
1

Linear Combinations of Heuristics

for Examination Timetabling

Edmund K. Burke*, Nam Pham*, Rong Qu*, Jay Yellen*†

*ASAP Group, School of Computer Science

University of Nottingham, Nottingham, NG8 1BB, UK.

{ekb|nxp|rxq}@cs.nott.ac.uk

†Department of Mathematics and Computer Science, Rollins College

Winter Park, Florida, 32789, USA

 jyellen@rollins.edu

Abstract: Although they are simple techniques from the early days of timetabling research, graph

colouring heuristics are still attracting significant research interest in the timetabling research

community. These heuristics involve simple ordering strategies to first select and colour those

vertices that are most likely to cause trouble if deferred until later. Most of this work used a

single heuristic to measure the difficulty of a vertex. Relatively less attention has been paid to

select an appropriate colour for the selected vertex. Some recent work has demonstrated the

superiority of combining a number of different heuristics for vertex and colour selection. In this

paper, we explore this direction and introduce a new strategy of using linear combinations of

heuristics for weighted graphs which model the timetabling problems under consideration. The

weights of the heuristic combinations define specific roles that each simple heuristic contributes

to the process of ordering vertices. We include specific explanations for the design of our

strategy and present the experimental results on a set of benchmark real world examination

timetabling problem instances. New best results for several instances have been obtained using

this method when compared with other constructive methods applied to this benchmark dataset.

Keywords: examination timetabling, weighted graph, constructive heuristics, heuristic

combinations, graph colouring heuristics

1 Introduction

The university examination timetabling problem consists of assigning each exam

to a timeslot subject to various practical constraints. There are both hard and soft

constraints in examination timetabling. Hard constraints must be satisfied in a

strict manner. Timetabling solutions that cause hard constraint violations

(infeasible solutions) are typically considered to be significantly inferior to

2

solutions that do not. Soft constraints express a preference among feasible

solutions.

Designing timetables that satisfy various constraints presents a challenging

task particularly for large educational institutions with hundreds or thousands of

exams and students. That challenge motivated many research efforts to exploit the

computing power of computers to construct timetables for a large set of exams

rather than doing so manually (Bardadym 1996).

One of the most popular early approaches, graph colouring heuristics, in the

exam timetabling research literature is based on graph colouring models. A graph

colouring problem involves the assignment of a limited set of colours to vertices

such that adjacent vertices receive different colours (non-conflict). For exam

timetabling problems, exams to be scheduled can thus be represented by vertices,

and timeslots are represented by colours in the graph colouring model. Two

vertices connected by an edge (i.e., adjacent vertices) represent the corresponding

exams having at least one student in common, and thus they must not be assigned

the same colour (timeslot). The weight of an edge between two vertices represents

the number of students taking both corresponding exams. Conflict-free colourings

represent timetables that satisfy the hard constraint.

The exam timetabling problem differs from the traditional graph colouring

problem in the objective function. Classical graph colouring focuses on

minimizing the number of colours needed to construct a feasible colouring

(achieving the chromatic number). Whereas for exam timetabling, the goal is to

find a feasible colouring that uses a pre-specified number of colours while

maximizing the satisfaction of additional soft constraints. For example, one of the

most common soft constraints is to spread examinations in the timetable for

students. This is typically evaluated by the sum of penalties incurred by assigning

adjacent exams to timeslots too close to each other.

Given that graph colouring is NP-Hard (Papadimitriou and Steiglitz 1982),

significant research has been devoted to the design of constructive approximate

algorithms, which sacrifice the guarantee of optimality but produce solutions in a

reasonable amount of computation time. The graph colouring algorithms involve

two simple steps: vertex selection and colour selection. The strategy behind vertex

selection is based on the idea that we should colour the most troublesome or

difficult vertices as early as possible. Here, a troublesome or difficult vertex is

one that is most likely to lead to a poor or infeasible timetable if its colouring is

deferred until later in the process. A logical heuristic for the colour assignment for

a vertex is that it should incur the lowest penalty in the objective function and also

cause least trouble for the vertex’s uncoloured neighbours.

Much of the research on constructive algorithms has focused on the vertex-

selection heuristics. The most popular ones include saturation degree (Brelaz

1979) and largest (weighted) uncoloured degree. Carrington et al. (2007)

introduced an enhanced weighted graph model extending the weighted graph

model first proposed by Kiaer and Yellen (1992). In the enhanced weighted graph

model, each edge and vertex keeps track of more information relevant to the

objectives than in the traditional graph model. As a result, several new vertex- and

colour-selection heuristics emerged and showed promising results in their use

within the approximate algorithm (Carrington et al. 2007).

In many decision-making scenarios, it is often better to take into account

several factors simultaneously than to rely on only one factor. For instance,

Asmuni et al. (2005) used a fuzzy inference system for course timetabling to

3

combine three heuristics to identify the difficult vertices, and the results appeared

to be superior to using any single heuristic. Motivated by that, we extended our

previous weighted graph model (Carrington et al. 2007) and propose in this paper

a new strategy of using linear combinations of several primitive heuristics for

vertex selection. Each heuristic in the combination is weighted according to its

effectiveness on different weighted graphs. This strategy provides very

competitive results compared to other constructive methods in the literature for

several of the Toronto benchmark exam timetabling instances (Carter et al. 1996;

Qu et al. 2009). Although there is still a gap between the results obtained in this

paper and the best results reported in the literature using advanced improvement

based techniques, this work represents a step towards more effective integration of

simple heuristics for constructing timetables. We focus on providing a bridge for

future work, and several research directions emerge based on the approach

investigated here.

This paper is organised as follows. Section 2 reviews related approaches and

techniques for exam timetabling problems in the literature and describes the

widely studied Toronto problem instances on which our model is tested. We then

review the enhanced weighted graph model in Section 3. In Section 4, we define a

new strategy using linear combinations of heuristics and justify through

experiments our decisions regarding various features of these linear combinations.

Experiments in Section 5 demonstrate the effectiveness of the linear combination

approach in comparison with the best reported solutions obtained from other

constructive approaches. We test our approach with and without vertex

partitioning, which was introduced in Carrington et al. (2007). By comparing the

results of our approach to another constructive approach, we show that integrating

our linear-combination strategy with other techniques (e.g. backtracking) can

improve on the current performance and represents a promising research direction.

Section 6 provides conclusions and summarises future research directions.

2 Exam Timetabling Problems

Graph colouring approaches to timetabling have been studied since the 1960s (e.g.

Broder 1964; Welsh and Powell 1967; Wood 1968; Neufeld and Tartar 1974;

Brelaz 1979; Mehta 1981; Krarup and de Werra 1982). Several surveys have

reviewed work on this topic (e.g. Schmidt and Strohlein 1980; de Werra 1985;

Carter 1986; Schaerf 1999; Burke et al. 2004; Qu et al. 2009). As simple and fast

techniques, graph heuristics in timetabling had many advantages, particularly

when being used in the initialisation process for meta-heuristics, or integrated

with meta-heuristics in various ways (e.g. Burke et al. 2004; Merlot et al. 2003).

Another early methodology in timetabling is constraint based methods (e.g. Banks

et al. 1998; Nonobe et al. 1998), sometimes hybridised with meta-heuristics

(Merlot et al. 2003).

Meta-heuristic techniques (e.g. Glover et al. 2003; Reeves 1996) have

attracted significant research interest and became the state of the art through their

success on various complex timetabling problems. Such techniques include Tabu

Search (e.g. Di Gaspero et al. 2000), Simulated Annealing (e.g. Dowsland 1998;

Abramson et al. 1999) and Evolutionary Algorithms (e.g. Burke and Newall 1999;

Terashima-Marin et al. 1999).

4

More recent research includes Ant Algorithms (e.g. Socha et al. 2002), Case-

Based Reasoning (e.g. Burke et al. 2006), fuzzy reasoning (e.g. Asmuni et al.

2005), GRASP (e.g. Casey et al. 2002), Very Large Scale Neighbourhood Search

(e.g. Abdullah et al. 2007), Variable Neighbourhood Search (Qu and Burke 2005)

and Hyper-heuristics (e.g. Burke et al. 2003). A number of survey papers also

appear that overview the timetabling literature (Bardadym 1996; Burke et al.

2004; Carter et al. 1996; Carter et al. 1998; Petrovic et al. 2004; Reeves 1993;

Schaerf 1999).

In this paper we focus on one of the most widely tested sets of problem

instances in the timetabling research community -- the Toronto benchmark

examination timetabling problems (Carter et al. 1996; Qu et al. 2009) (publicly

available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/). This dataset has been

the benchmark since its introduction in 1996, and still remains an interesting

challenge to the research community. Therefore, we test our method on this

benchmark and compare our results against many other existing methodologies

applied on the same dataset. The optimal solutions for all instances in this dataset

have not been found yet. During the years, researchers are reporting the best

results obtained along with the development of advanced algorithms. Table 1

shows characteristics of the 12 instances.

Table 1 Details of the Toronto exam timetabling benchmark (Carter et al. 1996; Qu et al. 2009)

Instances No. of Exams No. of Students Enrolments Density Timeslots

car91 I 682 16925 56877 0.13 35

car92 I 543 18419 55522 0.14 32

ear83 I 190 1125 8109 0.27 24

hec92 I 81 2823 10632 0.42 18

kfu93 I 461 5349 25113 0.06 20

lse91 381 2726 10918 0.06 18

rye92 482 11483 45051 0.07 23

sta83 I 139 611 5751 0.14 13

tre92 261 4360 14901 0.18 23

uta92 I 622 21266 58979 0.13 35

ute92 184 2749 11793 0.08 10

yor83 I 181 941 6034 0.29 21

Two versions of the dataset have circulated under the same name over the last ten

years. We used the naming convention provided in (Qu et al. 2009). One of the 13

instances in the dataset, pur93, is excluded due to the inconsistency in the data file

over different versions. Qu et al. (2009) provided an extensive survey on all

search methodologies with associated best reported results for this dataset.

3 The Enhanced Weighted Graph Model

Our current work builds upon the model introduced in Carrington et al. (2007).

The enhanced model incorporates considerably more information that is

continually updated as the colouring progresses. This readily available

information led to the design of several new vertex-selection heuristics, some of

which are generalisations of traditional heuristics such as saturation degree and

5

largest (weighted) degree. We also introduced ‘badness’ thresholds by which

certain colours are considered bad for a given vertex or only certain bad edges are

counted toward the vertex’s degree or weighted degree.

Basic model features and parameters

Our primitive vertex-selection heuristics are based on the following list of basic

features and parameters:

 Intersection size (of an edge e) - simply the number of students taking both exams.

 Intersect degree (of a vertex) - the sum of the intersection sizes of edges adjacent to

the vertex.

 Average intersection size - the average of the intersection sizes of all edges in a

graph.

 Bad-intersect edge - an edge whose intersection size exceeds a specified threshold -

Te = averageIntersectionSize * ie, where ie is a multiplier parameter.

 Conflict – incurred when the same colour is assigned to the two adjacent vertices of

an edge.

 Conflict penalty (for the colour assignment of a vertex) - indicates the number of

conflicts incurred with all neighbours of that vertex from the colour assignment.

 Proximity (of two colours ci and cj) - a measure of how close together the two colours

are. For the Toronto instances, the timeslots are simply ci = i, i = 0,1,.... If 0 < | i – j |

≤ 5, the two colours are close together or ‘in proximity’.

 Proximity penalty (for assigning two colours ci and cj to the adjacent vertices of an

edge e) – equals the product 2
5-|i-j|

 * intersectionSize(e) if the two colours are in

proximity and 0 otherwise. The first part of the product 2
5-|i-j|

 is the proximity weight

for the Toronto instances.

 Proximity penalty (for the colour assignment of a vertex) - the sum of the proximity

penalties resulting from that colour assignment and the colour assignments of all

neighbours of that vertex.

 Colour-penalties vector (of a vertex) - indicates for each colour the conflict penalty

and proximity penalty of assigning that colour to the vertex. When a vertex is

coloured, the colour-penalties vector of each of that vertex’s neighbours must be

updated accordingly.

 Bad-conflict colour (for a vertex) - a colour whose conflict penalty for that vertex

differs from 0; for the Toronto instances, zero conflict penalty is required.

 Bad-proximity colour (for a vertex) - a colour whose proximity penalty for that vertex

exceeds some specified threshold Tc = averageIntersectionSize * ev * pc, where ev is

the expected value of the proximity weight and pc is a multiplier parameter (see

Appendix A for a derivation of ev and an explanation of its use).

 Bad colour (for a vertex) - either a bad-conflict colour or a bad-proximity colour for

that vertex.

Primitive heuristics

Each primitive vertex-selection heuristic represents a different measure of how

troublesome a vertex is. The following list contains the seven primitive vertex-

selection heuristics used in this paper.

0. Number of bad colours.

1. Number of bad-conflict colours (saturation degree).

2. Number of bad-proximity colours.

3. Sum of the proximity penalties.

6

4. Number of edges to uncoloured neighbours (largest uncoloured degree).

5. Number of bad-intersect edges to uncoloured neighbours.

6. Intersect degree to uncoloured neighbours (weighted uncoloured degree).

The four primitive heuristics used to select a colour for a given vertex are:

0. Minimum conflict penalty.

1. Minimum proximity penalty.

2. Minimum number of good-to-bad conflict colour switches for the uncoloured

neighbours.

3. Minimum number of good-to-bad proximity colour switches for the uncoloured

neighbours.

Advanced model features

In addition to the new primitive heuristics, the enhanced model enables us to

combine any number of primitive heuristics to form compound vertex or colour

selectors. A compound selector applies the primitive heuristics in a sequence to

narrow down the list of selected vertices or colours. All but the first heuristic in a

sequence act as tiebreakers for the preceding ones provided that the list is still

greater than one. The compound selector is at least as effective in identifying an

appropriate vertex or colour as a selector based on a single criterion.

The model also allowed a compound selector to switch to another compound

selector at the middle of a colouring process. This feature was motivated by the

observation that the effectiveness of a heuristic is likely to change as the colouring

progresses. For instance, the saturation degree heuristic is not an effective

predictor of troublesome vertices in the early stages of a colouring, when the

vertices are mostly all unsaturated, i.e., they all have almost no forbidden colours

and the same number of valid colours. In the implementation, there was one

‘switching point’ typically set at an early stage after a certain number of vertices

had been selected and coloured using some other non-saturation-degree-based

selector.

The final feature of the model - vertex partitioning - is a pre-processing step.

First, the set S1 of vertices with degree less than the number of available colours

in the original graph are designated easiest and assigned colours only after all

other vertices have been coloured. These vertices can be coloured last, since each

of them will always have at least one non-conflict colour available. The same

procedure can be applied to the reduced graph formed by deleting the vertices in

S1 (and their adjacent edges), resulting in the next easiest vertex subset S2. The

process continues until there are no more easy vertices left. We refer to the

remaining subset of vertices as the hardest vertex subset. The colouring process

reverses this partitioning order, i.e. the hardest vertex subset is coloured first and

the easiest vertex subset S1 is coloured last. The potential advantage of this vertex

partitioning feature is that vertex-selection process for easy subsets can be based

solely on proximity.

The following groups of compound vertex and colour selectors used in our

previous work illustrate the use of these advanced model features. We designed

two groups of three compound vertex selectors:

7

vs1: 4 5 6 1 2 3 | 1 4 2 3 5 6 | 2 3 5 6

vs2: 4 5 6 0 3 | 0 4 5 6 2 3 | 2 3 5 6

and two groups of two compound colour selectors:

cs1: 0 1 2 3 | 0 1 3

cs2: 0 2 3 1 | 0 3 1

The numbers in these groups refer to the indices of the primitive heuristics. The

vertical lines separate different compound selectors. We used the vertex

partitioning in all experiments in the previous work, and the last compound

selector was always applied to all the easy vertex subsets. The first compound

vertex selector was applied to the hardest vertex subset until a specified fraction

(the switching point) of the vertices had been coloured. Then the second

compound vertex selector was applied for the rest of the hardest vertex subset.

The first compound colour selector was applied to the entire hardest subset, and

the second selector was then applied to all other subsets.

4 Linear Combinations of Primitive Vertex-Selection

Heuristics

The selector strategy in our previous work used sequences of primitives as

tiebreakers to form compound vertex selectors. However, in a recent experiment,

we observed that many tiebreakers in the sequence were often unnecessary

because the set of candidates had been narrowed down to a single vertex.

The experiment examined the performance of the compound vertex selector

vs1 (listed above) with a particular set of parameters (pc=50, ie=2,

switchingPoint=1), and compound colour selector: cs1 applied to the hardest

vertex subset of the 12 Toronto problem instances. Table 2 shows the number of

times the set of the most troublesome vertices was narrowed down to one vertex

after applying a particular heuristic in the sequence. On the majority of occasions,

this happened after only the first two heuristics were used. As a result, the

remaining primitive heuristics in the sequence played no role in the vertex

selection. The problem instance sta83 I was unique in that there were 32 times in

which the set of troublesome vertices was not narrowed down to one vertex after

applying six primitive heuristics in the sequence.

Table 2 The depth level of primitive heuristics called for the hardest vertex subset using vs1.

Values in parentheses denote the size of the hardest vertex subsets

 car91

I

(507)

car92

I

(392)

ear83

I

(157)

hec92

I

(70)

kfu93

I

(196)

lse91

(124)

rye92

(189)

sta83

I

(78)

tre92

(193)

uta92

I

(458)

ute92

(89)

yor83

I

(176)

Primitive 4 112 102 40 30 66 33 74 11 44 95 30 46
Primitive 5 341 259 103 32 117 85 102 22 132 296 52 117
Primitive 6 38 18 6 2 2 1 3 0 5 38 2 4
Primitive 1 16 13 8 6 11 5 10 13 12 29 5 9
Primitive 2 0 0 0 0 0 0 0 0 0 0 0 0
Primitive 3 0 0 0 0 0 0 0 0 0 0 0 0
Unnarrowed 0 0 0 0 0 0 0 32 0 0 0 0

8

This observation motivated a new strategy that combines primitive heuristics

more effectively. The compound vertex selectors are now (weighted) linear

combinations of the primitive vertex-selection heuristics.

To identify the most troublesome vertices, we apply a heuristic evaluation

function f to each of the uncoloured vertices, and a vertex having the largest

evaluation value is chosen. In the current implementation, our function f is a linear

combination of seven characteristics (parameters) tied to the partial colouring of

the weighted graph. In particular, for each uncoloured vertex v,

,...)(6611 xaxaxavf oo (1)

where ai are nonnegative weights and

x0 = number of bad colours counted from the colour-penalties vector of v.

x1 = number of bad-conflict colours counted from the colour-penalties vector of v.

x2 = number of bad-proximity colours counted from the colour-penalties vector of v.

x3 = sum of the proximity penalties over all colours stored in the colour-penalties

vector of v.

x4 = number of edges to v’s uncoloured neighbours.

x5 = number of bad-intersect edges to v’s uncoloured neighbours.

x6 = intersect degree to v’s uncoloured neighbours.

This linear-combination approach is adaptable to colour selection as well,

although in this paper, we focus only on the vertex-selection process.

Heuristic selections and weight settings for linear combinations

The main task in designing linear combinations of primitive heuristics is to decide

how the weight vector [a0, a1, ..., a6] is to be set. We describe our approach here

and justify our decisions by experiments on the 12 Toronto benchmark instances.

In these experiments, we use the vertex partitioning step described earlier. The

compound colour selector cs1: 0 1 2 3 | 0 1 3 from our previous work is applied

(Carrington et al., 2007). The multiplier parameters for the bad-proximity colour

threshold and the bad-intersect edge threshold were varied as follows:

 pc = 5 to 75 in increments of 2

 ie = 0.5 to 5 in increments of 0.5

The results obtained from the algorithm give the average proximity penalty over

all students. Because our approach is based on a constructive algorithm, the

results obtained in this paper will be compared to the best results from other

constructive methods, shown in the first four columns in Table 3 (and marked

with a †). Also, for the purposes of comparison, the last four columns in the table

show the current best results of non-constructive approaches involving iterative

improvement. All of these results were drawn from the survey paper by Qu et al.

(2009).

Note that the aim of this work is to explore effective integrations of simple

constructive heuristics in timetabling research, rather than to ‘beat’ the best results

from complicated meta-heuristics. Both of these are directions of current research

in timetabling. Comparisons between constructive approaches and complicated

meta-heuristics provide little insight in the context of this study. Nevertheless, we

9

do list in Table 3 the results of both types of approaches to give an overall view of

the current achievement on this benchmark.

Table 3 A comparison of results obtained using different approaches. Constructive approaches

are marked with a dagger (†). The last four columns show the best approaches involving iterative

improvement techniques. Bold font indicates the best results achieved by any method;

underlined text indicates the best results obtained by a constructive method

Problem †(Carter

et al.

1996)

†(Burke

et al.

2004)

†(Asmuni

et al.

2005)

†(Burke

et al.

2006)

(Caramia

et al.

2001)

(Cote

et al.

2005)

(Yang

&

Petrovic

2005)

(Burke

et al.

2010)

car91 I 7.1 5.0 5.29 5.36 6.6 5.4 4.5 4.6

car92 I 6.2 4.3 4.56 4.53 6.0 4.2 3.93 4.0

ear83 I 36.4 36.2 37.02 37.92 29.3 34.2 33.7 32.8

hec92 I 10.8 11.6 11.78 12.25 9.2 10.4 10.83 10.0

kfu93 I 14.0 15.0 15.81 15.2 13.8 14.3 13.82 13.0

lse91 10.5 11.0 12.09 11.33 9.6 11.3 10.35 10.0

rye92 7.3 - 10.35 - 6.8 8.8 8.53 -

sta83 I 161.5 161.9 160.42 158.19 158.2 157.0 158.35 159.9

tre92 9.6 8.4 8.67 8.92 9.4 8.6 7.92 7.9

uta92 I 3.5 3.4 3.57 3.88 3.5 3.5 3.14 3.2

ute92 25.8 27.4 27.78 28.01 24.4 25.3 25.39 24.8

yor83 I 41.7 40.8 40.66 41.37 36.2 36.4 36.35 37.28

The effectiveness of using heuristic x0 – number of bad colours

The first four of the seven primitive vertex-selection heuristics, repeated below,

are based on the information retained in the vertices’ colour-penalties vectors.

Accordingly, we classify them as colour-penalties-based vertex-selection

heuristics.

x0 = number of bad colours counted from the colour-penalties vector of v.

x1 = number of bad-conflict colours counted from the colour-penalties vector of v.

x2 = number of bad-proximity colours counted from the colour-penalties vector of v.

x3 = sum of the proximity penalties over all colours stored in the colour-penalties

vector of v.

In this group, we claim that heuristic x0 should play a role in linear combinations

because it is essentially a consolidation of heuristics x1 and x2. Heuristic x2 is

analogous to saturation degree (x1) but is based on proximity instead of conflict.

In our previous work, we also claimed that heuristic x2 may be better at

evaluating the trouble level of a vertex than its sum counterpart, heuristic x3. An

extreme example in Figure 1 shows the colour-penalties vectors of two vertices v1

and v2. Suppose that there are four available colours for each vertex (represented

by the four component-pairs in each colour-penalties vector), the first value in

each component represents the conflict penalty and the second represents the

proximity penalty. If we set a bad-proximity-colour threshold 0 ≤ Tc < 50,

heuristic x2 would return four bad-proximity colours (underlined in Figure 1a)

from v1’s evaluation and as a result, favour v1 over vertex v2, which has only one

bad-proximity colour (underlined in Figure 1b). On the other hand, heuristic x3

always selects vertex v2 with the proximity penalty sum of 201 before v1 whose

proximity penalty sum equals 200.

10

Fig. 1 Colour-penalties vectors of an example where heuristic x2 is probably better than heuristic

x3. Heuristic x2 would select vertex v1 and heuristic x3 would select vertex v2, if the bad-

proximity-colour threshold 0 ≤ Tc < 50

The experimental results shown in Table 4 below reinforce these claims. The

experiment used the following groups of linear combinations:

vs1: x0 | x2

vs2: x1 | x2

vs3: x2 | x2

vs4: x3 | x2

vs5: x1 + .00001x2 | x2

vs6: x1 + .00001x3 | x2

The vertex selector to the left of the vertical line is applied to the hardest vertex

subset (first), and the one to the right is then applied to all the easy subsets. Vs5

and vs6 can be understood as compound selectors because we set a small enough

weight (.00001) so that heuristics x2 and x3 act as tiebreakers for x1, respectively.

For the easy subsets, we always choose heuristic x2 to select the most troublesome

vertices since it concerns only proximity and is favoured over its sum counterpart

x3. The results suggest the superiority of heuristic x0 over the three other

primitives.

Table 4 Comparisons on different groups of linear combinations of coloured-penalties-based

heuristics. Bold font indicates the best results obtained among the linear combinations

Problem vs1 vs2 vs3 vs4 vs5 vs6 Best

reported

car91 I 5.23 5.44 infeasible infeasible 5.34 5.34 5.0

car92 I 4.47 4.85 infeasible infeasible 4.66 4.66 4.3

ear83 I 38.05 44.1 infeasible infeasible 38.99 39.88 36.2

hec92 I 12.28 infeasible infeasible infeasible 12.69 13.82 10.8

kfu93 I infeasible infeasible infeasible infeasible 18.68 infeasible 14.0

lse91 12.23 12.81 infeasible infeasible 12.91 13.33 10.5

rye92 10.6 11.51 infeasible infeasible 11.02 11.49 7.3

sta83 I 168.63 164.94 infeasible infeasible 163.04 165.11 158.19

tre92 8.68 9.89 infeasible infeasible 9.52 9.14 8.4

uta92 I 3.45 3.75 infeasible infeasible 3.55 3.6 3.4

ute92 29.39 32.75 infeasible infeasible 30.21 31.2 25.8

yor83 I infeasible infeasible infeasible infeasible 42.2 infeasible 40.66

11

Linear combinations of heuristics x0 and x5

The remaining three primitive vertex-selection heuristics are classified as edge-

based vertex-selection heuristics since they are based on the (static) information

retained in each vertex‘s adjacent edges to determine its difficulty.

x4 = number of edges to uncoloured neighbours (uncoloured degree).

x5 = number of bad-intersect edges to uncoloured neighbours.

x6 = intersect degree to uncoloured neighbours (weighted uncoloured degree).

For the Toronto instances, heuristics x4 and x6 represent the traditional largest

uncoloured degree and largest weighted degree respectively. We introduced

heuristic x5 in our previous work that involves a threshold to determine when an

intersection size of an edge is considered ‘bad’. We claimed that counting bad-

intersect edges of a vertex may be better at evaluating the difficulty of the vertex

than adding up all the intersection sizes of the incident edges (as done by heuristic

x6). The example shown in Figure 2 illustrates this claim.

Fig. 2 Vertex-selection strategies for edge-based primitive heuristics x4, x5, x6. Heuristic x4 would

select vertex v1, heuristic x6 would select vertex v3, and heuristic x5 would select heuristic v2 if

the bad-intersect-edge threshold 1 ≤ Te < 50

Table 5 Comparisons on different groups of linear combinations between colour-penalties-based

and edge-based vertex-selection heuristics. Bold font indicates the best results obtained among

the linear combinations

Problem vs1 vs2 vs3 vs4 Vs5 Best reported

car91 I 5.23 5.21 5.19 5.09 infeasible 5.0

car92 I 4.47 4.29 4.39 4.32 infeasible 4.3

ear83 I 38.05 37.65 38.71 36.7 39.93 36.2

hec92 I 12.28 12.52 12.38 12.52 12.93 10.8

kfu93 I infeasible 16.93 18.21 16.93 18.4 14.0

lse91 12.23 11.46 11.49 11.46 12.98 10.5

rye92 10.6 9.83 10.04 9.74 infeasible 7.3

sta83 I 168.63 160.26 162.6 160.26 159.61 158.19

tre92 8.68 8.57 8.58 8.5 9.44 8.4

uta92 I 3.45 3.47 3.54 3.44 infeasible 3.4

ute92 29.39 28.41 29.46 28.41 29.44 25.8

yor83 I infeasible 41.1 41.61 40.74 40.84 40.66

The results shown in Table 5 support our claim that heuristic x5 may also be

better than heuristic x6 when used in linear combinations with heuristic x0. The

higher weight setting for x0 than x5 is also more likely to produce better

timetables. The experiment used the following groups of vertex selectors:

12

vs1: x0 | x2

vs2: 10000x0 + x5 | 10000x2 + x5

vs3: 10000x0 + x6 | 10000x2 + x6

vs4: 100x0 + 10x5 | 100x2 + 10x5

vs5: 10x0 + 100x5 | 10x2 + 100x5

The very large weight of 10000 in the groups of linear combinations for vs2 and

vs3 has heuristics x5 and x6 as tiebreakers. As before, the linear combinations for

the easy subsets always use heuristic x2 instead of x0 since x2 is based only on

proximity.

The effect of including heuristic x4 in the linear combinations

Heuristic x4 applied to the Toronto problems is essentially the traditional largest

uncoloured degree. As we suggested earlier regarding the dynamic nature of a

heuristic’s effectiveness as the colouring progresses, applying heuristic x1

(saturation degree) at the beginning of the process has no distinguishing effect,

whereas heuristic x4 (uncoloured degree) does. We investigate this behaviour

using the following groups of vertex selectors:

vs1: 100x0 + 10x5 | 100x2 + 10x5

vs2: 100x0 + 10x5 + 0.1x4 | 100x2 + 10x5

vs3: 100x0 + 10x5 + 1x4 | 100x2 + 10x5

vs4: 100x0 + 10x5 + 10x4 | 100x2 + 10x5

vs5: 100x0 + 10x5 + 0.1x4 | 100x0 + 10x5 | 100x2 + 10x5, switching point = 10

As before, the vertical line separates the linear combinations for different stages of

a colouring. For each group, the last linear combination is applied to the easy

vertex subsets. It always replaces heuristic x0 by its proximity analogue x2. For

selector vs5, the first and second combinations are applied to the hardest subset

before and after the specified switching point. For each of the selectors vs1

through vs4, the first linear combination is applied to the entire hardest subset.

Table 6 Comparisons on different groups of linear combinations with regards to the inclusion of

heuristic 4 and switching points. Bold font indicates the best results obtained among the linear

combinations

Problem vs1 vs2 vs3 vs4 vs5 Best reported

car91 I 5.09 5.15 5.18 5.41 5.09 5.0

car92 I 4.32 4.33 4.31 4.49 4.32 4.3

ear83 I 36.7 37.38 37.38 41.37 36.7 36.2

hec92 I 12.52 12.27 12.47 12.62 12.09 10.8

kfu93 I 16.93 16.58 17.66 infeasible 16.98 14.0

lse91 11.46 11.57 11.5 11.61 11.46 10.5

rye92 9.74 9.83 10.39 12.18 9.74 7.3

sta83 I 160.26 159.37 160.41 163.83 158.95 158.19

tre92 8.5 8.47 8.51 8.98 8.5 8.4

uta92 I 3.44 3.44 3.44 infeasible 3.44 3.4

ute92 28.41 28.83 28.83 30.16 28.68 25.8

yor83 I 40.74 40.74 40.67 41.43 40.74 40.66

13

The results shown in Table 6 show a preference to use a switching point. Vertex

selector vs5 may obtain the best solutions in seven problem instances. Notice that

the inclusion of heuristic x4 was effective only when being applied before the

switching point.

Using heuristic x3 and/or x6 as tiebreakers

Given the effectiveness of using heuristic x4 as a tiebreaker, it was natural to

consider the effect of using heuristics x3 and x6 in a similar way. Table 7 shows

the results for the following groups of selectors:

vs1: 100x0 + 10x5 | 100x2 + 10x5

vs2: 100x0 + 10x5 + .00001x3 | 100x2 + 10x5 + .00001x3

vs3: 100x0 + 10x5 + .00001x6 | 100x2 + 10x5 + .00001x6

vs4: 100x0 + 10x5 + .00001x6 | 100x0 + 10x5 + .00001x3 | 100x2 + 10x5 +

.00001x3, switching point = 10

The comparison of vs1 with three selectors that involve one or both heuristics x3

and x6 shows no clear advantage to using them. For some problem instances, the

solution quality improves, but for several others it worsens.

Table 7 Comparisons on different groups of linear combinations with regards to the inclusion of

heuristic 3 and/or heuristic 6 acting as tiebreakers. Bold font indicates the best results obtained

among the linear combinations

Problem vs1 vs2 vs3 vs4 Best reported

car91 I 5.09 5.12 5.19 5.12 5.0

car92 I 4.32 4.29 4.32 4.29 4.3

ear83 I 36.7 36.73 36.55 36.73 36.2

hec92 I 12.52 12.52 12.52 12.38 10.8

kfu93 I 16.93 17.11 17.12 17.17 14.0

lse91 11.46 11.49 11.54 11.4 10.5

rye92 9.74 9.77 9.79 9.77 7.3

sta83 I 160.26 160.07 160.53 160.07 158.19

tre92 8.5 8.56 8.39 8.56 8.4

uta92 I 3.44 3.38 3.44 3.38 3.4

ute92 28.41 29.34 29.24 29.34 25.8

yor83 I 40.74 40.38 40.74 40.38 40.66

5 Improving the Linear-Combination Strategy

Based on the experimental results described in the previous section, we focus here

on one specific vertex selector. The vertex selector we present here consists of a

linear combination of x0, x3, and x5 applied to the entire hardest vertex subset,

and a linear combination of x2, x3, and x5 applied to all of the easy subsets. We

use the same weight vector, (a, a3, a5), for both linear combinations. Thus, our

vertex selector has the form

ax0 + a3x3 + a5x5 | ax2 + a3x3 + a5x5

For convenience, the definitions of the four primitive heuristics are repeated

below.

14

x0 = number of bad colours counted from the colour-penalties vector of v.

x2 = number of bad-proximity colours counted from the colour-penalties vector of v.

x3 = sum of the proximity penalties over all colours stored in the colour-penalties

vector of v.

x5 = number of bad-intersect edges to uncoloured neighbours.

We test this vertex selector using each of the following eight values for [a, a3, a5]:

 (1000, .00001, 1),

 (1000, 0, 1),

 (100, .00001, 10),

 (1000, 0, 10),

 (100, .00001, 15),

 (1000, 0, 15),

 (100, .00001, 50),

 (1000, 0, 50),

Also, for each linear combination, we vary the two threshold parameters, pc and

ie, over a large range of values as follows:

 pc = 5 to 90 in increments of 0.1 (851 different values)

 ie = 0.5 to 5.5 in increments of 0.1 (51 different values)

The compound colour selector cs1: 0 1 2 3 | 0 1 3, used in our previous work, is

used here.

The effect of vertex partitioning as a pre-processing step

All the results in the previous section were produced by using the vertex

partitioning pre-processing. Here, we investigate the effect of using vertex

partitioning with the vertex selector above. Table 8 shows the best results

obtained for each problem instance with and without vertex partitioning. Vertex

partitioning produced better results for seven problem instances (bold font) and

was equal or only slightly inferior for the remaining five problem instances.

Table 8 Comparison on groups of linear combinations with and without using the pre-processing

step of vertex partitioning

Problem Our best results

with partitioning

Our best results

without partitioning

car91 I 5.05 5.03

car92 I 4.22 4.24

ear83 I 36.07 36.06

hec92 I 11.71 12.12

kfu93 I 16.02 16.02

lse91 11.15 11.28

rye92 9.47 9.42

sta83 I 158.86 158.96

tre92 8.37 8.39

uta92 I 3.37 3.38

ute92 28.18 27.99

yor83 I 39.53 39.73

15

The overall performance of linear combinations of primitive vertex-

selection heuristics

Table 9 lists the lowest proximity penalty obtained for a feasible solution on each

of the 12 Toronto problem instances. It indicates the use of vertex partitioning (2

options), the weight vector used (8 options), and the values of the threshold

multipliers pc (851 options) and ie (51 options) used to obtain each best result for

our vertex selector. For each problem instance, the total number of sets of

parameters examined is 694416. The average execution time for one set of

parameters for each problem instance is reported. This experiment is conducted on

a PC Pentium 4, 3.2 GHz processor with 3GB memory.

Table 9 Summary of the results obtained from using linear combinations of primitive vertex-

selection heuristics

Problem Settings

(used vertex

partitioning, weight

vector for heuristics

[0(2), 5, 3], threshold

multipliers)

Average

execution

time per

set of

parameters

(seconds)

Our

current

best

results

Our

previous

results

Best

construc-

tive

reported

Best

report-

ed

car91 I
No, [100, .00001, 50],

pc=79, ie=3.3
0.81 5.03 5.22 5.0 4.5

car92 I
Yes, [1000, .00001, 1],

pc=61.5, ie=5
0.55 4.22 4.40 4.3 3.93

ear83 I
No, [1000, .00001, 1],

pc=43, ie=0.7
0.04 36.06 39.28 36.2 29.3

hec92 I
Yes, [100, 0, 15],

pc=35.4, ie=0.5
0.01 11.71 12.35 10.8 9.2

kfu93 I
Yes, [100, .00001, 50],

pc=86.8, ie=3.1
0.08 16.02 19.04 14.0 13.0

lse91
Yes, [1000, .00001, 1],

pc=30, ie=4.5
0.04 11.15 12.05 10.5 9.6

rye92
No, [100, 0, 50],

pc=31, ie=3.7
0.14 9.42 10.21 7.3 6.8

sta83 I
Yes, [100, 0, 10],

pc=11.1, ie=0.7
0.01 158.86 163.05 158.19 157.0

tre92
Yes, [100, .00001, 15],

pc=50, ie=2.5
0.05 8.37 8.62 8.4 7.9

uta92 I
Yes, [1000, 0, 1],

pc=78.6, ie=3.6
0.62 3.37 3.62 3.4 3.14

ute92
No, [100, 0, 10],

pc=6.1, ie=4.8
0.01 27.99 30.60 25.8 24.4

yor83 I
Yes, [100, .00001, 50],

pc=39.6, ie=1.7
0.03 39.53 42.05 40.66 36.2

The comparison with our previous approach of using compound vertex selectors

that used heuristics sequentially (Carrington et al. 2007) demonstrates significant

superiority of our linear combination strategy. We also see that our new strategy

could improve on the best results reported for constructive algorithms on five of

the problem instances (bold font).

16

Our current best results in Table 9 are obtained by conducting an exhaustive

search from a large range of parameter settings. Therefore, it requires a

significantly large execution time. This experiment rather demonstrates the

possibility of finding better timetables within the search space of linear

combinations of the primitive vertex-selection heuristics. Some of our preliminary

experiments suggest that the search spaces of pc and ie have the big valley

structure, i.e. the optimal settings for pc and ie are usually surrounded by many

local minima. It suggests the use of local search techniques to rapidly find the best

set of parameters and represents a direction for further research.

Observations on integrating backtracking

Table 10 presents some promising observations when we compare the results of

our approach with another constructive approach with backtracking in the

literature (Carter et al. 1996). In that approach, constructive heuristics have been

used to estimate how difficult it is to schedule each of the exams. The exams were

then selected sequentially and assigned to a timeslot that best satisfied constraints.

When an exam to be scheduled is in conflict with all timeslots, a backtracking

process will un-assign some other exams in order to schedule the exam in

consideration.

Table 10 Comparisons between our approach with Carter et al.’s approach (1996).

Problem Our current

best results

Carter et al.

(1996)

Best

constructive

reported

Best

reported

car91 I 5.03 7.1 5.0 4.5

car92 I 4.22 6.2 4.3 3.93

ear83 I 36.06 36.4 36.2 29.3

hec92 I 11.71 10.8 10.8 9.2

kfu93 I 16.02 14.0 14.0 13.0

lse91 11.15 10.5 10.5 9.6

rye92 9.42 7.3 7.3 6.8

sta83 I 158.86 161.5 158.19 157.0

tre92 8.37 9.6 8.4 7.9

uta92 I 3.37 3.5 3.4 3.14

ute92 27.99 25.8 25.8 24.4

yor83 I 39.53 41.7 40.66 36.2

In Carter et al. (1996), the five best constructive results (underlined) have been

obtained for the problem instances where our approach performs the worst. As we

have presented in the previous sections, our selected linear combinations can

generally provide better results than the traditional constructive heuristics (largest

degree, largest weighted degree, and saturation degree, etc.). The differences of

performance are highly likely due to the integration of backtracking. One

apparently promising research direction is thus to investigate our linear

combinations of primitive vertex-selection heuristics with the use of backtracking.

We expect the integration of our linear combinations with a backtracking

component to match the best constructive results reported in the above-mentioned

five problem instances. In the remaining seven problem instances, our current

results always outperform Carter et al’s results. In addition, our approach has

obtained the best results reported in the literature from constructive approaches on

17

five problem instances (bold font). Some of those results are not far from the best

reported results from all advanced improvement based approaches in the

literature. The possibility of achieving better results, especially in such seven

problem instances, motivates further research on integrating linear combinations

with a backtracking component.

6 Conclusions and Future Work

We find the results of using linear combinations encouraging given that it

involves a one-pass construction without backtracking. Moreover, we believe that

our preliminary results suggest that linear combinations of primitive heuristics

supersede their use sequentially as tiebreakers. In particular, the tiebreaker effect

could be alternatively achieved by setting one weight much larger than another.

Weight settings in linear combinations also allow different heuristics to play a

more equal role in the selection process, which has the potential to lead to more

effective heuristics and is worthy of further investigation. The use of linear

combinations also seems to lend itself to hyper-heuristic approaches (see third

bullet below).

There are several directions for our further research:

 Further testing of the effectiveness of switching from one linear

combination of heuristics to another during the colouring. One goal here

would be to identify certain problem characteristics that would determine

which weights to use.

 Reducing the sensitivity of the discrete-valued, threshold-based primitive

heuristics by designing new continuous-valued analogues. For example,

instead of counting an edge as either bad or not, according to whether its

weight exceeds a threshold, count it as 1 towards the badness degree if it

exceeds the threshold and if it does not, count the fraction of its weight over

the threshold.

 Analysing the landscape of the search space of threshold parameters (pc and

ie) in order to reduce the computational time in finding the best sets of

parameter settings.

 We can design algorithms with a feedback loop that automatically adjusts

the parameters for the switching point, thresholds and weight vectors of

linear combinations to suitable settings based on the algorithm’s past

performance. Also, if the number of primitive heuristics can be reduced, the

dimension of the corresponding search space in the context of hyper-

heuristics becomes more tractable.

 Adding a backtracking component to the algorithm is likely to reduce the

total proximity penalty. A similar backtracking procedure as in (Carter et al.

1996) can be tested. Another approach is to check when a colour assignment

for a selected vertex incurs a proximity penalty above some threshold, the

algorithm un-colours or re-colours some other vertex or vertices in order to

reduce the selected vertex’s proximity penalty.

 Designing an improvement method that takes a given colouring produced by

our algorithm and looks for vertices whose colours can be changed to

decrease the total proximity penalty while maintaining feasibility.

18

Acknowledgements

The research for this paper was supported by Nottingham University, UK, the Engineering and

Physics Science Research Council (EPSRC), UK, and an Ashforth Grant from Rollins College, USA.

References

Abdullah, S., Ahmadi, S., Burke, E.K., & Dror, M. (2007) Investigating Ahuja-Orlin's Large

Neighbourhood Search for Examination Timetabling. OR Spectrum, 29(2), 351-372.

Abramson, D., Krishnamoorthy, M., & Dang, H. (1999) Simulated Annealing Cooling Schedules for

the School Timetabling Problem. Asia-Pacific Journal of Operational Research, 16, 1-22.

Asmuni, H., Burke, E.K., Garibaldi, J. & McCollum, B. (2005) Fuzzy Multiple Ordering Criteria for

Examination Timetabling. In Burke, E.K. & Trick, M. (Eds.) Selected Papers from the 5th

International Conference on the Practice and Theory of Automated Timetabling. Lecture Notes in

Computer Science, 3616, 334-353.

Banks, D., Beek, P., & Meisles, A. (1998) A Heuristic Incremental Modelling Approach to Course

Timetabling. Proceedings of the 12th Canadian Conference on Artificial Intelligence.

Bardadym, V. A. (1996) Computer-aided school and university timetabling: The new wave. In

Burke, E.K. & Ross, P. (Eds.) Practice and Theory of Automated Timetabling I: Selected Papers

from the 1st International Conference. Lecture Notes in Computer Science.

Brelaz, D. (1979) New Methods to Color the Vertices of a Graph. Communications of the ACM, 22,

251-256.

Broder, S. (1964) Final Examination Scheduling. Communications of the ACM, 7, 494-498.

Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., & Qu, R. (2010) Hybrid variable

neighbourhood approaches to university exam timetabling. European Journal of Operational

Research (EJOR), 206, 46-53.

Burke, E.K., Kendall, G., & Soubeiga, E. (2003) A Tabu Search Hyperheuristic for Timetabling and

Rostering. Journal of Heuristics, 9, 451-470.

Burke, E.K., Kingston, J., & Dewerra, D. (2004) Applications to Timetabling. In Gross, J. & Yellen, J.

(Eds.) Handbook of Graph Theory. Chapman Hall/CRC Press.

19

Burke, E.K., & Newall, J. (1999) A Multi-Stage Evolutionary Algorithm for the Timetabling

Problem. The IEEE Transactions on Evolutionary Computation, 3, 63-74.

Burke, E.K., Petrovic, S., & Qu, R. (2006) Case Based Heuristic Selection for Timetabling Problems.

Journal of Scheduling, 9, 115-132.

Caramia, M., Dellolmo, P., & Italiano, G.F. (2001) New algorithms for examination timetabling. In

Naher, S. & Wagner, D. (Eds.) Algorithm Engineering 4th International Workshop, Proceedings

WAE 2000. Lecture Notes in Computer Science, 1982, 230-241.

Carrington, J.R., Pham, N., Qu, R., & Yellen, J. (2007) An Enhanced Weighted Graph Model for

Examination/Course Timetabling. Proceedings of 26th Workshop of the UK Planning and

Scheduling.

Carter, M. (1986) A Lagrangian Relaxation Approach to the Classroom Assignment Problem.

INFOR, 27, 230-246.

Carter, M., & Laporte, G. (1998) Recent Developments in Practical Course Timetabling. IN Burke,

E.K. & Ross, P. (Eds.) Selected Papers from the 2nd International Conference on the Practice and

Theory of Automated Timetabling, Lecture Notes in Computer Science.

Carter, M., Laporte, G., & Lee, S. (1996) Examination Timetabling: Algorithmic Strategies and

Applications. Journal of Operations Research Society, 47, 373-383.

Casey, S., & Thompson, J. (2002) GRASPing the Examination Scheduling Problem. In Burke, E.K. &

De Causmaecker, P. (Eds.) Selected Papers from the 4th International Conference on the Practice

and Theory of Automated Timetabling, Lecture Notes in Computer Science.

Cote, P., Wong, T., & Sabouri, R. (2005) Application of a hybrid multi-objective evolutionary

algorithm to the uncapacitated exam proximity problem. In Burke, E.K. & Trick, M. (Eds.) Practice

and Theory of Automated Timetabling: Selected Papers from the 5th International Conference.

Lecture Notes in Computer Science, 3616. 151-168.

Dewerra, D. (1985) Graphs, Hypergraphs and Timetabling. Methods of Operations Research, 49,

201-213.

Di Gaspero, L., & Schaerf, A. (2000) Tabu Search Techniques for Examination Timetabling. IN

Burke, E.K. & Erben, W. (Eds.) Selected Papers from the 3rd International Conference on the

Practice and Theory of Automated Timetabling, Lecture Notes in Computer Science.

Dowsland, K. (1998) Off the Peg or Made to Measure. In Burke, E.K. & Carter, M. (Eds.) Selected

Papers from the 2nd International Conference on the Practice and Theory of Automated

Timetabling, Lecture Notes in Computer Science.

20

Glover, F., & Kochenberger, G. (2003) Handbook of Metaheuristics, Kluwer.

Kiaer, L., & Yellen, J. (1992) Weighted Graphs and University Timetabling. Computers and

Operations Research, 19, 59-67.

Krarup, J., & Dewerra, D. (1982) Chromatic Optimization - Limitations, Objectives, Uses,

References. European Journal of Operational Research, 11, 1-19.

Mehta, N.K. (1981) The Application of a Graph-Coloring Method to an Examination Scheduling

Problem. Interfaces, 11, 57-65.

Merlot, L.T.G., Boland, N., Hughes, B.D., & Stuckey, P.J. (2003) A hybrid algorithm for the

examination timetabling problem. Practice and Theory of Automated Timetabling IV, 2740, 207-

231.

Neufeld, G.A., & Tartar, J. (1974) Graph Coloring Conditions for Existence of Solutions to

Timetable Problem. Communications of the ACM, 17, 450-453.

Nonobe, K., & Ibaraki, T. (1998) A tabu search approach to the constraint satisfaction problem as

a general problem solver. European Journal of Operational Research, 106, 599-623.

Papadimitriou, C.H., & Steiglitz, K. (1982) Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall.

Petrovic, S., & Burke, E.K. (2004) University Timetabling. In Leung, J. (Ed.) Handbook of

Scheduling: Algorithms, Models, and Performance Analysis. CRC Press.

Qu, R., & Burke, E.K. (2005) Hybrid Variable Neighborhood Hyper-heuristics for Exam Timetabling

Problems. Proceedings of the 6th Metaheuristics International Conference.

Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., & Lee, S. Y. (2009) A Survey of Search

Methodologies and Automated Approaches for Examination Timetabling. Journal of Scheduling,

12(1), 55-89.

Reeves, C.R. (1993) Modern heuristic techniques for combinatorial problems. Oxford: Scientific

Publications.

Reeves, C.R. (1996) Modern Heuristic Techniques. IN R-SMITH, V. J., OSMAN, I. H., REEVES, C. R. &

SMITH, G. D. (Eds.) Modern Heuristic Search Methods.

Schaerf, A. (1999) A survey of automated timetabling. Artificial Intelligence Review, 13, 87-127.

21

Schmidt, G., & Strohlein, T. (1980) Timetable-Construction - an Annotated-Bibliography.

Computer Journal, 23, 307-316.

Socha, K., Knowles, J., & Sampels, M. (2002) A Max-Min Ant System for the University Course

Timetabling Problem. Proceedings of the 3rd International Workshop on Ant Algorithms. Lecture

Notes in Computer Science 2463.

Terashima-Marín, H., Ross, P., & Valenzuela-Rendόn, M. (1999) Evolution of Constraint

Satisfaction Strategies in Examination Timetabling. Genetic Algorithms and Classifier Systems,

635-642.

Welsh, D.J.A., & Powell, M.B. (1967) An Upper Bound for Chromatic Number of a Graph and Its

Application to Timetabling Problems. Computer Journal, 10, 85-86.

Wood, D.C. (1968) A System for Computing University Examination Timetables. The Computer

Journal, 11, 41-47.

Yang, Y., & Petrovic, S. (2005) A Novel similarity measure for heuristic selection in examination

timetabling. In Burke, E.K. & Trick, M. (Eds.) Practice and Theory of Automated Timetabling:

Selected Papers from the 5th International Conference. Lecture Notes in Computer Science, 3616.

377-396.

Appendix A. Explanation and derivation of the

expected value ev

In this paper, ev represents the expected value of the proximity weight associated with

two different colours randomly chosen from a set of x colours. This mathematical

calculation is the weighted average of all possible proximity weights arising from pairs of

colours, taking into account the size and frequency of each possible proximity weight.

The product (ev)*(avgIntersectionSize) is a measure of the contribution to the total

proximity penalty that a randomly selected edge with randomly coloured endpoints

makes. Both of these quantities are completely determined by the problem instance, and

what we regard as a bad proximity penalty for assigning a given colour to a given vertex

depends on the value of this product. In particular, our bad-proximity threshold is

directly proportional to this product, where the multiplier pc is the constant of

proportionality. Several of the results reported in this paper were obtained by

experimenting with different values of pc.

NOTATION: Let proxWt(c1,c2) denote the proximity weight for two different colours,

c1 and c2. For the Toronto problems, proxWt(c1, c2) = 2
5-|c1-c2|

 if 0 < |c1 - c2| ≤ 5 and =

0 if |c1 - c2| > 5.

22

Theorem: Let c1 and c2 be two different colours chosen randomly from a set of x

colours, and let ev be the expected value of proxWt(c1, c2). Then

1)x(x

11462x
ev

Proof: First observe that the total number of possible pairs of different colours =

2

)1(

2

xxx
. Next we count the number of pairs of colours having each possible

proximity weight.

There are x-1 pairs of colours having proxWt = 16, namely {1,2}, {2,3}, …, {x-1, x}.

There are x-2 pairs of colours having proxWt = 8, namely {1,3}, {2,4}, …, {x-2, x}.

There are x-3 pairs of colours having proxWt = 4, namely {1,4}, {2,5}, …, {x-3, x}.

There are x-4 pairs of colours having proxWt = 2, namely {1,5}, …, {x-4, x}.

There are x-5 pairs of colours having proxWt = 1, namely {1,6}, …, {x-5, x}.

All other pairs of colours have proxWt = 0.

ev is the weighted average of all these proxWt values. Thus,

1)x(x

11462x

2

1)x(x

5)(x4)2(x3)4(x2)8(x1)16(x
ev

