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Abstract

This paper deals with downgrading the 1-median, i.e., changing
values of parameters within certain bounds such that the optimal ob-
jective value of the location problem with respect to the new values is
maximized. We suggest a game-theoretic view at this problem which
leads to a characterization of an optimal solution. This approach is
demonstrated by means of the Downgrading 1-median problem in the
plane with Manhattan metric and develop an O(n log2 n) time algo-
rithm for this problem.

1 Introduction

This paper deals with a downgrading approach for the 1-median problem in
the plane with Manhattan metric. Downgrading means that values of the
parameters have to be changed such that the optimal objective value of the
underlying location problem is maximized.

We suggest a game-theoretic interpretation of the problem which is ap-
plicable for many other downgrading problems. For the special case of
downgrading the 1-median problem in the plane with Manhattan metric
this approach leads to an O(n log2 n) time algorithm.

Location problems deal with finding an optimal location for a facility.
The most well studied version is to minimize the total travel cost, i.e., the
sum of weighted distances between clients and the facility. However, in
practice the real demand of the clients may be unknown, i.e., for each client
we are given a minimal and maximal demand and in addition information
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about an upper bound on the total demand of all clients is available. Then
the following natural question occurs: What is the worst cast, i.e., maximize
the total travel cost. As soon as the real demands are known, the facility
will be located in an optimal way with respect to the fixed demands. Hence,
the task is to find demands such that the total travel cost is largest possible
even if the facility is located in an optimal way. Mathematically spoken, we
have to maximize the optimal objective value of the location problem. The
above mentioned application can be modelled in the following way: Each
client has an initial demand (the lower bound) and the task is to distribute
the remaining total demand among the clients such that their upper bound
constraints are satisfied and the optimal objective value of the 1-median
problem with respect to the new demands is maximized.

In this paper, the downgrading approach is applied to the 1-median
problem in the plane with Manhattan metric, i.e., let Pi = (xi, yi) (i =
1, 2) be two points then the distance between these two points is equal to
d(P1, P2) = |x1 − x2| + |y1 − y2|. Larson and Li [15] considered several
applications where the Manhattan metric is used to measure the distance,
e.g., urban transportation, plant and facility layout, locating power lines or
the design of printed circuit boards.

The downgrading problem can be seen as a game where one player cor-
responds to the location planner while the second play is an adversary who
seeks to maximize the cost of the location planner. Hence, the problem is a
special max-min problem.

In contrast to downgrading problems, upgrading problem deal with min-
imizing the optimal objective value, i.e., the upgrading problem is a min-min
problem. These two approaches of up- and downgrading have already been
applied to several classical optimization problems like 1-center and 1-median
problems in networks (Gassner [7], [8]), path problems (Fulkerson and Hard-
ing [6] and Hambrusch and Tu [11]), network flows (Phillips [17]), spanning
trees and Steiner trees (Frederickson and Solis-Oba [5], Drangmeister et
al. [4] and Krumke et al. [14]) and general 0/1-combinatorial optimization
problems (Burkard, Klinz and Zhang [2] and Burkard, Lin and Zhang [3]).

The above algorithms for the above mentioned downgrading problems
are mainly based on the special structure of the underlying optimization
problem or use duality properties. In this paper we use a game-theoretic
approach in order to characterize an optimal solution as Nash equilibrium
of a two-person game. We then get properties of an optimal solution that
are used to solve the downgrading problem.

In Subsection 1.1 the problem of downgrading the 1-median is defined
in a formal way and in Subsection 1.2 some notation is introduced. Section
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2 deals with a reformulation of the downgrading 1-median problem in the
plane. In Section 3 we consider the special case where distances are measured
by the Manhattan metric. For this case an O(n log2 n) time algorithm is
suggested. Finally, in the Conclusion some remarks on related problems as
well as on the corresponding upgrading 1-median problem are given.

1.1 Problem definition

The 1-median problem in the plane is given by a set P = {P1, . . . , Pn} of
points with Pi ∈ R

2 (for i = 1, . . . , n) and a weight vector w = (w1, . . . , wn)
with wi ∈ R+. The task is to find a point P ∈ R

2 such that

f(P ) =

n∑

i=1

wid(Pi, P )

is minimized where d(Pi, P ) denotes the distance (e. g., Euclidean metric,
Tchebychev metric or Manhattan metric) between Pi and P . If the distance
is induced by an ℓp-norm then there exists an optimal solution P0 that lies
in the convex hull C(P) of P (see Juel and Love [12]). Hence, the 1-median
problem is to solve

min
P∈C(P)

f(P ) =

n∑

i=1

wid(Pi, P ).

The task of downgrading the 1-median is to increase the weights of the
points such that the optimal 1-median objective value with respect to the
modified weights is maximized. The downgrading version considered in this
paper allows to change the weights within certain bounds. A weight mod-
ification δ = (δi)Pi∈P is called feasible if a budget constraint is met and
the modifications are within certain bounds: Let ci ∈ R+ for i = 1, . . . , n
denote the cost of changing the weight wi by one unit and let ui ∈ R+ for
i = 1, . . . , n be an upper bound for the modification of wi. Moreover, we are
given a total budget B. Then δ is feasible if δ ∈ ∆ with

∆ =

{

δ ∈ R
n

∣
∣
∣
∣

n∑

i=1

ciδi ≤ B and 0 ≤ δi ≤ ui for all i = 1, . . . , n

}

.

Let δ ∈ ∆ be a feasible weight modification and let P ∈ R
2 be a point

in the plane. Then

fδ(P ) =

n∑

i=1

(wi + δi)d(Pi, P )
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denotes the objective value of P with respect to weight vector w + δ, i.e.,
after weight modification δ.

The downgrading 1-median problem in the plane is to find a feasible
weight modification δ ∈ ∆ such that the optimal 1-median objective value
for weight vector w + δ

min
P∈C(P)

fδ(P ) = min
P∈C(P)

n∑

i=1

(wi + δi)d(Pi, P )

is maximized. Hence, the downgrading problem is to solve

max
δ∈∆

min
P∈C(P)

fδ(P ).

1.2 Notation

Throughout this paper we will use the following notation:
Let P = {P1, . . . , Pn} be a set of points with Pi = (xi, yi) for i = 1, . . . , n

then
V = {(xi, yj) | i = 1, . . . , n and j = 1, . . . , n}

is called set of vertices. Observe that P ⊆ V and |V | = O(n2).
Two vertices Q = (x, y) ∈ V and Q′ = (x′, y′) ∈ V with x < x′ are called

horizontally adjacent if y = y′ and there is no vertex Q′′ = (x′′, y′′) ∈ V with
x < x′′ < x′. Vertical adjacency is defined in an analogous way. Clearly,
every vertex is horizontally (vertically) adjacent to one or two vertices. The
set of points on the line segment between two adjacent vertices Q and Q′ is
denoted by [Q,Q′]. The interior of [Q,Q′] is denoted by (Q,Q′).

Every point P = (x, y) ∈ R
2 defines four halfplanes:

A+(P ) = {(x̃, ỹ) ∈ R
2 | x̃ > x}

A−(P ) = {(x̃, ỹ) ∈ R
2 | x̃ < x}

B+(P ) = {(x̃, ỹ) ∈ R
2 | ỹ > y}

B−(P ) = {(x̃, ỹ) ∈ R
2 | ỹ < y}

Let X ⊆ R
2 then w(X) =

∑

Pi∈X∩P wi denotes the sum of weights of
points in X. If δ ∈ ∆ then (w + δ)(X) =

∑

Pi∈X∩P(wi + δi). Finally, let
X,Y ⊆ R

2 then we define X −Y = X \Y and w(X +αY ) = w(X)+αw(Y )
for α ∈ R.
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2 From Max-Min to Min-Max

In this section, we will reformulate the downgrading problem from a max-
min problem to a min-max problem. Recall that the downgrading problem
is to solve

max
δ∈∆

min
P∈C(P)

fδ(P ).

Let X ⊂ R
2 be a closed and convex set. Then a tuple (δ∗, P ∗) with P ∗ ∈ X

and δ∗ ∈ ∆ is called saddle-point in X if

fδ(P
∗) ≤ fδ∗(P

∗) ≤ fδ∗(P )

holds for all δ ∈ ∆ and P ∈ X. It is well-known that

max
δ∈∆

min
P∈X

fδ(P ) = min
P∈X

max
δ∈∆

fδ(P ) = fδ∗(P
∗)

holds if and only if (δ∗, P ∗) is a saddle-point in X (e. g., see the book of
Rockafellar, Part VII [18]).

The existence of a saddle-point can be shown by using the famous min-
max Theorem of Kakutani [13]: Observe that ∆ ⊂ R

n and X ⊂ R
2 are closed

and convex. Moreover, if P ∈ X is fixed then fδ(P ) =
∑n

i=1(wi+δi)d(Pi, P )
is an affine-linear and therefore concave function in δ. Finally, we fix δ ∈ ∆.
Since the distance d(Pi, P ) is a convex function in P also (wi + δi)d(Pi, P )
is convex for every fixed δ and herewith fδ(P ) is a convex function in P if
δ ∈ ∆ is fixed. These assumptions guarantee the existence of a saddle-point
in X.

Hence, we know that there exists a saddle-point (δ∗, P ∗) in X with δ∗ ∈
∆ and P ∗ ∈ X ⊆ C(P) such that

max
δ∈∆

min
P∈X

fδ(P ) = min
P∈X

max
δ∈∆

fδ(P ) = fδ∗(P
∗).

This implies for X = C(P) that there exists an optimal solution δ∗ ∈ ∆
of the downgrading problem and a point P ∗ ∈ C(P) such that (δ∗, P ∗) is a
saddle-point. Therefore, we get the following theorem:

Theorem 2.1. 1. If (δ∗, P ∗) is a saddle-point in C(P) then δ∗ is an op-
timal weight modification of Downgrading the 1-median in the plane.

2. There exists a saddle-point in every convex subset X ⊆ C(P).

3. (δ∗, P ∗) is a saddle-point in X if and only if δ∗ maximizes the 1-median
objective value of P ∗ and P ∗ is 1-median with respect to w + δ∗.
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The idea is to use the characterization of a saddle-point in order to find
an optimal solution of Down1Med.

The above reformulation has the following game-theoretic interpretation:
We are given a zero-sum game with two players. The set of strategies for
player 1 is equal to ∆ while the set of strategies for player 2 corresponds
to C(P) (= set of potential locations). Let (δ∗, P ∗) with δ∗ ∈ ∆ and P ∗ ∈
C(P) be the strategies of the two players. If (δ∗, P ∗) is a saddle-point then
fδ∗(P

∗) = maxδ∈∆ minP∈C(P) fδ(P ) holds. This means that fδ∗(P
∗) is the

guaranteed minimum profit for player 1. With similar arguments we get,
that fδ∗(P

∗) is the guaranteed maximum loss of player 2. Since the minimum
profit and maximum loss are equal, there is no reason for one player to
change his strategy. In terms of game theory, (δ∗, P ∗) is a Nash equilibrium
and δ∗ is an optimal weight modification of Down1Med.

Observe that if (δ∗, P ∗) is a saddle-point then P ∗ is in general not a
vertex. This reflects the game-theoretic fact that in general there is no Nash
equilibrium consisting of pure strategies.

Finally, let us consider the following subproblem: Fix a point P ∈ R
2

and determine the maximum objective value for P that can be achieved by
a feasible weight modification, i.e.,

Max(P ) : h(P ) := max
δ∈∆

fδ(P ).

Observe that Max(P ) is a continuous knapsack problem that can be solved
in linear time (Balas and Zemel [1]). Moreover, if (δ∗, P ∗) is a saddle-point
in X then

max
δ∈∆

min
P∈X

fδ(P ) = min
P∈X

max
δ∈∆

fδ(P ) = min
P∈X

h(P ) = h(P ∗).

Since Max(P ) is solvable efficiently, our algorithm is mainly based on
solving Max(P ) for several points P . As soon as h(P ) < h(P ′) holds for two
points P and P ′ we know that there is no saddle-point of the form (δ′, P ′).

3 Downgrading the 1-median in the plane with

Manhattan metric

In this section we consider the 1-median problem in the plane with Manhat-
tan metric, i.e., let P = (x1, y1) and Q = (x2, y2) then

d(P,Q) = |x1 − x2| + |y1 − y2|.

6



The problem of downgrading the 1-median in the plane if the distances
are measured by the Manhattan metric is called Down1Med for short.

The 1-median problem in the plane with Manhattan metric is called
1Med. The objective function of 1Med can be written as

f(P ) =

n∑

i=1

wi|xi − x| +
n∑

i=1

wi|yi − y|

where P = (x, y) and hence each sum can be minimized independently. Each
of these two subproblems can be interpreted as 1-median problem on a path.
Due to the well-known optimality criterion of Goldman [9] for the 1-median
problem on trees, we get the following optimality criterion for 1Med:

Theorem 3.1. Let (P, w̃) be an instance of 1Med. Then P0 = (x, y) is
an optimal solution of 1Med, i.e., a 1-median if and only if the following
conditions hold:

w̃(A−(P0)) ≤
1

2
w̃(R2) (1)

w̃(A+(P0)) ≤
1

2
w̃(R2) (2)

w̃(B+(P0)) ≤
1

2
w̃(R2) (3)

w̃(B−(P0)) ≤
1

2
w̃(R2) (4)

The previous theorem means that P0 is 1-median if the total weight
to the right (left) of P0 is at most half of the total weight and the total
weight above (below) P0 is at most half of the total weight. Moreover, the
theorem immediately implies that there exists an optimal solution among
the vertices, i.e., P0 ∈ V .

Now we are interested in objective values of two points P ′ and P ′′. Let
P ′ = (x′, y′) and P ′′ = (x′′, y′) be two vertices with x′ ≤ x′′ then

d(P,P ′) =







d(P,P ′′) + |x′ − x′′| if P ∈ R
2 − A−(P ′′)

d(P,P ′′) − |x′ − x′′| if P ∈ R
2 − A+(P ′) ⊆ A−(P ′′)

d(P,P ′′) + d((x, y′), P ′) − d((x, y′), P ′′) if P ∈ A+(P ′) ∩ A−(P ′′)

holds for every P = (x, y) ∈ R
2 and hence

d(P,P ′) ≥

{

d(P,P ′′) + |x′ − x′′| if P ∈ R
2 − A−(P ′′)

d(P,P ′′) − |x′ − x′′| if P ∈ A−(P ′′).
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Observe that we have equality if P ′ and P ′′ are horizontally adjacent. This
observation immediately implies

fδ(P
′) ≥ fδ(P

′′) + |x′ − x′′|(w + δ)(R2 − 2A−(P ′′)). (5)

An analogous result holds for two vertices on a vertical line.

3.1 A first algorithm

Assume that we already knew which point P ∈ C(P) is a 1-median after an
optimal weight modification δ∗ ∈ ∆. Then the optimal strategy would be
to maximize the objective value of P provided that P is 1-median after the
modification, i.e.,

Max Median(P ) : g(P ) := max
δ∈∆

fδ(P )

s.t. (1) to (4) hold for w̃ = w + δ.

Observe that Max Median(P ) maximizes the objective value of P and
makes sure that P is a 1-median at the end while Max(P ) only maximizes
the objective value without guarantee that P is a 1-median. If δ∗ is an
optimal solution of Max(P ) then P is in general not 1-median with respect
to w + δ∗. This observation holds for all vertices P ∈ V .

Unfortunately, we do not know the optimal point P a priori. However,
since we know that there exists a 1-median among the set of vertices, we can
solve Max Median(P ) for all vertices P and hence, Down1Med is equivalent
to

max
Q∈V

g(Q).

Observe that g(Q) can be determined in linear time because there are
only five constraints in addition to the upper bound constraints [16]. Hence,
Down1Med can be solved in O(n3) time if g(Q) is determined from scratch
for every vertex. The drawback of this algorithm is the huge number of
points for which Max Median(P ) has to be solved.

In the remaining of this paper we will, however, describe a more efficient
algorithm that runs in O(n log2 n) time. The idea is to prune several ver-
tices until the set of remaining potentially optimal points is small. Finally,
Max Median(P ) is solved only for the small set of remaining vertices.
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3.2 An efficient algorithm

The task of this subsection is to find a procedure that prunes a large number
of vertices that are known to be not optimal. The procedure is based on
the idea that there exists an optimal solution of Down1Med that implies a
saddle-point (δ∗, P ∗) in C(P). Observe that we are only allowed to apply
Theorem 2.1 if we consider the whole (continuous) set C(P) because Theorem
2.1 does not hold for the discrete set V .

The main idea of the presented efficient algorithm is to successively re-
duce the search space for P ∗. Let y′ be the median among the y-coordinates
of the vertices and let L′ be the horizontal line through (x′, y′) ∈ V . Then
the algorithm decides whether the upper or lower halfplane defined by L′

can be pruned, i.e., there exists a saddle-point (δ∗, P ∗) such that P ∗ lies
in the unpruned region. Afterwards let x′′ be the median among the x-
coordinates of the remaining vertices and let L′′ be the vertical line through
(x′′, y′′) ∈ V . Again it can be decided whether the right or left halfplane
defined by L′′ can be pruned. Hence, after this step the number of x- and
y-coordinates of unpruned vertices is halved. This procedure is repeated
until either an optimal solution is already found or a singe cell, i.e., a rect-
angle that does not contain any vertex, remains. Since it is known that
there exists a saddle-point (δ∗, P ∗) that lies in the remaining cell, it follows
that one of the corners must be a 1-median after an optimal weight modifi-
cation. Therefore, maxP is corner g(P ) is an optimal solution of Down1Med.
As described above, the main step is to decide which halfplane defined by a
horizontal (vertical) line L has to be pruned. In order to make this decision,
we solve a series of subproblems Max(P ) for points P that lie on L.

Assume that we are given a line L and a point P ∈ L. If δ∗ is an optimal
solution of Max(P ) such that (1) to (4) hold in point P for w + δ∗ then δ∗

is an optimal solution of Down1Med because (δ∗, P ) is a saddle-point. The
next Lemma states that there is still some information on the location of an
optimal point P ∗ if only a part of the weight conditions is satisfied:

Lemma 3.2. Let L be a horizontal line and let P ∗ ∈ L with an optimal
solution δ∗ of Max(P ∗) such that (1) and (2) hold in P ∗ for weight vector
w + δ∗. If condition (3) ( (4)) is violated then h(P ) > h(P ∗) holds for all
points P = (x, y) with y < y∗ (y > y∗).

Observe that if h(P ) > h(P ∗) holds for all y < y∗ then there is no
saddle-point (δ, P ) such that P lies below P ∗ and therefore we can prune a
halfplane. Let us first prove the lemma:

Proof. Consider a point P = (x, y) with y < y∗ and x ≤ x∗. Since
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(w + δ∗)(B+(P ∗)) > 1
2(w + δ∗)(R2) (because (3) is violated) and B−(P ∗) ∩

B+(P ∗) = ∅ we get

(w + δ∗)(B−(P ∗)) <
1

2
(w + δ∗)(R2).

Moreover, conditions (1) and (2) imply

(w + δ∗)(A+(P ∗)) ≤
1

2
(w + δ∗)(R2) and

(w + δ∗)(A−(P ∗)) ≤
1

2
(w + δ∗)(R2).

Together with (5), we get

h(P ) ≥ fδ∗(P )

≥ fδ∗(P
∗)+

|x − x∗| (w + δ∗)(R2 − 2A−(P ∗))
︸ ︷︷ ︸

≥0

+|y − y∗| (w + δ∗)(R2 − 2B−(P ∗))
︸ ︷︷ ︸

>0

> fδ∗(P
∗) = h(P ∗).

If x > x∗ then we have to replace A−(P ∗) by A+(P ∗). All further inequalities
also hold true for this case.

Observe that if we are given a point P ∗ ∈ L together with an associated
optimal solution δ∗ of Max(P ∗) that satisfies (1) and (2) then either

• (3) and (4) are also satisfied and hence we have found an optimal
solution of Down1Med, or

• (3) is not satisfied and hence we can prune all points below P ∗, or

• (4) is not satisfied and we can prune all points above P ∗.

The previous lemma describes how to decide which halfplane can be
pruned. However, in order to apply this lemma, we have to find a point
P ∗ ∈ L such that its associated optimal solution of Max(P ∗) satisfies (1)
and (2). Since we ignore the weight conditions in y-direction the obtained
subproblem is 1-dimensional. Consider the following subproblem (restricted
to L):

min
P∈L∩C(P)

max
δ∈∆

fδ(P ).

Since L∩C(P) is a closed and convex set, Theorem 2.1 can be applied for X =
L ∩ C(P). The existence of a saddle-point (δ∗, P ∗) in L is guaranteed and
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if (δ∗, P ∗) is a saddle-point in L then δ∗ is an optimal solution of Max(P ∗)
and P ∗ is 1-median restricted to L with respect to (w + δ∗). This latter
condition, however, is equivalent to the fact that (1) and (2) hold for w + δ∗

in point P ∗. Hence, we first search for a saddle-point in L and then apply
Lemma 3.2 to this point.

The task is therefore to find a saddle-point in L. A necessary condition
for this saddle-point is h(P ∗) = minP∈L∩C(P) h(P ).

Assume that we fix a point P ∗ on L but the determined optimal solution
δ∗ of Max(P ∗) violates condition (1). Then the following Lemma states that
there exists a saddle-point in L to the left of P ∗.

Lemma 3.3. Let L be a horizontal line. Moreover, let P ∗ ∈ L and δ∗ an
optimal solution of Max(P ∗) such that (1) ( (2)) is violated. Then h(P ) >
h(P ∗) holds for all points P = (x, y∗) ∈ L with x > x∗ (x < x∗).

The proof of Lemma 3.3 is similar to that of Lemma 3.2 and therefore
omitted.

This observation immediately leads to binary search in the set of ver-
tices in L. Consider a vertex P on L and solve Max(P ). Either (1) and
(2) are satisfied (in this case Lemma 3.2 can be applied to this point) or we
can prune a half-ray of L (cf. Lemma 3.3) and continue with the unpruned
vertices on L. Unfortunately, in general there does not exist a saddle-point
(δ∗, P ∗) in L such that P ∗ is a vertex. Hence, after at most O(log n) appli-
cations of Lemma 3.3 either we find a vertex P ∗ ∈ L whose optimal solution
δ∗ of Max(P ∗) satisfies (1) and (2) or we end up with two adjacent vertices
[P ′, P ′′] such that h(P ) > h(P ′) for all points P on L to the left of P ′ and
h(P ) > h(P ′′) for all points P on L to the right of P ′′. In this case there
exists a saddle-point (δ∗, P ∗) in L with P ∗ ∈ [P ′, P ′′]. Such an edge is called
critical edge. In the next lemma we characterize this latter situation.

Lemma 3.4. Let [P ′, P ′′] be a critical edge on a horizontal line L. Then
there exists a point P ∗ ∈ [P ′, P ′′] with associated optimal solution δ∗ of
Max(P ∗) such that

(w + δ∗)(A+(P ′)) = (w + δ∗)(A−(P ′′)).

This lemma means that there exists a saddle-point (δ∗, P ∗) in L such
that the total weight with respect to w + δ∗ to the right of P ′ is equal to
the total weight to the left of P ′′.

Proof. Since all points P ∈ L with P /∈ [P ′, P ′′] satisfy h(P ) > h(P ′) or
h(P ) > h(P ′′) we know that there exists a saddle-point (δ∗, P ∗) in L with
P ∗ ∈ [P ′, P ′′].
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1. Case: P ∗ = (x∗, y∗) ∈ (P ′, P ′′):
Observe that there is no vertex P = (x, y) ∈ V with x = x∗. Hence,
Together with the property that (1) and (2) are satisfied for w + δ∗ in
P ∗ we immediately get the desired result.

2. Case: P ∗ ∈ {P ′, P ′′}:
Recall that [P ′, P ′′] is a critical edge because there exists an optimal
solution δ′ of Max(P ′) with

(w + δ′)(A+(P ′)) >
1

2
(w + δ′)(R2).

On the other hand, there exists an optimal solution δ′′ of Max(P ′′)
with

(w + δ′′)(A−(P ′′)) >
1

2
(w + δ′′)(R2).

Assume without loss of generality that P ∗ = P ′. Then there exists an
optimal solution δ̃ of Max(P ′) with

(w + δ̃)(A+(P ′)) ≤
1

2
(w + δ̃)(R2). (6)

It is possible to find a convex combination ξ = αδ′ + (1 − α)δ̃ with
0 ≤ α < 1 such that ξ is again an optimal solution of Max(P ′) and (6)
is satisfied with equality.

Lemma 3.4 is used to find a saddle point (δ∗, P ∗) in L with P ∗ ∈ [P ′, P ′′].
In fact we are not interested in the critical point P ∗ itself but only in its
corresponding optimal solution δ∗ of Max(P ∗) because we would like to
apply Lemma 3.2 in order to prune the upper or lower halfplane. In order
to find an optimal weight modification δ∗ of a saddle-point restricted to L,
we define the following problem:

Max∗(P ) : max
λ∈∆

fλ(P )

s.t. (w + λ)(A+(P )) = (w + λ)(A−(P ))

The following lemma proves that Max∗(P ) determines the desired solu-
tion δ∗.

Lemma 3.5. Let [P ′, P ′′] be a critical edge on the horizontal line L and let
P̄ ∈ (P ′, P ′′) be an arbitrary point in the interior of the edge where λ̄ is an
optimal solution of Max∗(P̄ ). Then there exists a saddle-point (λ̄, P ∗) on L
with P ∗ ∈ [P ′, P ′′].
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Proof. Since P̄ lies in the interior of the edge and

(w + λ̄)(A+(P̄ )) = (w + λ̄)(A−(P̄ )) (7)

holds by construction, we have (w+ λ̄)(A+(P ′)) = (w+ λ̄)(A−(P ′′)). There-
fore, we get fλ̄(P̄ ) = fλ̄(P ) and (1) and (2) are satisfied for λ̄ in P for all
P ∈ [P ′, P ′′].

Now let (δ∗, P ∗) be a saddle-point in L such that P ∗ ∈ [P ′, P ′′] and
(w + δ∗)(A+(P ′)) = (w + δ∗)(A−(P ′′)). Then

h(P ∗) = fδ∗(P
∗) = fδ∗(P )

holds for all P ∈ [P ′, P ′′], especially for P = P̄ .
Since δ∗ is a feasible solution of Max(P̄ ) we have fδ∗(P̄ ) ≤ fλ̄(P̄ ). More-

over, P ∗ ∈ [P ′, P ′′] implies fλ̄(P̄ ) = fλ̄(P ∗). And finally, λ̄ is a feasible
solution of Max(P ∗) and hence fλ̄(P ∗) ≤ h(P ∗). Putting all together, we
get

h(P ∗) = fδ∗(P
∗) = fδ∗(P̄ ) ≤ fλ̄(P̄ ) = fλ̄(P ∗) ≤ h(P ∗)

which implies fλ̄(P ∗) = h(P ∗), i.e., λ̄ is an optimal solution of Max(P ∗).
Since λ̄ is an optimal solution of Max(P ∗) and (1) and (2) are satisfied

for λ̄ in P ∗, (λ̄, P ∗) is a saddle-point in L.

Given a horizontal line L, the procedure of pruning a halfplane can be
summarized as follows: Let V (L) = V .

• Step 1 [Investigation of a vertex on L]: Let P = (x, y) ∈ L∩V (L) such
that x is the median among the x-coordinates of points in V (L). Let
δ be an optimal solution of Max(P ). If δ satisfies (1) and (2) then set
δ∗ = δ, P ∗ = P and go to Step 4. If all vertices in V (L) are already
investigated then go to Step 3, otherwise go to Step 2.

• Step 2 [Prune half-ray]: If δ violates (1) ((2)) then delete all vertices
in V (L) that lie to the right (left) of P and go back to Step 1.

• Step 3 [Critical edge]: Let P ′ and P ′′ be the two remaining vertices
in V (L) and both vertices have already been investigated in Step 1.
Choose an arbitrary point P̄ ∈ (P ′, P ′′) and let λ̄ be an optimal solu-
tion of Max∗(P̄ ). Set δ∗ = λ̄, P ∗ = P ′ (or P ∗ = P ′′) and go to Step
4.

• Step 4 [Prune halfplane]: If δ∗ satisfied (3) and (4) in point P ∗ then
(δ∗, P ∗) is a saddle-point of Down1Med and hence an optimal weight
modification δ∗ is found. Otherwise, if (3) ((4)) is violated then prune
all vertices below (above) L.
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In an analogous way the above procedure can be applied to a vertical line
in order to prune the left or right halfplane. If the procedure is iteratively
applied to the horizontal line defined by the median of the y-coordinates of
unpruned vertices and then to the vertical line defined by the median of the
x-coordinates of unpruned vertices, then either during the pruning process
an optimal solution if found (cf. Step 4) or we end up with a single cell, i.e.,
a rectangle that does not contain any vertex. We know that there exists a
saddle-point (δ∗, P ∗) such that P ∗ lies in the cell or on its boundary. Since
P ∗ is known to be 1-median with respect to w+ δ∗ there also exists a vertex
P ′ on the border of the cell that is also 1-median with respect to w + δ∗ and
hence fδ∗(P

′) = fδ∗(P
∗). This means, that at least one of the corners (that

are vertices) of the remaining cell is a 1-median with respect to an optimal
weight modification. Hence, we can try out all four corners.

Now we come back to the first algorithm described in Subsection 3.1.
Let Pi for i = 1, . . . , 4 be the corners of the remaining cell. For each
i = 1, . . . , 4 do the following: Maximize the objective value of Pi by a
feasible weight modification provided that Pi is 1-median, i.e., let δ(i) be
an optimal solution of Max Median(Pi). Then g(Pi) = fδ(i)(Pi) holds. Fi-
nally, let maxi=1,...,4 g(Pi) = fδ(j)(Pj) then δ∗ = δ(j) is an optimal solution of
Down1Med. The previous discussion leads to the following main theorem:

Theorem 3.6. Downgrading the 1-median in the plane with Manhattan
metric can be done in O(n log2 n) time.

Proof. The correctness of the algorithm described above follows from the
previous discussion. We choose the median among the x- and y-coordinates
of the set of unpruned vertices as vertical and horizontal test line, respec-
tively. Hence, we have O(log n) iterations.

In every iteration we use binary search (on the set of vertices on the line)
to find a saddle-point on the line. Hence, we have to solve O(log n) prob-
lems of type Max(P ), i.e., continuous knapsack problems (O(n)). Moreover,
Max∗(P ) is solved at most once. Since Max∗(P ) has a constant number of
constraints in addition to the upper bound constraints, it can also be solved
in linear time [16]. Therefore, each iteration takes O(n log n) time.

Finally, Max Median(P ) has to be solved for four vertices. Max Median(P )
can be solved in linear time because it has a constant number of constraints.
Therefore, the total running time is O(n log2 n).
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4 Conclusion

This paper considers the problem of maximizing the optimal 1-median ob-
jective value in the plane with Manhattan metric by changing the vertex
weights within certain bounds. The suggested algorithm can directly be
applied to the corresponding problem with Tchebychev metric because the
Manhattan metric can be transformed into the Tchebychev metric by rotat-
ing the coordinate system by 45 degrees (e. g., see [10]).

The corresponding upgrading model, i.e., minδ∈∆ minP∈R2 fδ(P ) can be
solved by maximally improving the objective value of every vertex. This
algorithm takes O(n3). However, we assume that the running time can
possibly be improved by using information of optimal solutions of adjacent
vertices.
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