportation Science, 38(4), 515-530, 2004.

2. R. Bent and P. Van Hentenryck 2001. Scenario Based Planning for Partially Dynamic Vehicle Routing
Problems with Stochastic Customers.Operations Research, 52(6), 977-987, 2004.

3. R. Bent and P. Van Hentenryck. 2003. Dynamic Vehicle Routing with Stochastic Requests Technical Report
CS-03-10, Brown University.

4. R. Bent and P. Van Hentenryck. 2004. The Value of Consensusin Online Stochastic Scheduling. InICAPS
2004.

5. R. Bent and P. Van Hentenryck. 2004. Regrets Only! Online Stochastic Optimization under Time Constraints.
In AAAI 2004.

6. R. Bent and P. Van Hentenryck. 2004. Online Stochastic andRobust Optimization. InProceedings of the
Ninth Asian Computing Science Conference (ASIAN’04), Chiang Mai University, Thailand.

7. J. Birge and F. Louveaux. 1997. Introduction to Stochastic Programming. Springer Verlag.
8. A. Cambell, and M. Savelsbergh. 2002. Decision Support for Consumer Direct Grocery Initiatives.Report

TLI-02-09, Georgia Institute of Technology.
9. H. Chang, R. Givan, and E. Chong. 2000. On-line SchedulingVia Sampling. InAIPS’2000, 62–71.

10. Fiat, A., and Woeginger, G.Online Algorithms: The State of the Art. Springer Verlag, 1998.
11. M. Gendreau and F. Guertin and J. Y. Potvin and E. TaillardParallel Tabu Search for Real-Time Vehicle

Routing and Dispatching.Transportation Science, 33(4), 381-390, 1999.
12. L. Kaelbling, M. Littman, and A. Cassandra. Planning andActing in Partially Observable Stochastic Do-

main. Artificial Intelligence, 101(1-2), 99–124, 1998.

30 Russell Bent, Pascal Van Hentenryck, and Eli Upfal

13. Karlin, A.; Manasse, M.; Rudolph, L.; and Sleator, D. 1988. Competitive Snoopy Caching.Algorithmica
3:79–119.

14. A.J. Kleywegt, A. Shapiro, and T. Homer-De-Mello. The Sample Average Approximation Method for
Stochastic Discrete Optimization.SIAM j. on Optimization, 12:479–502, 2001.

15. P. Kouvelis and G. Yu.Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers,
1997.

16. A. Larsen, O. Madsen, and M. Solomon. Partially Dynamic Vehicle Routing-Models and Algorithms.Jour-
nal of Operational Research Society, 53:637–646, 2002.

17. Nikovski, D., and Branch, M. 2003. Marginalizing Out Future Passengers in Group Elevator Control. In
UAI’03.

18. S. Ross.A First Course in Probability.Fifth Edition. Prentice Hall, New Jersey, 1997.
19. P. Shaw. 1998. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Prob-

lems. InCP’98, 417–431.

