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Abstract This work presents an integer programming formulation for an important

variant of the Class-Teacher Timetabling problem, which considers the satisfaction of

teacher preferences and also the proper distribution of lessons throughout the week.

The formulation contains a very large number of variables and is enhanced by cuts.

Therefore, a cut and column generation algorithm to solve its linear relaxation is pro-

vided. The lower bounds obtained are very good, allowing us to prove the optimality

of previously known solutions in three formerly open instances.

Keywords Integer Programming · Timetabling · Column Generation · Cut Generation

1 Introduction

The Class-Teacher Timetabling Problem (CTTP) concerns scheduling a set of encoun-

ters between teachers and classes over a set of periods, typically covering five week days,

satisfying a set of constraints. The basic constraints that must be satisfied are: (i) avoid

conflicts in each period: no teacher should be allocated to more than one class and no

class should receive more than one teacher; (ii) consider the periods of unavailability of

each teacher; and (iii) allocate the right number of periods for each teacher-class pair.

This classical version of the CTTP [18] was shown to be NP-Complete [17].

The manual construction of timetables in educational institutions is often a labo-

rious and time-consuming task. Besides the basic constraints, a good timetable should

consider many other requirements, such as institutional, pedagogical and personal (staff

related) needs. In fact, the criteria that define the quality and even the feasibility of

a timetable often depends on the specific educational system. However, some common

assumptions are made in most works in the literature. For example, timetable compact-

ness: teachers prefer having all their classes concentrated in as few days of the week as

possible. Even in a single day, “holes”, periods of inactivity between two classes, should

be avoided. The compactness requirements are particularly important in countries (like

Brazil) where teachers may work in more than one institution. Those requirements were

considered in [11,26,3,10,9,14,20,4,13,23,15,28]. In most of these works, compactness
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is treated as a soft constraint [16], i.e., this is actually considered in the objective func-

tion as a measure to evaluate timetables. The solution space definition, specified by

the hard constraints, usually does not include many other constraints besides the above

mentioned basic constraints. Another very common type of soft constraint in school

timetabling is related to the length of the lessons: for some teacher-class pairs it is in-

teresting to have at least a certain number of double lessons, where the teacher lectures

to the same class for two consecutive periods [26,11,28,27]. On the other hand, one

should avoid more than one lesson (excepting double lessons) to a class by the same

teacher in a single day. This paper proposes a new formulation that considers these

timetabling goals and constraints. It is formally described in Section 2 and we name it

the Class-Teacher Timetabling Problem with Compactness Constraints (CTTPC).

Since exact methods, which try to find proven optimal solutions, can demand un-

realistic amounts of processing time on most timetabling variants, the development of

heuristics which are effective in practice has received much attention from researchers.

In this sense, sophisticated metaheuristics have been developed to try to tackle real

world problems. These methods include Simulated Annealing [1], Evolutionary Algo-

rithms [14,10,2], Tabu Search [11,26,10,28] and some of their hybrids. No theoretical

performance guarantees are available for those heuristics and their evaluation strongly

depends on empirical results. In many works, the quality of the proposed timetables is

measured by their acceptance by the educational institution, which is very subjective.

Ideally, every new heuristic should be compared with previously proposed methods

over an established set of representative benchmark instances. Unfortunately, this is

not yet the case in CTTPs. In fact, each group of authors considers different variants

of the problem (sometimes only slightly different), making such comparisons difficult.

There is another way of evaluating the quality of a timetabling heuristic: compar-

ing the solutions costs with dual bounds. Suppose that one seeks timetables minimiz-

ing weighted penalties for violating soft constraints. In this minimization case, dual

bounds are valid lower limits on the cost of an optimal solution. Dual bounds can be

often obtained from solving the linear programs obtained by removing the integral-

ity constraints of a Mixed Integer Programming (MIP) formulation of the timetabling

problem. However, the quality of these limits varies significantly depending on the

formulation used. Compact formulations (those without too many variables and con-

straints) of timetabling problems usually yield poor dual bounds.

Two of the most used MIP techniques for improving dual bounds on hard combina-

torial optimization problems are cut and column generation. This work explores both

techniques for producing high quality dual bounds for CTTPC instances. A novel fea-

ture in this kind of algorithm is introduced: the use of Fenchel cuts over knapsack-like

constraints induced by the columns.

The paper is organized as follows: Section 2 formally introduces the problem by

presenting a compact formulation, Section 3 introduces the extended formulation, de-

tailing the cut and column generation procedures. In Section 4 computational exper-

iments with the different formulations are presented. Finally, Section 5, contains the

conclusions.
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2 A Compact Formulation

The compact formulation for the CTTPC will be helpful to formally describe the

problem and for comparisons with the extended formulation presented later. Consider

first the following problem data:

– D: set of week days;

– P : set of periods by day. It is assumed that all days have the same number of

periods, numbered from 1 to |P |;
– T : set of teachers;

– T̃|T |×|D|×|P |: teachers’ availability matrix, where t̃tdp = 1 indicates that teacher t

is available for teaching at day d and period p, t̃tdp = 0 otherwise;

– C: set of classes;

– R̃|T |×|C|: requirements matrix, where r̃tc indicates how many lessons teacher t must

teach to class c;

– M̃|T |×|C|: daily limits matrix, where m̃tc indicates the maximum number of lessons

that teacher t can teach to class c in one day;

– bG|T |×|D|: inferred from T̃ , subset bGtd ⊂ P of periods in teacher’s t agenda at day

d which can be the start of a double lesson;

– G̃|T |×|C|: double lesson requests matrix, where g̃tc indicates how many double

lessons are requested by teacher t for lessons with class c, must be compatible with

M̃ ;

– W ′|T |: penalty vector, where w′t indicates the cost of a work day in teacher’s t

agenda;

– W ′′|T |: penalty vector, where w′′t indicates the cost of a hole in teacher’s t agenda;

– W ′′′|T |: penalty vector, where w′′′t indicates the cost of not satisfying a double lesson

request of teacher t.

Additionally, consider the following decision variables:

xtcdp =

(
1 if teacher t is teaching to class c at day d and period p

0 otherwise

This way, the CTTPC can be formulated as a MIP, which will be denoted here by

F1:
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minimize X
t∈T

X
d∈D

w′tvtd +
X
t∈T

X
d∈D

w′′t htd +
X
t∈T

X
c∈C

w′′′t gtc (1)

subject toX
d∈D

X
p∈P

xtcdp = r̃tc ∀t ∈ T, c ∈ C (2)

X
t∈T

xtcdp ≤ 1 ∀c ∈ C, d ∈ D, p ∈ P (3)

X
c∈C

xtcdp ≤ t̃tdp ∀t ∈ T, d ∈ D, p ∈ P (4)

X
p∈P

xtcdp ≤ m̃tc ∀t ∈ T, c ∈ C, d ∈ D (5)

vtd ≥
X
c∈C

xtcdp ∀t ∈ T, d ∈ D, p ∈ P (6)

atd ≤ (|P |+ 1)− (|P |+ 1− p)
X
c∈C

xtcdp ∀t ∈ T, d ∈ D, p ∈ P (7)

atd ≥ p
X
c∈C

xtcdp ∀t ∈ T, d ∈ D, p ∈ P (8)

htd ≥ atd − atd + vtd −
X
c∈C

X
p∈P

xtcdp ∀t ∈ T, d ∈ D (9)

ytcdp ≤ xtcdp ∀t ∈ T, c ∈ C, d ∈ D, p ∈ bGtd (10)

ytcdp ≤ xtcdp+1 ∀t ∈ T, c ∈ C, d ∈ D, p ∈ bGtd (11)

gtc ≥ g̃tc −
X
d∈D

X
p∈ bGtc

ytcdp ∀t ∈ T, c ∈ C (12)

atd ≥ 0 ∀t ∈ T, d ∈ D (13)

atd ≥ 0 ∀t ∈ T, d ∈ D (14)

gtc ≥ 0 ∀t ∈ T, c ∈ C (15)

htd ≥ 0 ∀t ∈ T, d ∈ D (16)

ytcdp ≥ 0 ∀t ∈ T, c ∈ C, d ∈ D, p ∈ bGtd (17)

vtd ≥ 0 ∀t ∈ T, d ∈ D (18)

xtcdp ∈ {0, 1} ∀t ∈ T, c ∈ C, d ∈ D, p ∈ P (19)

In this formulation, Constraints (2) ensure the required number of meetings between

teacher and classes throughout the week; (3) avoid conflicts in classes timetables; (4)

impose respect for teachers’ availability and forbid conflicts in teachers’ timetables;

(5) limit the number of lessons for each teacher and class pair per day; (6) link each

variable vtd, which indicates if there is some activity for teacher t in a day d, to the

decision variables x. The number of holes for a given teacher t at day d is measured

by variables htd, linked to variables atd and atd that indicate, respectively, the first

and the last period with some class for that teacher in that day. All those variables are

connected with the decision variables by Constraints (7), (8), and (9). The existence

of a double lesson for teacher t and class c starting at day d and period p is indicated
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by variables yptdp, present in Constraints (10) and (11). Finally, the non-satisfaction

of the minimal number of double lessons throughout the week for teacher t and class c

is measured by variables gtc, in Constraints (12).

Although F1 is a weak formulation, a simple and effective cut can be added to

improve its lower bound, considering the minimum number of working days for teachers,

as proposed by [27]:X
d∈D

vtd ≥ max

‰P
c∈C r̃tc

|P |

ı
,max

c∈C

‰
r̃tc
m̃tc

ıffff
∀t ∈ T. (20)

The first term in the maximum can be possibly improved by considering that teachers

may not be available for |P | periods on all days.

3 The Extended Formulation

In this section an alternative formulation to the CTTP will be presented, which has

a very large number of variables. This reformulation approach is often used to obtain

linear relaxations giving better bounds and also less prone to symmetry problems [6].

We further strength this formulation by including an exponential number of constraints,

thus it will require a cut and column generation algorithm for its solution.

The proposed formulation will be denoted by F2. Consider, besides data presented

in Section 2, that T̆td is the set of all possible non-empty class allocations for teacher t

in workday d. For every j ∈ T̆td, define x̆tdjcp as the binary constant which indicates if

teacher t teaches in day d to class c in period p of allocation j; the cost ctdj is given by

w′t plus the number of holes in allocation j times w′′t ; and define ğtdjc as the number of

double lessons for teacher t and class c included in allocation j. The decision variable

λtdj indicates if allocation j will be selected for the work day d of teacher t. This way,

F2 is:

minimize X
t∈T

X
d∈D

X
j∈T̆td

ctdjλtdj +
X
t∈T

X
c∈C

w′′′t gtc (21)

subject toX
j∈T̆td

λtdj ≤ 1 ∀t ∈ T, d ∈ D (22)

X
t∈T

X
j∈T̆td

x̆tdjcpλtdj ≤ 1 ∀c ∈ C, d ∈ D, p ∈ P (23)

X
d∈D

X
p∈P

X
j∈T̆td

x̆tdjcpλtdj = r̃tc ∀t ∈ T, c ∈ C (24)

X
d∈D

X
j∈T̆td

ğtdjcλtdj + gtc ≥ g̃tc ∀t ∈ T, c ∈ C (25)

gtc ≥ 0 ∀t ∈ T, c ∈ C (26)

λtdj ∈ {0, 1} ∀t ∈ T, d ∈ D, j ∈ T̆td (27)

Constraints (22) ensure that at most one allocation is selected by teacher and

day; (23) avoid conflicts in classes; (24) enforce the number of lessons for each teacher
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and class. Constraints (25) measure, with auxiliary variables gtc, the number of non-

satisfied double lessons requests for a teacher t on class c. Although the large number

of variables in F2 may prohibit its direct use, the exact solution of the linear relaxation

of F2, denoted here by F2r, can be done by column generation [12]. For this technique,

one starts with a small subset of columns in the linear program and, at each iteration,

new promising columns are identified by its reduced cost with respect to the current

dual variables. These columns are progressively inserted in the linear program until it

is proven that no column outside that linear program would improve its solution.

3.1 Column Generation

Initially, for solving F2r, no variables λ are present, but artificial variables (with high

costs) are inserted, to allow a first feasible linear solution. The pricing problem consists

in finding, for each teacher and day, the allocation with the smallest reduced cost. We

denote here by µ, ν, π e κ the dual variables associated to Constraints (22), (23), (24)

and (25), respectively. The pricing problem related to teacher t and day d, denoted

by Ptd can be formulated as a following MIP. Let binary variables xcp (c ∈ C, p ∈ P )

indicate that teacher t has a lesson with class c at day d and period p:

Ptd =

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

minimize

ctd = w′t + w′′t h− µtd −
X
c∈C

X
p∈P

ˆ
(πtc + νcdp)xcp

˜
−
X
c∈C

X
p∈ bGtd

κtcycp

subject toX
p∈P

xcp ≤ min{m̃tc, r̃tc} ∀c ∈ C

a ≤
X
c∈C

(p− |P |)xcp + |P | ∀p ∈ P

a ≥
X
c∈C

pxcp ∀p ∈ P

h = 1 + a− a−
X
c∈C

X
p∈P

xcpX
c∈C

xcp ≤ t̃tdp ∀p ∈ P

ycp ≤ xcp ∀c ∈ C, p ∈ bGtd

ycp ≤ xc,p+1 ∀c ∈ C, p ∈ bGtd

h ≥ 0
xcp ∈ {0, 1} ∀t ∈ T, p ∈ P

Problems Ptd, ∀t ∈ T, d ∈ D, are solved at each iteration, increasing the problem

size with at most (|T | × |D|) columns per iteration. The optimal solution for F2r is

attained when ctd ≥ 0 ∀t ∈ T, d ∈ D. Although no known algorithm can solve general

instances of Ptd in polynomial time, one observation must be made about the hardness

of solving the presented pricing problem in practice. The number of possible allocations

grows exponentially with |P |. However, in real school timetabling problems the value

of |P | is very limited, typically 5 or 6 by shift, depending on the educational system.

Larger instances may contain more teachers and classes, but |P | remains constant. One

can price the solutions of Ptd by enumeration in O(|C||P |) time, which is polynomial

for a fixed |P |. In practice, this pricing by enumeration can be performed in reasonable

time, even for large instances.
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3.2 Cut Generation

Some cuts that are valid for F1 can be translated to F2. For example, the right-hand

side of (20) gives a minimum on the number of lambda variables that must be chosen

for each teacher. However, F2 allows the natural definition of some new strong cuts.

The cuts that will be presented are related to the satisfaction of the total weekly

workload considering the possible daily choices in the number of lessons for teachers

and for meetings between teachers and classes. We will introduce new variables and

constraints to F2 in order to make easier the expression of these cuts. This formulation,

denoted here by F ′2 incorporates binary variables atdl which indicate if teacher t has a

workload of exactly l lessons at day d, as well binary variables atcdl, which indicate if

teacher t teaches exactly l lessons for class c at day d. Let T̆tdl be the subset of columns

of T̆td such that the total number of lessons in every column from T̆tdl is exactly l and

T̆tcdl the subset of T̆td such that every column of T̆tcdl has exactly l lessons of teacher

t to class c, the new variables are related to the λ variables by:

X
j∈T̆tdl

λtdj = atdl ∀t ∈ T, d ∈ D, l ∈ P (28)

X
j∈T̆tcdl

λtdj = atcdl ∀t ∈ T, c ∈ C, d ∈ D, l ∈ P (29)

The pricing problem for teacher t and day d in formulation F ′2, denoted here by P ′td,

must be augmented to reflect the inclusion of λ variables in two additional constraints.

But this does not make much difference, as long as the pricing is being solved by

enumeration.

We will now strengthen the formulation by introducing inequalities that are valid

for two families of 0-1 polyhedra. Polyhedra χt is given by the 0-1 solutions of

X
d∈D

X
l∈{1,...,

P|P |
p=1 t̃tdp}

latdl =
X
c∈C

r̃tc ∀t ∈ T. (30)

Polyhedra χtd is given by the 0-1 solutions of

X
d∈D

X
l∈{1,...,min{

P|P |
p=1 t̃tdp,m̃tc}}

latcdl = r̃tc ∀t ∈ T, c ∈ C (31)

One way to derive valid cuts from those polyhedra would be consider known facets

for the knapsack constraints (30) or (31), like those provided in [5,19,29]. However,

since the number of 0-1 solutions in those polyhedra is quite small, we opted for the

more generic approach of Fenchel separation, as proposed by Boyd [7,8]. This technique

separates facets by solving a series of linear programs containing one constraint for

each possible solution. This approach has shown to be very cheap and efficient way to

obtain strong cuts. Again, this is possible due to the natural limitation in the number

of periods |P |.
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Algorithm 1 CCG

Input: CTTPC Instance.
Output: Solution vector λ and dual bound.

1: initialize the linear program LP using formulation F ′2, considering only artificial vari-
ables and λ columns corresponding to inactivity days;

2: add into LP cuts related to the minimum working days of teachers;
3: newColumns ← 1; newCuts ← 0;
4: while (newCuts + newColumns > 0) do

5: solve LP, update solution (λ and ă) and dual variables;
6: newColumns ← 0;
7: for all t ∈ T do
8: for all d ∈ D|

P
p∈P t̃tdp > 0 do

9: solve P ′td;
10: if ctd < 0 then
11: add new column into LP;
12: newColumns ← newColumns + 1;
13: end if
14: end for
15: end for
16: newCuts ← 0;
17: if newColumns = 0 and fractionalSolution(ă) then
18: for all t ∈ T do
19: solve St;
20: if Violated cut found then
21: Add into LP;
22: newCuts ← newCuts + 1;
23: end if
24: for all c ∈ C do
25: solve Stc;
26: if Violated cut found then
27: Add cut into LP;
28: newCuts ← newCuts + 1;
29: end if
30: end for
31: end for
32: end if
33: end while

end.

3.3 The Column and Cut Generation Algorithm

The algorithm for columns and cuts generation, denoted here by CCG, solves to

optimality the linear relaxation of F ′2 complemented with the addition of cuts. The

algorithm performs, at each iteration (lines 4-33), the addition of columns or cuts. The

addition of cuts starts when no more columns with negative reduced cost are left out

of the linear program LP, indicating that the optimal solution of LP was attained.

The insertion of new cuts requires the solution of new pricing problems. This process

continues until no more cuts are inserted.

4 Computational Experiments

Computational experiments were made in order to evaluate the bounds provided by

different formulations. The column and cut generation code was implemented in C++,

linear programs were solved by CPLEX 10[21]. The reported runs were over a Dell
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inst. |T | |C|
X
t∈T

X
c∈C

r̃tc
X
t∈T

X
c∈C

g̃tc sr
X
t∈T

X
d∈D

|T̆td|

1 8 3 75 21 0.43 13,540
2 14 6 150 29 0.50 419,270
3 16 8 200 4 0.30 221,420
4 23 12 300 66 0.18 2,433,421
5 31 13 325 71 0.58 2,297,130
6 30 14 350 63 0.52 2,188,405
7 33 20 500 84 0.39 4,288,890

Table 1 Instance characteristics.

Optiplex G620 computer with a Pentium D 3.0 GHz processor and 2GB of RAM, the

operating system was Linux.

The instance set (Table 1), is the same used in [28,27,24]. Instances 1 and 3 are

from [22], the first is an artificial instance and 3 is from a high school in the city of

Braśılia. The remaining instances were collected by Souza [27] in high schools from

the State of Minas Gerais, excepting 7, which is artificially built by considering an

augmentation of other instances. All instances correspond to the timetabling problem

of one week, where |D| = |P | = 5. Columns 2 to 5 in Table 1 indicate the number of

teachers, classes, class-teacher encounters and double lesson requests for each instance.

The column sparseness ratio is computed by considering the total number of lessons

and the total number of unavailable periods as follows:

sr =
|T | × |D| × |P | − (

P
t∈T

P
c∈C r̃tc +

P
t∈T

P
d∈D

P
p∈P (1− t̃tdp))

|T | × |D| × |P |

Lower sparseness ratios indicate more restrictive problems. The last column gives

the number of possible allocations of teachers to classes in all workdays, each such

allocation corresponds to a λ variable in Formulation F2. In all instances the cost of a

teacher workday is set as 9, the cost of each hole inside the workday of a teacher is 3

and each request for a double lesson that is unmet costs 1.

Table 2 shows results of different formulations. Column UB gives the best know

upper bound for each instance. Those bounds were produced by very long runs of the

heuristics described in [24] and [25]. Columns LB show the lower bounds obtained

by each formulation, columns gap are the percent distance from the upper bound and

columns time are the running times in seconds.W denotes the set of cuts related to the

minimum number of working days for teachers (20), while Fenchel are the cuts described

in Section 3.2. This last formulation is solved using the CCG algorithm. Formulations F2

and F2∪W are solved with a lighter version of CCG, without the Fenchel cut generation

phase. Best results are shown in bold. It can be seen that bounds obtained by the full

CCG algorithm are very strong. For the first three instances the lower bound matched the

best known solution, proving its optimality. The running times were quite reasonable,

except perhaps in instance 7. In this case we observed that the significant increase in

cpu time, with respect to solving F2∪W, was not caused by the Fenchel cut separation

routine. In fact, cut separation was always fast in our experiments, but the need for

additional calls of the column generation phase, implying many re-optimizations of the

linear program, incurred considerable additional computing time.

For the sake of illustration, we present in Figure 1 the best known solution for

instance 4. The cost of this solution was shown by CCG to be at most one unit away
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from the optimal. One characteristic which can be observed in this solution is the

occurrence of non-contiguous lessons to classes in some days for some teachers (e.g.:

teacher 4, day 4, lessons to class 1). We could easily insert a new constraint to avoid

allocations of this type, which are not not desirable in general. This new constraint

would restrict the search space and, probably, speed-up the CCG algorithm. However,

with this new formulation we would not be able to compare the lower bounds with the

aforementioned results of already developed heuristics.

5 Conclusions

In this work we proposed a new MIP formulation with a large number of constraints

and columns for the CTTPC. Computational experiments with an algorithm to solve

the linear relaxation of this formulation have shown that this formulation can provide

strong lower bounds in reasonable times. This allowed us, for the first time, to determine

the optimal solutions of some CTTPC instances that were available since the eighties

and provided very tight limits for other instances. It is important to observe that the

cut and column generation approach presented here can be possibly adapted to other

variants of the class-teacher timetabling problem. For example, the proposed Fenchel

cuts are based on structures that are very common in other timetabling problems.
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