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Abstract

Learning from examples is a frequently arising challenge, with a
large number of algorithms proposed in the classification, data mining
and machine learning literature. The evaluation of the quality of such
algorithms is frequently carried out ex post, on an experimental basis:
their performance is measured either by cross validation on benchmark
data sets, or by clinical trials. Few of these approaches evaluate the
learning process exr ante, on its own merits. In this paper, we dis-
cuss a property of rule-based classifiers which we call “justifiability”,
and which focuses on the type of information extracted from the given
training set in order to classify new observations. We investigate some
interesting mathematical properties of justifiable classifiers. In partic-
ular, we establish the existence of justifiable classifiers, and we show
that several well-known learning approaches, such as decision trees or
nearest neighbor based methods, automatically provide justifiable clas-
sifiers. We also identify maximal subsets of observations which must
be classified in the same way by every justifiable classifiers. Finally, we
illustrate by a numerical example that using classifiers based on “most
justifiable” rules does not seem to lead to overfitting, even though it
involves an element of optimization.
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1 Introduction

An increasing number of machine learning tools assist daily decisions — in-
cluding fully or partly automated systems used by banks (e.g., evaluation of
loan worthiness, detection of credit card fraud), by communications compa-
nies (detection of illegal cellular phone use), by law enforcement authorities
(criminal or terrorist profiling), or in medicine (pre-screening of patients).
Most of these situations are governed by the conditions and rules of highly
complex environments where, unlike in physics or chemistry, fundamental
laws are rarely available to help the decision-maker in the process of reach-
ing his conclusions. Instead, most of these systems derive their intelligence
from databases of historical cases, described in terms of their most salient
attributes. Sophisticated data analysis techniques and learning algorithms
are used to derive diagnosis rules, or profile descriptions which are then
implemented in practice.

The more these systems affect our everyday life, the more controversies
and conflicts may arise: in certain cases, the consequences of potential mis-
takes may indeed be very expensive, or drastic in some other way (think
for instance of a serious disease being diagnosed belatedly, due to a faulty
screening decision). In such cases, the organization applying such automated
tools might be forced to justify itself, and to demonstrate that it had solid,
objective arguments to formulate its diagnosis. But in fact, it is usually not
entirely clear what could amount to an acceptable justification of a clas-
sification rule, and how a classifier could be certified to provide justifiable
classifications for each of its future applications.

In this paper, we want to argue that some minimal requirements for
“justifiability” are satisfied by the classification rules introduced by Crama,
Hammer and Ibaraki [15], and subsequently developed into a rich classifi-
cation framework under the name of Logical Analysis of Data, or LAD (see
for instance [7, 9, 10, 11, 12, 13, 22], etc.). We also aim at collecting some
fundamental properties of LAD-type classification rules which have not ap-
peared elsewhere, yet. Finally, we want to clarify the relation between these
rules and certain popular classification rules used in the machine learning
literature, such as the rules computed by nearest neighbor classification al-
gorithms or decision trees.

The paper is organized as follows. In the remainder of this section, we
rely on a small example to explain in some detail, but informally, what we
mean by a “justifiable” classification rule. Section 2 recalls useful facts about
partially defined Boolean functions and their extensions, and introduces the
main concepts and definitions used in LAD. In particular, it introduces an
interesting family of Boolean classifiers called bi-theories, which can be built
on elementary rules called patterns and co-patterns. Our main results are
presented in Section 3, together with relevant examples and interpretations,
but without the proofs which are collected together in Appendix A, so as
to facilitate the reading. In these sections, we establish some of the main



structural properties of patterns, co-patterns and bi-theories, and we exam-
ine their computational complexity. We also show that decision trees and
nearest neighbor procedures fall under this generic LAD setting. In spite of
their simplicity, we provide empirical evidence in Section 4 that the LAD
rules perform and generalize well in a variety of applied situations. Section
5 mentions a number of challenging open questions. The proofs are collected
in a technical appendix at the end of the paper.

1.1 An example

Let us first illustrate the basic issues and ideas on a small example. (Al-
though this example is very small and artificial, we note that similar issues
arise in many real situations where a simple scoring method is used to derive
classifications.)

We assume that seven suspected cases of a rare disease have been doc-
umented in the medical literature. Three of the cases (patients A, B, and
C') were “positive cases” who eventually developed the disease; the other
four suspicious cases (patients 7', U, V and W) turned out to be “nega-
tive”, healthy cases. The following table displays the available data; each
case is described by binary values indicating the presence or absence of four
different symptoms.

Symptoms
Patients | x1 xzo x3 x4
A 1 1 0 1
B 0 1 1 1
C 1 1 1 0
T 0 0 1 1
U 1 0 0 1
\% 1 0 1 0
W% 0o 1 1 0

Both Dr Perfect (or Dr P in short) and Dr Rush (or Dr R in short) have
access to this table, and both develop their own diagnosis rules by analyzing
the data set. Dr R notices that the positive cases, and only those, exhibit 3
out of the 4 symptoms; so, he derives this as a diagnosis rule, i.e., he decides
to consider a patient described by the symptom vector x = (z1, 22,23, 24)
as a “positive case” if x1 + x2 + 3 + 4 > 3. Dr P performs a different
analysis: he regards symptom z3 as irrelevant, and he values symptom xo
as twice more important than the other ones. Consequently, he diagnoses a
patient as “positive” if x1 + 229 + x4 > 3.

It is easy to check that both doctors have derived a “perfect” diagnosis
rule in the sense that all cases in the small data base are correctly diagnosed
by these rules. Hence, both doctors could feel that their classification rules
are well-grounded, given the current state of knowledge.



Still, the above two diagnosis rules are not identical, and therefore they
may certainly provide contradictory conclusions in some possible future
cases. If we assume that no random effect and no exogenous information
(e.g., additional knowledge about the properties of the classification rule, or
about the interdependence of symptoms, or about other relevant attributes)
are available to resolve such potential disagreements, then it is reasonable
to distinguish among the rules on the basis of their endogenous justifiability
only. To explain this point, imagine that a new patient, say Mrs Z, shows
up with the symptom vector xz = (1,0,1,1). Dr R will diagnose her as a
“positive” case, thus leading Mrs Z to undergo a series of expensive, time
consuming and painful tests, before she learns that she is in fact healthy. If
Mrs Z later finds out that Dr P would have diagnosed correctly her condi-
tion, without going through the extra tests and difficulties, then she may
want to ask Dr R to explain what lead him to his initial diagnosis. In par-
ticular, Mrs Z might insist on understanding which particular combination
of her symptoms triggered Dr R’s diagnosis.

Indeed, every diagnosis rule can equivalently be expressed in terms of
a set of “conjunctive logical” rules, each of the form: “if certain symptoms
occur and some others do not, then the patient is a positive case”. In
particular, Dr R’s diagnosis can equivalently be modeled by the disjunction
of four simple rules, namely:

R(x) = 12923 V 217224 V 12324 V XT3y,

where a rule x1xsx3, for example, expresses that the patient is positive if
r1xox3 = 1, i.e., if the symptoms 1, 2, and 3 are simultaneously present.
Similarly, Dr P’s diagnosis can be described by the disjunction of two simple
rules:

P(X) =x122 V T2X4.

A basic underlying assumption of this paper is that the classifiers to be
considered are expressed as disjunctions of simple conjunctive rules, as illus-
trated by the example. (Note that every Boolean classifier can be expressed
in this way.)

So, how can Dr R justify his diagnosis? The only reason why he declared
Mrs Z positive is to be found in his third rule, that is, the co-occurrence of
symptoms 1, 3 and 4. But in fact, there is no supporting evidence in the
initial data to justify this rule, since the combination of symptoms 1, 3 and
4 was never observed in the data set! Note that Dr R could have foreseen
this difficulty from the very beginning, even before Mrs Z showed up, and
he should probably never have adopted his third rule!

A similar situation arises when an observation is classified as a “negative
case” by either doctor: a set of rules hides behind every such conclusion,
and these rules can be explicitly identified by “negating” the appropriate
classifier R or P. To illustrate this, imagine that Mr Y shows up in Dr R’s
office and that he displays the symptom vector xy = (0,1,0,1). Mr Y will



Symptoms Classification by

Patients | x1 2 x3 x4 Dr R DrP
A 1 1 0 1 1 1
B o 1 1 1 1 1
C 11 1 0 1 1
T o o0 1 1 0 0
U 1 0 0 1 0 0
A% 10 1 0 0 0
W 0 1 1 0 0 0
Z 1 0 1 1 1 0
Y 0O 1 0 1 0 1

Table 1: Classification results of Dr R’s and Dr P’s classifiers for the given
data, as well as for two future cases, Mrs Z and Mr Y

be diagnosed by Dr R as a negative case (i.e., a healthy patient) and sent
home accordingly. Later when he finds himself in an emergency room, he
may learn from Dr P that he is in fact seriously ill. What did Dr R miss?
We can see that Dr R based his negative diagnosis on the lack of symptoms
1 and 3. Indeed, the negation of Dr R’s classifier is

R(x) = T1Z3 V T1T4 V ToT3 V ToTy

and rule 7173 is the only active rule that applies to Mr Y’s case. On the
other hand, the negation of Dr P’s classifier is

P(x) = 7174 V T2

and none of the corresponding two rules would have indicated Mr Y as a
healthy patient. We can notice again that the rule ;73 in Dr R’s classifier
(for negative cases) does not have any support in the given data (in the sense
that none of the patients in the data set satisfies T1Z3 = 1), while both rules
of Dr P are well supported by the data.

Moreover, we can also see that for each rule selected by Dr R when
declaring that a patient is either positive or negative, there is another rule
selected by Dr P which is better supported by the initial data set, but which
does not always lead to the same conclusion. For instance, Dr R’s rule
x1x9x3 is only supported by the observation of patient C, while Dr P’s rule
x129 is supported by the cases A and C. Thus, we could even wonder whether
it is professionally justifiable for Dr R to consider the rules he used, since
he had the opportunity to realize (just like Dr P did) that all positive cases
can be explained by some other rules, each of which is better supported by
the given data.

The above questions are of course highly debatable in a real-world con-
text, but in the learning framework that we investigate here, where an au-
tomated learning procedure has access only to the given data, and to no



exogenous information, Dr R’s algorithmic choices do not appear to be well-
justified. Let us add that our dissatisfaction with Dr R’s classifier is based
solely on the data set initially presented to us, and not on the subsequent
cases of Mr Y and Mrs Z. We used the latter cases as illustrative examples,
but in fact, our main point is elsewhere: the learning approach of Dr R is
not satisfactory because his approach ended up accepting rules which are
not supported at all by the data.

1.2 Justifiable rules

Let us try to generalize the previous discussion. In this paper, we want to
consider classifiers which, when expressed as disjunctions of simple conjunc-
tive rules, can be justified with respect to the given data set D in the sense
that they satisfy the following axiom:

(A1) Each rule is supported by (at least one) observation, and is not con-
tradicted by any observation in ID. This requirement should hold both
for positive and for negative classifications.

Let us remark here that we consider Boolean classifiers ¢ which are
”complete” in the sense that they classify all possible input cases (either as
positive or as negative). In other words, the positive rules we use are the
prime implicants of ¢, while the negative rules are the prime implicants of
¢. Thus, the ”justifiability” of the positive rules according to (A1) depends
only on the known positive cases, while the negative rules can be derived
from the positive ones by a unique algebraic procedure (the negation of
¢). Consequently, the known negative examples do not seem, to play any
role in deriving our negative rules, even though we require in (A1) that
those negative rules are also supported (by the known negative cases). It
is hence not at all obvious that classifiers satisfying axiom (A1) exist. Our
intention is to show that classification rules satisfying axiom (A1) do exist,
display many interesting mathematical properties, are sufficiently general to
encompass many well-known families of classifiers, and can be successfully
applied to real-world situations.

Let us stress, if necessary, that the above objective shifts the focus for
the development of learning approaches: the main objective is no longer on
obtaining a high rate of correct classifications, but on being able to provide
convincing justifications for each individual classification! In other words,
we are interested in the a priori justification of the rules rather than in their
a posteriori performance. Note that other machine learning frameworks (in
particular, probabilistic models such as those discussed by Angluin [3] or
Valiant [34]) also provide a priori measures of performance for learning al-
gorithms; but the nature of the quality criteria in [3, 34] is radically different
from those introduced in Axiom (A1), as they still concentrate on the rate
of correct classifications achieved by the rules, and not on the justification
derived from past observations.



Of course, when keeping posterior performance in sight, rules with a large
support still appear to be quite appealing. One might expect such rules to
lead to overfitting, but we shall actually provide computational evidence
that overfitting does not generally seem to take place when we generate
classifiers (i.e., collections of rules) satisfying the axiom:

(A2) No rule can be substituted by another justified rule which has a larger
support within D.

In order to proceed with this discussion, we need to specify more precisely
all the relevant notions that we have so far informally described. This is the
topic of the next sections, where we present a framework for the construction
of Boolean classifiers expressed as disjunctions of elementary conjunctions,
and where we give an overview of our main results.

2 Notations, definitions, and main results

In this section we introduce the necessary terminology about Boolean and
partially defined Boolean functions, recall some of their basic properties,
and close the section by stating our main results. In the subsequent sections
we present detailed proofs and results of computational experiments.

2.1 Partially defined Boolean functions

We start with a few definitions and notations relative to Boolean functions
(see e.g. Crama and Hammer [14] or Muroga [29]).

Let n be a positive integer and let V.= {1,2,...,n}. A Boolean function
of n variables is a mapping B" — B, where B is the set {0, 1} and B™ denotes
the n-fold cartesian product of B with itself. If S is any set with cardinality
n, we also write B° for B”. A vector z* € B" is a true vector (resp. false
vector) of the Boolean function f if f(z*) =1 (resp. f(z*) = 0). We denote
by T'(f) (resp. F'(f)) the set of true vectors (resp. false vectors) of f. Clearly,
any partition TNF = (), TUF = B" uniquely defines a Boolean function fr g
such that T = T(fr.r) and F = F(fr ), and thus there are 22" Boolean
functions of n variables. The negation (or complement) of a function f is
the function f defined by T'(f) = F(f) (and F(f) = T(f)).

A partially defined Boolean function (abbreviated as “pdBf”) on B™ is
defined as a pair of sets (T, F') such that T, F C B™ and TNF = (). We refer
to the set T" as the set of true vectors (sometimes called positive ezamples)
and to F as the set of false vectors (or negative exzamples) of the pdBf (T, F).
As illustrated by the examples in subsequent sections, (binary) data sets
arising in classification problems can be viewed as pdBfs. (Let us remark
that the condition TN F = () may not be satisfied in certain real-world data
sets for classification problems, and that many of our claims and algorithms
can be modified to accommodate such practical cases.)



In this framework, classifiers correspond to extensions of pdBfs, where a
Boolean function f is called an extension of the pdBf (T, F) if

T(f)2T and F(f)2F. 1)

When the Boolean function f is an extension of (T, F'), we shall also say
that f correctly classifies all the vectors a € T and b € F.

We denote by £(T, F') the family consisting of all extensions of (7, F).
Since TN F = (), it is clear that £(T, F) # (; more precisely,

E(T, F)| = 22"~ ITI=IF > .

Given a pdBf (T, F), we associate with it two special Boolean functions,
respectively called its minimum and its maximum extension, and denoted
by fmin and fiax, which we define as follows:

T(fmin) =T, F(fumin) =B"-T

T(fmax) =B" — F, F(fmax) =F.

(2)

For two Boolean functions g and h, let us say that the relation g < h holds
if and only if T'(g) C T'(h), or equivalently, if and only if F'(g) D F'(h). The
following properties are obvious.

Claim 2.1. For every pdBf (T, F'), we have

5(T, F) = {f ’ fmin < f < fmax}~

Moreover, given any two Boolean functions g, h on B"™ satisfying g < h,
there exists a unique pdBf (T, F') such that

ETF)={flg<f<h}
The set of extensions of the pdBf (F,T) is
EFT)={f|fe&T.F)}.

Furthermore, the minimum and mazimum extensions of (F,T) are f,,,. and

We call the pdBf (F,T) the negation of (T, F), and we say that the
functions f € E(F,T) are the co-extensions of (T, F). Clearly, the extension
f € &(T, F) and the co-extension f € £(F,T) provide the same information
about the pdBf (T, F)). However, different algebraic representations of f
and f may have very different sizes, and hence obtaining one or the other
of these representations may not be computationally equivalent. For this
reason, we shall aim in the sequel at finding both concise extensions and
co-extensions for a given pdBf.



2.2 Terms, patterns, DNF representations and decision trees

A term is a Boolean function ¢ whose true set 7'(¢) is of the form
T(t)={xeB"|2z;=1 forallic A and z; =0 forallj € B} (3)

for some sets A, B C {1,2,...,n}. It can be represented by an elementary
conjunction, that is, by a Boolean expression of the form

t(x)z(/\x,)/\ Azl (4)

icA jeB

Geometrically, the true set (3) of a term ¢ is a subcube, or a face of the
Boolean hypercube. It can equivalently be viewed as an interval of the form

[a,b] = {x € B" | zj € {aj,b;} for j =1,2,...,n},

where a,b € B", a; = 1 if and only if j € A, and b; = 0 if and only if j € B.
Let us add that we can view binary vectors also as points in the hypercube,
and we will use the terms “vector” and “point” interchangeably.

For a term ¢ and a point a € B", we say that ¢ (or T'(t)) covers a if
t(a) =1, ie., if a € T(t). We denote by t, the (unique) term which covers
a € B™ and no other point; i.e. for which T'(t,) = {a}. It is easy to see that

ta(a;) = < /\ :L’Z> A < /\ LL’Z> . (5)
r:a;=1 i:a;=0

We call ¢, the minterm of a.

Every Boolean function can be represented by a disjunctive normal form
(DNF), i.e., by a disjunction of terms (elementary conjunctions).

Let us observe that for every pdBf (T, F'), a DNF of the minimal exten-
sion fyn can be determined efficiently. Namely, the DNF

px) = \/ tal) (6)

acT

is clearly a DNF representation of f,i,, where t,(x) denotes the minterm
of a as in (5).

It is somewhat less trivial to find a short DNF representation for f,qz-
But it can be shown that fy,., has a DNF representation involving no more
than %n!F| terms, and such a representation can be found in polynomial
time (see e.g., [25, 26, 27]).

From their very definition (3), it is clear that Boolean terms correspond
to certain combination of attribute values. When analyzing a pdBf (T, F),
we can often view such combinations as “rules” which are more specifically
associated with one of the classes T' or F'. Thus, a term (or rule) ¢ classifies
a point a € B" as a positive observation if t(a) = 1. Intuitively, we can



consider the term (or rule) ¢ to be “justified” by the data set (T, F), if
t(a) = 1 holds for some vectors of T' (the more the better), and ¢(b) = 0 for
all vectors b € F.

In order to turn this idea into a mathematically useful notion, we follow
here the presentation of Crama, Hammer and Ibaraki [15] and we call a term
t a pattern of the pdBf (T, F) if

ITAT®)]| >0 and |[FNT()] =0. (7)

Thus, geometrically speaking, a pattern is a subcube which covers at least
one point of 7" and no point of F.

Patterns can be considered as simple rules providing evidence that a
vector is a positive observation. For a pattern t of (T, F'), we can also say
that the set of vectors TNT'(t) justifies ¢, in the sense that this set of vectors
provides a justification for any possible future conclusions we might draw
from t. Of course, the larger the number of vectors in (7, F') justifying a
pattern ¢, the higher our confidence may be in the classification based on t¢.

An implicant of a Boolean function f is a term ¢ such that ¢ < f. Note
that those terms such that ¢(b) = 0 holds for all b € F' are the implicants
of the unique largest extension fyq. € E(T, F) defined by (2). Thus, the
patterns of (7, F) are those implicants of fi,q4; which cover some vectors of
T.

Example 2.2. Let us consider the pdBf (7, F') given in Table 2. For this

Table 2: An example of pdBf (T, F).

T xI9 r3 T4 Ty Te r7 T8

adA®= 0 1 0 1 0 1 1 0

T ¢d®= 1 1 0 1 1 0 0 1
a®= 0 1 1 0 1 0 0 1
W= 1 0 1 0 1 0 1 0

F W= 0 0 0 1 1 1 0 0
= 1 1 0 1 0 1 0 1
W= 0 0 1 0 1 0 1 0

pdBf, the corresponding extension fy,q.,; has several implicants, including
T1x2, TgXT7Ts, 7T, €tc. It is easy to see that
Tixg is a pattern that covers a) and a(2), and

TgT7 1S a pattern that covers a® and a(?’), while

r7rg is not a pattern, since it does not cover any vector of 7', and

TeT7xs 1S a pattern that covers a? and a(3), but it is “dominated” by the

shorter term ZgZ7 which is also a pattern, as we observed above.

10



O]

Interchanging the roles of 7" and F' in a given pdBf (7', F'), we can analo-
gously derive simple rules for indicating if a given vector is a negative obser-
vation. Let us observe that for the pdBf (F,T'), the minimum and maximum
extensions defined by (2) are f,,;, and f,,,., respectively. Accordingly, let
us call co-pattern of (T, F) any implicant ¢ of f,,;, which covers at least one

negative example b € F. In other words, a term ¢ is a co-pattern of (T, F') if

ITNT@#)|=0 and |[FNT(t) > 0. 8)

Example 2.3. For the pdBf (T, F') of Table 2, the term x57g is a co-pattern
that covers bV, 5@ and b, and Tszs is a co-pattern that covers b3). [

Note that the notions of “interesting rules” and “patterns” generated
from a given data set (T, F') are very closely related to concepts which have
been (re)discovered and applied by other researchers in various frameworks,
e.g., the concepts of association rules (see [2]) and of jumping emerging
patterns (see [16]) which have been more recently introduced in the data
mining literature (see also [19, 20, 33]) for related ideas). In particular,
jumping emerging patterns are exactly identical to patterns and co-patterns.

For a pdBf (T, F) let us denote by P (T, F) the set of its patterns, and by
coP(T, F) the set of its co-patterns. The following properties are obviously
implied by the definitions.

Claim 2.4. For arbitrary subsets T, F' C B" we have

(ii) coP(T,F) = P(F,T),

(ii) P(T,F’") C P(T,F) whenever F C F’,

(iv) P(T,F)C P(T',F) whenever T C T,

(v)  P(T,F)=P(T\F,F). O

(i) P(T,F)=0if and only if T C F,

Observe that when we use a DNF ¢ representing an extension of the
pdBf (T, F) to classify an as-yet unclassified vector x € B", and when we
classify x as a positive example, then we actually derive our conclusion from
the existence of a term ¢ of the DNF ¢ such that ¢(z) = 1. Since patterns are
special terms, which are supported by “evidence” collected from the given
training data (7, F'), it is a natural idea to consider special extensions of a
pdBf (T, F') which can be built from patterns of (T, F').

So, following Crama, Hammer and Ibaraki [15], let us call an extension
f € E(T,F) a theory of the pdBf (T, F) if it can be represented by a dis-
junction of patterns of (7, F'). Thus, a theory is a disjunction of patterns

11



which together cover all the examples in 7. (When no confusion arises, we
sometimes call “theory” the DNF itself, rather than the function it repre-
sents.) We note that special classes of theories, e.g., “prime theories” and
“irredundant theories”, have also been introduced in [15], but we will not
explicitly refer to them in this paper.

Example 2.5. Consider again the pdBf in Table 2. It is easy to see that

a is covered by the pattern Tixo,
a® is covered by the pattern zoxs,

a® is covered by the pattern zszs,

and thus the DNF
Y =T1T2 V T2T5 V 1378

defines a theory of (T, F'). Another theory of (T, F') is obtained by removing
x3xg from ¢, since the resulting DNF ¢’ still covers all vectors in T":

QD/ =129 V ToT5.

O

Let us denote by (T, F') the set of theories for a given pdBf (T F).
Clearly, we have &7 (T, F) C £(T, F), in general. Furthermore, in most cases
only a very small number of all extensions are theories.

Example 2.6. Consider the pdBf on B" defined by 7' = {(11...1)} and
F = {(00...0)}. It has h(n) = 2%"~2 extensions. Its patterns are all the
terms built on uncomplemented variables only. Thus, the theories of (T, F)
are exactly the non-constant monotone Boolean functions on B", and the
number of theories of (T, F') is equal to d(n)— 2, where d(n) is the number of
monotone Boolean functions on n variables. It is well known that log, d(n)
is asymptotic to the middle binomial coefficient ([nT/LZ]) [24], which implies
that d(n) is much smaller than h(n). O

By interchanging the roles of T' and F', we can analogously define co-
theories. Thus, if ¢ is a co-theory of (T, F) and ¢(z) = 1, then ¢ recom-
mends to classify x as a “negative observation”.

The terms “theory” and “co-theory” are sometimes used slightly dif-
ferently in the literature. In learning theory and data-mining, “theory” is
often used as a synonym of “extension”. We prefer to distinguish these two
notions, and to reserve the name “theory” only for the special type of ex-
tensions defined above. Also, a “co-theory” is sometimes referred to as a
“negative theory” (in which case, a “theory” is called a “positive theory”)
to emphasize its role with respect to the set of negative examples F'.

12



Thus, when we use a theory ¢ for classification purposes, a vector x such
that p(z) = 1 is classified as a positive observation based on the evidence
provided by the patterns that appear in ¢. On the other hand, if p(x) = 0,
then the only rationale for classifying = as a negative observation would in
fact be based on the “lack” of evidence supporting the opposite conclusion.
From this point of view, it would be much more convincing to use a theory
f only if its negation f simultaneously happens to be a co-theory. In this
case the terms of f being co-patterns would provide justifying evidence for
negative classifications, as well. In fact, adhering to our axiom (A1) requires
us to restrict our attention to such special theories for classification purposes.

In view of this, let us say that a function f is a bi-theory of (T, F) if f
is a theory and f is a co-theory of (T, F). We denote by Eg(T, F) the set of
bi-theories of (T, F'):

Ep(T,F) ={f € &7(T,F)| f € &r(F,T)}. (9)
Example 2.7. Consider the pdBf (T, F') in three variables defined by
T ={(100),(111)} and F = {(000), (001), (011)}.
It can be checked easily by complete enumeration that

P(T,F) = {x1, z122, 2172, X123, T1T3, L1&23, T1T2T3}, and

coP(T,F) = {Z1, T1x2, T1T2, T1&3, T1T3, T1X2L3, T1T2X3, ToL3, T1T2T3}.

Thus, we see that f = x; is a bi-theory for (T, F), since its complement
f = 7 is a co-theory. There is another bi-theory g = x1z2 V 21Z3, since
g = T1 V Toxs. It can be shown that there are no other bi-theories for this
pdBf. O

Let us add that instead of elementary conjunctions (terms) and DNF
representations we could as well consider elementary disjunctions (clauses)
and CNF representations of Boolean functions. All the concepts and prop-
erties introduced so far have their natural counterparts for clauses and CNF
representations.

In subsequent sections, we will also consider an additional type of rep-
resentations of Boolean and partially defined Boolean functions, namely
representations based on decision trees.

A decision tree is a rooted directed tree D on the vertex set N UL, where
the leaf vertices in L have out-degree zero, the vertices in N have exactly
two outgoing arcs (left and right), and the root r € N has in-degree zero
while all other vertices have exactly one incoming arc. Each vertex v € N
is labelled by an index j(v) € {1,...,n} and the leaf vertices v € L are
labelled by either 0 or 1. We denote by Ly and L; the sets of leaves labelled
respectively by 0 and 1.
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Given a binary vector x € B", we can use the decision tree D to classify x
into one of its leaves: Starting from the root v = r of D, we move from vertex
to vertex, always following the left arc out of v if z;,,) = 0, and the right arc
otherwise. We stop when we arrive at a leaf u € L. Denoting by B, C B"
the set of binary vectors classified by D into leaf u, we have B, N B, = () if
u # v, and {J,cp By = B". Defining T' = J,,c;, Bu and F' = U1, Bu, We
get a partition of B™ defining a unique Boolean function fp with T'(fp) =T.
Conversely, it is well known that every Boolean function can be represented
by some decision tree in this way (typically there are many decision trees
representing the same function).

Given a pdBf (T, F'), we say that a decision tree D defines an extension
of (T, F) (or simply that D is a decision tree for (7, F')) if fp is an extension
of (T, F), that is, if T(fp) 2 T and T(fp) N F = (). Finally, we say that a
decision tree D is reasonable for (T, F) if

(i) D defines an extension of (T, F),

(ii) for every leaf u € L, B, N (T'U F) # 0 (for every leaf u of D, at least
one example of (7, F') is classified into ), and

(iii) for every nonterminal vertex v € N, at least one vector a € T is
classified into a descendant of v, and at least one vector b € F is
classified into another descendant of v.

Finally, we denote by D(T, F') the collection of all reasonable decision trees
for (T, F'), and we denote by Ep(T, F') all those extensions of (T, F') which
can be represented by a tree in D(T, F'). There are numerous learning al-
gorithms which construct reasonable binary decision trees for a given pdBf
(T, F), see e.g., [1, 5, 28, 30, 32] and Section A.3.

3 Main results

Bi-theories can be viewed as those extensions of pdBfs which satisfy our
axiom (Al). They are, therefore, our main object of study. The purpose
of this section is to describe the main properties of bi-theories and of their
building blocks, that is, patterns and co-patterns. Proofs and more detailed
statements will be provided in Sections A.1-4.

3.1 Patterns and co-patterns

Let us first note that if 7' # T”, then P(T,F) # P(T', F), since e.g., the
minterm ¢, (as introduced in Equation (5)) corresponding to a vector a €
T\ T’ is a pattern of (T, F'), while it is not a pattern of (7", F'). However,
P(T, F) may not change when we replace the set of negative examples F' by
another set F’. In fact the following precise claim can be made:
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Theorem 3.1. For every pdBf (T, F), there are unique sets F~, Ft C B"
such that

P(T,F'Y=P(T,F) ifandonlyif F~ CF CFT,
and there are unique sets T—,TT C B"™ such that
coP(T',F) = coP(T,F) ifand onlyif T~ CT CTT.

In the sequel, we often look at (-)* and (-)~ as operators acting on sets.
These notations are somewhat ambiguous, since the definitions of ST or
S~ depend on whether the set S is viewed as a set of positive or negative
examples, as well as on the second member or the pdBf. But this should
not create any confusion in the sequel.

The intrinsic meaning of the sets F'* and T'" is clarified by the following
result.

Theorem 3.2. For a pdBf (T, F), F is exactly the set of vectors of B*\'T
which are not covered by any pattern of (T, F), and T is the set of vectors
of B™ \ F which are not covered by any co-pattern of (T, F').

In view of the previous statement, a vector belonging to F'* should al-
ways be classified as a negative observation by every classification rule based
on the patterns of (T, F'): indeed, Theorem 3.2 implies that no evidence can
be derived from (T, F) to support the conclusion that a vector z € F* is
a positive observation. Similarly, a vector in 7" should always be consid-
ered to be a positive observation by every classification rule based on the
co-patterns of (T, F'). More formally, we can state:

Corollary 3.3. Let (T, F) be a pdBf.

(a) If f is a theory of (T,F), then F* C F(f), i.e., f(u) = 0 for all
ue FT.

(b) If g is a co-theory of (T, F), then TT C F(g), i.e., g(v) = 0 for all
veTT .

(c) If f is a bi-theory of (T,F), then F* C F(f) and T C T(f), i.e.,
f(u) =0 for allu e F* and f(v) =1 for allveTT.

We shall return to the interpretation of the sets F*, F~, T and T~ in
Section 3.2. For the time being, we want to provide a more constructive
characterization for these sets, which will allow us to draw some algorithmic
consequences as well.
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Theorem 3.4. For a pdBf (T, F),

Fr={zeB"|[r,a]NF #0 forall a € T}, (10)
F~={be F|3aecTsuch that [a,b] N (F\ {b}) = 0}, (11)
TH={ze€B"|[x,b]NT #0 forall be F}, (12)

T-={a€T|3beF such that [a,b]N(T\ {a}) =0}. (13)

Let us call a pair of vectors a € T and b € F' closest, if [a,b| N (T UF) =
{a,b}, i.e., if their spanned cube does not include any other vectors from
T and F. The above result then implies that F~ and T~ are exactly the
vectors from F' and T, respectively, which participate in such closest pairs.
We can view them as the frontiers defining the difference between T' and
F. It is an easy consequence of the above characterizations (in fact, from
Theorem 3.1) that starting from the pdBf (7, F'~) we can recover the same
extremal sets F* and 7. So in a sense T~ and F~ are the minimal sets
from which we can get the same conclusions. More formally,

Corollary 3.5. For every pdBf (T, F'), we have
(FOYT=(F)Y =F" and (FY) =(F ) =F"

where the operators (-), (1)~ are defined with respect to the set of positive
examples T, and

(T = (@) =T+ and (T%)" =(T7)" =T,

where the operators (1)T, (-)~ are defined with respect to the set of negative
examples F'.

The sets T and F can both be exponentially large (even simultane-
ously) in terms of the input sizes n, |T'| and |F|, as shown by the following
Example 3.6.

Example 3.6. Consider any pdBf (T, F') defined by T' = {(00...0)} and
F C{x € B" |z =1}, with (10...0) € F'. Then we have

F~ ={(10..0)} and Ft={xcB" |z =1},
that is |[FF~| = 1 and |F*| = 2""!, independently of the size of F. O

In spite of this, membership in both sets 7T and F' can be tested in
polynomial time, simply by checking the conditions of the definitions in (10)
and (12).
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Corollary 3.7. Given a pdBf (T, F) and a vector x € B", the membership
queries x € TT and x € F* can both be tested in O(n|T||F|) time.

Let us also add that while the sets T~ and F'~ can easily be generated
from (7T, F') in view of their characterizations (11) and (13), the complexity
of generating T+ and F' is much less obvious. Since these sets are poten-
tially very large, we need to understand the complexity of their sequential
generation. In particular in light of Corollary 3.5, it would be interesting to
determine the complexity of deciding whether TF \ T is empty or not. As
far as we know this problem is open.

3.2 Maximal theories

Given a pdBf (T, F'), let us associate with it a special theory and a special
co-theory, namely the disjunctions of all its patterns and co-patterns:

A(T,F) = \/ t and B(T,F) = \/ t. (14)
teP(T,F) tecoP(T,F)

The DNF A7 p) (resp., Bz r)) is the largest theory (resp., co-theory)
of the pdBf (T, F). Let us also note that by (ii) of Claim 2.4, we have

A(T,F) = B(F,T) and B(T,F) = A(F,T)'

As an important property of A1 p) and B ), we can show that every
point in B” is classified by at least one of these two theories. Moreover, the
sets of false points of A7 r) and B ) coincide respectively with the sets
F* and T, as defined in Theorem 3.1 (compare also with the statement of
Theorem 3.3).

Theorem 3.8. For every pdBf (T, F'), we have
T(Aqr,r)) UT(B(r,r)) = B", (15)

meaning that any vector in B™ is a true vector of either A(T7F) or Bt Fy,
and
F(Arr) =F*, F(Brp)=T", TTnF"=4. (16)

As a consequence of Theorem 3.8 and of Corollary 3.7, the value of A7
and of B(r ) can be computed in polynomial time for every vector x € B".
Of course, it may happen that T'(Ap ) N T(B(ppy) # 0, as illustrated by
Example 3.9 below. In this case, the classifications derived from A p) and
B(r ), respectively, may not always be compatible.

Example 3.9. Let us return to the small pdBf in Example 2.7. From the
list of its patterns and co-patterns we can see that

A(T,F) =1, and B(T}p) =171 V Tox3.
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It is easy to check that we indeed have

F(A(Typ)) =FT = {(000), (001), (011), (010)}, and
F(B,p) =T" = {(100), (111), (110)},
as shown in Figure 1. Note that the remaining vector (101) belongs to

both T'(A(7,ry) and T(B(r,r)). Hence, it is classified as positive example by
A(T7 r) and as negative example by B(r ). ]

® -
@ r\r-
001 O FT\F
® T=T7"
o TT\T

Figure 1: The 3-dimensional pdBf of Example 2.7.

Let us call the pdBF (T, F™) the closure of (T, F). A pdBf and its clo-
sure are mathematically closely related, as evidenced by the next statement.

Theorem 3.10. For a pdBf (T, F) and its closure (T, FT), the following
claims hold:

(i) Ewvery pattern (resp., co-pattern) of (T, F') is a pattern (resp., co-pattern)
of (TT,FT).

(i) Ewery pattern (resp., co-pattern) of (T, FT) is an implicant of At F)
(resp., Br,r))-

(iil) Acrry = A+ pry and B gy = B+ pt)-

Let us stress that the equalities in (iii) hold for the Boolean functions
defined by the patterns and co-patterns. The sets of patterns and co-patterns
themselves are not identical, e.g., we may have P(T, F1) 2 P(T,F). What
the above claim in fact implies is that every pattern in P(T", F™)\ P(T, F')
is a logical consequence of some patterns in P(T, F').
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We can show an even stronger relation between these pdBfs. For a subset
S C{1,..,n} and a vector a € B" let us denote by a[S] = (a; | i € S) the
projection of a on B, and for a set X C B" let X[S] = {z[S] | z € X}.

Simplicity is one of the guiding principles of learning approaches. In this
spirit many learning algorithms start with the elimination of unnecessary
variables. Following [15], let us call a subset S C {1,...,n} a support set
of a given pdBf (T, F), if T[S] N F[S] = (), and S is minimal with respect
to this property. (Thus, the values of the variables in a support set S are
minimally sufficient to distinguish positive examples from negative examples
in (T, F).) Then we can extend Theorem 3.10 by the following property:

Theorem 3.11.
(iv) The pdBfs (T~,F~), (T, F) and (T", FT) have the same support sets.

We will show in the next two subsections that every pdBf has bi-theory
extensions; as a matter of fact, we will show that some of the best-known
classical learning methods automatically produce bi-theories. Before turning
to those classical methods, let us note that whenever F'™ = F, the maximal
theory A(r ) is automatically a bi-theory, and whenever T+ = T, then
E(T’ F) is a bi-theory. One may think that these theories are always bi-
theories. However this is not the case, as shown by the next example.

Example 3.12. Let us consider 4 vectors in the 10-dimensional Boolean
space, namely

ai = (0011110000), ap = (0000011100),
by = (0111110000), by = (0000111110),

and let us consider the pdBf (7', F') defined by T' = {a1,a2} and F = {by, b2 }.
Let us first observe that = (1111111111) € F7 since by € [x,a;] and
by € [x,az]. Let us next consider the vectors y; = (1111111000) and y2 =
(0001111111). Since [y1,a2] N F = [y2,a1] N F = (), we see that y; € F* and
y2 & F*. Moreover, y; € [z,b1] and yo € [z, bs]; hence, any co-pattern of
(T, F) covering x must contain either y; or y2, and such a co-pattern cannot
be a subset of F'T.

Now, by Theorem 3.8, T(Z(TJ:)) = F(A(r,r)) = F. But since no co-
pattern of (T, F) is a subset of F*, it follows that T(A j)) cannot be
covered (exactly) by co-patterns. Thus, Z(T, ) is not a co-theory, and hence
A(r,F) is not a bi-theory. O

3.3 Decision trees and bi-theories

Decision trees provide the simplest proof that every pdBf has bi-theory
extensions. Indeed, we can prove:
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Theorem 3.13. The function fp associated with a reasonable decision tree
D e D(T,F) is a bi-theory of (T, F), i.e.,

ED(T’F) - SB(T’F)'

(This result was already observed by Ehrenfeucht and Haussler [18].) We
note that Ep(T, F) # (), since many of the classical decision tree building
methods yield reasonable trees, see e.g., Quinlan [32].

Let us also remark that despite the strong relations existing between bi-
theories and decision trees, E(T, F') typically properly contains Ep(T, F),
and does not coincide with it.

Example 3.14. Let us consider the pdfBf (T, F') given by

T = {(1100), (0011)},
F = {(1010), (0101), (0000)},

and consider the function
f=x122 V x324.

It is easy to see that the terms of this DNF are patterns of (T, F), and in
fact f is a bi-theory, for which

f=T1T3 VT1T4 V ToT3 V ToTy

is a DNF representation consisting of co-patterns of (7, F'). It is also easy
to verify that both of these DNF-s are shortest, that is every DNF repre-
sentation of f and f must contain together at least 6 terms.

This implies that if a decision tree represents f (and f) it must contain
at least 6 leaves. But since |T'U F'| = 5, all decision trees in D(7, F') contain
at most 5 leaves, from which f € Eg(T, F) \ Ep(T, F) follows. O

The strong relation between bi-theories and reasonable decision trees is
further demonstrated by the following characterization of closure sets:

Theorem 3.15. Let (T, F) be a pdBf and let u,v € B™. The following
statements are equivalent:

() ue FT andveT™ ;

(b) f(u) =0 and f(v) = 1 for all reasonable decision tree extensions f €
Ep(T, F);

(¢) f(u) =0 and f(v) =1 for all bi-theories f € Ep(T, F).

In words, T" (resp., F'") contains exactly those points which are clas-
sified as positive (resp., negative) observations by every reasonable deci-
sion tree and by every bi-theory. Note that Theorem 3.15 completes and
strengthens Corollary 3.3 (c).
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3.4 Nearest neighbor methods and bi-theories

Let us consider finally nearest neighbor type classifications.
We say that p : B" xB"” — R is a subcube monotone similarity measure
if the following properties hold for all vectors a,b,v € B™:

pla;b) = p(b,a), (17)
pla,b) =0 < a=0b, (18)
pla,v) < p(b,v) = pla,u) < p(b,u) for all u € [a,v]. (19)

Conditions (17) and (18) are classical, and the interpretation of (19) is rather
simple: if v is “closer” to a than to b according to the similarity measure p,
then the same must hold for all vectors v in the interval between a and v.
For instance, most metrics, including weighted Hamming distances satisfy
these conditions,

For a subset X C B™ and a vector u € B™ let us define

p(u, X) = min p(u, v). (20)

A nearest neighbor classification rule f, can be naturally associated with

every similarity measure p by declaring that an arbitrary vector v is “posi-

tive” if and only if v at least as close to T" as to F'. We will prove in Section

A.4 that, when p is subcube monotone (which is the case for most usual sim-

ilarity measures), then the classifier produced by this typical rule is always
a bi-theory:

Theorem 3.16. If (T, F) is a pdBf and if p is a subcube monotone similarity
measure, then the Boolean function f, defined by

) ={ g dete ) <ol (21)

0 otherwise

is a bi-theory of (T, F).

4 Empirical evidence

The focus of the present paper is primarily theoretical, as it aims at de-
veloping the notion of “justifiability”, and at analyzing the mathematical
structure of the resulting concepts, patterns and bi-theories, in particular.
Our line of arguing, however, naturally leads to favoring rules (in our case,
patterns or co-patterns) which “fit well” the given data, as expressed by Ax-
iom (A2) in Section 1.2 of the paper. As is well known, such “maximalist”
requirement may possibly lead to overfitting, as many researchers observed
in similar situations when using different classification approaches.
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Figure 2: Results with the mushroom data set. Each point represents a
pattern, the coordinates of which are the percentages of correctly classified
training and test cases, when we use this pattern as a classifier. The hori-
zontal scale is the percentage of correctly classified training cases, while the
vertical axis represents the percentage of correctly classified test cases.

For this reason, it is important to stress that such overfitting behavior
does not necessarily occur. This claim is based on extensive empirical evi-
dence which has been reported elsewhere, and which we briefly summarize
hereunder.

First of all, there were several recent attempts in the literature to build
patterns which have the highest coverage in the given training set and to
use such patterns for classification, see e.g., [8,9, 17, 21]. All of these papers
reported good results, derived highly robust classifiers, and none experienced
overfitting.

We also designed various other computational experiments to test this
behavior. In order to illustrate our point, we include here a small repre-
sentative example. We considered some examples from the UC Irvine ma-
chine learning repository [4], chose randomly a small part of the data set
as training set (typically 5-10%), left the rest as test data, and generated
exhaustively all patterns from the training set. Then, each pattern ¢ was
used as a classifier, both on the training set and on the test set (in both
cases, an example a is classified as a positive example if and only if it is
covered by the pattern, that is, if and only if ¢(a) = 1). For each pattern
we computed the percentage of the training cases classified correctly by this
pattern, as well as the percentage of the test cases classified correctly. Thus
each pattern is characterized by two percentages. We include here as illus-
tration the results obtained for the so called “mushroom” data set. Figure 2
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indicates the quality of the classification achieved by the 218 patterns which
performed best on the training set; each of these patterns classified correctly
at least 84% of the training cases.

What is even more surprising, however, is that the graph indicates a clear
trend: Namely, those patterns performing better on the training set also
perform better on the test set. Furthermore, even the variance of the test
performance seems to decrease when the training performance increases. In
fact we detected the same (sharp) tendency on all the data sets we examined.
We view this as strong evidence supporting Dr P’s approach: Choosing the
best performing patterns based on training set performance does not seem
to lead to overfitting, and serves well our requirement to base classifications
on the best available justification.

Of course, we cannot claim that using patterns and/or bi-theories will
never result in overfitting: since we have shown that several classical families
of classifiers (e.g., decision trees) are bi-theories, the worst-case behavior
of bi-theories, for instance, cannot be better than the worst-case behavior
of decision trees in this respect (and decision trees are known to overfit!).
Conversely, however, one may hope that appropriately chosen bi-theories
display little overfitting; and this is what seems indeed to emerge from the
experiments reported above.

5 Future research

We can summarize our main contributions as follows: We introduced the no-
tion of justifiability of a classifier, and concluded that all justifiable classifiers
must be bi-theories. We also established that bi-theories are closely related
to decision trees and nearest neighbor methods, but still form a larger class
than these two classes produced by classical methods. We also analyzed the
structure of the pattern space in relation with bi-theories, and revealed the
existence of various remarkable subsets of vectors (T~,T+, F~, FT) associ-
ated with an arbitrary pdBf (T, F).

Many open questions emerge from our study: How much larger is the
family of bi-theories than the family of decision trees? What is the propor-
tion of bi-theories within the family of theories? Which Boolean functions
can appear as maximal theories for a pdBf? How difficult is to test whether
TT =T (or F* = F)? How difficult is to generate T and F*? We leave
these questions for future research.
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A Proofs of main results

In this section we provide the proofs and necessary background of the results
stated in Section 3.

A.1 Patterns and co-patterns
Let us first state an easy property of subcubes.
Lemma A.1. Ifc € [a,b] and ¢ # b, then b & |a,c].

Proof. By definition of the subcube [a,b], ¢ € [a, b] means that ¢; = a; = b;
for all indices j € {1,...,n} for which a; = b;. Thus, ¢ # b implies the
existence of an index ¢ such that ¢; = a; # b;, which then by the definition
of subcubes implies that b & [a, c]. O

Now we are ready to prove a main result about patterns and closures.

Proof of Theorem 3.1.

The second half of the claim follows from the first one by (ii) of Claim 2.4(ii).
So, we concentrate on the first statement only.

Let us denote by Fr the family of all such subsets F' C B" for which
P(T,F') = P(T, F), and observe that by (iii) of Claim 2.4 we have

F ' CF'CF" and F',F" € Fr imply F"e Fr.

Thus, to complete the proof of the theorem it is enough to show that Fr
has unique minimal and maximal elements.

Let us next show that by (iii) of Claim 2.4 and by the definition of a
pattern we have

F'F" € Fr implies F'UF" € Fr. (22)

This is because if ¢ is a pattern of both (T, F’) and (T, F"), then we must
have t(b) = 0 for all b € F'UF”, and t(a) = 1 for some a € T. Thus, t is also
a pattern of (T, F' U F"), implying P(T,F') = P(T,F") C P(T,F' U F"),
which together with (iii) of Claim 2.4 implies that P(T, F') = P(T, F' UF").

Thus, (22) implies that Fp has a unique maximal element, which we can
denote by FT.

To establish the existence of a unique minimal element F'~ in Fr, it is
enough to show that

F' F" € Fr implies F'NF" € Fr. (23)

So, let us assume by contradiction that F', F” € Fr but F' N F" & Fr.
Since (iii) of Claim 2.4 implies P(T,F’) = P(T,F") C P(T,F' N F"), the
assumption means that there is a term ¢t € P(T,F’ N F") which is not
a member of P(T,F') = P(T,F"), or in other words, for which there exist
vectorsa € T, b/ € F'\F" and V' € F"\ F' such that t(a) = t(b') = t(V") = 1.
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This means that T'(t) is a subcube of B™ which intersects 7', F’ and
F”, but does not intersect F' N F”. Let us then choose a minimal subcube
included in T'(t) and which intersects both T and F' U F”. Clearly, by
Lemma A.1, such a minimal subcube contains exactly one vector from T
and one vector from (F'UF”)\ (F'NF"). Let us assume, without any loss
of generality that a € T and b € F’\ F” are such vectors, and the minimal
subcube is [a,b]. Then, the term t* defined by T(t*) = [a,b] would be a
pattern of (T, F") but not a pattern of (T, F"), contradicting our assumption
that P(T,F') = P(T, F"). This contradiction proves our claim, and hence
completes the proof of the theorem. O

Proof of Theorem 3.2

Assume that x € B™ \ T is covered by some pattern ¢t of (T, F'). Then,
by definition, ¢ is not a pattern of (7, F U {z}), and Theorem 3.1 implies
that FU{z} € FT, that is that z & FT.

Conversely, let x ¢ FT. Then, by Theorem 3.1, P(T, F) # P(T, FU{x}).
But this implies by (iii) of Claim 2.4 that there is a pattern of (T, F') which
COVers .

The statement about T'* follows from the above by (ii) of Claim 2.4. [

It is easy to check that Corollary 3.3 immediately follows Theorem 3.2.

Proof of Theorem 3.4
We want to prove that F™ = F*, where

F*={xeB"|[z,a)NF #0 forall aecT}. (24)

To see that F* C F*, let us consider a vector z € F*: thus, there exists a
vector a € T such that [z,a]NF = (). For the term ¢ defined by T'(¢) = [z, a],
we have t(a) = 1 and ¢(b) = 0 for all b € F; hence, t is a pattern of (T, F).
Since this pattern covers x, Theorem 3.2 implies that © ¢ F*, and we
conclude that F'* C F* as required.

To see the equality, it is enough to show by (iii) of Claim 2.4 that
P(T,F) C P(T,F*), since F C F* by definition. Let us assume indirectly
that t € P(T,F)\ P(T, F*), or in other words that ¢ is a term for which
t(b) =0forallb e F, t(a) =1 for some a € T and ¢(x) = 1 for some x € F*.
Then we must have z € F* \ F, and [a,z] C T(t). However, by (24) we
must have [a, 2] F # 0, proving that T'(¢) N F # ), and hence contradicting
the assumption that ¢ is a pattern of (7', F'). This contradiction proves the
equality F* = F*, as claimed.

To establish (11), let us denote by F' the right hand side of this equality,
ie.,

F={be F|3aecT such that [a,b] N (F\ {b}) = 0}. (25)
We must prove that F = F~ as defined in Theorem 3.1.
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We claim first that © C F~. Indeed, if b € F'\ F'~, then there exists a € T
for which [a,b] N (F\ {b}) = 0 by (25). The term ¢ defined by T'(t) = [a, b]
is not a pattern of (7, F') since we have t(a) = t(b) = 1 for this particular
a €T and b € F. Hence, by P(T,F) = P(T,F~), the term ¢ cannot be
a pattern of (T, F~), either. Since t(a) = 1 and a € T, this implies that
there exists a vector ¥’ € F'~ for which ¢(0/) = 1, implying ¥’ € [a,b]. Then,
we have [a, '] C [a,b], and by Lemma A.1 b ¢ [a,b] is also implied. Let us
then consider the term ¢’ for which T'(t') = [a,¥]. Since [a,b'] N F = () by
the above construction, ¢’ is a pattern of (T, F'). However ¢'(b’) = 1 implies
that ¢’ is not a pattern of (T, F'~), contradicting the definition of F'~.

Next, we claim that P(T,F) = P(T, F), which together with the previ-
ous claim and with the definition of F~ will prove that ' = F~. By (iii) of
Claim 2.4, it in fact enough to show that P(T, F) C P(T, F).

To verify this latter relation, let us assume indirectly that there exists a
pattern t € P(T, a )\ P(T, F). Consequently, we must have vectors a € T
and b € F\ F such that t(a) = t(b) = 1. Since b ¢ F, we must have
[a,b] N (F\ {b}) # 0 by (25). Since t is a pattern of (T, F) and, since
T(t) D [a,b], all elements & € [a,b] N (F\ {b}) must belong to F \ F, and
clearly [a, V'] C [a,b] holds for all such elements. Let us then choose a vector
b € [a,b]N(F\{b}) for which [a, V] is a minimal sub-cube among all such sub-
cubes. Since b ¢ F', there must exist another vector b” € [a, b N (F\ {V'}),
and by the selection of b we must have b’ € F. However, t(b") = 1 follows
from [a,b'] C T'(t), contradicting the fact that ¢ was chosen as a pattern of
(T, F). This contradiction proves that P(T, F') = P(T, F) as we claimed.

The statements (12) and (13) follow from the above by interchanging
the roles of T" and F'. O

A.2 Maximal theories

Proof of Theorem 3.8

Let x € B™ be an arbitrary binary vector and let a € T'U F be a vector
closest to x in the sense of the Hamming distance. We can assume without
any loss of generality that a € T'. Let us then consider the term ¢ defined by
T(t) = [z,a]. By Lemma A.1 we can assume that a € T is the only vector
from T'U F in [z, a], and hence ¢(b) = 0 must hold for all b € F', implying
that ¢ is a pattern of (T, F'). Hence, A7 py(7) = 1 must hold. Analogously,
if @ € F, then we can derive that By p)(x) = 1. This completes the proof
of the first claim.

The identities F(A(p py) = F" and F(B(g,p)) = T are a mere restate-
ment of Theorem 3.2, and the relation 77 N F™ = () follows readily from
this fact and from the first claim. O

Proof of Theorem 3.10
Claim (i) follows readily by Theorem 3.8 and by the definition of patterns
and co-patterns.
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To see (ii), let us consider an arbitrary pattern ¢ of (T, F*). By defini-
tion we have t(b) = 0 for all b € F*, and thus T(t) C B" \ F* = T(A(1,r))
follows from Theorem 3.8, implying that ¢ is an implicant of A1 ).

Claim (iii) is implied by (i) and (ii). O

Proof of Theorem 3.11

To prove claim (iv), first note that any support set of (T'*, F") is also a
support set of (T, F) since we have T+ D T and F'* O F. Therefore, let us
consider a support set S of (T, F') and show that it is also a support set of
(T, FT). If this were not true, there would exist two vectors a € T" and
b € F* for which a; = b; for all i € S. Assume without loss of generality
that a; = b; = 1 for all i € S and let t = A, g x;, so that we have

t(a)=1 and ¢(b)=1. (26)

Now, let us choose a vector ¢ € T'U F' for which the cardinality of the set
I ={icS:c;=1}1is as large as possible, and define the term ¢’ = A, z;.
Clearly, t'(c) = 1. Without any loss of generality, we can assume that ¢ € T
(the case ¢ € F would be similar). Then, we claim that ¢(w) = 0 for all
w € F. Indeed, if t/(w) = 1 for some w € F, then it means that w; = 1 for
all i € I. Since S is a support set of (T, F'), there must be an index j € S\ I
such that w; # ¢;. Now, j € I implies that ¢; = 0; hence this and w; = 1
contradicts the choice of ¢ (since the set {i € S : w; = 1} is larger than I).
Thus, t/(w) = 0 for all w € F, and ¢'(c) = 1, meaning that ¢’ is a pattern
of (T, F'). Then t'(b) = 0 follows from Theorem 3.2 and from the assumption
that b € F*. Since t < t', we conclude that ¢(b) = 0, which contradicts the
second equality in (26). O

A.3 Decision trees and bi-theories

Recall the definition of reasonable decision trees given at the end of Section
2.2. Such decision trees offer an algorithmic representation of Boolean func-
tions and of pdBfs. They are widely used in machine learning, data mining,
and other fields. Moreover, we shall establish their close relationship with
bi-theories.

Example A.2. Figure 3 shows an example of a decision tree D. This deci-
sion tree classifies, for instance, all binary vectors for which 1 = 2 = 25 = 1
into the rightmost leaf belonging to Li. Thus, we have fp(1,1,z3,24,1) =1
for all z3, z4. O

For each node v € NUL of a decision tree D, let us denote by P, = {r =
ug, U1, ..., u, = v} the unique path from the root r to v. We can associate
an elementary conjunction ¢, with v by defining

ty = ( A\ Tit) A ( A Tj(us)-

u; €EPy: u; EPy:
uj41 is the right successor of u; wu;y 1 is the left successor of u;
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Figure 3: An example of a decision tree.

In words, we include the literal z; in ¢, if the path P, follows the right
successor from a node u € P, with j(u) = j, and we include z; if P, follows
the left successor. It is then immediate to see that DNF representations of
fp and fp, are given by

fp= \/ ty, and fp= \/ ty. (27)

vEL1(D) v€ELo(D)

Example A.3. The decision tree D in Figure 3 has two leaves in L;(D),
and thus we obtain the following DNF for the function represented by D:

fp =T122 V 12975,
Considering the leaves in Ly(D) we get

?D =T9 V Z1T2T5.

It is well-known that every pdBf (T, F') can be represented by a rea-
sonable decision tree. We provide next a generic procedure to build such a
decision tree D € D(T, F). Although we do not claim any originality for
this procedure, its description will be useful in order to establish the results
in Section A.3.1.

With every node v of D (to be built), let us associate the pdBf (75, F,,),
consisting of those vectors of 1" and F', respectively, which are classified into
node v. During the execution of the proposed algorithm we maintain a list
Q@ of nodes v such that

T,UF, #0 and T,NF,=0. (28)
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DT-BuiLD(T, F')

Initialize: Let N = Q = {r}, L1 = Lo = 0, A(D) = 0, T, = T and
F, = F. (Upon completion, the vertex set N U LoU L; and the arc
set A(D) define the constructed decision tree.)

While Q # () do

Choose a node u € () and remove it from Q).
If T, = 0, then add u to Ly and remove it from N.
If F,, =0, then add u to L and remove it from N.

If T, # 0 and F,, # 0, then choose an index j such that z; is not
constant for all x € T, U F,, and set j(u) = j. Let v and w,
respectively, be the left and right successors of u, and define
the associated pdBfs by

Ty={a€T,|a;j=0} and F,={beF,|b; =0},
Tw={a€eT,|aj=1} and F,={beF,|b;=1}

Finally, add both v and w to @ and N, and add the arcs (u, v)
and (u,w) to the set of arcs A(D).

Theorem A.4. For every pdBf (T, F), the algorithm DT-BuiLp(T', F) pro-
duces a reasonable decision tree D € D(T,F). Moreover, all reasonable
decision trees in D(T, F) arise in this way.

Proof. Let us note first that T,, UF, # () and T,, U F}, # () holds in the above
algorithm for the successors v and w of a node « if and only if the index
J = j(u) is chosen so that x; is not a constant in all vectors z € T, U F,,.
Furthermore, if T;,NF,, = (), then we have both T,NF,, = 0§ and T\, NF,, = 0.
Thus, conditions (28) are indeed maintained during the procedure, assuming
that we had initially TN F = ().

Let us also remark that as long as T, # 0, F, # 0, and T, N F,, = 0,
there must exist an index j for which z; is not constant in all x € T;,, U F,.
After the data splitting at each vertex u, we have ;) = 1 in all vectors
x € T, U F, for all nodes z belonging to the subtree rooted at the right
successor w of w. Similarly, we have z;,) = 0 for all vectors z € T, U F}
for all nodes z belonging to the subtree rooted at the left successor v of u.
This implies that the same index will not be selected twice along any of the
paths going from the root to a leaf.

Let us finally observe that every time we add a node w to either Ly or
L4, the corresponding pdBf (T, F,,) contains some vectors, due to condition
(28).

Therefore, the decision tree D produced by DT-BuiLD(T', F') indeed rep-
resents (7, F') and it is reasonable. We can also see that the total number
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of leaves is not more than |T"U F|, and hence the procedure terminates in
O(|T U F|) steps.

It is obvious that every reasonable decision tree D for (T, F') can be pro-
duced by DT-BUILD, since it suffices to choose the indices j(u) as prescribed
by D. O

Corollary A.5. If (T, F) is a pdBf, then D(T, F) # 0. ]

Many variants of DT-BUILD are proposed in the literature, differing
(only) in the way of choosing the splitting index j = j(u) in each iteration.
One of the best-known procedures is the algorithm ID3 due to Quinlan [32].

A.3.1 Properties of decision trees as bi-theories

Let us now analyze the connection between decision trees and patterns,
co-patterns, theories, and co-theories.

Lemma A.6. For a decision tree D € D(T, F') and for a leaf node v of D,
the corresponding term t, is a pattern of (T, F) if v € L1(D), while it is a
co-pattern of (T, F) if v € Lo(D).

Proof. This is almost immediate by the definitions. For instance, if v €
Li(D), then T, # () and F, = (), implying that ¢,(a) = 1 for all a € T, and
ty(b) =0 for all b € F. O

Proof of Theorem 3.13

Let us consider an arbitrary reasonable decision tree of (T, F'). By Corol-
lary A.5 there are such decision trees. Then by Lemma A.6 every term of
fp (and fp), given by (27) is a pattern (co-pattern). Consequently fp is a
bi-theory. O

Before we turn to a proof of Theorem 3.15, we need an additional def-
inition. Let us call a term ¢ a prime pattern (prime co-pattern) of a pdBf
(T, F) if it is a pattern (co-pattern) of (7, F') but every term obtained by
dropping any one of its literals is not a pattern (co-pattern). In other words,
when viewed as either Boolean functions or subcubes, prime patterns (prime
co-patterns) are maximal patterns (co-patterns).

Lemma A.7. FEvery prime pattern t of (T, F) appears as t = t, for some
reasonable decision tree D € D(T,F) and for some true leaf v € Li(D).
Similarly, every prime co-pattern t of (T, F) appears as t = t, for some
reasonable decision tree D € D(T, F') and for some false leaf u € Lo(D).
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Proof. Let us prove the statement for prime patterns. The case of prime
co-patterns can be treated analogously.

Let t = A\j.cp) Tji N\jien) T be a prime pattern of (T, F), let P(t) U
N(t) = {j; | i = 1,...,k}, and let us consider a small decision tree D*
consisting of one path uj, ug, ..., ugy1. Here wy is the root of D*  and
w41 is the right successor of u; if j; € P(t), and it is the left successor if
ji € N(t). Let v; denote the other successor of vertex u;, i = 1,...,k, and
set L1(D*) = {ug+1} and Lo(D*) = {v1,va, ..., g }-

Let us now note that F,, ., = {b € F | t(b) = 1} = 0 and T, ,, =
{a € T | t(a) = 1} # 0 since t is a pattern of (T, F). Since ¢ is prime, it
does not remain a pattern if any variable z;, is deleted from it. Thus there
must exist a vector b € F' for which b;, # a;, for some i and b;, = a;, for
¢ # i, where a € T is an arbitrary vector for which ¢(a) = 1. Therefore,
F,, ={be F|bj, # aj, and bj, = a;,, { < i} # (). Since this is true for all
indices j;, ¢ = 1,..., k, every node of D* has some vectors of T'U F' classified
into it.

Then let us choose an arbitrary decision tree D; € D(T,,, F,) and iden-
tify the root of D; with v;, for ¢ = 1,...,k. In this way we obtain a de-
cision tree D for which we have D € D(T,F) and in which ¢t appears as
t=tuy - O

This lemma allows us to give one more characterization of the closure
(T*,F*) of a pdBf (T, F).

Proof of Theorem 3.15

Let us first show the equivalence (a) <= (b). Note that no decision tree
D € D(T, F) can classify a vector v € T'" into a false leaf, or a vector u € F'*
into a true leaf, since every decision tree D € D(T, F') represents a bi-theory
of (T, F') by Theorem 3.13, and since T+ = F(B(7,p)) and F* = F(A(7r))
by Theorem 3.8. Thus, to complete the proof of this equivalence we only
need to show that no vectors u ¢ T+ or u ¢ F™ have the same property.

For this, let us consider a vector u € T". Then, by Definition 12, there
exists a vector b € F such that [u,b] N'T = (. Thus the term ¢ defined by
T(t) = [u,b] is a co-pattern of (T, F). Let ¢ > ¢ be a prime co-pattern of
(T, F'). Then, by Lemma A.7 there exists a decision tree D € D(T, F) for
which ¢ = t, for some leaf v € Lo(D). This decision tree classifies u into
the false leaf v, showing that not all decision trees in D(T, F') classify u into
a true leaf, as claimed.

The case of a vector u ¢ F'™ is similarly handled.

To see the equivalence (a) <= (c), let us note that (¢) = (b)) = (a)
by Theorem 3.13 and the above proof. Furthermore, Corollary 3.3 implies
(a) = (c), thus completing our proof. O
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A.4 Nearest neighbor methods and bi-theories

The following useful property can be deduced from (18)—(19): It states that
if u lies between a and v, then v is closer to u than to a.

Lemma A.8. For all vectors a,u,v € B", if u € [a,v] and a # u, then
p(u,v) < p(a,v) when p is a subcube monotone similarity measure.

Proof. Let u € [a,v]. Condition (19) implies that, if we indirectly assume
p(a,v) < p(u,v), then p(a,u) < p(u,u) = 0. Hence p(a,u) = 0, and (18)
implies that a = u, a contradiction. ]

Proof of Theorem 3.16

Let us note first that since TN F = (), we have for alla € T and b € F:
pla, F) >0 = p(a,a) = p(a,T) and p(b,T") > 0 = p(b,b) = p(b, F), by (18)
and (20). Thus ' C T'(f,) and F' C F(f,), implying that f, € £(T, F).

To see that f, is a theory, let us associate with every vector v € T'(f,)
the term 2, ) defined by T'(t[, ) = [v,a], where a € T is any vector such
that p(v,a) = p(v,T'), and let us define

Y = \/ t[v,a]'

veT(fp)

We want to show that ¢ is a theory and that ¢ = f,.

Let us first show that every term t(, ,), v € T(f,), is a pattern of (T, F).
Clearly, the term ¢, 4 covers a point of T’ (namely, a). Moreover, suppose
that t[, , covers a point of I, say u € F' N [v,a]. Then, by Lemma A.S8,
p(u,v) < p(a,v), which contradicts the assumption that v € T'(f,).

Thus, for all v € T(f,), t[,q intersects T and does not intersect F),
meaning that ¢, 5 is a pattern of (T, F), and that ¢ is a theory. We claim
next that this theory is f,, that is,

T(p) =T(fp)- (29)

Clearly, for all v € T(f,), the term |, , covers v, and hence p(v) = 1;
this shows that T'(f,) C T'(¢).

For the converse inclusion, consider an arbitrary vector u € T'(p), and
let #[y,q), v € T(f,), be any term of ¢ which covers u: u € T'(t[,q)) = [v,a].
For every vector b € F', we have by definition of f, that p(v,T) = p(a,v) <
p(b,v); hence, (19) implies p(a,u) < p(b,u). Since this holds for all b € F,
we conclude that p(u,T) < p(u, F'), hence f,(u) = 1. This establishes the
claim (29).

Finally, to see that f, is a bi-theory, we have to show that its complement
Tp is a co-theory of (T, F). To this end, let us associate with every vector
w € F(f,) the term t, defined by T'(t,y) = [w,b], where b € F is a
vector for which p(w,b) = p(w, F'), and define

v="\ tp

weF (fp)
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By similar arguments as above, it follows that all terms of 1) are co-patterns,
and that T'(¢)) = F(f,). Thus, f, is a co-theory of (T, F'), which completes
the proof of the theorem. O

As mentioned earlier, many mappings p : B® x B" — R, are subcube
monotone similarity measures. The Hamming distance provides a simple
example. We describe below a large family of subcube monotone mappings
which generalize the Hamming distance (the Hamming distance is obtained
when wj =1forall j =1,2,...,n).

Lemma A.9. Let wj > 0 be positive real numbers for j = 1,2,...,n, and
let
pula,b)= Y w; foralla,beB" (30)
jia;#bj

Then p,, is a subcube monotone similarity measure.

Proof. Condition (17) holds trivially, and condition (18) follows from the
positivity of w; for j = 1,2,...,n. To see condition (19), let us consider
arbitrary binary vectors a, b, u and v, such that u € [v,a], and let us define
the following index sets
A={jlaj=vj=u;=bj},
B ={jlaj =vj =u; #bj},
C={jlaj=bj=u; #vj},
D ={j|bj =uj =vj # a;},
E={jla; =0b; #u; = v},
F={jlaj=u; #bj=v}.
These sets are pairwise disjoint, and since u € [v,a], we have V=AU B U

CUDUEUF. To simplify notation, we write w(S) instead of >, g w;.
Then we have

)=w(
pw(b,v)=w(BUC U FE)
pw(a,u)=w(D U E),
pw(b,u)=w(BUEUF)

By elementary computations,

(BUCUE)—w(CUDUEUF)
=w(B) —w(DUF)
<w(B)—w(DUF)+2w(F)
=w(BUF)—-w(D)
Ww(BUEUF)—-w(DUE)

- pw(b, u) - pw(a7 U)
using the facts that the sets B,C, D, FE and F are pairwise disjoint, and
that w(F) > 0 by the nonnegativity of w. Condition (19) then follows
immediately. O

S

pw(ba U) - pw(a7 ’U) =
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