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Abstract

In agriculture Markov decision processes (MDPs) with finite state and action
space are often used to model sequential decision making over time. For instance,
states in the process represent possible levels of traits of the animal and transition
probabilities are based on biological models estimated from data collected from the
animal or herd.

State space models (SSMs) are a general tool for modeling repeated measurements
over time where the model parameters can evolve dynamically.

In this paper we consider methods for embedding an SSM into an MDP with
finite state and action space. Different ways of discretizing an SSM are discussed and
methods for reducing the state space of the MDP are presented. An example from
dairy production is given.

Keywords: state space model, Markov decision process, sequential decision mak-
ing, stochastic dynamic programming

1 Introduction

Many decision problems are dynamic in nature and must hence be re-evaluated over time
based on the state of some crucial underlying variables, e.g. animal weight, number of
treatments, milk yield etc. Examples of sequential decisions in animal production include
replacement of animals, insemination and medical treatment. Often these problems can be
modeled using Markov decision processes (MDPs) which have been widely used to model
stochastic environments due to their analytical tractability. Some examples of MDPs ap-
plied to agriculture over the last decades are Stott, Jones, Humphry, and Gunn [30], Yalcin
and Stott [35], Kristensen and Søllested [20], Houben, Huirne, Dijkhuizen, and Kristensen
[11], Lien, Kristensen, Hegrenes, and Hardaker [22].

Time-series of on-line monitoring are often available today due to bio-sensors. State
space models (SSMs) provide statistical methods modeling patterns of interest from large
datasets obtained using on-line sensors. However, as shown in the following, only a few
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examples exist where data from on-line monitoring is used in combination with a formal
framework for economic optimization of sequential decisions, such as MDPs.

The objective of this study is to present a general framework for embedding an SSM
into an MDP with finite state and action space. Different ways of discretizing the SSM is
discussed and methods for reducing the state space of the MDP are presented. An example
from dairy production is given.

The paper is organized as follows. A short overview over existing literature on sequential
decision making and online monitoring in animal production is given in the remaining of
this section. In Section 2 we provide preliminaries of MDPs and SSMs. Section 3 present
the framework for embedding an SSM into an MDP. How decisions and new information
will affect the SSM is discussed in Section 4 and in Section 5 we consider techniques for
reducing the state space of the MDP. Finally, in Section 6 discussion and conclusions are
given.

1.1 Sequential decision making

Sequential decision-making problems can be modeled with MDPs. At a specified point in
time, a decision maker observes the state of a system and chooses an action. The action
choice and the state produce two results: the decision maker receives an immediate reward
(or incurs an immediate cost), and the system evolves probabilistically to a different state
at a subsequent discrete point in time. At this subsequent point in time, the decision maker
faces a similar problem, but the system may be in a new state. The goal is to find a policy
of actions (dependent on the observation of the state) which maximizes the reward after a
certain time. Finding an optimal policy of an MDP is a well studied topic. For an overview
see Puterman [29].

The definition of the state in the MDP must comprise all relevant information about
the system being observed. In real-world models, the system is usually described by sev-
eral discrete state variables, each representing a relevant trait. The overall state space is
then defined as the cartesian product of the individual value spaces of the state variables
resulting in that the number of states grow exponentially in the number of state variables.
This explosion of the state space is referred to as the “curse of dimensionality” in literature
and has historically been a major problem in the application of the method.

Hierarchical MDPs (HMDPs) were introduced by Kristensen [18] and Kristensen and
Jørgensen [16]. The basic idea is that if a state variable is constant over a number of
stages, the state variable should be represented by a so-called child process, which again
may expand stages further to new child processes leading to multiple levels. Each child
process has a finite time-horizon and the process at the top level has an infinite time-
horizon. As a result an HMDP may be considered as an MDP with infinite time-horizon
and parameters defined in a special way, but nevertheless in accordance with all usual rules
and conditions relating to such processes.

HMDPs contribute to the reduction of the “curse of dimensionality” problem, because
the number of states in the infinite time-horizon process can be reduced. Hence the solution
methods for finding the optimal policy may become computationally tractable. HMDPs
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are especially suited to cyclic production systems, as often encountered within agriculture.
A standard software system for solving both MDPs and HMDPs has been developed by
Kristensen [17].

1.2 Online monitoring in agriculture

In agriculture the use of on-line sensors for monitoring production, detection of oestrus
and disease in dairy herds has been suggested for well over two decades. Pedometric
activity sensors, milk temperature, milk yield, and milk composition combined with regular
hormonal measures have all been suggested as candidates for this monitoring see e.g. Firk,
Stamer, Junge, and Krieter [7] and Cornou [3]. Often the amount of data collected using
on-line monitoring is large since data is collected regularly over a relatively long period, e.g.
a lactation period of the animal or the lifetime of the animal, or within plant production,
the crop production during a year on a field or the entire sequence of crops on a field during
10 years.

State space models (SSMs) provide statistical methods modeling patterns of interest
from large datasets obtained using on-line sensors. SSMs consists of a set of latent vari-
ables and a set of observed variables at each time-point. At a specified point in time the
conditional distribution of the observed variables is a function of the latent variables spec-
ified via the observation equations. The latent variables changes over time, as described
via the system equations. The observations are conditionally independent given the latent
variables. Thus the value of the latent variables at the time point may be considered as the
state of the system, and the SSM framework allows to predict the latent variables/state of
the system via the observed variables, both the current state and the future development
in the state variables. Examples of SSMs applied to agricultural problems are: Thysen
[31], who monitored somatic cell count of dairy cows at herd level, de Mol, Keen, Kroeze,
and Achten [4] which use a multivariate SSM for automated oestrus and mastitis detection,
Madsen, Andersen, and Kristensen [23] who use an SSM for predicting drinking patterns
of young pigs, and Van Bebber, Reinsch, Junge, and Kalm [33] which formulate an SSM
for monitoring daily milk yield.

One way of applying SSM models in decision support systems is to trigger an alarm
if the predicted value exceed some predetermined bound. The manager can then react to
the alarm. The goal is to assist the manager in reaching his main objective, namely, to
maximize his economical revenue under constraints imposed by health, regulation and man-
agement considerations. However, SSMs have only rarely been used in economic sequential
decision models calculating optimal decisions.

1.3 Combining sequential decision making and online monitoring

The use of SSMs in sequential decision models are rare, but examples may be found.
Kennedy and Stott [14] (although not explicitly stated) use an SSM to predict yield po-
tential for a lactation based on previous lactation yields and embed the yield potential in
the MDP. In Kristensen and Søllested [21] and Jørgensen [13] a sow replacement model is
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formulated. An SSM for the litter size of the sow is formulated and embedded into the
MDP. Lien et al. [22] present a model investigating the optimal economic life cycle of grass
leys with winter damage problems in northern Norway. The model embeds an extended
SSM for updating the knowledge of yield potential and damage level.

The limited use of SSMs in sequential decision models may be due to that a framework
for embedding an SSM into an MDP has not been explicitly pointed out in any papers.
The goal of this paper is to provide such a framework.

2 Preliminaries

In this section we present some preliminaries of Markov decision processes and state space
models.

2.1 Markov decision processes

Markov decision processes are models for sequential decision making when outcomes are
uncertain. We consider a multi-level hierarchical MDP (HMDP), which is a series of MDPs
with finite time-horizon (called child processes) built together into one MDP with infinite
time-horizon called the founder process. In all processes a finite state and action space is
assumed.

2.1.1 Ordinary MDPs with finite time-horizon

To have a frame of reference we first introduce the notation of an ordinary MDP having
a finite time-horizon {1, ...,T} and T −1 stages. That is, decision number t is made at
the beginning of stage t which corresponds to the time interval from decision number t to
decision number t +1 (not including this time point).

At stage t the system occupies a state. We denote the finite set of system states St .
Given the decision maker observes state s ∈ St at stage t, he may choose an action a
from the set of finite allowable actions As,t generating reward rt (s,a) (a cost if negative).
Moreover, we let pt (· | s,a) denote the probability distribution or transition probabilities of
obtaining states s′ ∈ St+1 at stage t +1.

Since no decision is made at the end of stage T −1, the reward at this point of time
is a function of the state s ∈ ST denoted rT (s,aT ) where aT denotes a dummy action.
Moreover, at stage one we assume without loss of generality that we only have a single
state and action (can be obtained by inserting a dummy stage).

A decision rule at stage t is a function δt : St → As,t which specifies the action choice
given state s at stage t. We let Dt denote the set of possible decision rules at stage t.

A policy or strategy specifies the decision rules to be used at all stages and provides the
decision maker with a plan of which action to take given stage and state. That is, a policy
δ is a sequence of decision rules, δ = (δ1, ...,δT ) with δt ∈ Dt for t = 1, ...,T .
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Figure 1: A state-expanded hypergraph for an MDP with time horizon T = 5. At stage t
each node vs j,t corresponds to a state in St . The hyperarcs correspond to actions, e.g. if
the system at stage 3 is in state s2 then there are two possible actions. Action a1 results
in a deterministic transition to state s1 (because there is only one tail) at stage 4 and a2
results in a transition to either state s2 or s3 with a certain probability. For further details
see Example 1.

Given a criterion of optimality, e.g. the expected total discounted reward criterion the
policy δ which maximizes the expected total discounted reward can be found by analyzing
a sequence of simpler inductively defined single-stage problems. This is often referred to
as value iteration or dynamic programming [29, chap. 4].

2.1.2 Illustrating an MDP using a directed hypergraph

A directed hypergraph is a pair H = (V ,E ) where V = (v1, ...,v|V |) is the set of nodes and
E = (e1, ...,e|E |) is the set of hyperarcs. A hyperarc e ∈ E is a pair e = (T (e),h(e)) where
T (e) ⊂ V denotes the set of tail nodes and h(e) ∈ V \T (e) denotes the head node. Note
that a hyperarc has exactly one node in the head, and possibly several nodes in the tail.
For an illustration see Figure 1.

Directed hypergraphs represent a general modeling and algorithmic tool, which has
been used in many different research areas such as artificial intelligence, database systems,
fuzzy systems, propositional logic, and transportation networks [8, 25, 27]. For a general
overview on directed hypergraphs see [1].

As pointed out in Nielsen and Kristensen [24] a finite-horizon MDP can be represented
using a state-expanded directed hypergraph as is illustrated in Example 2.

Example 1 A hypergraph H representing an MDP with time-horizon T = 5 is shown in
Figure 1. Each node corresponds to a specific state in the MDP and a hyperarc is defined
for each possible action. For instance, node vs2,3 corresponds to a state s2 ∈ S3. The two
hyperarcs with head in node vs2,3 show that two actions are possible given state s2. Action
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Figure 2: A hypergraph representation of a stage in an HMDP. Level 0 indicate the founder
level, and the nodes indicates states at the different levels. A child process (oval box) is
represented using its state-expanded hypergraph (hyperarcs not shown) and is uniquely
defined by a given state and action of its parent process.

a1 corresponds to a deterministic transition to state s1 and action a2 corresponds to a
transition to state s2 or s3 at stage 4 with a certain probability greater than zero. �

The hypergraph representation provides us with a way to visualizing the MDP which
will be used though out the paper. Furthermore, by assigning relevant weights to the
hyperarcs the optimal policy of the MDP can be found by processing the nodes backward
in time (the reason that the hyperarcs points opposite time). This is beyond the scope for
this paper. For further details see [24].

2.1.3 Hierarchical MDPs

A hierarchical MDP (HMDP) is an infinite stage Markov decision process with parameters
defined in a special way, but nevertheless in accordance with all usual rules and conditions
relating to such processes. The basic idea of the hierarchical structure is that stages of
the process can be expanded to a so-called child process, which again may expand stages
further to new child processes leading to multiple levels.

To illustrate consider a stage of an HMDP shown in Figure 2. The process has three
levels. At Level 2 we have a set of ordinary MDPs with finite time-horizon (one for each
oval box) which all can be represented using a state-expanded hypergraph (hyperarcs not
shown, only hyperarcs connecting processes are shown). An MDP at Level 2 is uniquely
defined by a given state s and action a of its parent process at Level 1 (illustrated by the
arcs with head and tail node at Level 1 and Level 2, respectively). Moreover, when a
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child process at Level 2 terminates a transition from a state s ∈ST of the child process to
a state at the next stage of the parent process occur (illustrated by the (hyper)arcs having
head and tail at Level 2 and Level 1, respectively). Note that information in the state
of the parent process defining the child process may be used throughout the child process
to define e.g. transition probabilities of the child process.

Similarly, at Level 1 we have a set of MDPs with finite time-horizon. However, the
rewards and transition probabilities, at a stage of a process at Level 1 are equal to the
total expected rewards and transition probabilities of the corresponding child process under
the policy chosen for the child.

At Level 0 only a single process exists. We refer to that process as the founder process.
Note that the founder process has an infinite time-horizon (only one stage is shown in
Figure 2). Since the founder process is running over an infinite number of stages, we assume
stationary state and action spaces, i.e. the states, action and transition probabilities of the
child processes are the same when we consider different stages of the founder process.

Figure 2 shows that a directed hypergraph can be used to represent a stage of the
founder process. For each child process a dummy arc is inserted to represent the transi-
tion from the parent process to the child process. Furthermore, hyperarcs are inserted to
represent the transition from the child process back to the parent process.

Since the founder process has an infinite time-horizon the optimal policy maximizing the
expected total discounted reward can be found using a modified policy iteration algorithm
[16].

2.2 Linear normal state space models

State space models are models of phenomena evolving in time e.g. blood pressure and milk
yield.

A set of q-dimensional latent continuous variables θ{t=0,1,...} evolves as a first order
Markov process using system equation

θt = Gtθt−1+ωt , (1)

with ωt ∼ N (0,Wt). We assume that θ0 ∼ N(m0,C0). Moreover, we have a set of r-
dimensional observable continuous variables Y{t=1,2,...} which are dependent on the latent
variable using observation equation

Yt = F ′
t θt +νt , (2)

with νt ∼ N (0,Vt). The error sequences ωt and νt are internally and mutually independent.
Hence given θt we have that Yt is independent of all other observations and in general the
past and the future are independent given the present.

Example 2 Throughout the paper we will use the model from Nielsen, Jørgensen, Kris-
tensen, and Østergaard [26] to exemplify. This model is intended for use in dairy herds,
and the core of the model is an SSM describing the milk yield of the cows. The milk yield
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of cows vary both due to permanent factors such as breeding value and due to short term
influences e.g. disease, change of feed etc. An SSM model is well suited for this purpose.
The specification of the SSM is summarized below.

Consider a cow in a dairy herd. Let Yt, j be the residual milk yield at day t (measured as
days from calving) in lactation j. To keep the notation simple we do not consider indices
for the cow and herd. We assume the following model:

Yt, j = Mt, j −µt, j = A j +Xt, j +νt, j. (3)

where the variables correspond to:

Mt, j The milk yield of the cow.

µt, j Mean milk yield curve for the herd at lactation j.

A j Production potential of the specific cow in lactation j. It is assumed that A j ∼N(0,σ2
A).

Xt, j An autoregressive process of order one with mean zero and autocorrelation ρ(t) = ρ t ,
|ρ| < 1, i.e.

Xt, j = ρXt−1, j + εt, j.

Letting var(Xt, j) = σ2
X the auto-covariance becomes cov

(

Xt, j,Xt+t ′, j
)

= σ2
Xρ (t ′). Xt, j

may be considered as short term environmental influence on milk yield.

νt, j Mutually independent random variables describing the measurement error. It is as-
sumed that νt, j ∼ N(0,σ2

ν ).

To illustrate, the daily milk yield Mt,3 for three cows at lactation 3 in a Danish herd is
shown in Figure 3(a). The mean milk yield curve for the herd µt,3 (estimated using a mixed
model) is given by the solid black line. Note that cow 1 is below average, cow 2 around
average and cow 3 above average. The corresponding residual milk yield Yt,3 is shown in
Figure 3(b). A value of Yt,3 above zero denotes that the yield is above average.

An SSM of (3) is specified for each lactation j using the following measurement equation
and system equation

Yt, j = F ′θt, j +νt, j =
(

1 1
)

(

A j

Xt, j

)

+νt, j, (4a)

θt, j = Gθt−1+ωt, j =

(

A j

Xt, j

)

=

(

1 0
0 ρ

)(

A j

Xt−1, j

)

+

(

0
εt, j

)

, (4b)

where ωt, j ∼ N (0,W ) with

W =

(

0 0
0

(

1−ρ2
)

σ2
X

)

.

Equation (4a) is the model (3) written using matrix notation and (4b) describe the
relations between the latent variables from time t −1 to time t.

8



t

m
ilk

 y
ie

ld

0

10

20

30

40

50

60

50 100 150 200 250

1

50 100 150 200 250

2

50 100 150 200 250

3

M t ,3 µt ,3

(a) Daily milk yield and herd mean curve for three different cows.

t

re
si

du
al

 m
ilk

 y
ie

ld

−20

−10

0

10

20

30

50 100 150 200 250

1

50 100 150 200 250

2

50 100 150 200 250

3

Y t ,3 E(Y t ,3 | D t−1,3) E(A3 | D t−1,3)

(b) Residual milk yield and forecasted values for three different cows.

Figure 3: Milk yield and Residual milk yield for 3 different cows (lactation 3).

The mean and covariance matrix of the prior θ0, j ∼ N
(

m0, j,C0, j
)

is

m0, j =

(

Â j

0

)

, C0, j =

(

σ2
A 0

0 σ2
X

)

. (5)

We take Â1 = 0 and Â j = Â j−1, j > 1.
The variance structure is described by the hyper-parameters

ψ = (σA,σν ,σX ,ρ). (6)

To estimate the hyper-parameters we need several time-series of the daily yield from dif-
ferent cows and lactations in the herd. Using for instance a mixed model on the previous
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time-series from the herd, we can now simultaneously estimate (6) and µt, j. The hyper-
parameters describe the “between cows” variances in the herd, i.e. they are the same for
the SSMs monitoring different cows in the herd. �

As illustrated in the example above the SSM is formulated such that it is valid for
each cow in a given lactation. That is, we have an instance of the SSM for each cow
and lactation where the hyper-parameters (m0,C0,Ft,Gt ,Vt ,Wt) of the SSM is the same.
Since the hyper-parameters are estimated within a population we will call these estimates
population based estimates.

We will not go into detail how to find the population based estimates. An example
focusing on the present context is presented in Toft and Jørgensen [32]. Similar methods
are used routinely for evaluation of breeding values.

In the decision model we will assume that the hyper parameters are known. Given
these values estimates interference about the latent variable can be made. Let Dt−1 =
(Y1, ...,Yt−1,m0,C0) denote the information available up to time t −1. Given the posterior
of the latent variable at time t−1 we can use the Kalman filter to update the distributions
at time t [34, Thm 4.1]. Suppose that at time t −1 we have

(θt−1 | Dt−1) ∼ N (mt−1,Ct−1) , (posterior at time t −1).

then

(θt | Dt−1) ∼ N (bt ,Rt) , (prior at time t)

(Yt | Dt−1) ∼ N ( ft ,Qt) , (one-step forecast at time t −1)

(θt | Dt) ∼ N (mt ,Ct) , (posterior at time t)

where

bt = Gtmt−1, Rt = GtCt−1G′
t +Wt

ft = F ′
t bt , Qt = F ′

t RtFt +Vt

et = Yt − ft , Bt = RtFtQ
−1
t (7)

mt = bt +Btet , Ct = Rt −BtQtB
′
t .

In a Kalman filter iteration the predict step corresponds to calculating bt and Rt ( ft and
Qt) while the correction step corresponds to finding mt and Ct .

Note that the one-step forecast mean ft only depends on mt−1, i.e. we only need to keep
the most recent conditional mean of θt−1 to forecast the next value. Hence when making
prediction on based on Dt−1, we need only to store mt−1. Similar the variance Qt only
depends on the number of observations made, i.e. we can calculate a sequence Q1, ...,Qt

without knowing the observations Y1, ...,Yt .

Example 2 (continued) If we apply the Kalman filter on a subset of the cows in the data
set using some predetermined estimates of (6) (found using statistical analysis on historical
data from the same population), we get a result as shown in Figure 3(b). The forecasted
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daily milk yield ft,3 = E(Yt,3 | Dt−1,3) is shown with solid black line. As mentioned this
expectation can be calculated based on the two-dimensional vector mt−1,3, and Qt that
only depends on t. The prior estimate of A3 at t = 0 is set to zero and the estimate of A3

slowly adapts to the level of the cow.
An estimate of A3 above zero corresponds to a cow we predict to yield better than an

average cow and an estimate of A3 below zero to a cow we predict yielding worse than
average. The estimate of A3 is important since in a decision model a high estimate will
correspond to a high yielding cow that we want to keep longer than a low yielding cow.
�

3 Embedding an SSM into a single policy HMDP

An SSM is in general a process following a specific policy, e.g. the policy δ to do nothing.
Decisions deviating from this policy can affect the SSM in different ways, e.g. the process
may stop due to dropout or the mean change. In this section we consider the SSM under
policy δ .

MDPs requires all states to be discrete and observable. Hence two problems arise: 1)
how can the latent variable given the current information be embedded into the MDP and
2) how do we discretize the continuous variables efficiently. We consider these problems in
the following two sections.

3.1 Embedding the latent variable

The latent variable cannot be observed but the distribution of θt given all previous infor-
mation can be calculated. The benefit of modeling the problem by the system equation (1)
and observation equation (2) is that the distribution of θt given all previous information
only depends on mt and Ct which can be found using the previous observation and the prior
of the latent variable (see (7)). As a result we do not have to store all previous information
in the set of states of the MDP, this information can be represented by storing mt and Ct

instead without any loss of information at all.
Notice that if we assume that the information stored in the states of the MDP have

no influence on matrices Gt , Ft , Wt and Vt then the variance of the latent variable only
depends on the number of observations made, i.e. time-instance t. Hence Ct does not have
to be stored in the MDP since it is independent of the state at time t. This is assumed
throughout the rest of the paper.

3.2 Discretizing the state space

To embed the SSM in an MDP, observations Yt and values of the conditional mean mt has
to be discretized. As a result the MDP will be an approximation of the SSM. In general the
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continuous space is partitioned into discrete regions which are estimated using a specific
point in the region.

Definition 1 Let an n-dimensional hypercube Π be defined as Π = ×i=1,...,nIi, where Ii is
an open or closed interval of R

A rectangular partition of R
n is a finite set of hypercubes Ω = {Π1, . . . ,Πk} such that

⋃

i=1,...,k Πi = R
n and Π j ∩Πi = /0, i 6= j.

Given hypercube Π, let center point π denote a specific point in Π defined as the center
of the hypercube, or as the mean point in the hypercube with respect to some distribution.

Let Ωm = {Πm
1 , . . . ,Πm

h } denote a rectangular partition of R
q in which mt takes values

(we use the same partition for all t). Similar let ΩY = {ΠY
1 , . . . ,ΠY

l } denote a partition of
Yt .

Consider the prior (θt | Dt)∼ N(mt ,Ct) at time t and assume that mt ∈ Πm
i . We approx-

imate the distribution of (θt | Dt) by replacing mt with the center point of Πm
i , i.e.

(θt | Dt) ∼A N(πm
i ,Ct)

which implies that the one-step forecast is

(Yt+1 | Dt) ∼A N(F ′Gπm
i ,Qt+1). (8)

The rectangular partition ΩY is used to discretize the density of (Yt+1 | Dt) as follows

ϕt+1(ΠY
k | Πm

i ) = P(Yt+1 ∈ ΠY
k | πm

i ,Qt+1) =

∫

ΠY
k

p(y)dy, (9)

where p( · ) denote the (multivariate) normal density of (8).
In general Ωm and ΩY should be defined such that they represent a good approximation

of the distributions of the variables. To measure the quality or error introduced by the
discretization we use the Kullback-Liebler (KL) distance between two probability density
functions [15]. Small KL corresponds to a good approximation and if KL is zero the two
probability density functions are equal.

Traditionally, in the literature [21, 22] a rectangular partition Ω representing the dis-
crete approximation of a multivariate normal distributed variable Z is obtained using an
univariate discretization. Each variable of Z is discretized separately and the rectangular
partition is obtained by taking the cross product of the intervals obtained for each variable.
However, a rectangular partition of the same quality containing fewer hypercubes can be
obtained using an multivariate discretization, which discretizes multidimensional domains
as a whole, rather than discretizing each variable separately. The algorithm works by
maintaining a priority queue of hypercubes and the hypercube with largest KL distance
is selected and divided into a two smaller hypercubes which are inserted into the priority
queue. The step is repeated until the specified quality of the approximation is obtained.
For more details see Kozlov and Koller [15].
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Figure 4: Rectangular partition of the mean mt,1 using univariate and multivariate dis-
cretization with a KL distance approximate equal to 0.2. Using a multivariate discretiza-
tion reduce the number of states by 64%.

Example 2 (continued) Assume that we base the discretization of mt,3 on the distribution
of the prior θ0 ∼ N((0,0)′,C0) with covariance matrix estimated to

C0,3 =

(

21.44 0
0 22.46

)

Using an univariate discretization where we divide each variable into 20 intervals each
having a probability of 0.05 we get a rectangular partition representing 400 states as illus-
trated in Figure 4(a). Note that some hypercubes are unbounded such that the rectangular
partition satisfies Definition 1. The center points for each hypercube (illustrated with a
dot) are found by taking the mean over each hypercube.

Using a multivariate discretization we get a rectangular partition representing 143states
as illustrated in Figure 4(b).

Both approximations of the distribution have a KL distance approximately equal to
0.2. Note that using a multivariate discretization results in that the number of states is
reduced by 64%. �

Note, there is a tradeoff between making the approximation error small and the number
of states in the HMDP. Thus a poor approximation may result in that the optimal values
and policies of the HMDP are not correct with respect to the problem under consideration.
On the other hand, an approximation with a small error may make the HMDP untractable
due to the “curse of dimensionality”. The suggested discretization using the KL distance
ensures the closest approximation to the probability distribution. However, the overall ap-
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Figure 5: The SSM embedded into an HMDP from time t to t + 1 (founder level not
shown). At level 1 the means of the latent variables are stored. Node Πm

i indicates that
we consider state i where mt ∈ Πm

i . At the observations Yt+1 are kept. The dummy node
signifies the start of the child process. The different child processes is indicated by the
slices.

proximation error does also depend on the rewards. Thus, in practice an iterative approach
may also be used by decreasing the approximation error and each time solve the HMDP
until the difference in the optimal values are tolerable.

3.3 HMDP formulation

The SSM can be embedded in an HMDP. A stage at the founder level describes the lifetime
of an individual within a population, e.g. the lifetime of a cow. The time-horizon is infinite.
At the next stage of the founder process the individual is replaced with a new individual
and hence the time-series used by the SSM is terminated and a new time-series is started
using the population based estimates.

At child levels the SSM is embedded as illustrated in Figure 5 (founder level not shown).
At the first level the means of the latent variable are stored. The set of states at time t
is St = Ωm. For each state s ∈ St a dummy action (the action of doing nothing) is used
to define a child process. The child process is a one stage MDP starting with a dummy
state (representing the start of the process) and at the next decision epoch the set of states

14



is ΩY . The transition probability of the transition from the dummy state to state ΠY
k is

defined using (9)
P(ΠY

k | dummy) = ϕt+1(ΠY
k | Πm

i ). (10)

Given state Πm
i (defining the child process) and state ΠY

k (the state in the child process)
we can update the mean of the latent variable at time t +1 using the center points of Πm

i
and ΠY

k . Using the formulas in (7), let

m̌t+1 = Gπm
i +Bt(πY

k −F ′Gπm
i )

and let the transition probability from state ΠY
k back to the parent process at time t +1 be

P(Πm
j | ΠY

k ) =

{

1 if m̌t+1 ∈ Πm
j

0 otherwise
(11)

as illustrated by the arc from the child process to the parent process in Figure 5.
The rewards of the process for each state and action is calculated as a function of the

states in the process, e.g. in the dairy cow example the reward would be calculated based
on the observed milk yield.

Example 2 (continued) Using the multivariate discretization in Figure 4(b) we have Ωm

consists of 143 states. Similar if we base the discretization of Yt on the distribution of the
prior Y0 ∼ N(0,72), we have that ΩY consists of 11 states when the KL distance is equal to
0.2. �

4 Extending the model with interventions and deci-

sions

In the previous section we have embedded the SSM in the Markov Decision Process with
only one (dummy) decision. In this section we will present strategies for implementing
decisions in the model. Many of the relevant interventions such as culling can be seen as
premature termination of the process, but we will also present other types of intervention.

However, the first step is to implement process termination that takes place indepen-
dently of the state variables in the model or without the control of the decision maker.

4.1 Random termination of the child process

In the literature on animal replacement models, see e.g. [35, 20, 11], this part of the model
is often called involuntary culling, i.e. culling due to sudden death, illness etc. As an
example, a large part of the so-called involuntary culling in sow herds is due to reproductive
failure, which typically is a measure of poor productivity and not an indication of failure
to produce. However, from a modeling point of view a better term is random termination
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Figure 6: The HMDP for Example 2 (time t to t + 1). Corresponds to Figure 5 but
with additional nodes added. Dummy state replaced, represent that the cow has been
replaced. The nodes invol/okay represent involuntary culling. Two actions keep/replace
are possible. Dashed lines indicate replacement. For details see text.

(RT ) since the time-series of the SSM is terminated randomly which corresponds to that
the child process embedding the SSM is terminated randomly, i.e. not based on a decision.

Usually, the time-series used for the estimation of RT will be censored [5]. Observations
used by the SSM may terminate prematurely, e.g. because of death or culling. This reflects
both RT and the current decision policy. Thus estimating RT may be difficult. However,
models can be formulated where it is possible to obtain an estimate of RT [20].

Example 2 (continued)
To represent involuntary culling in the HMDP the state space has to be expanded as

illustrated in Figure 6.
A stage at the founder level (not shown) represent the lifetime of a cow, i.e. at each

stage of the founder level we start monitoring a new cow inserted when the current cow
has been replaced. Since the time-horizon of the founder process is infinite the founder
process represent the current cow and all its successors. The process at the first level in
Figure 6 has a new dummy state replaced added, representing that the cow has been
replaced. If the system enters state replaced it makes a transition to the founder state
with probability one and a new stage of the founder process is started, i.e. a new cow is
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inserted. Because replaced is a dummy state the time for a transition is zero.
At the second level two nodes are inserted to take involuntary culling into consideration.

The process enters the involuntary culled state invol with probability p̂ which is the rate
of RT (dependent on lactation, days from calving, and pregnancy state). In this case the
cow is replaced, i.e. the process returns to state replaced in the parent process. This is
illustrated with the dotted arrow from replaced to invol. Otherwise the cow is in state
okay with probability (1− p̂) and the milk yield is observed at time t +1. �

4.2 Termination of the child process due to a decision

Often decisions are taken such that the time-series of the SSM is ended, e.g. we may end
the life of a cow, or similarly, we may decide to establish a new crop on the field.

This is simple to handle within the framework, and is similar to the handling of RT,
except that it is included as a decision variable as illustrated in the following example.

Example 2 (continued) The decisions whether to keep or replace the cow is represented
in the HMDP after the milk yield, e.g. Yt+1 ∈ΠY

1 , is observed. Replacing the cow makes the
process return to state replaced in the parent process with probability one. Keeping the
cow corresponds to letting the time-series of the SSM continue, i.e. we make a transition
to a state Πm

j in the parent process (see Figure 6). �

4.3 Non-terminating decisions

In some cases, we can give a realistic formulation of how an intervention will affect the
states of the SSM [34, Chap. 11] even though that it is not terminating the time-series.
If such interventions occur regularly they may be included in the HMDP as decisions. A
decision representing an intervention could be that the animal is treated for an illness, that
we start measuring the online variables at different time-intensities or that we change the
feeding strategy etc.

Such decisions can affect the SSM in different ways: it may change the predicted mean
and variance of the latent or observed variables or it may change the hyper-parameters
of the model in a predictable manner. Suppose that the intervention information of the
chosen decision is given by It = {ht ,Ht}, where ht is the mean and Ht is the covariance
matrix of the random variable ξt ∼ N(ht ,Ht). If the intervention is effected by adding ξt to
(1) then

θt = Gtθt−1+ωt +ξt ,

and hence (7) becomes
b∗t = bt +ht R∗

t = Rt +Ht .

That is, the transition probabilities of the HMDP will be different compared to if the
decision not was taken.
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In many of these cases, the Kalman-filter technique will no longer give an exact repre-
sentation of the HMDP. For instance if Ht 6= 0 then the variance at time t will now depend
on the number of decisions made in the past. Hence the covariance matrix (or subsets of
it) must be represented in the states of the HMDP, i.e. the states Ωm in Figure 5 will be
replaced with the cross product of Ωm and an (approximation) set of possible covariance
matrices.

4.4 Other types of information

The previous decisions and information could all be seen as a part of the model framework.
However, other information may indicate, that the system has changed so much, that the
population parameters of the model are no longer representative. Strictly speaking, new
information may indicate that the historical data for estimating the population parameters
in the SSM and in other parts of the model are no longer valid. If such relevant information
suddenly becomes available then this information should be incorporated into the HMDP
and afterwards the HMDP should be reoptimized to find a new optimal policy. Unexpected
relevant information could be: a new illness suddenly present in the herd, high increase in
market prices, new environmental conditions etc. Such new information may change the
variance components of the SSM, make sudden shifts in the mean mt of the latent variable
([34, Chap. 11]) and change the reward defined for the model.

5 Techniques for reducing the state space

Even though that classic dynamic programming algorithms solve MDPs in polynomial time
in the size of the state space, the size of the state space may be very large in practice. If for
instance the latent variable θt is of dimension four and we use a univariate discretization
approach (see Section 3.2) which divide each variable into 10 intervals the number of
states in Ωm becomes 104. For each state in Ωm a child process is defined containing the
discretization of the observation variables (see Figure 5). If for instance Yt is of dimension
five and we use a univariate discretization approach with 10 intervals for each variable the
number of states in ΩY becomes 105 and the total number of states for each time instance
is 109. This is one example on the “curse of dimensionality” problem and techniques to
overcome it are an important topic of research.

One approach is to represent the number of states implicit in the model using factored
MDPs [2] which is beyond the scope of this paper. In this framework, a state in the MDP is
implicitly described using a dynamic Bayesian network. This representation often allows an
exponential reduction in the representation size of structured MDPs, but the complexity of
exact solution algorithms for such MDPs can grow exponentially in the representation size.
Techniques to avoid this growth are considered in [9]. Models with continuous variables
are considered in [10, 6].

In this paper we consider classical dynamic programming methods which require an
explicit state space enumeration. As shown in Example 2 on page 13 using a multivariate
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Figure 7: The HMDP for Example 2 (time t to t + 1). The child process storing the
observations has been removed. The state invol has been moved from the child process
to the parent process and direct transitions probabilities have been specified.

discretization approach will reduce the number of states in Ωm. The same approach can be
used to discretize ΩY on the child level. However, the child process defined for each state
in Ωm can be removed since the mean mt represent all information available up to time
instance t.

Example 2 (continued)
Consider the HMDP in Figure 6. Here decisions are defined such that they are taken

when an observation of the milk yield is given. However, the decision might as well be
taken after we have calculated the new updated mean mt+1 in the parent process. As
a result the child process only contains dummy actions and describe the transition from
state Πm

i at time t to a state in Ωm at time t +1. Furthermore, the state invol may be
removed from the child process and placed in the parent process. Hence the child process
can be removed from the MDP model and direct transitions in the parent process can be
specified as illustrated in Figure 7. Here given state Πm

i at time t we enter state invol

with probability p̂ and the transition probability from Πm
i to Πm

j at time t +1 is based on
the transition probabilities defined in the child process containing only dummy actions.

By removing the child process the number of states used at stage t in the HMDP is
reduced from 143·15+1 to 143+2, i.e. 93%. �
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Note that the child process representing the observation Yt is a discrete approximation
of the continuous observation variable Yt . Since the child process can be removed from
the HMDP process there is no need to discretize the density of the observation variable,
in fact the density of (mt+1 | mt) can be calculated using standard formulas for an linear
transformation of the multivariate normal distribution. From Equation (7) we have that

mt+1 = bt+1+Bt+1(Yt+1− ft+1) = Bt+1Yt+1 +(bt+1−Bt+1 ft+1) (12)

and since Yt+1 ∼ N( ft+1,Qt+1) is the only random variable in (12) at time t, we have that
(mt+1 | mt) ∼ N(µ,Σ) with mean and covariance matrix

µ = Bt+1 ft+1 +(bt+1−Bt+1 ft+1) = Gt+1mt

Σ = Bt+1Qt+1B′
t+1 = Rt+1− (Rt+1+Bt+1Qt+1B′

t+1) = Rt+1−Ct+1
(13)

As a result we can calculate the transition probabilities using an discrete approximation
of (13). Assume that mt ∈ Πm

i at time t. We approximate the distribution of (mt+1 | mt)
by replacing mt with the center point of Πm

i , i.e.

(mt+1 | mt) ∼A N(Gt+1πm
i ,Rt+1−Ct+1) (14)

which implies that the transition probabilities are defined as

ψt(Πm
j | Πm

i ) = P(mt+1 ∈ Πm
j | mt ∈ Πm

i ) =

∫

Πm
j

p(m)dm (15)

where p( · ) denote the (multivariate) normal density of (14). Note that by discretizing
(14) we obtain a better approximation compared to the approach described in Section 3.2
where approximations were introduced at both parent and child level.

Example 2 (continued) The SSM and HMDP described in the example throughout this
paper are taken from Nielsen et al. [26], which implement the methodology described in
the present paper. A 3-level HMDP is built with 3011884 states. We will end the running
example by describing some of the results of the model.

A stage in the founder process represent the lifetime of a cow and the duration and
reward of the stage are defined by a child process at level 1 which is a finite time-horizon
MDP with 10 stages. Each stage corresponds to a possible lactation which again is ex-
panded to a child process at level 2. Here the lactation is divided into daily stages where
the SSM based on daily yield measurements is embedded as described in Example 2 on
page 19. Transition probabilities are calculated using equation (15).

The HMDP is solved maximizing the expected total discounted reward using a yearly
interest rate of 2.5%. At a specific time instance the value mt, j together with lactation
number and pregnancy status can be used to identify the state in the HMDP and the
optimal policy calculated specify which decision to take.

The optimal policy is illustrated in Figure 8 for the three cows presented in Figure 3.
Here the x-values are days from calving in lactation 3 and the y-values the retention payoff
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Figure 8: RPO for the cows in Figure 3. The horizontal line in the bottom of each plot
indicate whether the optimal decision is to keep or replace (black = replace, gray = keep).
Vertical lines correspond to s: start of lactation, i: inseminated, p: positive pregnancy test,
d: dry.

(RPO) which denote the difference between the discounted reward under decision keep and
the discounted reward under decision replace for the specific state in the HMDP, i.e. if
RPO is positive the optimal decision is to keep the cow and if RPO is negative the optimal
decision is to replace the cow. The RPO may be considered as the total extra (discounted)
reward of keeping the cow until her optimal replacement time. The horizontal line in the
bottom of each plot indicate whether the optimal decision is to keep or replace (black =
replace, gray = keep). Vertical lines correspond to s: start of lactation, i: inseminated, p:
positive pregnancy test, d: dry.

It can be seen that cow 1 is optimal to replace 45 days from calving while cow 2 and
3 are recommended kept under the whole lactation. For further details see Nielsen et al.
[26]. �

6 Discussion and conclusion

The technological possibilities for detailed monitoring of production processes within agri-
culture give new opportunities for more detailed decision support. State space models
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for describing these data series is a flexible framework for building such decision support
systems that rely on Markov Decision processes.

As illustrated in this paper the transformation to an MDP can be described in general
terms, and need not rely on the specific formulation of the SSM. The methods we present
embed the SSM into an HMDP. In Section 3 we embedded the SSM using three levels in
the HMDP where a stage on the founder level represents the production process, e.g. the
lifetime of a cow. However, additional levels in the hierarchy may be a better choice in other
contexts. At the next level the states represent information about the variability of the
latent variables as estimated from historical observations from the population. In the SSM
the latent variables is defined as unobserved. Thus, the latent variable of the SSM cannot
be modeled directly in the MDP. However, in the case of SSMs with Gaussian distributions,
we can store the distributions implicitly using the conditional mean of the latent variable
given previous observations of the process, i.e. the so-called Bayesian updating used in e.g.
Kristensen [19].

Note that even though this holds true for the large class of models based on the Gaussian
distribution, it is because the covariance matrix is independent of the current state in the
MDP and can be calculated based on the time/stage instance. If decisions concerning
intervention are modeled in the MDP, the resulting covariance matrix will have to be
represented in the states of the MDP too, since the covariance matrix can no longer be
calculated based only on the stage/time instance.

The conditional mean of the latent variable in the SSM cannot be embedded directly
into the HMDP since it must be discrete. We have followed the standard approach within
HMDP and discretized the space of the conditional mean. Increasing the precision of the
approximation results in more states in the MDP. If the dimension of the conditional mean
is high, this may become intractable to solve. As illustrated in section 3.2, this effect can
be reduced using a multivariate discretization and a measure of how well the discretized
state space fits the continuous distribution.

However, it may be more important to reduce the states in the HMDP before performing
the optimization as pointed out in Section 5. By removing the child process representing
the observations we reduce the amount of states for a given time instance dramatically
provided that the number of multivariate observation variables are high which is often the
case in modern herd management. Here we have many biosensors to predict few traits of
the animal. In general, such reductions should be exploited as far as possible.

Discrete random variables which are not a part of the SSM are often represented in
the states of the HMDP. For instance, in the dairy cow replacement problems, the calving
interval is usually represented as a state variable which is used to measure when the cow
will end the lactation. We have omitted these additional state variables from this paper,
because in most cases these variables may be considered independent of the variables in
the SSM. Hence, the combined transition probabilities can be calculated by multiplying
the probabilities from the discrete variables and the variables in the SSM.

The use of SSM for modelling the biological production function may seem unnecessary
complicated. Other ways of handling time-series from on-line monitoring in an MDP are
possible. For instance a subset of the previous observations could be stored (e.g. in our
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example the last 5 yield observations or as used by [12] the litter size in previous 2 parities).
However, notice that the number of states at each stage becomes the cross product of the
intervals used for each of the previous observations which often is larger than if an SSM is
used. Moreover, the subset of previous observations only represent an approximation of the
previous information provided by the time-series. In some cases the parameters in the time-
series may be estimated using observed transition probabilities between observations with
discrete levels [28]. However, in the general case, the observations will be much to sparse
to include observations of all transition, and such methods can not handle informative
censoring of the data, leading to bias in the parameters. The parametric formulation used
in the SSM avoids these complications.

Finally, the parameters of the model rely on historical information. However, circum-
stances may change so much that the historical information is irrelevant, as discussed in
section 4.4. Because we rely on a statistical model for the observed data, it should be
possible to monitor the validity of the model on a daily base. Again such monitoring could
improve the use of decision support system, but how to incorporate it is a topic for future
study.
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