Ann Oper Res (2011) 184: 179-207
DOI 10.1007/s10479-010-0697-y

The weighted GRAMMAR constraint

George Katsirelos - Nina Narodytska - Toby Walsh

Published online: 5 February 2010
© Springer Science+Business Media, LLC 2010

Abstract We introduce the WEIGHTEDGRAMMAR constraint and propose propagation al-
gorithms based on the CYK parser and the Earley parser. We show that the traces of these
algorithms can be encoded as a weighted negation normal form (WNNF), a generalization
of NNF that allows nodes to carry weights. Based on this connection, we prove the cor-
rectness and complexity of these algorithms. Specifically, these algorithms enforce domain
consistency on the WEIGHTEDGRAMMAR constraint in time O (n®). Further, we propose
that the WNNF constraint can be decomposed into a set of primitive arithmetic constraint
without hindering propagation.

Keywords Constraint programming - Global constraints - Context free grammars -
Negation normal form

1 Introduction

Specialized knowledge compilation languages like decomposable negation normal form and
ordered binary decision diagrams have proved highly useful to represent a wide range of
reasoning problems (Darwiche and Marquis 2002). For example, Quimper and Walsh (2007)
demonstrated how the global GRAMMAR constraint can be compiled into a decomposable
negation normal form, and showed that this is an effective way to propagate the GRAMMAR
constraint. Representations like this have a number of nice properties. For instance, they can
themselves be readily compiled into conjunctive normal form and given to a fast SAT solver.
Here we consider a new knowledge compilation language, weighted negation normal form,
and demonstrate that it is useful for studying the global GRAMMAR constraint. Weighted

NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council. This paper is an
extension of work previously published in Katsirelos et al. (S5th international conference, CPAIOR 5015:
323-327, 2008).

G. Katsirelos - N. Narodytska (B<) - T. Walsh
University of New South Wales and NICTA, Sydney, Australia
e-mail: n.naroditskaya @ gmail.com

@ Springer

mailto:n.naroditskaya@gmail.com

180 Ann Oper Res (2011) 184: 179-207

negation normal form is a special case of Fargier and Marquis’ recently proposed valued
negation normal form (Fargier and Marquis 2007).

The global GRAMMAR constraint restricts the sequence of values assigned to its vari-
ables to form a string from a language defined by a given grammar. The advantage of the
GRAMMAR constraint compared to the REGULAR constraint (Pesant 2004), which follows
the same approach, is that it allows for an exponentially more succinct representation of
some constraints, while still admitting an efficient propagation algorithm. The GRAMMAR
constraint has proved useful in modelling a wide range of scheduling, rostering and se-
quencing problems. Here we introduce the weighted form of the global GRAMMAR con-
straint. The addition of weights improves on the unweighted GRAMMAR constraint in the
following ways: first, it allows us to model over-constrained problems and problems with
preferences. For instance, we can express the soft GRAMMAR constraint with Hamming
and edit distance violation measures in terms of a WEIGHTEDGRAMMAR constraint. Sec-
ond, for a certain class of objective functions that includes linear functions, it allows us to
propagate the conjunction of a GRAMMAR constraint and the objective function, thus sig-
nificantly reducing the size of the search space that is explored. Third, some constraints can
be expressed even more succinctly in terms of a WEIGHTEDGRAMMAR constraints com-
pared to the unweighted case, allowing for more efficient propagation. For example, the
EDITDISTANCE global constraint can be expressed in terms of the weighted GRAMMAR
constraint (Katsirelos et al. 2009). Such encodings open the possibility of using well known
formal language theory algorithms to construct and propagate conjunctions of other global
constraints with the EDITDISTANCE constraint. An example that is explored in Katsirelos
et al. (2009) is the conjunction of an EDITDISTANCE constraint and a REGULAR constraint.

‘We make several contributions here. First, we introduce the WEIGHTEDGRAMMAR con-
straint and propose two propagation algorithms for it based on the CYK and Earley parsers.
Second, we introduce weighted negation normal form (WNNF), a representation language
that extends NNF with the addition of weights. We show that the trace of the actions of
the CYK- and Earley-based propagators for the WEIGHTEDGRAMMAR constraint can be
explained in terms of constructing and reasoning about a suitable formula expressed in
S-WDNNF, a tractable subclass of WNNF. We propose a propagator for constraints ex-
pressed in S-WDNNPF, a decomposition of this propagator into a set of arithmetic con-
straints and investigate the model of counting the models of such formulae. Finally, we
experimentally show that the weighted GRAMMAR constraint is efficient for solving real-
world shift scheduling problems.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables X, each with a finite
domain of values, and a set of constraints. The domain of the variable X is denoted D(X).
A constraint C is defined over a set of variables scope(C) € X and it specifies allowed com-
binations of values from the domains of the variables scope(C). Each allowed combination
of values for the variables scope(C) is called a solution of C. A solution of a CSP is an
assignment of a value to each variable that is also a solution of all its constraints. Backtrack-
ing search solvers construct partial assignments, enforcing a local consistency to prune the
domains of the variables so that values which cannot appear in any extension of the partial
to a solution are removed. We consider one of the most common local consistencies: domain
consistency (DC). A value X; = a is DC for a constraint C if there exists a solution of C

@ Springer

Ann Oper Res (2011) 184: 179-207 181

that assigns X; = a. This solution is called a support of X; =a in C. A constraint C is
domain consistent if every value in the domain of a variable in scope(C) is DC. A CSP is
DC if each of its constraints is DC.

A context-free grammarisatuple G = (X, T, S, P), where X is a set of terminal symbols
called the alphabet of G, T is a set of non-terminal symbols, S is a unique starting symbol
and P is a set of productions. A production is a rule of the form A — o where A is a
non-terminal and « is a sequence of terminal and non-terminal symbols. A string in X* is
generated or accepted by G starting with the sequence s = (S) and non deterministically
generating s’ by replacing any non-terminal A in s by the right hand side of any production
A — « until s’ contains only terminal symbols.

A context free grammar is in Chomsky normal form is all productions are of the form
A — BC where B and C are non terminals or A — a where «a is a terminal. Any context
free grammar can be converted to one that is in Chomsky normal form with at most a linear
increase in its size. A context free grammar is regular if all productions are of the form
A — a or A— bB where a and b are terminals and B is a non terminal. Regular grammars
are a strict subset of context free grammars. A context free language L(G) is the language
of all strings that are generated by the context free grammar G. We will consider global
constraints which are specified in terms of a context free grammar. Such a constraint C
considers the variables in scope(C) as a string of length n. The solutions of C are all the
strings of length n that are accepted by the grammar (Quimper and Walsh 2006; Sellmann
20006).

Example 1 Consider the following context-free grammar in Chomsky normal form, G:
S— AB A— AAla B— BB |b

Suppose X, X, and X3 € {a, b}. Then enforcing DC on GRAMMAR(G, [Xy, X, X3])
prunes b from X, and a from X3 as the only supports are the sequences aab and abb.

The REGULAR constraint (Pesant 2004) is a special case of the GRAMMAR constraint.
This accepts just those assignments which come from a regular language. A regular language
can alternatively be specified in terms of a finite automaton. Note that since we fix grammars
to accept strings of a specific length, it is possible to convert any context free grammar to a
regular grammar. However, this may entail an exponential blowup in the size of the grammar.
Similarly, any non-deterministic finite automaton can be converted to a deterministic finite
automaton, but this step may increase the size of the automaton exponentially.

3 Weighted NNF

In this paper, we will study propagation algorithms for the WEIGHTEDGRAMMAR con-
straint based on two parsers: the CYK parser and the Earley parser. We will show that both
of these propagation algorithms can be explained on the basis of an AND/OR graph that is
implicitly generated by these parsers. Therefore, we first introduce weighted NNF, a special
case of the valued NNF (VNNF) framework (Fargier and Marquis 2007) for the representa-
tion context (Z U {00}, <, {4+, min}). WNNF is especially useful in analyzing the CYK and
Earley parsers.

@ Springer

182 Ann Oper Res (2011) 184: 179-207

Fig. 1 An encoding of the
function (X1 Vv Xo V-V Xy) @

using NNF

Xy=1 o Xy=1 e Xe=1

To introduce WNNF we recall first the definition of NNF (Darwiche and Marquis 2002):

Definition 1 NNF An NNF N is a rooted, directed acyclic graph (DAG) where each leaf
node is labeled with TRUE, FALSE, or a literal / of a propositional variable x, and each inter-
nal node is labeled with AND-NODE or OR-NODE and can have arbitrarily many children.

An NNF N represents a Boolean formula over the variables that appear in the leaves of N.
A model of N is an instantiation of the variables in N that evaluates the corresponding
Boolean formula to TRUE.

Example 2 Figure 1 shows an NNF N for the function f = (X;V X, V- .-V X;). The leaves
of the NNF N are positive literals of the propositional variables X, X», ..., Xi.

We use the same notation for a graph N and the formula that it represents. We denote
a subgraph (and subformula) rooted at a node 7 as N7. In addition, we may attach an
additional label to each node and refer to specific nodes by their labels.

In general, reasoning in an unrestricted NNF is intractable. However, there exist restric-
tions of this language that make specific types of queries tractable.

Definition 2 (Decomposable NNF) A DNNF N is an NNF with the decomposability prop-
erty, i.e., if T is an AND-NODE of N, then for every pair 7T, T, of its children nodes,
vars(Nrt,) Nvars(Nr,) = 9.

Definition 3 (Deterministic NNF) A D-NNF N is an NNF with the determinism property,
i.e., if T is an OR-NODE of N, then every pair 7, T of its children are mutually inconsis-
tent, |;& NT| AN NTZ'

Definition 4 (Smooth NNF) A smooth NNF N is an NNF with the smoothness property,
i.e.,if T is an OR node of N, then for every pair 77, T; of its children vars(Ny,) = vars(Nr,).

The significance of decomposability is that it makes satisfiability queries on NNF
tractable, while determinism makes model counting tractable (Darwiche and Marquis 2002).
In general, it is not possible to convert an arbitrary NNF into a decomposable NNF without
an exponential blowup in the size of the formula (Darwiche and Marquis 2002). It is possi-
ble, however, to convert any NNF into a smooth NNF with at most a linear increase in the
size of the formula.

These three properties are orthogonal, therefore we can talk about NNF with any com-
bination of them. In particular, we are interested in decomposable smooth NNF (S-DNNF)
and deterministic S-DNNF (SD-DNNF).

@ Springer

Ann Oper Res (2011) 184: 179-207 183

Next we introduce the weighted NNF that is an extension of smooth NNF.

Definition 5 (Weighted Smooth NNF) A weighted smooth NNF N(z) is a smooth NNF
where each node T has a weight w[T']. Let I be an instantiation of the variables in N (z).
The weight w;[T] of anode T of N(z) given [is

wl/] if T isaliteral [and [€ I
z+1 if T isaliteral/ and [¢ 1
ming,ecup(r) (w/[1;]) +w[T] if T is an OR node

> r.ecapy WilTil + w(T] if T is an AND node

The weight of N given I, which is denoted w;[N], is the weight of the root node T},
given I: w;[N] = w;[T,,]. An instantiation / is a model of N (z) if and only if w;[N] less
than or equal to the cost variable z.

A WNNF describes a propositional formula, in the same way that NNF does. In fact,
given any N(z), any of its models is also a model of the unweighted NNF N, but the
converse does not necessarily hold.

Note that the definition of WNNF requires that the underlying NNF is smooth. This is
because a non-smooth underlying NNF leads to problematic behaviour. Consider, for ex-
ample, the case where we simply assign weights to literals, using the equivalent underlying
NNFs N = x4 \/)Czanszf(X] :1/\(X2=1VX2=0))V(X2:1/\(X1 =1vX =
0)), with N; being non-smooth and N, smooth. Let the weights assigned to the literals be
wX;i=1)=1wX; =0 =0,w(X,=1) =w(X, =0) = 10. In this case, the WNNF
based on N, evaluates the instantiation X; = 1, X, = 1 as having weight 1 at the root, while
the WNNF based on N, evaluates the same instantiation as having weight 11 at the root.
Requiring that the underlying NNF of WNNF is smooth avoids these issues.

Example 3 The expressiveness of S-WDNNF allows us to build succinct representations
of some Boolean functions. For instance, we can use S-WDNNF to construct a compact
representation of the conjunction of an arbitrary Boolean formula represented as S-DNNF
and the SUM constraint. The SUM(X1, ..., Xk, ¢) constraint ensures that the weighted sum
of variables X; is at most c, Zf;l a;X; <c.

Consider again the Boolean function f = (X;V X, V-V X;) from Example 2. Suppose
we want to build a conjunction of f and the SUM constraint. We preform the construction
of S-WDNNF into two steps. First, we smooth NNF (Fig. 1) for the formula f and obtain
S-DNNF that is shown at Fig. 2. Secondly, we set the weight to zero for all negative literals
(X;=0),i=1,2,...,k and to g; for all positive literals (X; =1),i =1,2,...,k. We set
the cost variable z to ¢, so the weight of each model of N(c) is less than or equal to c.
Figure 2 shows the S-WDNNF N(c) that encodes f (X1, ..., Xx) ASUM(X}y, ..., Xy, ©).

Note that the best known way to encode the SUM constraint in a DNNF requires size
O(> ;) yaik) (Eén and Sorensson 2006), which is exponential in the number of bits needed
to represent each a;, while it is in general intractable to construct the conjunction of two
formulas in DNNF.

Similarly to the unweighted case, we can consider deterministic and decomposable
S-WNNF. We show here that the tractability results for these restricted forms of NNF also
hold for the same restrictions of WNNF.

@ Springer

184 Ann Oper Res (2011) 184: 179-207

Fig. 2 An encoding of a

conjunction X1, ..., X} and
Zi‘(:l a; X; < c using
S-WDNNF

We present first an algorithm to test satisfiability of a S-WDNNF, which is a specializa-
tion of the results in Fargier and Marquis (2007). In addition, we present an algorithm to
detect inconsistent literals, i.e., literals that may not appear in any model of a S-WDNNF.
Both of these algorithms run in O(|N(z)|) time, where the size |N(z)| of a S-WDNNF
N (z) is the number of edges in the DAG.

Lemma 1 Let N(z) be a weighted smooth DNNF and P be a set of literal inconsistent with
N (z). The algorithm S-WDNNF-lowerbound returns a function | such that for each node
T in N(2), [gives the minimum weight of the models of the subformula Nt rooted at T . This
algorithm runs in time O (|N|).

Proof We prove this by induction on the height / of the subformula Nr.

Base. In this case, the formula Ny consists of a single literal x only. Then Ny has a single
model with weight w[x] when x ¢ P. If x € P, Ny has no models, thus its lower bound is
z+ 1.

Step. Assume the hypothesis holds for height 2 — 1. Let the root T of the subfor-
mula N7 be an OR node and 7, € CHD(T) be a child of T. By the inductive hypoth-
esis [[T.] is correct. Any model of N7, is a model of Ny. By the smoothness property,
vars(Nt) = vars(Nrt.), VI, € CHD(T). Thus the minimum weights computed for each N7,
take every variable of N7 into account. Therefore, we can choose the model of a child with
the minimum weight, so /[T'] = miny, ccup(r){/[Tc]} + w[T] is the minimum weight of any
model of Nr.

Let T be an AND node. By the decomposability property, the children 7, of T are such
that N7,, T. € CHD(T') have no variables in common. Therefore, we can choose any model
from each child and concatenate them to get a model of 7. The weight of the model of T will
be w[T] plus the sum of the weights of the models of its children. By the inductive hypoth-
esis [[T,], T, e CHD(T) is correct, therefore the minimum weight of a model of Ny will be
the sum of the minimum weights of the models of all Nz, [[T] = ZTC <CHD(T) ([T.])+w[T]
1S correct.

Complexity. Every node of N is added to the priority queue queue, exactly once, as it is
popped from the queue only after each of its children has been examined already. We use
the priority queue without duplicates. The body of the loop at lines 10-15 runs in |CHD(T')|
time for each node T it examines, so the time complexity of thisisin),y @ (JCHD(T)|) =
O(|N|). The loop at lines 16—17 examines each node T exactly |CHD(T')| times. Therefore,

@ Springer

Ann Oper Res (2011) 184: 179-207 185

the time complexity of this is also in) . N(Z)(|CHD(T) |) = O(|N]) and the total complex-
ity of the algorithm is in O (|N|). O

Lemma 2 Let N (z) be a weighted smooth DNNF. The algorithm S-WDNNF-upperbound
returns a function u such that for each node T in N(2), u gives the maximum weight of a
model of the subformula Nt rooted at T may have in order to be part of a model of N(z).
This algorithm runs in time O(|N|).

Proof We show this by induction on the depth d of the node T'.

Base. In this case T is the root node and the hypothesis holds trivially.

Step. Assume the hypothesis holds for every node of depth d — 1. Let T be a node at
depth d. Let PRT (T) be the parents of T'. By the inductive hypothesis, u[7),] is correct for
each T, € PRT (T). By the decomposability property, a model of N7 can be extended to a
model of Nz, for any T),. However, not all models of N7 can be extended to a model of Nr,
that obeys u[T,]. Let ur,[T] be the upper bound on the weight of the models of Nr such
that they are also models of Nr,. A model of N7 with weight w can be extended to a model
of the entire formula N (z) if there exists at least one parent T}, of T such that w < ur,[T],
therefore u[T] = max (ur, [T]).

Now consider a specific parent 7, of T. Let T, be an OR node. Then, any model
of Ny with weight w is also a model of Nt, with weight w + w[7T,]. Thus ur,[T] =
u[T,] — w[T,]. Let T, be an AND node. Then, any model of Nr with weight rr
is combined with models of other children of 7, due to the decomposability prop-
erty. This gives a model of Ny, with weight rp + ZTM eCHD(T)\(1) Ty T w([T,]. There-
fore ur,[T] = maxu[T,] — ZsteCHD(Tl,)\{T} rr,) — w[T,]. Since rg, > I[Ty] for all
siblings, which by lemma 1 are correct, we have ur,[T] = u[T,] — ZTthCHD(TP)\[T] [Tp] —
w(T,].

Complexity. The algorithm performs a breadth first search over the nodes of N, and
performs |CHD| operations for each of the nodes. We use a FIFO queue without duplicates.
Therefore its total time complexity is in O (|N|). o

Theorem 1 Let N(z) be a weighted smooth DNNF. Then, algorithm S-WDNNF-
consistent correctly computes all the literals of N(z) that may appear in a model of N(z),
given that the literals in P are set to false, in time O (|N|).

Proof The function u that is returned by S-WDNNF-upperbound is correct by Lemma 2,
therefore u[x] > w[x] if and only if there exists a model of N(z) such that the literal x is
true in this model. O

Example 4 Consider the conjunction of the Boolean function f and the SUM constraint
from Example 3 where k equals 3 and all weights are unit. Suppose that the variables X,
and X3 is assigned to 1 and the cost variable z is equal to 2. In this case, an initial set of
inconsistent literals with N(2) is P = {(X, = 0, X3 = 0)}. Figure 3(a) shows the result of
a run of Algorithm 1. Figure 3(b) shows the result of an execution of Algorithm 2. The
number in the subscript of a node or a leaf represents the value / while the number in the
superscript represents u. For instance, the value two in the subscript of the root shows that
the minimum weight of the model of N(2) is two. The value two in the superscript of the
root equals z. Note that u </ for the literal X; = 1. This means that X, has to be assigned
to the value 0.

@ Springer

186 Ann Oper Res (2011) 184: 179-207

Algorithm 1 Computing the lower bound for each node of a weighted S-DNNF

1: procedure S-WDNNF-LOWERBOUND(N (z), P)
2: queue, = () > Priority queue without duplicates inversely sorted by the depth

of the node
3: for each leaf x in N do
4: if x € P then
5: I[x]=z+1
6: else
7: [[x]=w[x]
8: for each parent 7 of x do
9: push(T', queue,)
10: while gueue, # ¥ do
11: T = pop(queue,)
12: if T is v-node then
13: I[T] = ming,ccup(r) {LT.]} + w[T]
14: else if 7' is A-node then
15: I[T]= ZT(,ECHD(T)(Z[TL']) +w[T]
16: for each parent 7’ of T do
17: push(7”, queue,)
18: return [

Algorithm 2 Computing the upper bound for each node of a weighted S-DNNF

1: procedure S-WDNNF-UPPERBOUND(N (z), [)

2: for cach node T in N do

3 ulT]l=-1

4: u[Troo]l =z

5: queue |, = {Tyo} > FIFO queue without duplicates
6 while gueue | # () do

7 T = pop(queue)

8 for each 7. in CHD(T) do

9: if T is v-node then
10: ulT.] = maxu[T.], u[T] — w[T])
11: else if 7 is A-node then
12: ulT.) = max(ul 7.1, ulT] = X cenmera {UTso] = wIT1)
13: push(T, queue)
14: return u

Algorithm 3 Computing the consistent literals of a weighted S-DNNF

1: procedure S-WDNNF-CONSISTENT(N (z), P)

2 | = s-WDNNF-lowerbound(N (z), P)

3: u = S-WDNNF-upperbound(N (z), 1)

4 return {x|x is a literal in N where u[x] > w[x]}

@ Springer

Ann Oper Res (2011) 184: 179-207 187

Fig.3 The sS-WDNNF graph
produced by Algorithm 1 (a) and
Algorithm 2 (b) on Example 4

&= & =0 Fe=} =0, =D &=0,

w=1 w=0 w=1 w=3 w=1 w=3

(@)

—>(x =& -0f %= &0 &=H&-0)
w=1 w=0 w=1 w=3 w=1 w=3
(b)

3.1 The s-WDNNF constraint

In this section we introduce the S-WDNNF constraint. In general, any constraint can be
expressed as a propositional formula, using an appropriate mapping of the multi-valued X
variables to a set of propositional variables. Here, we use the direct encoding (Walsh 2000),
which creates a propositional variable for each assignment X; = a. We overload the notation
X; = a to also denote the corresponding propositional variable, while for the negative literal
we write X; # a = —X; = a. We will make it clear from the context whether we mean an
assignment to the CSP variable X; or a propositional literal.

Definition 6 Let N(z) be a S-WDNNF over the propositional variables X; = a, i =
1,...,n,a € D(X;). The S-WDNNF(N(2), [Xy, ..., X,]) constraint holds if and only if
the direct encoding of an assignment X into the variables X; = a is a model of the N (z).

It is easy to see that Algorithm 3 can be used to enforce DC on the S-WDNNF con-
straint. If a literal X; = a is not in the set P returned by Algorithm 3 then the value a can be
pruned from the domain of variable X;.

3.2 Decomposition of a S-WDNNF constraint
As an alternative to the filtering algorithm sS-WDNNF-consistent, we propose a simple de-

composition with which we can also detect inconsistent literals. A decomposition has sev-
eral advantages. First, it is easy to add to any constraint solver. Second, decomposition

@ Springer

188 Ann Oper Res (2011) 184: 179-207

gives an efficient incremental propagator. Third, decomposition opens the door to advanced
techniques like nogood learning and watched literals. The idea of the decomposition is to
introduce arithmetic constraints to compute / and u.

For each node T, two integer variables are introduced to compute /[T] and u[T].

For each T we post a constraint to compute /[7T] from the lower bounds of its children
CHD(T):

I(T)= Y I(T)+WI[T] if T isan AND-NODE, (1)
T.eCHD(T)

I(T)= min {[(T,)} if T is an OR-NODE ()
T.eCHD(T)

For each node T, we post a constraint to compute u[7] from the upper bounds of its
parents PRT(T') and its siblings:

u(T) = max{ max {u(T,) — WI[T,1},
T,ePRT o (T)

3)
max {u(Tp) — Z I(Ty) — W[Tp]”

T,ePRT (T
pePRTA(T) Ty €CHD(T),)— (T}

Finally, we introduce constraints to prune X;. For each leaf T of the S-WDNNPF that
corresponds to the literal X; = a, we introduce:

aeDX;)= W[T]1<IT) <z, 4
a¢ D(X) & I(T) >z, ©)
WIT]>u(T)=a ¢ D(X;) (6)

As the maximal weight of a model is less than or equal to z we post:
u(Troo) <2 @)

Enforcing bounds consistency on constraints 1-7 will set the lower bounds of variables
[(T) to the minimal weight of a model of the formula rooted at 7 and the upper bounds of
variables u(7T') to the maximum weight that a model of a formula rooted at 7 may have so
that it can be extended to a model of the S-WDNNF.

Bounds propagation on this decomposition enforces domain consistency on the
S-WDNNF constraint. If we invoke constraints in the decomposition in the same order
as we compute functions / and u by Algorithms 1-2 then we set lower bounds of variables
[(T) to I[T] and upper bounds to u[T]. This takes O (|N(z)]) time.

We can speed up propagation by recognizing when constraints are entailed. If /(T) >
u(T) holds for a node T then constraints (1) and (2), (3) are entailed. To model entailment
we augment each of these constraints in such a way that if /(T) > u(T) holds then the
corresponding constraints are not invoked by the solver.

3.3 Counting in S-WDNNF

The equivalent of the class N P for counting problems is #P. This is the class of counting
problems for which a solution can be recognized in polynomial time. This class is at least

@ Springer

Ann Oper Res (2011) 184: 179-207 189

as hard as N P, because an exact non-zero count of the solutions of a problem implies that
at least one solution exists. For example, #3SAT, the counting version of 3SAT, is in #P.
Surprisingly, the counting version of many tractable decision problems is # P-complete, e.g.
#2S8AT or #Horn — SAT.

It is easy to see that model counting for NNF is #P-complete, as any propositional for-
mula can be encoded into an unrestricted NNF. As VNNF is a generalization of NNF,
this result also holds for VNNF (Fargier and Marquis 2007). In Darwiche and Mar-
quis (2002), it was shown that counting is also NP-hard for DNNF, but polynomial for
SD-DNNF.

In this section, we make the intractability result for DNNF (and therefore its generaliza-
tion VDNNF) more precise by showing that it is actually a #P-complete problem.

We recall first that given a non-deterministic finite automaton(NFA), counting the number
of strings of a specific length that it accepts is #P-complete (Gore et al. 1997). We now
show that the strings of length n accepted by an NFA A can be encoded in a DNNF of size
O(n|A|).

Lemma 3 There exists a function D, such that given an NFA A and an integer n, D(A, n)
is a DNNF and there exists a bijection between models of D(A, n) and strings of length n
that are accepted by A.

Proof Let A’ be an NFA without e-transitions that is equivalent to .A. This transformation
is possible with at most a polynomial increase in the size of the NFA (Hopcroft and Ull-
man 1990). Following the results of Pesant (2004) and Quimper and Walsh (2006), we can
construct an unfolded NFA A that accepts exactly the strings of length n that are accepted
by A’. A’ is a directed acyclic graph such that |A) | = O (n|.A’|). Moreover, A/, is a layered
automaton: the states are partitioned into n + 1 layers, such that the first layer contains the
starting state s and the (i + 1)th layer contains all states that are reachable after processing
i symbols of any string.

We now transform A/, to a DNNF D. For each symbol @ in X and position i we introduce
a variable with literals X; = a and X; # a. For each non-accepting state s € A, we create
an OR-NODE #n(s) in D, while each accepting state is mapped to the TRUE node. For every
transition from state s{‘ to s]k.H on symbol a, we create an AND-NODE which is a child

of the node s{‘ and has children n(sf“) and X, = a, X # b for all b # a. The result is a
DNNEF rooted at node n(s).

It is easy to see that the models of D are exactly the strings of length n that are accepted
by A. O

By Lemma 3 and the result that counting the number of strings a specific length accepted
by NFA is #P-complete we get

Corollary 1 #DNNF is #P-complete.

4 The weighted GRAMMAR constraint
In this section we introduce a weighted version of the GRAMMAR constraint. The motivation

behind WEIGHTEDGRAMMAR is threefold: first, it allows us to model over-constrained
problems and problems with preferences; second, it allows us to propagate the conjunction

@ Springer

190 Ann Oper Res (2011) 184: 179-207

of a GRAMMAR and the objective function of an optimization problem; third, by mapping
WEIGHTEDGRAMMAR onto WNNPF, it allows for more succinct representations of other
constraints.

Definition 7 The WEIGHTEDGRAMMAR(G, W, z, [X1, ..., X,]) constraint, where G is a
GRAMMAR, W is a function that maps productions of G to weights, z is a cost variable
and X1, ..., X, are decision variables, holds if and only if an assignment X forms a string
belonging to the grammar G and the minimal weight of a derivation of X less than or
equal to z. The weight of a derivation is the sum of the production weights used in the
derivation.

We can further refine the granularity of the weights by making W a function with three
arguments W (P, i, j), so that it gives the weight of using the production P to produce the
substring starting at position i with length j. This is similar to the conditional productions
used in Quimper and Walsh (2007) and the cost definition used in the COSTREGULAR
constraint (Demassey et al. 2006). In accordance with these previous uses, we call these
conditional weights. In fact, we will use conditional weights in our experimental setup. For
simplicity, however, we use the simpler definition of unconditional weights in the rest of this
section.

Example 5 Consider again the context-free grammar G from Example 1. Suppose that
the weights of all productions except B — b are zero and the weight of the produc-
tion B — b is one. Let the domains of the variables X be D(X;) = {a}, D(X,) =
{a,b}, D(X3) = {b} and z be smaller than or equal to 1. Then enforcing DC on
WEIGHTEDGRAMMAR(G, W, 1, [X,, X,, X3]) prunes b from X, as the only support is
the sequence aab. The sequence abb that is a possible solution in Example 1 is not a valid
solution, because its minimum weight derivation is 2.

Using conditional weights, we can see that we can use the WEIGHTEDGRAMMAR
constraint to propagate the conjunction of a GRAMMAR constraint and a linear objec-
tive function. Indeed, consider a constraint C = GRAMMAR(G, [X1, ..., X,,]) and an ob-
AAAAA nj=l,.d w;;j(X; = j), where (X; = j) is a propositional
literal. Further suppose that G has productions of the form 7, — a for each termi-
nal a (this holds for all grammars in Chomsky Normal Form). We can then use the
constraint WEIGHTEDGRAMMAR(G, W, z, [X4, ..., X,]), where W(T,,i,1) = w;, and
W(P,1i, j) =0 for all other productions P. This constraint propagates the conjunction of
C and f over the variables X, ..., X,,. We can then replace the objective function f with
f" = z to exploit this stronger propagation.

4.1 Propagator based on the CY K parser

First we give a propagator for the WEIGHTEDGRAMMAR constraint based on a natural
extension of the CYK parser to probabilistic CFGs (Ney 1991) combined with the DC
filtering algorithm for the GRAMMAR constraint (Quimper and Walsh 2006). This algorithm
implicitly constructs an S-WDNNF. Therefore, it is easy to recast it in terms of weight
propagation in an S-WDNNF and prove its correctness based on the results of the previous
section.

@ Springer

Ann Oper Res (2011) 184: 179-207 191

Algorithm 4 The weighted CYK propagator

1: procedure WCYK-ALG(G, W, z,[X{, ..., Xn])

2: fori=1ton do > Construct a dynamic programming table V
3: VI0i,11={AlA = a € G,a € D(X;)}

4: for j=2ton do

5: fori=1ton—j+1do

6: VI, j1=9;

7 fork=1toj—1do

8: Vi, jl=VIi, jJU{A|A—- BC e G,BeV[i,k],CeV]i+k, j—kl}

9: for j =1tondo > Compute lower bounds
10: fori=1ton—j+1do

11: for each A € G do

12: Il j, Al=z+ Ly uli, j, Al = —1;

13: fori=1ton do

14: for Ac V[i,1]stA—aeG,ae D(X;)do

15: I[i, 1, Al =min{l[i, 1, A], W[A — al};

16: for j =2ton do

17: fori=1ton—j+1do

18: Vi, j1=%;

19: fork=1to j—1do

20: for each A — BCe€Gs.t. BeVI[i,k],CeV[i+k, j—k]do

21: i, j, Al=min{l[i, j, A]l, W[A — BCl+1[i, k, Bl1+I[i +k, j —k,C1};

22: if S ¢ V[1,n]VvI[1,n,S]> z then

23: return “Unsatisfiable”;

24: mark (1,7, S);

25: ull,n,S1=z; > Compute upper bounds
26: for j =n downto 2 do

27: fori=1ton—j+1do

28: for A such that (i, j, A) is marked do

29: fork=1toj—1do

30: for each A— BCeGst. BeV[i,k],CeV]i+k,j—k]do

31: if WA — BCl1+I[i,k, Bl+1[i +k, j —k,C]l>uli, j, A] then

32: continue;

33: mark (i, k, B); mark (i +k, j —k, C);

34 uli, k, Bl = max{uli, k, Bl,uli, j, Al —1l[i + k, j —k,C]— W[A — BC]};

35: uli +k,j—k,Cl=max{uli +k, j —k,Cl,uli, j, A] =i, k, B] - W[A — BC]};
36: fori=1tondo

37: D(X;)={ae D(X;)|A—acG,(,l,A) is marked and W[A — a] <uli, 1, A]};

38: return “Satisfiable”;

We assume that G is in Chomsky normal form and has a single starting symbol S.
The algorithm works in two stages. In the first, it constructs a dynamic programing table
Vi, j] where an element A of V[i, j] is a potential non-terminal that generates a substring
[Xi,..., Xiyj—1]. It then computes a lower bound [[i, j, A] on the minimal weight of a
derivation from A. In the second stage, it moves from V[1, n] to the bottom of table V. For
an element A of V[i, j], it computes an upper bound u[i, j, A] on the maximal weight of a
derivation from A of a substring [X;, ..., X;4;_]. that can be extended to a string from the
grammar. It marks the element A if and only if [[i, j, A] <uli, j, A].

We present the pseudo-code in Algorithm 4. Lines 912 initialize / and u. Lines 2-21
compute the first stage, whilst lines 24—-35 compute the second stage. Finally, we prune in-
consistent values from domains of variables X in lines 36—37. Theorem 2 proves that Algo-
rithm 4 enforces domain consistency on the WEIGHTEDGRAMMAR(G, W, z, [X4, ..., X,,])
constraint in time O (n3|G|).

Example 6 Consider the context-free grammar G from Example 5. The dynamic program-
ming table produced by Algorithm 4 is presented in Fig. 4. The number in the subscript of
a non terminal represents the value / and the number in the superscript of a non terminal
represents the value u. For instance, the value in the subscript of Bll in the right bottom cell

@ Springer

192 Ann Oper Res (2011) 184: 179-207

©)
/
(% g

a A—>a B-ob B—b

A

X, =a X,=a Xy<b X;=b

Fig. 4 Dynamic programming table produced by Algorithm 4. Gray lines show pruning caused by the
weighted GRAMMAR constraint compared to the non-weighted GRAMMAR constraint

of the table shows that the minimum weight of the derivation from B of length one starting
at position 3 is one.

Gray lines show unmarked non terminals. This also shows the pruning caused by the
weighted GRAMMAR constraint compared to the non-weighted GRAMMAR constraint. Out-
going arcs from non terminals correspond to different derivations from this non terminal. For
instance, the non terminal 511 in the top left cell of the table has two possible derivations in
the non weighted case and a single derivation in the weighted case.

To see the correspondence between Algorithm 4 and weight propagation in an
S-WDNNF, we use the construction of an AND/OR graph for the GRAMMAR constraint
proposed by Quimper and Walsh (2006), given the dynamic programming table V' obtained
by Algorithm 4. We modify this construction slightly in order to construct a S-WDNNF
rather than an AND/OR graph and thus make it applicable to the weighted case.

Consider the constraint C = WEIGHTEDGRAMMAR(G, W, z, [X1, ..., X,]). We con-
struct a S-WDNNF N(z). We create in N leaf nodes labeled with X; = a and X; # a
and weight O for each i € [1,n],a € D(X;). For each non-terminal A, A € VI[i, jl,i,j =
1,...,0(n) we create an OR node labeled with n(i, j, A) with weight 0. For each pro-
duction A — BC, A € V[i, j], Be V[i,k], C € V[i +k, j — k], we create an AND node
labeled with n(i, j, k, A— BC) and weight W[A — BC]. For each production of the form
A — a, A € V[i, 0], we create the AND-NODE n(i, 0,0, A — a) with weight W[A — a].

Each OR-node n(i, j, A) is a parent of the AND-nodes n(i, j,k,A — BC), k =
l,...,j — 1. Each AND-node n(i, j,k, A— BC) is a parent of the O R-nodes n(i, k, B)
and n(i +k, j —k, C). Each AND-NODE n(i, 0,0, A — a) is a parent of the nodes labeled
with X; =a, X; # b for all b # a. Clearly, if C is satisfiable then S € V[1, n] and therefore

INote that we ignore whether a specific entry in the table is marked or not.

@ Springer

Ann Oper Res (2011) 184: 179-207 193

WB —BB| =0

WIB—sb|=1

BIX , =a) BIX , =) BI(X< = b) BI(X , =b)

Fig. 5 s-WDNNF graph that corresponds to the dynamic programming table in Fig. 4. Gray lines show
pruning caused by the weighted GRAMMAR constraint compared to the non-weighted GRAMMAR constraint

we have created a node n(1, n, S). In this case, the resulting graph is a WNNF with root
n(1,n, S). We call this graph WCY Kynr (G, W, 2, [X4, ..., X,])-

Example 7 Consider the context-free grammar G from Example 5. The graph WCY Kyyr is
presented in Fig. 5. O R-nodes are labeled with corresponding non terminals from the table.
As before, gray lines show pruning caused by the weighted GRAMMAR constraint compared
to the non-weighted GRAMMAR constraint. We denote BT (X; = a) an AND-NODE with
O(d) children: X; =a, X; #b,b e D(X;) \ {a}.

Each node T in the graph is annotated with two numbers and the weight of this node.
The number in the subscript of a node shows the value /[T'] computed by Algorithm 4. The
number in the superscript of a node shows the value u[7] computed by Algorithm 4. If the
weight of T equals 0 we omit it to reduce clutter.

We show first that the construction does indeed create a smooth and decomposable
WNNPF, so that the results of the previous section apply.

Lemma 4 The graph WCYKnye(G,W,z,[X1,...,X,]) is an S-WDNNF if
WEIGHTEDGRAMMAR(G, W, z, [X1, ..., X,,]) is satisfiable.

Proof Determinism. Consider any AND-NODE n(i, j,k, A — BC) of the graph. By con-
struction, the children of this node are the OR-NODES n(i,k, B) and n(i + k, j — k, C).

@ Springer

194 Ann Oper Res (2011) 184: 179-207

But the leaves that are reachable from n (i, k, B) are literals that correspond to the CSP vari-
ables X; ... X,4, while the leaves that are reachable from n(i + k, j — k, C) are literals
that that correspond to the CSP variables X; ;... X;;;. Therefore, vars(n(i,k, B)) N
vars(n(i + k, j —k, C)) = as required.

Smoothness. By construction, the children of each OR-NODE n(i, j, A) are the
AND-NODES n(i, j,k, A — BC) for each production A — BC in G. But each of these
nodes can reach exactly the leaves that correspond to the CSP variables X; ... X; ;. More-
over, if a leaf X; = a is reachable, so are all the leaves X; # b, b # a. Therefore, each of
the AND-NODES that are the children of n(i, j, A) can reach all of the literals X; = d for
leli,i+ jl,d € D(X)), as required. O

We show next that the above construction is a compilation of exactly the solutions of the
WEIGHTEDGRAMMAR constraint.

Lemma 5 There exists a weight-preserving bijection between models of the
S-WDNNF N(z) = WCY Kynr(G, W, z, [Xy,..., X,]) and solutions of the constraint
C = WEIGHTEDGRAMMAR(G, W, z, [Xy, ..., X,,]) if C is satisfiable.

Proof We construct first a reversible function f from instantiations of N(z) to solutions of
C and then show that it preserves solutions, so that it is a bijection between models of N (z)
and solutions of C.

Let I be a model of N(z). Then we construct an instantiation f(I) of the vari-
ables X;...X,. Note first that each literal X; = a in N always appears as a child of an
AND-NODE with siblings X; # b for all b # a. Thus, in any model of N(z), exactly one of
X; = a can be true and we can map the assignment to these variables to a unique assignment
to the variable X; for all i. Similarly, from each assignment to the variables X, ... X,, we
construct an instantiation f~'(X) of the variables of N (z) such that if X; = a then the literal
X; =a is true and all the literals X; = b, b # a are false.

We show first that f(7) is a solution of the constraint GRAMMAR(G, [Xy, ..., X,]) if
and only if / is a model of the unweighted NNF N.

By the correctness of the CYK parser, a non-terminal symbol A is in a cell V[i, j] if
and only if the substring i ...i 4+ j of X = f(/) can be generated from A. We show that the
OR-NODE T =n(i, j, A) € N is true given [if and only if A is in the cell V[, j].

We show this by induction on the height # of the WNNF Nr.

Base. In this case, h = 1 and the WNNF N7 consists of a single literal X; = a. Then, the
node n(i, 0, A — a) is true if and only if A € V[i, 1].

Step. Assume the inductive hypothesis holds for 4 — 1. Then, let T be a node, such that
the height of N7 is h. If h is even then T has to be an AND-NODE and the hypothesis holds
trivially. If % is odd, then T has to be an OR-NODE n(i, j, A). Assume T is true. Then, at
least one of its children n(i, j,k, A — BC) is true. But n(i, j,k, A — BC) is true if the
OR-NODES n(i, k, B) and n(i + k, j — k, C) are true, which by the inductive hypothesis
means that B € V[i,k] and C € V[i + k, j — k]. This in turn means that CYK places A in
VIi, jl.

Conversely, assume A € V[i, j]. Then, there exists a production A — BC and k such
that B € V[i,i + k] and C € V[i +k, j — k]. But this means by the inductive hypothesis that
the OR-NODES n(i,i + k, B) and n(i + k, j — k, C) are true and therefore the AND-NODE
n(i, j,k, A— BC) is also true, which suffices to make the OR-NODE T =n(i, j, A) true.

@ Springer

Ann Oper Res (2011) 184: 179-207 195

Because the computation of lower bounds by the WCYK algorithm is identical to the
computation of weights in a WNNF, we can show that f(7) is a solution of the constraint

WEIGHTEDGRAMMAR(G, W, z, [X1, ..., X,]) if and only if I is a model of N(z). The
proof is analogous to the proof in the unweighted case.]
Theorem 2 WCYK-alg enforces DC on the WEIGHTEDGRAMMAR(G, W, z, [X1, ..., X,,])

constraint in time O (n’|G)|).

Proof Algorithm 4 implicitly performs the S-WDNNF-consistent algorithm on
WCY Kyne(G, W, z,[X4, ..., X,]). Specifically, lines 9-21 of WCYK-ALG correspond
to the algorithm S-WDNNF-lowerbound, lines 24-35 of WCYK-ALG correspond to the
algorithm s-WDNNF-upperbound and lines 36—37 of WCYK-ALG correspond to line 4 of
the algorithm S-WDNNF-consistent.

Complexity. The time complexity of the algorithm is dominated by lines 24-35 and is
therefore in O (|G|n?). a

4.2 Propagator based on the Earley parser

We now give a propagator for the WEIGHTEDGRAMMAR constraint based on the Earley
parser (Earley 1970). The Earley parser is a dynamic programming based top-down parsing
algorithm for arbitrary context free grammars. It is often preferred over the CYK algorithm
because for many classes of grammars it has provably better performance. With regular or
linear grammars, it runs in linear time. With unambiguous grammars, it runs in quadratic
time. With grammars of bounded ambiguity, it runs in time that is greater than quadratic but
less than cubic.

We first show a natural extension of the Earley parser to a propagator for the
WEIGHTEDGRAMMAR constraint. It has already been shown that a propagator for the
GRAMMAR constraint can be built as an extension of the Earley parser, so we simply modify
the existing propagator to handle weights. Somewhat surprisingly, we show that the Earley
propagator also implicitly constructs a S-WDNNF during the parsing phase. We make this
construction explicit and then use the resulting S-WDNNF to perform pruning.

The pseudocode for this propagator is shown in Algorithm 5. The parser works by popu-
lating tables C[j] of states of the form (s — « e v, i), where « is a sequence of terminals and
non-terminals,. The form s — « e v is called a “dotted production”. If a state (s — « e v, i)
is in the table C[j], it means that the substring i ... j can be parsed using «. The basic
operations performed by this algorithm are the same as for the Earley parser: scanning of
terminals, prediction of productions of non-terminals and completion of productions. The
procedure starts by predicting the production s — eu and completes successfully when no
state can be added to any of the tables and C[n] contains s — ue.

In order to perform propagation, we concurrently construct a S-WDNNF and compute
the function / which gives for each node 7 the minimum weight of any model of the
WNNF N7. To simplify the presentation, we do this by using the quaternary function N
which constructs a WNNF node T (first argument) and simultaneously sets its lower bound
[[T] (second argument), its upper bound u[7'] (third argument) and its weight w[T'] (fourth
argument). For each prediction operation, we construct a TRUE node, while for each scan-
ning or completion we construct an AND-NODE. Each node is associated with the state
that generated it, so if there already exists an AND-NODE for a specific state, it means we
have generated the same state in two different ways, thus in the ADD procedure (shown in
Algorithm 6), we construct an OR-NODE that is the parent of the previous nodes for this

@ Springer

196 Ann Oper Res (2011) 184: 179-207

Algorithm 5 The weighted Earley propagator

1: procedure EARLEY-ALG(G, W, z,[X1, ..., Xn])
2: for j =1tondo

3: Clil={}

4. push(queue, {s — eu}, 0, N(TRUE, 0, —1,0))
5: fori=1ton do

6: for state € C[i] do

7 push(state, queue)

8: while queue # ¢ do

9: (r, j. 8) = pop (queue)

10: add ((r, j,), Cli])

11: if ¥ = (u — ve) then > Completion
12: for each (w — ...eu...,.k,T) € C[j] do

13: c=I[S]+IT]+Wlu—v]

14: add (w— ...ue....k, N(SAT,c,—1, W[u — v])), queue)

15: elseif (i <n)andr=(u— ...ev...)and v € D(X;) then > Scanning
16: add (u—...ve...,j, N(SABT({X; =v}),I[S],—1,0)), C[i +1])

17: elseif r = (u — ... ev...) and v is non terminal then > Prediction
18: for each v — w € G such that (v — ew, i, @) ¢ C[i]U queue do

19: push ((v — ew, i, N(TRUE, 0, —1, 0)), queue)

20: if C[i]1=0 then

21: return “Unsatisfiable”

22: if (s > ue,0, S) € C[n] then

23: if /[S] > z then

24: return “Unsatisfiable”

25: else

26: u = S-WDNNF-upperbound(S(z), 1)

27: fori=1tondo

28: D(X;) ={alu[X; = a] > 0};

29: else

30: return “Unsatisfiable”

Algorithm 6 add ((a, k, S), q)

1: procedure ADD((a, k, S), q)

2 if 3(a, k, S’) € g then

3: g =replace((a.k, S, (a.k, N(Sv S’ min{/[$'],1[S]}, —1,0)) , q);
4 else

5 push((a, b, S, w), q)

state. The weight of every OR-NODE is 0, while the weight of an AND-NODE is set to the
weight of the production that generated it. The lower bound of each node is set according
to the rules of Definition 5, so this computation correctly computes the minimum weight
of any solution of the WEIGHTEDGRAMMAR constraint. Finally, in order to ensure that the
resulting WNNF is smooth (see Lemma 6), the leaf node X; = a is always generated in
conjunction with the leaves X; # b, b # a. We denote this construction by BT ({X; = a}).

Note that we require a single unweighted starting production s — u. This is not a signif-
icant limitation as we can insure this by renaming the starting symbol S of any grammar G
to S’ and introducing the production S — §” with weight 0. The new grammar G’ satisfies
this condition and is bigger than G by exactly one production.

Example 8 Consider the context-free grammar G from Example 5. The S-WDNNF graph
produced by Algorithm 5 is presented in Fig. 6.

Each node T in the graph is annotated with two numbers, the weight of this node and
the pair (v — o e ...,i), where i is the index of C[i] where the production v — o e ...
was generated. The number in the subscript of a node represents the value /, the number in

@ Springer

Ann Oper Res (2011) 184: 179-207 197

(S > ABe,0)

WI[S—ABJ=0 W[S—ABJ=0

-

(S = ABe,0) (S —> ABe,0)

(S—> AeB,0)

W[A—>AA]0 W[B—BBIJ=0

(A > AAe,0) (B > BBe,1)

(S— A eB,D) (B> BeB;l)

W[B-5b]=1
(B> be,2)

W[B—b]=
(B — be)3)

0

-1 -1
0 0

0
(SS>TAB,) (B—>+BB,1) (B sb,1)

(B S eb,1)

-1

0
BT(X, =a) BT(X, =a) TX; = b) BT(X, =b)

Fig. 6 The S-WDNNF graph produced by Algorithm 5 on Example 5. Gray lines show pruning caused by
the weighted GRAMMAR constraint compared to the non-weighted GRAMMAR constraint

the superscript of a node represents the value u. If T is not labeled with the weight then
w[T]=0.

Again, gray lines show pruning caused by the weighted GRAMMAR constraint compared
to the non-weighted GRAMMAR constraint.

The structure S produced at line 23 of Algorithm 5 is a WNNF, which we call
Earley NNF(G, W, z,[X1, ..., X,]). We show first that it is actually a S-WDNNF.

Lemma 6 The graph N(z) = Earleyyyz(G, W, z,[X1, ..., X,]) is a S-WDNNF.

Proof Determinism. Consider any AND-NODE Q € N(z). A conjunction can be created in
either line 14 or line 16 of Algorithm 5.

In the former case, Q is a conjunction of nodes S and T'. But S is the set of literals that
are supported by the production w — ... e u ... at position j, starting at position k. This
means that the literals that can be reached from § are all the literals of the CSP variables
Xy ... X;_y. Similarly, from T we can reach all the literals of the CSP variables X; ... X;.

@ Springer

198 Ann Oper Res (2011) 184: 179-207

But these sets are distinct, therefore the AND-NODE S A T satisfies the decomposability
property.

The latter case can be seen to be an instance of the first case in which we advance the
dot in the production by using a terminal rather than a non-terminal. Since a terminal can
support a single position only, the decomposability property is satisfied.

Smoothness. Consider any OR-NODE Q € N(z). Disjunctions can only be created in
Algorithm 6, called from either line 14 or line 16 of Algorithm 5. By the same argument as
for decomposability, we see that both sets S and S’ support variables Xy ... X;. Therefore
the smoothness property is satisfied.]

Lemma 7 There exists a weight-preserving bijection between models of the S-WDNNF
N(z) = Earleyyyg (G, W,z,[X1,...,X,]) and solutions of the constraint C =
WEIGHTEDGRAMMAR(G, W, z, [X1, ..., X,,]) if C is satisfiable.

Proof We use the reversible function f that we introduced in Lemma 5 to map instantiations
of N(z) to assignments to the variables of C. We show that it preserves solutions.

By the correctness of the Earley parser, the state (v — «e..., i, S), where « is a sequence
of terminals and non-terminals, is generated in step j if and only if a state of the form
(v — ex...,i) is generated and the substring i ... j can be parsed by «. We generate an
AND-NODE each time that a state is generated and connect them with an OR-NODE if
the state is generated more than once. Suppose that these nodes are labeled with the pair
(v—>ae...,i). We show that a node T labeled with (v — « e ..., i) is true given [if and
only if the production v — « ... can parse the substring i ... j of X = f(I) using «.

We show this by induction on the height & of the formula Ny rooted at T.> Note first
that any node T such that Ny has height 1 can only be a node generated by prediction, if
it has height 2 it can only be generated by scanning and if it has greater height then it can
be generated by scanning or completion. However, scanning is a special case of completion
and so we treat them uniformly for 7 > 2.

Base. In this case, h =2 and T can only be a node labeled with (v — we..., i), where
w is a terminal a. This node is generated by scanning, and has children BT ({X; = a}) and
(v— ew...,i — 1), which is a node generated by prediction and is thus true. Therefore
we only need to show that the state (v — w e ..., i) is generated if and only if the node
BT ({X; = a}) is true. But X; = a, and this holds.

Step. Let the hypothesis hold for height 4 — 1 and let T be an node such that the height
of N7 is h. Letthe label of T be (v —> @ we...,i). Assume T is an OR-NODE. Then it has
the same label as any of its children. Since the children are at level 2 — 1, this means that
the state (v — o we..., i) is generated if and only if one of the children it true. Assume T
is an AND-NODE. Then it has to be a node generated by completion, with children (w —
gqe.k),i <k < jand (v— aew...,i). By the inductive hypothesis, each of these is true
if and only if the substring i ...k — 1 can be generated by « and the substring k... j can be
generated by w. But T is true if and only if both its children are true, which can be the case
if and only if the substring i ... j can be generated by « w. This then means that the state
(v—> a we..., i) will be generated, as required.

Because the computation of lower bounds by the Earley algorithm is explicitly identical
to the computation of weights in the constructed S-WDNNF, we see that f(]) is a solution
of the constraint WEIGHTEDGRAMMAR(G, W, z, [X|, ..., X,]) if and only if is a model
of N(z). O

2For simplicity, we consider the height of the formula BT ({X; = a}) to be 1.

@ Springer

Ann Oper Res (2011) 184: 179-207 199

Theorem 3 Algorithm 5 enforces DC on the WEIGHTEDGRAMMAR (G, W, z, [Xy, ..., X,,])
constraint in time O (n?|G|?).

Proof Correctness. This follows from Lemmas 7, which means that the lower bounds are
computed correctly, and 6, which implies that the upper bounds are computed correctly.
Complexity. The time complexity of the Earley parser is O(n*|G|?). The overhead of
constructing a S-WDNNTF is constant at each step, as exactly one node is generated at each
step. Thus, the complexity of lines 2-21 is O (n*|G|?). By the same argument, the number
of nodes of the constructed S-WDNNFis O (n*|G|*). Moreover, this S-WDNNFis a binary
DAG, so the number of edges is also O(n*|G|?). The cost of the rest of the algorithm is
dominated by the call to S-WDNNF-upperbound, whose cost is linear in the size of the
S-WDNNF, thus O (n%|G|?). g

5 Decomposition of the weighted GRAMMAR constraint

As was shown in Sects. 4 and 4.2, these filtering algorithms generate a S-WDNNF. The size
of the sS-WDNNFproduced by the WCYK-alg is smaller by a factor of O(|G|), therefore
we use it to construct a decomposition of the WEIGHTEDGRAMMAR constraint.

Lemma 8 The size of the S-WDNNFN (z) = WCY Kyyr(G, W, z, [X1,..., X)) is in
o n3|G)).

Proof We show that the number of edges in WCY Kyyr(G, W, z, [X1, ..., X,]) is O(n*|G|).

Observe first that in order to enforce the smoothness property on N(z) we replace each
occurrence of a literal X; = a with the conjunction of it and the literals X; # b, b # a. The
total size of these subgraphs over all literals is n|%| < n|G|. This does not affect the size of
the rest of the DAG.

By assumption the grammar G is in Chomsky Normal Form. Therefore, any AND-NODE
in the graph has at most two children. Let P be the number of non terminals and f (P) be the
number of productions of the form P — AB. Then the number of OR-NODESin the graph
equals the number of non terminals in V. The number of children of an OR-NODEfor a non-
terminal P is O(n) f (P) =nO(|G]). But over all non-terminals in G,)_,_; f(P) =|G]|,
therefore the total number of children of all OR-NODESIn a cell of V over all non-terminals
is O(n))" pc = O(n|G|). Hence, the total number of edges in the graph is ow’G). O

If the constraint propagator invokes constraints in the decomposition in the same order
as we compute the table V, this takes O (n?|G|) time. For simpler grammars, propagation
is faster. For instance, as in the unweighted case, it takes just O(n|G|) time on a regular
grammar.

6 The soft GRAMMAR constraint

We can use the WEIGHTEDGRAMMAR constraint to encode a soft version of GRAMMAR
constraint which is wuseful for modelling over-constrained problems. The soft
GRAMMAR(G, z,[X}, ..., X,]) constraint holds if and only if the string [X,..., X,]
is at most distance z from a string in G. We consider both Hamming and edit dis-
tances. We encode the soft GRAMMAR(G,z,[X},..., X,]) constraint as a weighted

@ Springer

200 Ann Oper Res (2011) 184: 179-207

GRAMMAR(G', W, z, [Xy, ..., X,]) constraint. For Hamming distance, for each production
A — a € G, we introduce additional unit weight productions to simulate substitution:

{A—b,WA—bl=1|A—>aecG,A—>b¢G,be3)

Existing productions have zero weight. For edit distance, we introduce additional produc-
tions to simulate substitution, insertion and deletion:

{A—> b, W[A—>b]l=1|A—>acG,A—>b¢G,beT}U
{A—> e, W[A—>¢]l=1|A—>aeG,ae Z}U
{A— Aa, W[A —> Aal=1|a € Z}U
{A—>aA, W[A - aA]l=1la € X}

To handle ¢ productions we modify Algorithm 4 so loops in lines 7, 29 run from O to j.

7 Counting for the GRAMMAR constraint

In has been shown that counting the strings of a specific length n that are accepted by a
grammar G is #P-complete. This follows from the fact that N FA is a subclass of context
free grammars. However, it is known that there exist restrictions of context free grammars
for which counting the number of strings of a given length is tractable. For instance, count-
ing the solutions of a Regularpg, constraint can be done in time O(nd Q) (Zanarini and
Pesant 2007). Counting for unambiguous grammars is also polynomial. Moreover, there
exist polynomial time approximation algorithms even for the general case.

The connection between parsing and S-WDNNFallows us to use algorithms developed
in the knowledge compilation field to perform counting. We show first that if the grammar
is unambiguous, then the corresponding S-WDNNFis also deterministic, i.e., the formu-
las represented by the children of each OR-NODESare mutually exclusive (see Jung 2008
for more). We can then use the algorithms developed in Darwiche and Marquis (2002) to
compute the number of satisfying assignments of the GRAMMAR or WEIGHTEDGRAMMAR
constraint as well as the number of satisfying assignments that contain each literal.

Theorem 4 Let D be the DNNFobtained from running the CYK algorithm for a gram-
mar G. Then if G is unambiguous then D is deterministic.

Proof Assume G is unambiguous but D is not deterministic. This means that there exists
a model m of D and an OR-NODE n = (i, j, A) such that two of children are true at the
same time. Let ny = (i, j,k, A > BC), n, = (i, j,k', A — DE) be the two children that
are true. Then A — BC can generate the substring at positions i ...7 4+ j and so can A —
DE. So in any parse tree that uses the production A — BC to generate the substring at
positions i ...i + j, we can substitute the production A — DE. This means that the string
s that corresponds to m can be generated in two different ways. This would imply that G is
ambiguous, a contradiction. O

Note that this result does not hold in the other direction: if D is deterministic, it may be
the case that G is unambiguous for strings of length exactly n but not for longer or shorter
strings.

Finally, it has been shown in Bertoni et al. (2000) that for grammars with bounded am-
biguity there exists a randomized approximation algorithm that runs in O (n>logn) time.

@ Springer

Ann Oper Res (2011) 184: 179-207 201

8 Applications of the WEIGHTEDGRAMMAR constraint

In this section we consider several applications of the WEIGHTEDGRAMMAR constraint in
modeling and solving constraint satisfaction problems.

Shift scheduling problems. Constraint programming has been successfully applied to
shift scheduling (Pesant 2004; Demassey et al. 2006; Quimper and Walsh 2007). In a
shift scheduling problem we need to generate an optimum schedule of shifts for a com-
pany so that two types of constraints are satisfied: labor demand constraints that make
sure that the number of available workers meet labor requirements at each time point;
and scheduling constraints that ensure that standard regulation rules are fulfilled. The
optimization function typically expresses some combination of the total cost of produc-
tion, incentives provided by the business and employees’ preferences. Labor demand con-
straints are straightforward to model with cardinality constraints. On the other hand, real
world regulation rules can often be cumbersome and difficult to express. One way to
encode these rules is to represent them with a finite automaton (Pesant 2004). In prac-
tice, the resulting automaton can be very large which leads to large memory consump-
tion and slows down search (Quimper and Walsh 2007). Alternatively, regulation rules
can be represented in a succinct way using the GRAMMAR constraint (Sellmann 2006;
Quimper and Walsh 2006), an approach that was shown to be effective in Quimper and
Walsh (2007), Kadioglu and Sellmann (2008). The drawback of the models described above
for shift scheduling problems is that there is little interaction between the problem con-
straints and the optimization function. The expressiveness of the WEIGHTEDGRAMMAR
constraint significantly improves this situation as the following examples show.

The WEIGHTEDGRAMMAR constraint allows us model employee’s preferences. Sup-
pose there is an employee that prefers day shifts to night shifts. To model these preferences
we penalize with the unit weight night shift assignments to this employee. We also put a
bound k on the total number of night shift assignments by fixing the upper bound of the
cost variable z. In this way we make sure that the employee will not work more than k night
shifts in a schedule. In a similar way we can model an incentive to an employee. Suppose
the business has to pay extra salary s for a night shift on public holidays. To model this
constraint we increase the weight of the corresponding leaves the AND/OR graph by s.

The WEIGHTEDGRAMMAR constraint can also be used to model bonus payments for
specific activities. Suppose the employer wants to provide incentives for employees to work
longer hours. Let the grammar that represents regulation rules include the following rule:
W — WW|W, W — a. The non-terminal W (ork) generates sequence working activities for
an employee. Hence, an occurrence of a non-terminal W at the ith level of the AND/OR
graph indicates that an employee performed i consecutive activities. If, for example, the
salary of an employee increases by s for each activity performed after the 5th consecutive
activity, we can model this by increasing by s the weight of W at the 5th level or higher in
the AND/OR graph as we describe in Sect. 4.

Finally, for some forms of objective functions, we can use the WEIGHTEDGRAMMAR
constraint to construct the conjunction of the optimization function and the GRAMMAR con-
straint without requiring an additional modeling step. This was described more extensively
in Sect. 4 and is also considered in our empirical evaluation.

Over-constrained problems. A lot of real world problems are over-constrained so it is

impossible to satisfy all requirements. In this case some constraints have to be relaxed in
order to construct a feasible schedule. Therefore, problem constraints are usually partitioned

@ Springer

202 Ann Oper Res (2011) 184: 179-207

into hard and soft constraints. Hard constraints have to be satisfied while soft constraints
accept an assignment that is close to a valid assignment by some violation measures. Some
commonly used violation measures include the Hamming and edit distances. Consider again
shift scheduling problems. Let the problem description include a regulation rule that requires
that the schedule of an employee covers at most s activities. An employer might prefer
to relax this requirement at a cost rather than hire more employees. The soft GRAMMAR
constraint with a Hamming distance violation measure can be used to model the relaxed
regulation rule. The soft GRAMMAR constraint generates a schedule that ensures that each
employee will have to work at most k hours of overtime.

Constraint based local search. Local search performs two main operations: finds possible
candidates to move to at the next step (the neighborhood) and evaluates these candidates
based on a cost function to select the best one. In constraint based local search the cost
function depends on the cost of each individual problem constraint.

As was pointed out (van Hoeve 2009), cost functions are closely related to violation
functions for soft global constraints. The violation functions for soft global constraints can
be used to compute the gradient of a constraint cost function that is used choose a vari-
able value pair that yields the greatest decrease of the constraint violation. Therefore, the
soft GRAMMAR constraint can be used to compute the gradient in the GRAMMAR con-
straint in constraint based local search, similarly to other constraints, e.g. ALLDIFFERENT
or SEQUENCE constraints (Van Hentenryck and Michel 2005).

Soft global constraints are also used to reduce the search space of possible candidates
for the next move. It was shown in Métivier et al. (2009) that using soft global constraints,
like the soft REGULAR or the soft GCC constraints, significantly speeds up solving nurse
scheduling problems (NSP). In a similar way the soft GRAMMAR constraint can be used to
express regulation rules in NSP.

Edit distance constraint. Another interesting application of the WEIGHTEDGRAMMAR
constraint was proposed in Katsirelos et al. (2009). The weighted grammar constraint was
used to represent the EDITDISTANCE constraint. The EDITDISTANCE([X, ..., X,,
Yy, ..., Y], N) constraint holds iff the edit distance between assignments of two sequences
of variables X and Y is less than or equal to N. This constraint can be encoded as a weighted
linear context free grammar. This encoding allows us to obtain automatically a domain con-
sistency propagator for the EDITDISTANCE constraint. Moreover, it allows us to build a
conjunction of the EDITDISTANCE constraint with REGULAR constraint and obtain a effi-
cient DC propagator for the conjunction.

9 Experimental results

In this section, we evaluate the impact of the WEIGHTEDGRAMMAR constraint in practice.
For this evaluation, we chose a set of shift-scheduling benchmarks (Demassey et al. 2005;
Cote et al. 2007) that have been commonly used before to show the utility of GRAMMAR
constraints (Quimper and Walsh 2007; Kadioglu and Sellmann 2008). We show that the
weighted GRAMMAR constraint is efficient for solving these problems, because it allows
propagating the conjunction of a GRAMMAR and the objective function of a shift scheduling
problem.

A personal schedule is subject to various regulation rules, e.g. a full-time employee has
to have a one-hour lunch. These rules are encoded into a context-free grammar augmented

@ Springer

Ann Oper Res (2011) 184: 179-207 203

with conditional productions (Quimper and Walsh 2007; Quimper and Louis-Martin 2007).
A schedule for an employee has n = 96 15-minute slots represented by n variables. In each
slot, an employee can work on an activity (a;), take a break (b), lunch () or rest (r). These
rules are represented by the following grammar:

S— RPR, fp(i,j)=13<j<24, P—> WbW,L—IL|, fL(i,j)=j=4
S— RFR, fr(i,j)=30<j<38, R—>rRlr, WA, fw@i,j)=j=4
A; — a;Aila;, fa(i, j)=open(i), F— PLP

where functions f (i, j) are restrictions on productions and open(i) is a function that returns
1 if the business is opened at i th slot and 0 otherwise. To model labour demand for a slot we
introduce Boolean variables x (i, j, a;), equal to 1 if jth employee performs activity a; at ith
time slot. For each time slot i and activity a; we post a constraint Z_’;;l x(i, j,ar) > d(,a),
where m is the number of employees. We break row-symmetry with a LEX constraint.

Finally, we used a static variable and value ordering as described in Quimper and
Walsh (2007). We assign variables top down and from left to right. The value ordering
isr,b,l,al,a2. The goal is to minimize the number of slots in which employees work.

We used Gecode 2.0.1 for our experiments and ran them on an Intel Xeon 2.0 GHz with
4 Gb of RAM. In the first set of experiments, we used the WEIGHTEDGRAMMAR(G, z;, X),
j=1,...,m with zero weights.

First we investigate whether the filtering algorithm for the WEIGHTEDGRAMMAR con-
straint introduces an overhead compared to the unweighted GRAMMAR constraint. For this
purpose, we define the weight function as follows

WP) {0 iff (i, j) =1
+oo iff (i, j)=0

Our monolithic propagator gave similar results to the unweighted GRAMMAR propagator
from (Quimper and Walsh 2007). Decompositions of the WEIGHTEDGRAMMAR constraint
were slower than decompositions of the unweighted GRAMMAR constraint as the former
uses integers instead of Booleans. Therefore, using the WEIGHTEDGRAMMAR constraint
does not lead to a significant slowdown even if it does not achieve any extra pruning com-
pared to GRAMMAR.

In the second set of experiments, we investigate whether propagating the conjunction of
the GRAMMAR constraint and the objective function can achieve additional pruning. In or-
der to do this, we augment the first model with additional constraints. We assigned weights
to the productions of the grammar as described in Sect. 4. Specifically, we assigned weight
1 to activity productions, like A; — a;. The objective function is thus reduced to Z';':l Zj-
We recall that Z;":, z; is the number of slots in which employees worked. Results are pre-
sented in Table 1.

As can be seen from Table 1, we improved on the best solution found in the first model
in 4 benchmarks and proved optimality in one. This shows that propagating the conjunction
of the GRAMMAR constraints and the objective function pays off in terms of the runtime
improvements. The decomposition of the WEIGHTEDGRAMMAR constraint was slightly
slower than the monolithic propagator. As was shown in Sect. 3.2, the time complexity
of the decomposition is the same as the complexity of the monolithic propagator if the
decomposition constraints are invoked in a particular order. However, we cannot enforce this
ordering in the solver. It was also pointed out that some constraints become irrelevant during
the search, but they are not entailed. Therefore, they present an overhead. We eliminate this

@ Springer

204 Ann Oper Res (2011) 184: 179-207

Table 1 All benchmarks have a one-hour time limit. |A| is the number of activities, m is the number of
employees, cost shows the total number of slots in which employees worked in the best solution, time is the
time to find the best solution, b7 is the number of backtracks to find the best solution, BT is the number of
backtracks in one hour, Opt shows if optimality is proved, Imp shows if a lower cost solution is found by the
second model

|A] # m Monolithic Decomposition Decomposition + entailment Opt Imp
cost time bt BT cost time bt BT cost time bt BT
1 2 4107 5 0 8652 107 7 0 5926 107 7 0 11521
1 3 6148 7 1 5917 148 34 1 1311 148 9 1 8075
1 4 6 152 1836 5831 11345 152 1379 5831 14815 152 1590 5831 13287
1 5 59 6 0 8753 96 6 0 2660 96 3 0 45097
1 6 6 - - - 10868 132 3029 11181 13085 132 2367 11181 16972
1 7 819 16 16 10811 196 18 16 6270 196 15 16 10909
1 8§ 38 11 9 66 82 13 9 66 82 5 9 66 WAV
1 10 9 - - - 10871 - - - 9627 - - - 18326
2 1 5100 523 1109 7678 100 634 1109 6646 100 90 1109 46137
2 210 - - - 11768 - - - 10725 - - - 6885
2 3 6 165 3517 9042 9254 168 2702 4521 6124 165 2856 9042 11450 N
2 411 - - - 8027 - - - 6201 - - - 5579
2 5 492 37 118 12499 92 59 118 6332 92 49 118 10329
2 6 5107 9 2 6288 107 22 2 1377 107 14 2 7434
2 8 5 126 422 1282 12669 126 1183 1282 3916 126 314 1282 16556 Vv
2 9 3 76 1458 3588 8885 76 2455 3588 5313 76 263 3588 53345 v
2 10 8- - - 3223 - - - 3760 - - - 8827

redundant computation by annotating these constraints with an additional entailment test
that is specific to S-WDNNF (see Sect. 3.2). If this test succeeds the solver ignores them in
the remainder of the current branch. Table 1 shows that redundant computation contributes a
significant overhead and the additional entailment test improves performance in most cases,
making the decomposition slightly faster than the monolithic propagator.

10 Related work

Knowledge compilation languages like decomposable NNF have been extensively studied in
Darwiche and Marquis (2002). Fargier and Marquis have generalized negation normal form
to valued negation normal form (Fargier and Marquis 2007). This replaces the AND and
OR with an arbitrary valuation structure. It can thereby represent a wider range of functions.
One instance of valued negation normal form is the weighted negation normal form studied
here. Binary decision diagrams (BDDs) are another special case of decomposable negation
normal form. A number of generalizations of BDDs have been proposed to include weights
and probabilities. For instance, weighted decision diagrams (WDDs) augment each edge
with a weight function (Ossowski and Baier 2006). WDDs subsume edge-valued decision
diagrams and normalized algebraic decision diagrams. They have been used for problems
like probabilistic model checking.

Quimper and Walsh (2006) and Sellmann (2006) independently proposed the global
Grammar constraint. Both gave a monolithic propagator based on the CYK parser. Quimper

@ Springer

Ann Oper Res (2011) 184: 179-207 205

and Walsh also gave a monolithic propagator based on the Earley chart parser. Whilst the
CYK propagator takes ® (n’) time, the propagator based on the Earley chart parser takes
just O (n?) time to run and is not restricted to grammars in Chomsky normal form.

Quimper and Walsh gave a simple AND/OR decomposition of the Grammar constraint
based on the CYK parser which can be encoded into SAT (Quimper and Walsh 2007). This
decomposition can easily be mapped into decomposable NNF. Unit propagation on this
decomposition will prune all possible values in the same asymptotic time as the mono-
lithic propagator. Our decomposition of the S-WDNNFconstraint (and, by extension, of the
WEIGHTEDGRAMMAR constraint) can be seen as a generalization of this Boolean decom-
position.

Cost based GRAMMAR constraints (CFGC) were independently proposed by Kadio-
glu and Sellmann (2008). The difference between this work and ours is that in Kadioglu
and Sellmann (2008) weights can only be placed on individual terminals. Here, we allow
weights to be placed on any production and therefore WEIGHTEDGRAMMAR is more ex-
pressive than CFGC. For instance, we can express the Soft GRAMMAR constraint with the
edit distance violation measure using the weighted GRAMMAR constraint, but we can not
encode this constraint with the CFGC constraint.

Demassey, Pesant and Rousseau proposed the COSTREGULAR constraint (Demassey
et al. 2006) that shares a lot of advantages of the weighted GRAMMAR constraint. However,
it is a well known result from formal language theory that not all context free languages
can be expressed as regular languages; moreover, when restricted to fixed length strings,
there exist languages that can be expressed by polynomial sized context free grammars but
the smallest regular language that accepts these languages is exponential in size. One such
example is the palindrome language (Sellmann 2006).

Coté, Gendron, Quimper and Rousseau have proposed a mixed-integer programming
(MIP) encoding of the Grammar constraint (Cote et al. 2007). This MIP encoding has one
significant difference with the previous approaches. If there is more than one parsing for a
sequence, it picks one arbitrarily whilst the previous propagator keeps all. This simplifies
the MIP encoding without changing the set of solutions since only one parsing is needed
to show membership in a context-free grammar. Experiments on a shift scheduling problem
show that such MIP encodings are highly competitive.

11 Conclusions

We have introduced a weighted form of the GRAMMAR constraint. The GRAMMAR con-
straint is useful to specify a wide range of scheduling, rostering and sequencing prob-
lems. It restricts the values taken by a sequence of variables to be a string from a lan-
guage defined by a given grammar. The addition of weights permits us to model over-
constrained problems and problems with preferences. We have proposed two propagators
for the WEIGHTEDGRAMMAR constraint based on the CYK and Earley parsers. We have
also proposed a decomposition of the WEIGHTEDGRAMMAR constraint into some sim-
ple arithmetic constraints. Experiments on a shift-scheduling benchmark suggest that the
WEIGHTEDGRAMMAR constraint has promise for solving real-world problems. Finally, we
have studied the problem of counting solutions to the WEIGHTEDGRAMMAR constraint,
including some special cases like unambiguous grammars. Our analysis of these propa-
gators and of these counting problems was greatly simplified by constructing an equiva-
lent weighted negation normal form formula. Weighted negation normal form is a special
case of valued negation normal form (Fargier and Marquis 2007). It appears to be a useful

@ Springer

206 Ann Oper Res (2011) 184: 179-207

knowledge compilation language, being both very expressive yet having several tractable
fragments, especially decomposable weighted NNF. We intend to study in greater detail
properties of this language, and to use it in the analysis and construction of propagators and
decompositions for other global constraints.

Acknowledgements We would like to thank Louis-Martin Rousseau and Claude-Guy Quimper for provid-
ing us with the benchmark data, and Claude-Guy Quimper for his help with the experiments.
We are grateful to the anonymous referees for their comments that helped to improve the paper.

References

Bertoni, A., Goldwurm, M., & Santini, M. (2000). Random generation and approximate counting of ambigu-
ously described combinatorial structures. In STACS 2000, 17th annual symposium on theoretical aspects
of computer science: Vol. 1770 (pp. 567-580). Berlin: Springer.

Cote, M. C., Bernard, G., Claude-Guy, Q., & Louis-Martin, R. (2007). Formal languages for integer pro-
gramming modeling of shift scheduling problems. In TR.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial Intelligence Re-
search, 17, 229-264.

Demassey, S., Pesant, G., & Rousseau, L. M. (2005). Constraint programming based column generation
for employee timetabling. In Second international conference, CPAIOR 2005: Vol. 3524/2005, Prague,
Czech Republic (pp. 140-154).

Demassey, S., Pesant, G., & Rousseau, L. M. (2006). A cost-regular based hybrid column generation ap-
proach. Constraints, 11(4), 315-333.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the ACM, 13(2), 94-102.

Eén, N., & Sorensson, N. (2006). Translating pseudo-boolean constraints into sat. Journal on Satisfiability,
Boolean Modeling and Computation 2, 1-26.

Fargier, H., & Marquis, P. (2007). On valued negation normal form formulas. In M.M. Veloso (Ed.), Proceed-
ings of the 20th international joint conference on artificial intelligence (IJCAIO7), Hyderabad, India
(pp. 360-365).

Gore, V., Jerrum, M., Kannan, S., Sweedyk, Z., & Mahaney, S. (1997). A quasi-polynomial-time algorithm
for sampling words from a context-free language. Information and Computation, 134(1), 59-74.

Hopcroft, J. E., & Ullman, J. D. (1990). Introduction to automata theory, languages, and computation.
Boston: Addison-Wesley, Longman.

Jung, J. C. (2008). Value ordering based on solution counting. PhD thesis, University Nova de Lisboa.

Kadioglu, S., & Sellmann, M. (2008). Efficient context-free grammar constraints. In: Proceedings of the 23rd
national conference on artificial intelligence (pp. 310-316).

Katsirelos, G., Narodytska, N., & Walsh, T. (2008). The weighted cfg constraint. In Integration of AI and
OR techniques in constraint programming for combinatorial optimization problems, 5th international
conference, CPAIOR 2008: Vol. 5015, Paris, France (pp. 323-327). Berlin: Springer.

Katsirelos, G., Maneth, S., Narodytska, N., & Walsh, T. (2009). Restricted global grammar constraints. In
Proceedings of the 15th international conference on principles and practice of constraint programming,
CP 2009: Vol. 5732, Lisbon, Portugal (pp. 501-508). Berlin: Springer.

Métivier, J. P., Boizumault, P, & Loudni, S. (2009). Solving nurse rostering problems using soft global
constraints. In Proceedings of the 15th international conference on principles and practice of constraint
programming, CP 2009: Vol. 5732, Lisbon, Portugal (pp. 73-87). Berlin: Springer.

Ney, H. (1991). Dynamic programming parsing for context-free grammars in continuous speech recognition.
IEEE Transactions on Signal Processing, 39(2), 336-340.

Ossowski, J., & Baier, C. (2006). Symbolic reasoning with weighted and normalized decision diagrams.
In: Proceedings of the 12th symposium on the integration of symbolic computation and mechanized
reasoning: Vol. 151 (pp. 39-56).

Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In M. Wallace
(Ed.), Proceedings of 10th international conference on principles and practice of constraint program-
ming (CP’04): Vol. 3258 (pp. 482-495). Berlin: Springer.

Quimper, C. G., & Louis-Martin, R. (2007). A large neighbourhood search approach to the multi-activity
shift scheduling problem. In 7R.

Quimper, C. G., & Walsh, T. (2006). Global Grammar constraints. In F. Benhamou (Ed.), Proceedings of
the 12th international conference on principles and practice of constraint programming: Vol. 4204
(pp- 751-755). Berlin: Springer.

@ Springer

Ann Oper Res (2011) 184: 179-207 207

Quimper, C. G., & Walsh, T. (2007). Decomposing global grammar constraints. In Proceedings of the 13th
international conference on principles and practice of constraint programming, CP 2007.

Sellmann, M. (2006). The theory of Grammar constraints. In Proceedings of the 12th international conference
on the principles and practice of constraint programming (CP06): Vol. 4204 (pp. 530-544). Berlin:
Springer.

Van Hentenryck, P., & Michel, L. (2005). Constraint-based local search. Cambridge: The MIT Press.

van Hoeve, W. J. (2009). Soft global constraints, tutorial at principles and practice of constraint programming.
In CP 2007, 15th international conference.

Walsh, T. (2000). Sat v csp. In R. Dechter (Ed.), Principles and practice of constraint programming—CP
2000, 6th international conference, Singapore: Vol. 1894 (pp. 441-456). Berlin: Springer.

Zanarini, A., & Pesant, G. (2007). Solution counting algorithms for constraint-centered search heuristics.
In C. Bessiere (Ed.), Principles and practice of constraint programming—CP 2007, 13th international
conference: Vol. 4741, Providence, RI, USA. Berlin: Springer.

@ Springer

	The weighted Grammar constraint
	Abstract
	Introduction
	Background
	Weighted NNF
	The s-WDNNF constraint
	Decomposition of a s-WDNNF constraint
	Counting in s-WDNNF

	The weighted Grammar constraint
	Propagator based on the CYK parser
	Propagator based on the Earley parser

	Decomposition of the weighted Grammar constraint
	The soft Grammar constraint
	Counting for the Grammar constraint
	Applications of the WeightedGrammar constraint
	Shift scheduling problems.
	Over-constrained problems.
	Constraint based local search.
	Edit distance constraint.

	Experimental results
	Related work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

