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Abstract

The genomes of complex organisms, including the human genome,
are known to vary in GC content along their length. That is, they
vary in the local proportion of the nucleotides G and C, as opposed
to the nucleotides A and T. Changes in GC content are often abrupt,
producing well-defined regions.

We model DNA sequences as a multiple change-point process in
which the sequence is separated into segments by an unknown number
of change-points, with each segment supposed to have been generated
by a different process. Multiple change-point problems are important
in many biological applications, particularly in the analysis of DNA
sequences. Multiple change-point problems also arise in segmentation
of protein sequences according to hydrophobicity.

We use the Cross-Entropy method to estimate the positions of the
change-points. Parameters of the process for each segment are approx-
imated with maximum likelihood estimates. Numerical experiments
illustrate the effectiveness of the approach. We obtain estimates of
the locations of change-points in artificially generated sequences and
compare the accuracy of these estimates with those obtained via other
methods such as IsoFinder [1] and Markov Chain Monte Carlo. Lastly,
we provide examples with real data sets to illustrate the usefulness of
our method.
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1 Introduction

This paper considers the problem of identifying change-points in a very long
binary sequence. In this context, a change-point is a position in the sequence
such that the frequency of the ‘1’ character differs on either side. To explain
why this is an important problem and why it is of interest, it is necessary to
first introduce a small amount of biology.

The genomes of complex organisms (e.g., humans), contain vast amounts
of information specifying components of cellular systems and control mech-
anisms for regulating their interactions. This information is encoded in long
linear molecules of DNA, which are comprised of four nucleotides, or ‘charac-
ters’, denoted A, C, G and T. One important class of components in cellular
systems is that of proteins. Proteins are composed of amino acids, of which
there are 20 main types. Molecular machines in the cell are able to trans-
late the 4-character alphabet of nucleotides into the 20-character alphabet
of amino acids, thus manufacturing proteins. However, only about 1% of the
human genome encodes for proteins. While much of the remainder may be
‘junk DNA’ (performing no function of any importance to the organism), it
is widely believed that at least 5% of the human genome is functional [3].
While the protein-coding portion of the human genome is almost completely
identified, the functional non-protein-coding portion is poorly understood
and is only beginning to be characterised. It is likely that entire classes of
functional RNAs remain to be discovered [7]. Major biological advances are
likely to result from the study of this component.

There is a scarcity of effective methods for discovering functional RNAs
in genomes. The main reason for this is simply that so little is known about
them that it is unclear what to look for. We are pursuing a non-hypothesis
based approach, in which we identify key sequence characteristics that may be
indicative of function, and then look for positions in the genome where these
properties change discontinuously. These change-points are then considered
as putative boundaries of functional non-protein-coding RNAs. Other exper-
imental and analytic approaches can then be employed to verify the presence
of a functional element.

Various properties of genomic sequence that are potentially indicative of
function can be represented as a binary sequence. One property that is useful
for considering the problem in the abstract (though by no means the best
indicator of function) is GC content. Positions in a DNA sequence at which a
G or C nucleotide is present are represented by a 1, whereas positions at which
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an A or T is present are represented by a 0. The reason for considering G
and C together is that DNA is actually a double-stranded molecule in which
a G on one strand pairs opposite a C on the other strand, and an A on one
strand pairs opposite a T on the other.

The approach taken here uses Bayesian sequence segmentation to iden-
tify putative change-points in a binary sequence. This technique has been
extensively studied. See [2] for a review of older methods, and papers by
Keith et al. [5, 6, 10] for more recent developments.

In this paper we present a Cross-Entropy [8] approach to change-point
modeling, using Monte Carlo simulation to find estimates of change-points.
We include results of numerical experiments indicating the usefulness of this
method. We apply the method to real data from the human genome to detect
segmental variation in GC content, but the method could equally be applied
to detect segmental variation in other important situations.

The paper is structured as follows: Section 2 includes a statement of
the multiple change-point problem in mathematical terms. In Section 3, we
explain the basic framework of the Cross-Entropy method. In Section 4, we
develop the Cross-Entropy method for the multiple change-point problem.
Section 5 presents the results of two numerical experiments.

2 The Multiple Change-Point Problem

Let us formulate the multiple change-point problem (MCPP) in mathemat-
ical terms. A binary sequence b = {b1, . . . , bL} of length L is given. A
segmentation of the sequence is specified by giving the number of change-
points N and the positions of the change-points c = (c1, . . . , cN), where
0 = c0 < c1 < · · · < cN < cN+1 = L. In this context, a change-point is a
boundary between two adjacent segments, and the value ci is the sequence
position of the rightmost character of the segment to the left of the i-th
change-point. Segments are numbered from 0 to N as there will be one more
segment than change-points. A maximum number of change-points d is spec-
ified, where 0 ≤ N ≤ d < L. The model assumes that within each segment,
characters are generated via independent Bernoulli trials with probability of
success (that is obtaining a “1”) θn, where 0 < θn < 1 for n = 0, . . . , N .
Then the joint distribution of b1, . . . , bL conditional on N , c = (c1, . . . , cN),
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and θ = (θ0, . . . , θN ) is given by

f(b1, . . . , bL | N, c, θ)

=

N
∏

n=0

θI(cn,cn+1)
n (1 − θn)O(cn,cn+1),

where

I(cn, cn+1) =

cn+1
∑

i=cn+1

bi,

O(cn, cn+1) = cn+1 − cn − I(cn, cn+1).

In other words, I(cn, cn+1) is the number of ones in the segment bounded by
sequence positions cn + 1 and cn+1 and O(cn, cn+1) the number of zeros in
that same segment.

To formulate the problem in terms of a Bayesian model, we use the frame-
work set out in [4]. Let X be the set of possible values of x = (N, c, θ), where
X = ∪d

N=0

[

{N} × CN × (0, 1)N+1
]

, with CN = {(c1, . . . , cN) ∈ {1, . . . , L −
1}N : c1 < · · · < cN}. We assume a uniform prior both on the number of
change-points and on CN , and uniform priors on (0, 1) for each θn. Thus, the
overall prior f0(N, c, θ) is constant. The use of uniform priors means that
this Bayesian setting is equivalent to the Maximum Likelihood approach.
However, if one had a more informative priors, they could be used instead of
the uniform priors. The posterior distribution at point x = (N, c, θ), having
observed b1, . . . , bL, is given by

π(x) ∝ f0(N, c, θ)f(b | N, c, θ)

=

N
∏

n=0

θI(cn,cn+1)
n (1 − θn)O(cn,cn+1).

3 The Cross-Entropy Method

The Cross-Entropy (CE) method [8] can be used for two types of problems:

• Estimation,

• Optimization.
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Suppose we wish to solve the following maximization problem: Let X be a
finite set of states and S a real-valued performance function on X . We wish
to find the maximum value of S over X and the state(s) corresponding to
this value. Let γ∗ be the maximum of S over X and let x∗ be a state at
which this maximum is attained. Then,

S(x∗) = γ∗ = max
x∈X

S(x). (1)

The CE method is an iterative optimization method that starts with a
parameterized sampling distribution f(x;u) from which a random sample is
generated. Each observation in this sample is scored for its performance as
the solution to a specified optimization problem. A fixed number of the best
of these observations are referred to as the elite sample. This elite sample is
used to update the parameters for the sampling distribution. The sampling
distribution eventually converges to a degenerate distribution about a locally
optimal solution which ideally will be globally optimal.

The first step of the CE method is to turn the optimization problem (1)
into a meaningful estimation problem. Let I{S(X)≥γ} be a collection of indica-
tor functions for various levels γ. Then, (for the discrete case) we associate
the estimation of

ℓ(γ) = Pu(S(X) ≥ γ) =
∑

x

I{S(x)≥γ}f(x;u) = Eu

[

I{S(X)≥γ}

]

with (1). Now we use a two-part iterative approach to obtain γ1, γ2, . . . , γT

and corresponding parameter vectors v1,v2, . . . ,vT such that γT → γ∗ and
f(x;vi) approaches the degenerate distribution about x∗. Let ρ be a real
number between 0 and 1 representing the proportion of the sample taken as
the elite sample. For a random sample X1, . . . ,XN let S(1) ≤ . . . ≤ S(N) be
the performances of {S(Xi)} ordered from smallest to largest. Thus, S(j) is
the j-th order-statistic of the sequence S(X1), . . . , S(XN). γt is chosen to be
the (1 − ρ)N -th order statistic.

For fixed γt and vt−1, derive vt from the solution of the following program

max
v

D(v) := max
v

1

N

N
∑

i=1

I{S(X(i))≥γt} ln f(X(i);v) (2)

The complete CE program is given in Algorithm 1.
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Algorithm 1 CE Algorithm for Optimization

1. Choose an initial parameter vector v0. Set t = 1.

2. Generate a sample X(1),X(2), . . . ,X(N) from the density f(·;vt−1) and
compute the sample (1 − ρ)-quantile γt of the performance according
to γ = S(⌈(1−ρ)N⌉).

3. Using the same sample X(1),X(2), . . . ,X(N), solve the stochastic pro-
gram (2) and denote the solution by vt.

4. If for some t ≥ k, say k = 5,

γt = γt−1 = · · · = γt−k, (3)

then stop, otherwise set t = t + 1 and iterate from Step 2.

4 The Cross-Entropy Method for the Multi-

ple Change Point Problem

Recall that d is the maximum number of change-points we wish to find.
We can represent the position of the change-points as a non-decreasing d-
dimensional vector. When the number of change-points is less than d the
value of some components in the vector will be repeated, indicating the
“same” change-point. We use a d-dimensional normal distribution, truncated
to the integers 0 to L with independent components as our sampling distri-
bution. We denote this distribution by Ñ(µ, σ2). Let the mean vector µ =
(µ1, . . . , µd), µ1 ≤ · · · ≤ µd, and let the variance vector σ2 = (σ2

1, . . . , σ
2
d).

We choose initial values µi for the mean vector µ such that each µi is
equally spaced over the set {0, . . . , L} and σ is chosen appropriately large.
That is, µi = i

d
L and σi is of the order L

d
. For each change-point vector in

the sample we set θ̂n to the maximum likelihood estimator of θn, that is, the
proportion of GC content in the segment defined by the change-points cn and
cn+1. We wish to maximize the posterior probability (which is equivalent to
the Maximum Likelihood estimate) given by:

S(c) ∝

N
∏

n=0

θ̂I(cn,cn+1)
n (1 − θ̂n)O(cn,cn+1). (4)
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The CE algorithm for the multiple change-point problem is as follows:

Algorithm 2 CE Algorithm for the multiple change-point problem

1. Choose initial values for µ0 and (σ2)0. Set t = 0.

2. Increase t by 1. Generate a random sample C(1), . . . ,C(N) from the
Ñ(µt−1, (σ2)t−1) distribution. That is, for all j, independently draw

C
(i)
j from the distribution Ñ(µt−1

j , (σ2)t−1
j ).

3. For each i = 1, . . . , N order C
(i)
1 , . . . , C

(i)
d from smallest to biggest,

C
(i)
1 ≤ · · · ≤ C

(i)
d , and set C(i) = (C

(i)
1 , . . . , C

(i)
d ).

4. Evaluate the performance of each C(1) . . . ,C(N) using (4). Let I be the
indices of the N elite = ρN best performing samples.

5. For all j = 1, . . . , d let

µ̃t
j =

∑

i∈I

C
(i)
j /N elite

and
(σ̃t

j)
2 =

∑

i∈I

(C
(i)
j − µ̃t

j)
2/N elite.

6. Smooth

µt = αµ̃t + (1 − α)µt−1, (σt)2 = α(σ̃t)2 + (1 − α)(σt−1)2.

7. If maxj(σ
t
j)

2 < ε, then go to step 8; otherwise, go to step 2.

8. For all j = 1, . . . , d − 1 calculate

∆j = µt
j+1 − µt

j.

9. Let N = d − #{∆j : ∆j < δ} be the number of change-points. Here
δ is the minimum distance between two change-points for them to be
considered different.

7



Algorithm 2 produces a single vector of change-points. A GC profile is a
vector of length L where for each i ∈ {1, . . . , L}, GC(i) is the average GC
content in the segment containing the ith character in the sequence. A GC
profile is produced from the change-point vector as follows:

GC(i) = θ̂j where Cj−1 < i ≤ Cj and j = 1, . . . , d.

5 Results

In this section we look at the performance of the CE method with two ex-
amples. The first example is that of an artificially generated sequence from
a known distribution. Using a known distribution allows direct comparison
with existing methods in terms of the quality of the GC profile. The second
example uses a real DNA sequence. We cannot know the true distribution
for a real DNA sequence and therefore can only look for agreement in the
GC profiles of the different methods.

5.1 Example 1: Artifical data

Let (b1, b2, . . . , b22000) be a sequence of independent Bernoulli random vari-
ables generated with the parameters in Table 1.

Table 1: Bernoulli parameters for artificial sequence.

Positions Bernoulli
parameter

1 — 2000 θ0 = 0.35
2001 — 4000 θ1 = 0.25
4001 — 6000 θ2 = 0.4
6001 — 8000 θ3 = 0.5
8001 — 10000 θ4 = 0.45
10001 — 12000 θ5 = 0.55
12001 — 14000 θ6 = 0.4
14001 — 16000 θ7 = 0.6
16001 — 18000 θ8 = 0.65
18001 — 20000 θ9 = 0.5
20001 — 22000 θ10 = 0.4
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We generate 200 random sequences using these parameters and for each
we run three algorithms:

• The MCMC approach in [6], taking 100 samples with a step size of 3000.
This approach generates an average over the posterior distribution.

• The CE approach given in Algorithm 2 with a sample size of 1000,
smoothing parameters of 0.7 for µ and 0.3 for σ and an elite proportion
value ρ of 0.01.

• Taking the average of the GC profile produced over 10 runs of Algo-
rithm 2 using a sample size of 100 and an elite proportion value ρ of
0.1. We denote this method the average CE (ACE) method. As the
sample size is 1

10
th that of the CE method, and the average of 10 runs

is taken, the running time should be approximately the same as the
CE method.

To determine the quality of each method’s profile, we calculate the Mean

Square Error (MSE) given by MSE =
√

∑22000
i=1 (t(i) − e(i))2 where t(i) is the

value of the ith position of the GC profile produced using the parameters
from Table 1, while e(i) is the value at the ith position of the GC profile
produced using the method to be tested. This is shown in the area between
the two profiles in Figure 1.

The running times and average MSE distance values over the 200 random
sequences are given in Table 2. All 200 sequences are generated with the same
parameters and each method is run on each sequence once. This should
ensure that, on average, a profile with a smaller MSE is actually more likely.
If a single sequence was used 200 times it could be possible for the one profile
to be more likely than another profile with a smaller MSE. It is clear that
out of the two CE methods, taking the average of 10 runs each 1

10
th the size,

on average, outperforms a single larger CE run. The profiles for the ACE
method and the MCMC method from a single random sequence can be seen
in Figure 2.
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Figure 1: The error in a single ACE run when compared to the true distri-
bution.

Table 2: The running time and average Mean Squared Error for the three
different algorithms when applied to an artificial sequence of 22000 charac-
ters.

Algorithm Time (sec) MSE
MCMC 393 3.0
CE 18 3.4
ACE 18 3.0
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Figure 2: A profile plot comparing the average GC content along the full
length of an artificial sequence as determined by the MCMC and ACE meth-
ods to the true profile.

Figure 2 shows that the ACE and MCMC methods are in excellent agree-
ment with each other. Both identify the change-points very accurately, and
when the calculated average GC content is higher or lower than the expected
average GC content, they both differ in the same direction.

Since the average distance (MSE) is the same for the two methods, we
look at the distribution of distances over the 200 sequences to see if there
is any difference. Figure 3 shows the empirical distribution of distances for
the ACE method and the MCMC method. Both methods have an average
distance of about 3.0 but the ACE method has a greater number of simulation
runs in the lower tail of the distribution. Figure 4 shows the density curves
of the distances obtained from the three different methods.

11



2 2.5 3 3.5 4 4.5
0

20

40

60

Distance

F
re

qu
en

cy

Histogram of distances for ACE method

2 2.5 3 3.5 4 4.5
0

20

40

60

Distance

F
re

qu
en

cy

Histogram of distances for MCMC method

Figure 3: Histograms showing the empirical distribution of MSE distances
from the true profile for the ACE method and MCMC method.

To directly compare the MCMC and ACE method we look at the differ-
ence in their two MSE distances for the same sequences. That is, for each of
the 200 random sequences we calculate the value of DACE(Bi)−DMCMC(Bi),
where Bi is the ith random sequence, DACE is the MSE distance from the
ACE method and DMCMC is the MSE distance from the MCMC method.
The distribution of these differences is shown in Figure 5. A negative value
indicates that the ACE method produced a profile closer to the true profile
than the MCMC method, while a positive value indicates that the MCMC
profile was closer to the true profile.

The density curve is centered around zero but it has a longer left tail.
This shows that when looking at the same sequence, the two methods on
average produce similar distances but the ACE method sometimes produces
significantly better distances.
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Figure 4: Density curves for the distribution of distances for the CE, ACE
and MCMC methods. The density curves are obtained using MATLAB’s
kernel density estimation function ksdensity().
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Figure 5: The density curve of the difference in distances of the ACE method
and the MCMC method each applied to the same 200 random sequences.
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5.2 Example 2: Real data

The second example we consider uses a segment of DNA know as the Human
Major Histocompatibility Region (MHC) [9]. Due to this being real DNA,
we do not know the true profile; instead we look for agreement between the
different methods.
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Figure 6: GC profiles for the ACE, CE and MCMC and IsoFinder methods
on the MHC sequence. The two CE methods were run with the maximum
number of change-points set to 20.

Figure 6 shows the GC profiles for the CE, ACE, MCMC and IsoFinder
methods. It is clear that the four different methods all identify the major
regions within the MHC sequence. IsoFinder identifies seven major regions
while the other three methods all identify several smaller regions within these
major regions. The MCMC, ACE and CE methods show excellent agreement
in the identification of these smaller regions (< 2000 characters). The agree-
ment between these methods allows for a great deal of confidence in the
accuracy of the two CE methods as both IsoFinder and the MCMC method
are well established.
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Figure 7: GC profiles for the ACE, CE and MCMC and IsoFinder methods
on the MHC sequence. The two CE methods were run with the maximum
number of change-points set to 10.

Figure 7 shows the same methods with the maximum number of change-
points set to 10 for the two CE methods. From this figure it can be seen that
the CE methods are now closer to the IsoFinder method than they are to the
MCMC method. This is due to the fact that IsoFinder is only identifying the
larger regions and when the maximum number of change-points is decreased
for the CE methods they will identify fewer regions. The larger regions are
more likely to have a greater impact on the likelihood of the profile when
compared to the smaller regions and this is why they are still identified with
a smaller maximum number of change-points.

6 Conclusion

Two new methods based on the CE approach have been proposed for the
identification of change-points in DNA sequences. These methods have been
shown to be highly effective on both artificial and real DNA sequences
and compare well to existing techniques. The proposed methods have a
clear speed advantage over existing MCMC methods while providing at least
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equally as good estimates. The proposed methods have the advantage of be-
ing able to identify a greater number of small regions compared to IsoFinder.
While the two CE methods can identify many small regions, they are also ca-
pable of just identifing the larger regions by decreasing the maximum number
of change-points.
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