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Abstract The multivariate discrete moment problem (MDMP) has been introduced

by Prékopa. The objective of the MDMP is to find the minimum and/or maximum

of the expected value of a function of a random vector with a discrete finite support

where the probability distribution is unknown, but some of the moments are given. The

MDMP can be formulated as a linear programming problem, however, the coefficient

matrix is very ill-conditioned. Hence, the LP problem usually cannot be solved in a reg-

ular way. In the univariate case Prékopa developed a numerically stable dual method

for the solution. It is based on the knowledge of all dual feasible bases under some

conditions on the objective function. In the multidimensional case the recent results

are also about the dual feasible basis structures. Unfortunately, at higher dimensions,

the whole structure has not been found under any circumstances. This means that a

dual method, similar to Prékopa’s, cannot be developed. Only bounds on the objective

function value are given, which can be far from the optimum. This paper introduces

a different approach to treat the numerical difficulties. The method is based on mul-

tivariate polynomial bases. Our algorithm, in most cases, yields the optimum of the

MDMP without any assumption on the objective function. The efficiency of the method

is tested on several numerical examples.

Keywords Discrete moment problem · Multivariate Lagrange interpolation · Linear
programming · Expectation bounds · Probability bounds
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1 Introduction

The multivariate discrete moment problem (MDMP) has been introduced by Prékopa (1992).

It is a natural generalization of the so-called univariate discrete moment problem, which
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was introduced and studied by Prékopa (1988, 1990a, 1990b) and Samuels and Stud-

den (1989), independently. Samuels and Studden use the classical approach and their

method is applicable only to small size problems. Prékopa invented a numerically sta-

ble dual simplex algorithm to solve the underlying linear programming problem. This

method allows for an efficient solution of large size moment problems as well as for

finding closed form sharp bounds. Unfortunately, the dual method of Prékopa could

not be generalized to the multivariate case. His method needs the knowledge of all dual

feasible bases, but in the multivariate case only a smaller set of them are known. The

dual feasible bases provide us with bounds for the MDMP, see Prékopa (1998, 2000),

Mádi-Nagy and Prékopa (2004) and Mádi-Nagy (2005, 2009). However, the optimum

of the problem usually cannot be found. The aim of this paper is to introduce an algo-

rithm that finds the optimum, usually in a numerically stable way, based on another

approach.

The MDMP can be formulated as follows. Let X = (X1, . . . , Xs) be a random

vector and assume that the support of Xj is a known finite set Zj = {zj0, . . . , zjnj
},

where zj0 < · · · < zjnj
, j = 1, . . . , s. A certain set of the following moments are

considered.

Definition 1 The (α1, . . . , αs)-order power moment of the random vector (X1, . . . , Xs)

is defined as

µα1...αs = E
[

Xα1

1 · · ·Xαs
s

]

,

where α1, . . . , αs are nonnegative integers. The sum α1 + · · · + αs will be called the

total order of the moment.

We use the following notation for the (unknown) distribution of X:

pi1...is = P (X1 = z1i1 , . . . , Xs = zsis ), 0 ≤ ij ≤ nj , j = 1, . . . , s. (1)

Then the moments can be written in the form

µα1...αs =

n1
∑

i1=0

· · ·
ns
∑

is=0

zα1

1i1
· · · zαs

sis
pi1...is .

Let Z = Z1 × · · · × Zs and

f(z), z ∈ Z (2)

be a function. Let

fi1...is = f(z1i1 , . . . , zsis ).

The (power) MDMP is to give bounds for

E[f(X1, . . . , Xs)],

where the distribution of X (i.e., (1)) is unknown, but known are some of the following

moments:

µα1...αs for (α1 . . . αs) ∈ H.

In the literature, several types of sets H can be found. In this paper we consider the

case

H =
{

(α1, . . . , αs)| 0 ≤ αj , αj integer, α1 + · · ·+ αs ≤ m, j = 1, . . . , s
}

, (3)
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where m is a given nonnegative integer. We can formulate the MDMP by the following

LP problem:

min(max)

n1
∑

i1=0

· · ·
ns
∑

is=0

fi1...ispi1...is

subject to
n1
∑

i1=0

· · ·
ns
∑

is=0

zα1

1i1
· · · zαs

sis
pi1...is = µα1...αs

for (α1 . . . αs) ∈ H

pi1...is ≥ 0, all i1, . . . , is.

(4)

In problem (4) pi1...is , 0 ≤ ij ≤ nj , j = 1, . . . , s are the unknown variables, all other

parameters (i.e., the function f and the moments) are given. Let us use the following

notation for the compact matrix form of (4) with H of (3):

min(max) f
T
p

subject to

Ap = b

p ≥ 0.

(5)

Besides arising in a natural way, the MDMP can be applied in several other fields,

e.g., bounding expected utilities (Prékopa and Mádi-Nagy, 2008), solving generalized s-

dimensional transportation problems (Hou and Prékopa, 2007) and approximating val-

ues of multivariate generating functions

(Mádi-Nagy and Prékopa, 2007). One of the most popular applications is to bound

probabilities of Boolean functions of events. These results are based on the so-called

binomial MDMP, see e.g., Mádi-Nagy (2009).

The main problem with the solution of the MDMP (4) is that the coefficient matrix

is very ill-conditioned. (It is easy to see that in the univariate case the coefficient matrix

is a Vandermonde matrix, which is one of the well-known examples of ill-conditioned

matrices.) Hence, in case of the (dual) simplex method in the calculation of the basic

solutions and optimality conditions, the numerical inaccuracy is much larger than it

was in the input data. This means that if we try to solve the MDMP with regular

solvers they will yield not only inaccurate, but wrong results.

This phenomenon can be managed in several ways. One alternative is the use of

high precision arithmetic. Its disadvantage is that the running time will be extremely

increased. Another, much more elegant way is the mentioned revised dual method of

Prékopa (1990b). This method is based on theorems which give the subscript structures

of columns of all dual feasible bases. By the aid of the known dual feasible bases, at every

iteration in the dual simplex method the following basis can be found combinatorially.

Unfortunately, this method works only for the univariate case beside some conditions

on the function f(z) in (2). In this paper another approach is introduced.
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Let us consider the following vector:

b(z) = b(z1, . . . , zs) =























1

z1
z21
...

zα1

1 zα2

2 · · · zαs
s

...

zms























, where (α1, . . . , αs) ∈ H. (6)

Regarding the columns of the coefficient matrix A in (5), they can be formulated as

ai1...is = b(z1i1 , . . . , zsis ).

The right-hand side vector can also be written as

b = E (b(X1, . . . , Xs)) .

The idea is the following. The components of b(z) of (6) are the monomial basis of

the s-variate polynomials of degree at most m. Let us consider another basis of the

s-variate polynomials of degree at most m:

p0...0(z), p1...0(z), . . . , pα1...αs (z), . . . , p0...m(z) (7)

Let

b̄(z) = b̄(z1, . . . , zs) =



















p0...0(z)

p1...0(z)
...

pα1...αs(z)
...

p0...m(z)



















, where (α1, . . . , αs) ∈ H, (8)

āi1...is = b̄(z1i1 , . . . , zsis ).

and

b̄ = E
(

b̄(X1, . . . , Xs)
)

.

The system of linear equations Āp = b̄ is equivalent to the system Ap = b of (5), since

there exists an invertible matrix T such that

Ā = TA and b̄ = Tb.

The aim of the paper is to find out which basis (7) yields a significantly better condi-

tioned matrix Ā. By the use of this basis we can solve

min(max) f
T
p

subject to

Āp = b̄

p ≥ 0,

(9)

instead of problem (5), in a numerically more stable way. In the following, first the

candidates for polynomial bases are introduced with their main properties, and with the



5

reasons why they are taken into account. Then a solution algorithm is developed, which

is suitable to yield numerically reliable results as well as to indicate the violations of

primal and dual infeasibility. Finally, numerical tests are carried out in order to find the

basis which yields the best (most reliable) results. Our method is heuristic in the sense

that its usefulness is not proven, just analyzed empirically. However, the developed

algorithm is very effective in practice, and it is also reliable because it indicates the

wrong solution.

The paper is organized as follows. In Section 2 the possible polynomial bases are

introduced. In Section 3 the solution algorithm and the testing method are presented.

Section 4 is about the numerical experiments. In the first part of this section, conditions

of randomly generated basis matrices are investigated. This shows which basis has

better numerical properties. In the second part, several MDMPs are solved to illustrate

that the bases with better condition numbers really work better in the solutions of

practical problems. Section 5 concludes the paper.

2 Polynomial bases

In order to present the properties of the following bases, first we need some introduction

on condition numbers. The condition number of a matrix can be defined in the following

way. Consider the following system of linear equations:

Ax = b,

where A is a square matrix. Let us imagine that there is an error e in b, hence we get

a solution with error d, i.e.,

A(x+ d) = b+ e.

The condition number of the matrix A is the maximum ratio of the relative error in

the solution x to the relative error in the right-hand side vector b. I. e., the condition

number of A is the maximum of the following fraction:

||d||/||x||
||e||/||b|| =

||A−1e||/||x||
||e||/||Ax|| =

(

||A−1
e||/||e||

)

(||Ax||/||x||) .

It is easy to see that the maximum of the first and second term is ||A−1|| and ||A||,
respectively. From this follows

Definition 2 The condition number of the quadratic matrix A is

κ(A) = ||A−1|| · ||A||.

In case of polynomial bases the condition number can be defined in the following

way, see e.g., Lyche and Peña (2004). Let U be a finite-dimensional vector space of

functions defined on Ω ∈ IRs and let b = (b1, . . . , bn) be a basis for U . Given a function

f =
∑n

i=1
cibi ∈ U , the condition numbers measure for the sensitivity of f(z) to

perturbations in the coefficients c = (c1, . . . , cn) of f . If g =
∑n

i=1
(1 + δi)cibi is

related to f by a relative perturbation δ = (δ1, . . . , δs) in c, then for any z ∈ Ω

|f(z)− g(z)| =

∣

∣

∣

∣

∣

n
∑

i=1

δicibi(z)

∣

∣

∣

∣

∣

≤ ||δ||∞
n
∑

i=1

|cibi(z)|.
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Let

Cb(f,z) =

n
∑

i=1

|cibi(z)|.

Definition 3 The polynomial basis b = (b1, . . . , bn) for U on Ω ∈ IRs has the following

type of condition numbers.

cond(b; f, z) =
Cb(f,z)

||f ||∞
=

∑n
i=1

|cibi(z)|
||
∑n

i=1
cibi||∞

,

cond(b; f) = sup
z∈Ω

cond(b; f,z),

cond(b) = sup
f∈U

cond(b; f).

Above, the so-called Skeel condition numbers are defined, see e.g. Skeel (1979). The

p-norm condition numbers can be also defined as a ratio of the relative changes in

|f(z)− g(z)| and the relative changes in p-norms of the error vector of c.

2.1 Bernstein polynomials

Definition 4 The multivariate Bernstein basis polynomials of degree n are defined as

bα1...αs(z1, . . . , zs) =
m!

α1! · · ·αs!(m− α1 − · · · − αs)!
zα1

1 × · · · × zαs
s

× (1− z1 − · · · − zs)
m−α1−···−αs ,

where (α1, . . . , αs) ∈ H of (3).

The condition numbers of univariate and multivariate Bernstein polynomial bases are

investigated in e.g., Lyche and Scherer (2000, 2002) and Lyche and Peña (2004). The

reason why this basis is among the candidates is the following

Theorem 1 (Theorem 5.1 in Lyche and Peña, 2004) Let Ω = {z ∈ IRs|z1 +

· · · zs ≤ 1, zi ≥ 0, i = 1, . . . s}. Let b be the Bernstein basis for the space U of multi-

variate polynomials of total degree at most n. If u is another basis for U of functions

which are nonnegative on Ω and such that

cond(u; f,z) ≤ cond(b; f,z)

for each function f ∈ U evaluated at every value z ∈ Ω, then u = b up to permutation

and positive scaling.

Unfortunately, not all the conditions of the above theorem can be fulfilled. On one

hand, in our case bases that are not necessarily non-negative are allowed. On the other

hand, the vectors z ∈ Z spanned a cube instead of the simplex like Ω in Theorem 1.

Two kinds of rescaling can be considered. One alternative is to put the cube into the

simplex. In this case probably a lot of bases exist, which are not better conditioned

on the simplex, but better conditioned on the cube. The other alternative is scaling
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the vectors z ∈ Z to the unit cube [0, 1]s. We follow this second alternative, hence we

consider the scaled Bernstein bases

Bα1...αs(z1, . . . , zs) =
m!

α1! · · ·αs!(m− α1 − · · · − αs)!

(

z1 − z10
z1n1

− z10

)α1

×

· · · ×
(

zs − zs0
zsns − zs0

)αs

×
(

1− z1 − z10
z1n1

− z10
− · · · − zs − zs0

zsns − zs0

)m−α1−···−αs

,

where (α1, . . . , αs) ∈ H of (3).

2.2 Orthogonal polynomials

In the following the multivariate generalizations of univariate orthogonal polynomials

are considered. First the univariate orthogonal polynomials are introduced.

Definition 5 A set of polynomials p = {p0, . . . , pn} – where pi has a degree i, i =

0, . . . , n – is called orthogonal on an interval [a, b] (where a = −∞ and b = +∞ are

allowed) if for a weight function w(z) (w(z) ≥ 0, z ∈ [a, b]), we have 〈pi, pj〉 = 0, i 6= j,

where

〈f, g〉 =
∫ b

a

f(z)g(z)w(z)dz.

Let

ci = 〈pi, pi〉, i = 0, 1, 2, . . .

If ci = 1 for all i, then p is a set of orthonormal polynomials.

Some well-known properties of orthogonal polynomials are stated next. The set p

is a basis of the space of the polynomials of degree at most m. Each polynomial in an

orthogonal set p has minimal norm among all polynomials with the same degree and

leading coefficient. All roots of a polynomial in an orthogonal set p are real, distinct,

and strictly inside the interval of orthogonality. All orthogonal polynomials satisfy a

three-term recurrence:

p0(z) = a0, p1(z) = d0z + b0, pi+1(z) = di(z − bi)pi(z)− aipi−1(z),

where ai, di 6= 0 for all i.

The following three, so-called Jacobi-like, sets of orthogonal polynomials are con-

sidered: Legendre polynomials, first- and second-kind Chebyshev polynomials. The

main reasons for the choice are that they have special roles in univariate interpolation,

detailed below, and on the other hand all of them have the same, finite interval of

orthogonality: [−1, 1]. The properties, and implicitly the definitions, are listed in the

following table:

Type w(z) cj dj bj aj

Legendre 1
2

2j + 1

2j + 1

j + 1
0

j

j + 1

First-kind Chebyshev
1√

1− z2
π, c0 = π

2 2, d0 = 1 0 1

Second-kind Chebyshev
√
1− z2 π/2 2 0 1
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The classical results on the condition numbers of Vandermonde-like matrices – i.e.,

matrices of type Ā of (9) in the univariate case – can be found in Gautschi (1983). The

main idea can be illustrated by the simplest case, where the nodes {z11, . . . , z1n1
} =

Z1 = Z are the roots of the polynomial pn1
∈ p. Consider the following

Theorem 2 (Discrete orthogonality property) Let {z11, . . . , z1n1
} be the roots of

pn1
∈ p of Definition 5. Then there exist the so called Christoffel numbers λ1, . . . , λn1

such that
n1
∑

i=1

λipm(z1i)pk(z1i) = δmk, for all k,m < n1.

Proof See e.g., Gautschi (1968). 2

Thus, if we consider the Frobenius norm, i.e., ||A||F =
√

tr(ATA), in the condition

number of Ā we get the following formula:

κF (Ā) = ||Ā−1||F · ||Ā||F =

√

√

√

√

n1
∑

i=1

1

λi
·

√

√

√

√

n1
∑

i=1

λi.

The zero places of Legendre polynomials and first- and second-kind Chebyshev

polynomials have a special role in univariate Lagrange interpolation. By the use of

them, the Lebesgue constant can be kept in a moderate value even in case of several

nodes, see Blyth, Luo and Pozrikidis (2006). In the univariate case, nearly optimally

conditioned Vandermonde matrices can be found if the nodes are chosen as the zero

places of the first-kind Chebyshev polynomials, see Li (2006).

There are several other theorems on the condition numbers of Vandermonde-like

matrices in connection with orthogonal polynomials, however, these results usually

focus on the optimal positions of the interpolation nodes yielding better conditioned

Vandermonde-type matrices. Unfortunately, in case of the MDMP, we do not know the

positions of the points corresponding to the columns of the basis matrix, and addition-

ally they change at every iteration. Hence, it has to be analyzed, at least empirically,

whether their good properties keep the basis matrices numerically treatable.

The multivariate counterparts of the univariate orthogonal polynomials can be

constructed in the following way. The products of the univariate polynomials are con-

sidered, i.e. the set of the corresponding s-variate polynomials are

pα1...αs(z1, . . . , zs) = pα1
(z1)× · · · × pαs (zs) (10)

where (α1, . . . , αs) ∈ H of (3). It is easy to see that the above polynomials are also

orthogonal regarding the integral on the cube Is with the weight function w(z1)×· · ·×
w(zs), where I is the orthogonality interval of the univariate polynomials. This means

that the set (10) is also a basis of the space of the s-variate polynomials of degree at

most m.

In the following the multivariate counterparts of the Legendre, first- and second-

kind Chebyshev polynomials are considered. The orthogonality interval at each poly-

nomial is [−1, 1]. Hence, the values of each component of Z have to be scaled to the

interval [−1, 1]. This leads to the following formulae.
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2.2.1 Legendre polynomials

The following multivariate Legendre polynomials are considered:

Pα1...αs(z1, . . . , zs) = Pα1

(

2z1 − (z10 + z1n1
)

z1n1
− z10

)

× · · · × Pαs

(

2zs − (zs0 + zsns)

zsns − zs0

)

where (α1, . . . , αs) ∈ H of (3) and Pα(z) is the αth univariate Legendre polynomial.

2.2.2 First-kind Chebyshev polynomials

The multivariate first-kind Chebyshev polynomials are defined as

Tα1...αs(z1, . . . , zs) = Tα1

(

2z1 − (z10 + z1n1
)

z1n1
− z10

)

× · · · × Tαs

(

2zs − (zs0 + zsns )

zsns − zs0

)

,

where Tα(z) is the αth univariate first-kind Chebyshev polynomial.

2.2.3 Second-kind Chebyshev polynomials

The multivariate second-kind Chebyshev polynomials are

Uα1...αs(z1, . . . , zs) = Uα1

(

2z1 − (z10 + z1n1
)

z1n1
− z10

)

× · · · × Uαs

(

2zs − (zs0 + zsns)

zsns − zs0

)

,

where Uα(z) is the αth univariate second-kind Chebyshev polynomial.

3 Solution algorithm and testing method

The conversion between problem (5) and (9) is also an ill-conditioned problem in most

cases, see e.g., Farouki (2000). Hence, the following algorithm will be considered for

the solution of the MDMP (4).

Solution Algorithm

Step 1. Execution of the basis transformation from problem (5) to problem (9) by the

use of high precision arithmetic.

Step 2. Solution of problem (9) by a regular LP solver using dual simplex method.

Step 3. Getting the subscripts of the columns of the optimal basis. Checking the primal

and dual feasibility by the use of high precision arithmetic with problem (5). Calculat-

ing the objective function value.

High precision arithmetic is applied in the above algorithm, too. However, we use

it only at the first and last step, i.e., in two iterations. This produces much less running

time comparing to the (dual) simplex method where high precision arithmetic should

be used at each iteration.

Our aim is to find polynomial bases where the condition numbers of the basis

matrices of Ā in (9) are relatively small. This leads to get, on one hand, more reliable,
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on the other hand, better bounds on the objective function. The ∞-norm condition

numbers are considered, those indicate the rate of∞-norm relative errors in the solution

vector to the ∞-norm relative errors in the moment vector. This measures not only

the reliability of the optimal solution, but also implies the quality of the iterations. I.

e., in case of high condition numbers, the small positive component can be calculated

as a negative one and vice versa, and this leads to a wrong choice of incoming and

outcoming basis variables.

Unfortunately, we do not know in advance which columns of Ā form a basis used

in the (dual) simplex method. Hence, in Example 1 the average condition numbers of

randomly chosen bases matrices are calculated. We expect that the polynomial basis

with the smallest average condition number yields the most reliable result.

This idea is tested in practice by the following method. The same problem is solved

with several bases, introduced in the previous section. The results are compared re-

garding the

1. primal and dual feasibility of the ”optimal” bases, yielded by the solver (checking

by the use of high precision arithmetic),

2. the ∞-norm condition number of the ”optimal” basis matrix in problem (9),

3. the ”optimal” objective function values.

The phrase ”optimal” (within quotation marks) means that although the solver yields

the basis as an optimal one, in some cases, it is only dual feasible. Hence, it gives only

a lower (upper) bound on the objective function value in case of min (max) problems.

The comparison of the ”optimal” objective function values shows which polynomial

basis yields the best bounds on the objective function value.

Part 2 of the method enables us to compare the condition number of the ”optimal”

basis matrix with the average condition numbers of Example 1. It would be more

accurate to check the condition numbers of the bases of all iterations, however, it

cannot be executed within acceptable running time.

In the numerical test of Section 4 Wolfram’s Mathematica (2010) is used for the

high precision arithmetic calculations of Step 1 and 3 in the solution algorithm. The

solver in Step 2 is the ILOG CPLEX 9 (2010).

4 Numerical experiments

First, the basis matrices of (9) are simulated by random choices of the nodes cor-

responding to the column vectors. The condition numbers are tested for each basis

candidate.

Example 1 Let
(

m+s
s

)

points of the [0, 1]s cube be generated randomly by the use of

uniform distribution. We construct a quadratic matrix with the columns b̄ of (8) at

the generated points. If the matrix is non-singular then we put it into the sample. We

work on 100 element samples and we calculate the infinity-norm condition numbers of

the matrices, for each polynomial basis, and take their average. In case of s = 2 we get

the following results:
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In case of s = 3 the results are similar:

It can be seen, that although all condition numbers increase exponentially, the or-

thogonal polynomials yield about the square-root of the condition numbers correspond-

ing to the monomial and Bernstein polynomials. This shows that the use of orthogonal

polynomials causes dramatically better numerical performance. Note, that in both cases

the second-kind Chebyshev polynomial yields the lowest condition numbers.

Example 1 suggests the use of orthogonal bases. In the following we illustrate on

the solutions of the MDMPs what kind of numerical troubles can arise. Those examples

also illustrate the efficiency of orthogonal bases.

Four problems – with several values of the maximum order m – are solved by the

algorithm of Section 3 based on the polynomial bases introduced in Section 2.
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Example 2 Let Z = {0, 1, . . . , 15}3 and the moments be generated by the uniform

distribution on Z. Let

f(z1, z2, z3) =

{

0 if (z1, z2, z3) = (0, 0, 0),

1 otherwise.

This means that the corresponding MDMP yields bounds for the probability

E [f(z1, z2, z3)] = P (X1 +X2 +X3 > 0).

The results are the following. For the minimum problem:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 0.27419355 0.27419355 0.27419355 0.27419355 0.27419355

2 0.53125000 0.53125000 0.53125000 0.53125000 0.53125000

3 0.53981855 0.53981855 0.53981855 0.53981855 0.53981855

4 0.58464908 0.58464908 0.58464908 0.58464908 0.58464908

5 0.61448581 0.61448581 0.61448581 0.61448581 0.61448581

6 0.64548271 0.64548271 0.64548271 0.64548271 0.64548271

For the maximum problem:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

2 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

3 0.99543011 0.99543011 0.99543011 0.99543011 0.99543011

4 0.98574214 0.98574214 0.98574214 0.98574214 0.98574214

5 0.98453738 0.98453738 0.98453738 0.98453738 0.98453738

6 0.95817859 0.95817859 0.95817859 0.95817859 0.95817859

The results typeset in boldface are dual infeasible solutions, the magnitude of violations
are −5.82e − 7 and −8.22e − 7, respectively. The infinity-norm condition numbers of
the optimal basis matrices of the min/max problems are:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 1E + 01/1E + 01 7E + 00/7E + 00 4E + 00/4.00E + 00 4E + 00/4E + 00 4E + 00/4E + 00

2 4E + 04/4E + 03 9E + 02/4E + 02 2E + 02/1E + 01 2E + 02/1E + 01 2E + 02/9E + 01

3 1E + 06/3E + 05 3E + 03/3E + 03 1E + 03/4E + 02 2E + 03/5E + 02 1E + 03/4E + 02

4 1E + 08/6E + 06 2E + 05/4E + 05 3E + 02/8E + 02 4E + 02/4E + 02 7E + 02/6E + 03

5 2E + 10/2E + 11 1E + 06/6E + 06 1E + 05/1E + 06 8E + 04/1E + 06 4E + 04/1E + 06

6 8E + 10/1E + 11 1E + 07/2E + 07 1E + 05/2E + 04 2E + 04/1E + 04 3E + 04/1E + 04

In this case, essentially, all the problems could be solved. However, the condition

number can be reduced dramatically by the use of orthogonal polynomials.

Example 3 Let Z = {0, 1, . . . , 10} × {0, 1, . . . , 20} × {0, 1, . . . , 30} and the moments be

generated in the following way. Let X, Y1, Y2 and Y3 be random variables with Poisson

distribution, with the parameters λ = 0.1, 0.2, 0.3, 0.05, respectively. The moments

are generated by the random vector

(min(X + Y1, 10),min(X + Y2, 20),min(X + Y3, 30)) .

Let

f(z1, z2, z3) = sin(z1 + z2 + z3).
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The results of the minimum problem are the following:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 −0.16301713 −0.16301713 −0.16301713 −0.16301713 −0.16301713

2 0.20039622 0.20039622 0.20039622 0.20039622 0.20039622

3 0.25350547 0.25350547 0.25350547 0.25350547 0.25350547

4 0.27167527 0.26575235 0.27316847 0 .27315366 0 .27206079

5 0.26469815 0.28452612 0.28228435 0 .28214106 0 .28526692

6 0.28393933 0.28696505 0.28816140 0 .28789129 0 .28822397

The results of the maximum problem:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 0.71525034 0.71525034 0.71525034 0.71525034 0.71525034

2 0.47997864 0.47997864 0.47997864 0.47997864 0.47997864

3 0.31651723 0.31651723 0.31651723 0.31651723 0.31651723

4 0 .31049303 0 .31108264 0 .31197905 0 .31242441 0 .31244058

5 0.30509224 0 .30263923 0 .30359098 0 .30272386 0 .30352714

6 0 .29666626 0 .29609722 0 .29760208 0 .29873506 0 .29855087

– The underlined results are not solutions of the system of linear equations Āp = b̄

in (9), hence these results have no meaning. (The solver considers the system of

inequalities with zero upper bounds on the slack variables.) The infeasible slack

variables have the order of magnitude 10−7 in case of the Legendre polynomial,

however, in case of monomial basis they can be about 60, which yields very con-

tradictory results.

– The results typeset in italics are not primal feasible, hence they give lower/upper

bounds on the objective function of the min/max problem.

– It can be seen that the minimum problem can be solved (bounded) only by the aid

of the Chebyshev polynomials.

The condition numbers of the optimal bases:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 8.E + 00/2.E + 01 1.E + 02/7.E + 02 4.E + 01/2.E + 02 4.E + 01/2.E + 02 6.E + 01/3.E + 02

2 3.E + 02/4.E + 02 2.E + 05/3.E + 05 3.E + 04/3.E + 04 3.E + 04/3.E + 04 6.E + 04/5.E + 04

3 3.E + 05/6.E + 03 4.E + 07/1.E + 07 2.E + 06/7.E + 05 2.E + 06/7.E + 05 1.E + 06/2.E + 06

4 9.E + 07/3.E + 07 3.E + 08/2.E + 08 1.E + 07/1.E + 06 4.E + 06/7.E + 05 4.E + 06/2.E + 06

5 2.E + 11/1.E + 12 3.E + 09/2.E + 09 7.E + 06/7.E + 06 3.E + 06/7.E + 06 2.E + 07/2.E + 07

6 1.E + 16/2.E + 12 1.E + 10/4.E + 10 3.E + 07/2.E + 08 2.E + 07/2.E + 07 6.E + 07/4.E + 07

The condition numbers are also much lower in case of the orthogonal polynomials, in

case of higher values of m.

Example 4 Let Z = {0, 1, . . . , 100}2 and the moments be generated in the following

way. Let X, Y1, Y2 be random variables with Poisson distribution, with the parameters

λ = 1, 2, 3, respectively. The moments are generated by the random vector

(min(X + Y1, 100), min(X + Y2, 100)) .

Let

f(z1, z2) =

{

0 if z1 + z2 < 6,

1 otherwise.
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This means that the corresponding MDMP yields bounds for the probability

E [f(z1, z2)] = P (X1 +X2 ≥ 6).

The results of the minimum problem are the following:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 0.01025641 0.01025641 0.01025641 0.01025641 0.01025641

2 0.30952381 0.30952381 0.30952381 0.30952381 0.30952381

3 0.34199134 0.34199134 0.34199134 0.34199134 0.34199134

4 0.34344014 0.34402941 0 .34393909 0 .34393909 0 .34394296

5 0.34206839 0.35869158 0.38154787 0 .38929061 0 .38739693

6 0.38881997 0.38274396 0 .39145364 0 .39087842 0 .39136995

7 0.36947755 0.38539228 0 .39028745 0 .39047003 0 .39058113

8 0.38838059 0.41361558 0 .39650524 0 .38974752 0 .38956735

The results of the maximum problem:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

2 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

3 0.94978632 0.94978632 0.94978632 0.94978632 0.94978632

4 0 .94994380 0.94994464 0 .94994380 0 .94994380 0 .94994380

5 0 .93685650 0.93639774 0 .93674363 0 .93677600 0 .93695911

6 0 .89265249 0.92212156 0 .90048010 0 .92006619 0 .88778247

7 0.858758376 0.88899961 0 .89090362 0 .88902196 0 .88883977

8 0 .86793966 0 .85465033 0 .85633780 0 .87516401 0 .85490465

For higher values of m, both the minimum and maximum problems can be solved only
by the aid of orthogonal polynomials. The condition numbers of the optimal bases:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 7.E + 01/4.E + 01 5.E + 01/3.E + 02 2.E + 01/2.E + 02 2.E + 01/2.E + 02 2.E + 01/2.E + 02

2 4.E + 03/1.E + 03 1.E + 05/4.E + 04 4.E + 04/6.E + 03 4.E + 04/6.E + 03 7.E + 04/9.E + 03

3 2.E + 04/2.E + 04 4.E + 06/7.E + 06 9.E + 05/1.E + 06 9.E + 05/9.E + 05 2.E + 06/2.E + 06

4 2.E + 11/6.E + 09 2.E + 06/1.E + 08 2.E + 06/2.E + 06 2.E + 06/5.E + 06 2.E + 07/1.E + 08

5 2.E + 14/4.E + 11 2.E + 10/3.E + 10 7.E + 08/7.E + 08 4.E + 09/4.E + 08 3.E + 11/2.E + 09

6 2.E + 17/3.E + 14 1.E + 10/8.E + 10 8.E + 09/2.E + 10 7.E + 08/4.E + 09 1.E + 10/6.E + 10

7 6.E + 20/2.E + 16 3.E + 10/2.E + 12 1.E + 09/2.E + 09 2.E + 08/3.E + 10 1.E + 09/2.E + 10

8 4.E + 24/6.E + 18 5.E + 10/7.E + 12 2.E + 09/8.E + 09 3.E + 08/2.E + 09 2.E + 08/6.E + 09

It can be seen that the best results as well as the lowest condition numbers correspond

to the Chebyshev polynomials.

Example 5 Let Z = {0, 1, . . . , 100}2 again and the moments be generated by the use

of uniform distribution on Z. Let

f(z1, z2) = Exp(z1/50 + z2/200 + z1z2/10000).
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The results of the minimum problem are the following:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 3.97437726 3.97437726 3.97437726 3.97437726 3.97437726

2 5.27052361 5.27052361 5.27052361 5.27052361 5.27052361

3 5.91689642 5.91689642 5.91689642 5.91689642 5.91689642

4 6.07980391 6.07980391 6.07980391 6.07980391 6.07980391

5 6.13014509 6.13014497 6.13014497 6.13014498 6.13014497

6 6.14039489 6.14039491 6.14039489 6.14039489 6.14039489

7 6.14268725 6.14268741 6.14268725 6.14268724 6.14268725

8 6.14308426 6.14308419 6.14308421 6.14308422 6.14308423

The results of the maximum problem:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 17.05772598 17.05772598 17.05772598 17.05772598 17.05772598

2 7.72492540 7.72492540 7.72492540 7.72492540 7.72492540

3 6.63947797 6.63947797 6.63947797 6.63947797 6.63947797

4 6.22373114 6.22373114 6.22373114 6.22373114 6.22373114

5 6.16276688 6.16276688 6.16276688 6.16276688 6.16276688

6 6.14626096 6.14626085 6.14626088 6.14626096 6.14626096

7 6.14376949 6.14376950 6.14376949 6.14376950 6.14376948

8 6.14325808 6.14325809 6.14325802 6.14325787 6.14325785

Unfortunately, this problem cannot even be solved by the aid of orthogonal polyno-

mials, for higher values of m. The order of magnitude of the violations in the dual

feasibility is about 10−7 in each case. Note, that in case of our solver, CPLEX 9, the

optimality tolerance can be changed to 10e − 09 from the default value 10e − 06, and

in this case the optimal solution can be found. However, this example illustrates the

usefulness of the checking part of our solution algorithm: it detects the infeasibilities

even if they are under the numerical tolerances of the solver. It is important if the

condition number of the basis matrix is high, like in case of the MDMP.
The condition numbers of the optimal bases:

m Monomial Bernstein Legendre 1st Chebyshev 2nd Chebyshev

1 2.E + 04/2.E + 02 3.E + 02/5.E + 00 2.E + 02/3.E + 00 2.E + 02/3.E + 00 2.E + 02/5.E + 00

2 3.E + 05/3.E + 06 2.E + 03/1.E + 03 6.E + 02/1.E + 02 6.E + 02/1.E + 02 6.E + 02/6.E + 02

3 6.E + 08/1.E + 07 9.E + 03/1.E + 04 4.E + 03/3.E + 02 2.E + 02/2.E + 02 3.E + 03/3.E + 03

4 5.E + 09/2.E + 11 8.E + 04/4.E + 04 4.E + 03/6.E + 03 4.E + 03/6.E + 03 2.E + 03/3.E + 03

5 3.E + 13/8.E + 12 7.E + 05/4.E + 05 3.E + 04/7.E + 03 2.E + 04/3.E + 04 2.E + 04/3.E + 04

6 2.E + 14/6.E + 15 8.E + 05/1.E + 06 3.E + 04/1.E + 04 3.E + 04/2.E + 04 1.E + 04/1.E + 04

7 2.E + 17/1.E + 17 3.E + 06/2.E + 07 9.E + 03/5.E + 04 2.E + 04/3.E + 04 2.E + 04/4.E + 04

8 2.E + 18/3.E + 19 9.E + 07/3.E + 07 2.E + 04/2.E + 04 2.E + 04/4.E + 03 8.E + 03/3.E + 03

It can be seen that the best results as well as the lowest condition numbers correspond

to the Chebyshev polynomials.

5 Conclusions

Our experiences can be summarized as follows.

– By the use of orthogonal polynomial bases the condition numbers of the basis ma-

trices can be reduced dramatically. The second-kind Chebyhsev polynomials have

performed best (see Example 1).
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– Sometimes the MDMP cannot be solved with monomial bases, however the orthog-

onal bases yield useful solutions. (see Example 3).

– The solution algorithm of Section 3 detects the infeasibilities even if they are under

the numerical tolerances of the solver. The solver yields the result through the sub-

scripts of the optimal basis, without numerical difficulties. Then the high precision

arithmetic can check the solution. (see Example 5).

Until now, most results in connection with the MDMP have been about dual feasible

basis structures. They have provided us with bounds on the objective function value.

These bounds are very robust numerically, however they can be far from the optimum.

On the other hand, the knowledge of dual feasible bases assumes some conditions on

the function f(z).

This paper has presented a different way of the numerical solution of the MDMP,

without any assumption on the objective function. The computational experiments

show that our method is substantially more stable numerically than the regular solution

algorithms. Furthermore, it usually yields the optimum or a bound very close to the

optimum value of the objective function.
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