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Abstract 

In this paper, we present a multicut version of the Benders decomposition method for 

solving two-stage stochastic linear programming problems, including stochastic mixed-

integer programs with only continuous recourse (two-stage) variables. The main idea is to 

add one cut per realization of uncertainty to the master problem in each iteration, that is, 

as many Benders cuts as the number of scenarios added to the master problem in each 

iteration. Two examples are presented to illustrate the application of the proposed 

algorithm. One involves production-transportation planning under demand uncertainty, 

and the other one involves multiperiod planning of global, multiproduct chemical supply 

chains under demand and freight rate uncertainty. Computational studies show that while 

both the standard and the multicut versions of the Benders decomposition method can 

solve large-scale stochastic programming problems with reasonable computational effort, 

significant savings in CPU time can be achieved by using the proposed multicut 

algorithm.  
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1. Introduction 

Many problems for supply chain planning under uncertainty can be formulated as 

two-stage stochastic programming problems with fixed recourse (Birge & Louveaux, 

1997; Infanger, 1994; Shapiro, 2008). In the two-stage framework, the first-stage 

decisions are made “here-and-now” prior to the resolution of uncertainty, while the 

second-stage decisions are postponed in a “wait-and-see” mode after the uncertainties 

are revealed. The scenario planning approach is used to represent the uncertainties 

through a number of discrete realizations of the stochastic quantities, constituting 

distinct scenarios. The objective is to find a solution that performs well on average 

under all scenarios. This approach provides a straightforward way to account for 

uncertainty, but the resulting stochastic programming models are often 

computationally demanding because their model size increases exponentially as the 

number of scenarios increases.  

In order to address the computational challenge, a number of methods have been 

proposed for the solution of two-stage stochastic programming problems 

(Ruszczyński, 1997), such as Benders decomposition (Benders, 1962; Van Slyke & 

Wets, 1969), stochastic decomposition (Higle & Sen, 1991), subgradient 

decomposition (Sen, 1993; Sen and Huang, 2009), disjunctive decomposition (Ntaimo, 

2010), and nested decomposition (Archibald et al., 1999). Among these methods, 

Benders decomposition (Benders, 1962), also called the L-shaped method, has 

become the major approach to tackle stochastic programming problems because of its 

ease of implementation. This method takes advantage of the special decomposable 

structure of the two-stage stochastic programming model and generates duality cuts 

based on the subgradient information iteratively. Since the standard Benders 

decomposition returns only one cut to the master problem in each iteration, its 

convergence might be slow for some computationally demanding problems (Birge & 

Louveaux, 1997). To address this issue, numerous researchers have proposed variants 

to accelerate the algorithm (Bahn et al., 1995; Escudero et al., 2007; Fragniere et al., 

2000; Gerd Infanger, 1993; Latorre et al., 2009; Linderoth & Wright, 2003; Mulvey & 

Ruszczynski, 1995; Ruszczynski, 1993; Saharidis & Ierapetritou, 2010; Saharidis et 

al., 2010; Contreras, et al., 2010; Miller & Ruszczyński, 2010; Trukhanov et al., 2010). 

In this paper, we consider the solution methods for stochastic linear programming 

problems and stochastic mixed-integer linear programs with only continuous recourse. 
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We first describe a multicut version of the Benders decomposition, which is a variant 

of the standard Benders decomposition method but converges faster in general cases. 

We discuss the theory behind this algorithm and prove its convergence. Two 

applications of this algorithm are then presented to illustrate the effectiveness of this 

method. The first application involves production-transportation planning under 

demand uncertainty. Because of the relatively small problem size, the global optimal 

solution of this problem can easily be obtained to validate the proposed solution 

approach and illustrate its effectiveness. The second application involves global 

chemical supply chain planning under uncertainty, which originates from a real-world 

application in the Dow Chemical Company. The model was taken from the authors’ 

earlier work (You et al., 2009). Three testing data sets with different sizes are 

considered. In both applications, the results show that the multicut version of the 

Benders decomposition method requires fewer iterations and less computational time 

than does the standard version to obtain a solution with a specified optimality 

tolerance.  

The rest of this paper is organized as follows. Section 2 presents the multicut 

Benders decomposition algorithm, for problems where the first-stage decision 

variables can include both discrete and continuous variables, while the second-stage 

decision variables must all be continuous variables. The problem statements, model 

formulations, and computational results for the two applications are given in Sections 

3 and 4. In Section 5, we summarize our conclusions. 

 

2. Multicut Benders Decomposition Algorithm 

Consider the following general form of the two-stage stochastic programming 

model (P0): 

(P0) T T

,
min       

s
s s sx y

s S

c x p q y


  (1) 

s.t.        ,             0Ax b x   (2) 

            ,    ) 0,  s s s sWy h T x y(w s S     (3) 

where x  is a vector that stands for the first-stage decision variables, which may 

include 0-1 variables; sy  are the continuous second-stage decisions for each 

scenario s ; A  and b  are parameter matrices independent of the scenarios; and W , sh  
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and sT  are parameter matrices for each scenario s S .  

The expanded version of the general model (P0) is given in equation (4). The 

problem has a special “angular” form, which can be decomposed into a master 

problem and a number of scenario subproblems.  

 

Master problem

Scenario subproblems

Master problemMaster problem

Scenario subproblems

 (4) 

The special decomposable structure of (4) is suitable for Benders decomposition 

because it takes advantage of subgradient information to construct convex estimates 

of the recourse function and iteratively generates a Benders cut to be added to the 

decomposed master problem (Benders, 1962; Van Slyke & Wets, 1969). In the first 

step, a decomposed subproblem with those constraints that do not include the second-

stage variables is solved to obtain the values of the first-stage decisions. Then we fix 

the first-stage decisions and solve all the scenario subproblems that include second-

stage decisions, in order to obtain the optimal values of the second-stage decisions. 

Let ( )sQ x , the value function, be the objective function value of each scenario 

subproblem s . 

T( ) min    
s

s s sy
Q x q y  

              s.t.   ,    ) 0s s s sWy h T x y(w    (5) 

The reformulation of (P0) is then as follows. 

(P0) Tmin       ( )s sx
s S

c x p Q x


  (6) 

s.t.        ,             0Ax b x   (7) 

To solve (P0), we can take advantage of the dual properties of (6) by introducing 

a new variable   for ( )s s
s S

p Q x

  and iterating between the master problem (P1) and 

the scenario subproblems (P2). 

The master problem (P1) is given by 
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(P1)  T

,
min       

x
c x


  

s.t.        ,   1iter iterd x e iter ..N     (8) 

            ,    0Ax b x   

while the subproblem (P2) for scenario s  is given by 

(P2) T            min    
s

s sy
q y  

              s.t.   ,    ) 0s s s sWy h T x y(w    (9) 

where the inequalities in (P1) are the “cuts” that link the master problem and the 

scenario subproblems. Here, ld  and le  are coefficients for the Benders cut; they are 

given by 

,
iter T

s iter s s
s S

d p T


  (10) 

,
iter T

s iter s s
s S

e p h


  (11) 

where s  are the optimal dual vectors of constraint (5) in the subproblem (P2) for 

scenario s . 

In this paper, we assume that the problem (P0) has complete recourse and that 

(P2) is always feasible. We note that feasibility cuts (Birge and Louveaux, 1997) can 

be added to the algorithmic framework to deal with problems with infeasible 

subproblems, although in this work we limit our scope on those that have complete 

recourse after introducing additional slack variables for shortfalls or back orders in 

supply chain planning 

Under this assumption, feasibility cuts are not present in the master problem (P1). 

Our algorithms and this analysis can be generalized to handle situations in which the 

aforementioned assumption does not hold; but for the sake of simplifying the analysis, 

we avoid discussing this more general case here. 

The major steps for the standard Benders decomposition algorithm are given in 

Figure 1. In this algorithm, we first solve the master problem to obtain a lower bound 

of the objective value. We then fix all the first-stage decisions and solve each scenario 

subproblem to get an upper bound. If the lower bound and the upper bound are within 

a tolerance, then the algorithm stops. Otherwise, we use the duals of the scenario 

subproblems to add a Benders cut and return to the master problem. 
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Figure 1   Algorithm for standard Benders decomposition 

 
The standard Benders decomposition algorithm only returns one cut per iteration 

to the master problem. For large-scale problem, its convergence might be slow and the 

algorithm might need many iterations to reach a predefined optimality tolerance.  

To speed up the algorithm, we can decompose the variable θ by scenarios to 

return as many cuts as the number of scenarios at each iteration. In this variant, the 

master problem is then given by (P3). 

(P3)  T

,
min       

s
s sx

s S

c x p





  

s.t.        ,   1 ,  1iter iter
s s sd x e iter ..N s ..S      (12) 

            ,    0Ax b x   

The coefficients  sld  and sle  for the cut (12) are updated as follows 

,
iter T
s iter s sd T  (13) 

,
iter T
s iter s se h  (14) 

where s  are the optimal dual vectors of constraint (5) in the subproblem (P2) for 

scenario s . 
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Figure 2   Algorithm for multicut Benders method 

 

The algorithm framework for the multicut Benders algorithm is similar to that for 

the standard Benders algorithm (see You et al, 2009) and is given as follows (see also 

Figure 2). 

 

Step 1 

Set 1iter  , LB   , UB   .  

 

Step 2 

At iteration iter, solve the master problem (P3) with all the optimality cuts 

generated in the previous iterations. Denote the optimal objective function value as 

iter  and the optimal solution of the first-stage decision variables x as iterX . If 

iter LB  , set iterLB  .  

 

Step 3: 

Solve all the scenario subproblems (P2) with the values of first-stage decision 

variables fixed as iterx X . Let the optimal solution of the second-stage decision 

variables ys be iter
sY  and the optimal dual vectors of constraint (5) in the subproblem 

(P2) for scenario s be ,iter s . Compute the value of the objective of the original 

problem (P0); that is, set T Titer iter iter
s s s

s S

c X p q Y


   . If iter UB  , then update 

iterUB   . 
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Step 4 

If UB LB    (e.g., 10-3), stop and output the optimal solution ( iterX , iter
sY ); 

otherwise, compute the coefficients of the optimality cuts ,
iter T
s iter s sd T  and 

,
iter T
s iter s se h , and add the optimality cuts ,   iter iter

s s sd x e s    , to the master 

problem (P2). Then, set 1iter iter  , and go to Step 2. 

 

Convergence is guaranteed in this algorithm by the following propositions. 

 

Proposition 1. The recourse function    s ss S
R x p Q x


  is a convex piecewise 

linear function.  

Proof: The proof of this proposition is given in (Birge & Louveaux, 1997). � 

 

Proposition 2. Each optimality cut (12) supports the recourse function  R x  and 

 sQ x  from below. 

Proof: The proof of this proposition is given by (Birge & Louveaux, 1997). � 

 

Proposition 3. Given some ( iterX , iter
s ) such that ,   iter iter iter iter

s s sd X e s    , then 

iterX  is an optimal solution of the original problem (P0).  

Proof: 

The original problem (P0) is equivalent to the following problem (P4). 

          Tmin       s sx
s S

c x p 


   

s.t.        ,             0Ax b x   

       s sQ x    

Based on Proposition 2 and the duality property of (P2), we have 

  ,  iter iter iter iter iter
s s s se X d Q X s     . Therefore, ( iterX , iter

s ) is a feasible solution of 

(P4). Since ( iterX , iter
s ) is the optimal solution of (P2), it is also an optimal solution 

of (P4), which is equivalent to the original problem (P0). � 

 

Proposition 4. (Convergence) Since the algorithm generates a finite sequence of 
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( iterX , iter
s ) and since (

iter
X , 

iter
s ) is the limit of this sequence, and 

lim 0iter iter iter
s s s

iter M
d x e 


   , where M is a sufficiently large integer, then 

iter
X  is an 

optimal solution of the original problem (P0). 

Proof: 

From Proposition 2 and lim 0iter iter iter
s s siter M

d x e 


   , we have  iter
s sQ X  .  

Thus, (
iter

X , 
iter
s ) is a feasible solution of problem (P4). Because 

function    s ss S
R x p Q x


  is a convex piecewise linear function as shown in 

Proposition 1, (
iter

X , 
iter
s ) is also an optimal solution of (P4), which is equivalent to 

the original problem (P0). � 

 

We note that while the multicut L-shaped method can provide more cuts to 

support the recourse function from below and most likely reduce the number of 

iterations, it introduces more variables and constraints in the master problem, which 

may potentially slow the computation. This algorithm would benefit from solving it 

with parallel computing, which could significantly reduce the wall-clock times.  

  

3. Production-Transportation Planning under Uncertainty 

The first application of the proposed algorithm is about a single product, single-

period production-transportation planning under demand uncertainty. This problem 

can be formally stated as follows.  

We are given a set of plants i I  with production capacity capi and a set of 

demand zones l L . The selling price at demand zone l is pricel, the unit 

transportation cost from plant i to demand zone l is ctri,l, the unit production cost at 

plant i is cpdi, and the unit waste disposal cost in demand zone l is cusl. Here, s S is 

the set of scenarios, ps is the scenario probability, and demandl,s is the demand at 

demand zone l of scenario s. The major decisions include the production level (prodi), 

transportation amount (shipi,l), sales amount (salel,s), and unsold product amount 

(unsold,s). We note that in the two-stage stochastic linear programming framework, 

the production and transportation decisions are made “here and now” prior to the 

resolution of demand uncertainty, whereas the sales and waste disposal decisions are 
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postponed in a “wait-and-see” mode after the uncertainties are revealed. Thus, the 

production and transportation decisions are independent of the scenarios, whereas the 

sales decisions are made for each scenario. The objective of this problem is to 

maximize the total expected profit (E[profit]) by optimizing the aforementioned 

decisions. 

Based on the problem statement, a two-stage stochastic linear programming 

model can be formulated as follows. 

, , ,

,

max     [ ]

                          

s l l s i l i l
l L s S i I l L

i i s l l s
i I l L s S

E profit p price sale ctr ship

cpd prod p cus unsold
   

  

    

    

 

 
  (15) 

s.t.  

i iprod cap ,  i I   (16) 

,i i l
l L

prod ship


  ,  i I   (17) 

, , ,i l l s l s
i I

ship sale unsold


  ,  l L  , s S  (18) 

, ,l s l ssale demand ,  l L  , s S  (19) 

0iprod  , , 0i lship  , , 0l ssale  , , 0l sunsold   

 
Table 1   Probability distribution of demand realizations for the   production-

transportation planning problem 
 

Demand Realization (ton)  Probability Demand 
Zones 

 
Low Medium High  Low Medium High 

1  150 160 170  0.25 0.5 0.25 
2  100 120 135  0.25 0.5 0.25 
3  250 270 300  0.25 0.5 0.25 
4  300 325 350  0.3 0.4 0.3 
5  600 700 800  0.3 0.4 0.3 
 

Table 2   Unit transportation cost for the production-transportation planning 
problem ($/ton) 

 
Plants/Demand 
Zones 

 
1 

 
2 

 
3 

 
4 

 
5 

P1 2.49 5.21 3.76 4.85 2.07 
P2 1.46 2.54 1.83 1.86 4.76 
P3 3.26 3.08 2.6 3.76 4.45 

 

In this case study we consider a production-transportation network with three 
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plants and five demand zones. The probability distribution of the demand realization 

is given in Table 1. In each demand zone there are three possible demand realizations. 

We assume these probabilities are independent. By considering the joint probability 

distribution, we generate a total of 35=243 scenarios for this problem. The unit 

production cost is $14/ton, the sales price is $24/ton, and cost of removal of unsold 

products is $4/ton. The unit transportation cost between plants and demand zones is 

given in Table 2.  

The deterministic equivalent of the resulting two-stage stochastic linear program 

includes 2,448 continuous variables and 2,436 constraints. Less than one second was 

needed to obtain the optimal solution ($10,793) with 0% gap using GAMS 

23.4.3/CPLEX 12 (Rosenthal, 2010), on an IBM T400 laptop with an Intel 2.53 GHz 

CPU and 2 GB RAM.  

To illustrate the application of the proposed multicut algorithm and compare its 

performance with that of the standard Benders decomposition, we solved this problem 

with both algorithms. The results are shown in Figures 3 and 4. As can be seen from 

Figure 3, the upper bounds decrease and the lower bounds increase as the number of 

iterations increase. However, whereas the standard Benders method requires 22 

iterations to reach the optimality tolerance, the multicut version requires only 6 

iterations. The results in Figure 3 clearly show that the multicut version converges 

much faster than does the standard Benders method. The reason rests mainly with the 

improved approximation of the value function in (5), since a larger number of 

Benders cuts are added to the master problem at each iteration.  

The computational times for both algorithms show little difference for this case 

study (0.15 CPU seconds for the single cut version and 0.13 CPU seconds for the 

multicut version), although the multicut version requires far fewer iterations than does 

the standard Benders decomposition. The main reason is that the master problem of 

the multicut Benders method includes more variables and constraints (Benders cuts) 

than does the standard version and thus requires longer computational time per 

iteration. Another reason is that the computational times for this case study are so 

short that the scaling effect and the advantage of the multicut version cannot be fully 

illustrated.  
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Figure 3   Comparison between the standard Benders method and the multicut 

version in terms of number of iterations for the production-transportation 
planning problem 

 

4. Global Chemical Supply Chain Planning under Uncertainty 

The second case study considered in this work is based on the problem described 

by You et al. (2009), which originates from a real-world application in the Dow 

Chemical Company. Global supply chains in the process industries are usually large-

scale systems that can comprise hundreds or even thousands of production facilities, 

distribution centers, and customers (Wassick, 2009). This case study addresses the 

midterm planning for a global multiproduct chemical supply chain under demand and 

freight rate uncertainty. A two-stage stochastic mixed-integer linear programming 

model is used, incorporating a multiperiod planning model that takes into account the 

production and inventory levels, transportation modes, times of shipments, and 

customer service levels. In the two-stage framework, the production, distribution, and 

inventory decisions for the current time period, which include 0-1 variables, are made 

“here and now” prior to the resolution of uncertainty, while the decisions for the 

remaining time periods, which only involve continuous variables, are postponed in a 

“wait-and-see” mode. The problem includes a large number of uncertain parameters 

as a result of the multiperiod nature and the large size of the supply chain network. A 

Monte Carlo sampling approach is used to discretize the continuous probability 
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distribution functions and to generate the scenarios.  

To demonstrate the effectiveness of the proposed decomposition algorithms, we 

solve three instances for small, medium, and large supply chain networks, using both 

the standard Benders decomposition method and the multicut version. We present the 

problem statement, model formulation, and computational results in the following 

subsections. 

 

4.1. Problem statement 

This case study can be stated as follows. We are given a midterm planning 

horizon (for instance, one year), which can be subdivided into a number of time 

periods (for instance, one month as a time period). A set of products are manufactured 

and distributed through a given global supply chain that includes a large number of 

worldwide customers and a number of geographically distributed plants and 

distribution centers. All the facilities (plants and distribution centers) can hold 

inventory and are connected to each other by an associated transportation link. Each 

customer is served by one or more facilities with specified transportation links. A 

simplified version of the network is shown in Figure 4. The network has multiple 

echelons whereby material may flow from the manufacturing plant through several 

distribution centers on its way to the final customer. Freight rates are specific to the 

transportation link involved and depend on distance and mode of transport. Generally, 

the transportation links are classified into two types: from one facility to another 

facility (plant or distribution center) and from a facility to a customer. Some 

transportation links with certain transportation modes are managed by third-party 

logistics companies; these require either that no products be shipped through these 

links with the corresponding transportation mode or that a minimum quantity be 

shipped in each time period. 

Besides the supply chain network topology, we are given the minimum and initial 

inventory of each facility. The inventory holding costs and the facility throughput 

costs are already known, together with future monthly demand of each product by 

each customer. The transportation time of each shipping lane is known and should be 

taken into account.  

The uncertainties arise from the customer demands and freight rates. The values 

of these uncertain parameters follow some probability distribution (such as normal 
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distribution) with a given mean and variance. Usually, the probability distribution of 

the uncertain parameters can be obtained by fitting the historical data for different 

probability distributions or can be based on expert opinions. The mean values of these 

uncertain parameters typically come from forecasting, and the variances come from 

historical data. We allow the demands and freight rates to have different levels of 

uncertainties changing with time. For example, in January the uncertain demand of 

May has a standard deviation as much as 20% of the mean value, but in April the 

standard deviation of that demand of May reduces to 5% of the mean value as a result 

of more accurate forecasting and information. Different levels of uncertainties are 

important for the operations of industrial supply chains and should be taken into 

account in the models. 

The problem is to determine the monthly or weekly production and inventory 

levels of each facility, and the monthly shipping quantities between network nodes 

such that the total expected cost and the total risks of the global supply chain are 

minimized, while satisfying customer demands over the specified planning horizon. 

 

Figure 4   Global chemical supply chain 

 

4.2. Two-stage stochastic programming model 

We consider a two-stage stochastic mixed-integer programming approach to deal 

with different levels of uncertainties. We incorporate this approach into a multiperiod 

planning model that takes into account the production and inventory levels, 

transportation modes, times of shipments, and customer service levels. In principle, 

the problem can be formulated as a multistage stochastic programming model. To 
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reduce the computational effort, we consider only a two-stage approach. In this two-

stage framework, the production, distribution, and inventory decisions for the current 

time period and the transportation mode selection decisions are made “here and now” 

prior to the resolution of uncertainty, while the decisions for the rest of the time 

periods are postponed in a “wait-and-see” mode after the uncertainties are revealed. 

The scenario planning approach is used to represent the uncertainties. A resulting 

challenge is that a large number of scenarios are required because the problem 

includes a very large number of uncertain parameters as a result of the multiperiod 

nature of the model and the large size of the global supply chain network.  

To reduce the model size and the number of scenarios, we use a Monte Carlo 

sampling approach to generate the scenarios (Linderoth et al., 2006; Shapiro, 2000; A. 

Shapiro & Homem-de-Mello, 1998). Each scenario is then assigned the same 

probability, with the summation of the probabilities for all the scenarios equal to 1. 

For example, if we use Monte Carlo sampling to generate 100 scenarios, the 

probability of each scenario is given as 0.01. The number of scenarios is determined 

by using a statistical method to obtain solutions within specific confidence intervals 

for a desired level of accuracy. This method is effective for scenario reduction, 

particularly for large-scale problems. As an example, for a problem with 51000 

scenarios, a sample size of around 400 can find the true optimal solution with 

probability 95%. The process of generating scenarios by Monte Carlo sampling is 

illustrated through Figure 5. As the statistical analysis method for determining the 

required number of scenarios is not the focus of this paper, we do not introduce the 

details here and the readers can refer to our earlier works for details (You et al., 2009). 

 
Figure 5  Discretization of the continuous probability distribution by using 

Monte Carlo sampling for scenario generation 
 

In this work, we use a multiperiod formulation to allow the costs and sourcing 

decisions to change with time while taking into account the transportation time for 

each shipment. Sets, variables, and parameters of the model are defined at the end of 
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this paper. The mathematical formulation of the multiperiod mixed-integer linear 

programming planning model is given below. 

 

min :     [ ] 1 2s s
s S

E Cost Cost p Cost


      (20) 

s.t.  

, , , ,
1

, ', , , , ', , ,
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, , , , , , , ,
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, , , ', , ,
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, , , , ,
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k j t k j t
k K j J t

k k j m t k k j m t
k K k K j J m M t

k r j m t k r j m t
k K r R j J m M t

k j t k k j m t
k K k K j J m M t

k j t k r j

Cost h I

F
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F

S









  

    

    

    













 





,
1

m t
k K r R j J m M t    

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, , ,, , , , , , , , , , ,k r j mk r j m t s r j t s r j t s
k K m M

S SF d
 

   ,  , ,r j s , 2t   (28) 

, , ,k j t k jW Q ,  j , 1t  , Pk K  (29) 

, , , ,k j t s k jW Q ,  ,j s , 2t  , Pk K  (30) 

m
tjktjk II ,,,,  ,  ,k j , 1t   (31) 

m
tjkstjk II ,,,,,  ,  , ,k j s , 2t      (32) 

, ', , , , ', , , ', ,
L

k k j m t k k j m k k j mF ZF F    , ', ,k k j m KKJM  , 1t   (33) 

, ', , , , , ', , , ', ,
L

k k j m t s k k j m k k j mF ZF F    , ', ,k k j m KKJM  , s, 2t   (34) 

, , , , , , , , , ,
L

k r j m t k r j m k r j mS ZS S    , , ,k r j m KRJM  , 1t   (35) 

, , , , , , , , , , ,
L

k r j m t s k r j m k r j mS ZS S    , , ,k r j m KRJM  , s, 2t   (36) 

 , ', , 0,1k k j mZF  ,  , , , 0,1k r j mZS   

1 0Cost  , 2 0sCost  , , ', , , 0k k j m tF  , , ', , , , 0k k j m t sF  , , , 0k j tI  , , , , 0k j t sI  , , , , , 0k r j m tS  , 

, , , , , 0k r j m t sS  , , , , 0r j t sSF  , , , 0k j tW  , , , , 0k j t sW   

 

The objective function of this stochastic mixed-integer linear programming model 

is to minimize the total expected cost given in (20), which includes the first-stage cost, 

1Cost , and the expected second-stage cost. Since the scenarios follow discrete 

distribution, the expected second-stage cost is equal to the product of the scenario 

probability, sp , and the associated second-stage scenario cost, sCost2 , summed over 

all the scenarios s. Both the first-stage cost given in (21) and the second-stage 

scenario cost given in (22) are equal to the sum of the following items: 

 Inventory holding cost for all products at all facilities for all time periods 

 Freight cost for interfacility freight shipments in all the shipping lanes of all 

the products in all time periods 

 Freight cost for facility-customer shipments in all the shipping lanes of all the 

products in all the time periods 

 Facility throughput cost for interfacility shipments for all the shipping lanes of 

all the products in all the time periods 

 Facility throughput cost for facility-customer shipments for all the shipping 

lanes of all the products in all the first-stage time periods 
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 Penalty costs of all the products for unmet demand of all the customers in all 

the time periods 

 

Six types of constraints are included in the model. The mass balance relationships 

for the plants are given in constraints (23) and (24), the mass balance for distribution 

centers are given in constraints (25) and (26), the demand balance for customers are 

given in constraints (27) and (28), production capacity constraints are given in (29) 

and (30), and minimum inventory level constraints are given in (31) and (32); 

constraints (33)–(36) are minimum transportation level constraints for selected 

transportation links/modes managed by third-party logistic companies. Constraints 

(23), (25), (29), (31), (33), and (35) are first-stage constraints that do not include any 

scenario-dependent (second-stage) variables, while the remaining constraints are 

second-stage constraints for each scenario. The first-stage constraints are for the 

production, inventory, and transportation planning of the first time period ( 1t  ), 

except for the demand balance constraint (27) that accounts for the uncertain demand 

realization. Binary variables ZFk,k’,j,m and ZSk,r,j,m are introduced to model the semi-

continuous transportation levels for selected transportation links or modes. A slack 

variable SFr,j,t,s is used to model the shortfalls and avoid infeasibility of the planning 

problem. An additional feature of this model is that the transportation times are taken 

into account through the multiperiod formulation, where shipments across multiple 

time periods are explicitly modeled. 

Minimizing the objective function in (20), subject to the constraints in (21) – (36), 

we can obtain the solution for the two-stage stochastic programming model. 

Computational results for solving this model with the standard and the multicut 

versions of the Benders decomposition method are presented in the next section. 

 

4.3. Computational results 

The problem is based on the global supply chain of a major commodity chemical 

producer. We consider a planning horizon of one year, which is subdivided into 12 

time periods, one month as a time period. Two products are produced and distributed 

in the global supply chain. The customer demands and freight rates, which are 

uncertain, follow normal distributions, with the forecast as the mean value and the 

variance coming from the historical record. The demand uncertainty has three levels 
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of standard deviations. For the current month the standard deviation of demand is 5% 

of the mean value; in the coming three months, the standard deviation is 10% of the 

mean value; and for the remaining eight months, the demand has a standard deviation 

of 20% of the mean value. Similarly, the freight rate has two levels of uncertainty. For 

the current month, the variance is 0 (i.e., deterministic case); for the remaining 11 

months, the freight rate has a standard deviation of 10% of the mean value. Three 

makeup instances are considered, representing three supply chain networks. The first 

instance is for a small network with 2 plants, 4 distribution centers, 2 customers, 1 

transportation mode and 9 transportation links. The second instance is for a medium 

size supply chain network with 5 plants, 17 distribution centers, 46 customers, 4 

transportation modes and 75 transportation links. The third instance is for a large 

network with 14 plants, 70 distribution centers, 126 customers, 14 transportation 

modes, and 328 transportation links. Although the size of the stochastic programming 

problem exponentially increases as the number of scenarios increases, we found that 

at least 1,000 scenarios are required in order to achieve reasonable confidence 

intervals. Thus, we consider 1000 scenarios for each of the three instances. The 

problem sizes of the deterministic equivalents for three instances are given in Table 3, 

and the sizes of the first-stage and second-stage subproblems are listed in Tables 4-5. 

All the instances are modeled with GAMS 23.4.3 and solved with the CPLEX 12 

solver on an IBM T400 laptop with an Intel Core Duo 2.53 GHz CPU and 2 GB RAM. 

We note that none of these instances can be solved directly because of their large size. 

Thus, the standard and multicut versions of the Benders decomposition method are 

used. The optimality tolerances for both methods are set to 0.001%.  

 

Table 3   Problem sizes of the deterministic equivalents of the numerical 
examples 

Problem Size Instance 1 Instance 2 Instance 3 

No. of Binary Variables 7 22 158 
No. of Continuous 
  Variables 

423,036 3,703,384 75,356,014 

No. of Constraints 201,018 1,301,189 52,684,187 
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Table 4   Problem sizes of the first-stage problem of the numerical examples 

Problem Size Instance 1 Instance 2 Instance 3 

No. of Binary Variables 7 22 158 
No. of Continuous 
  Variables 

36 384 4,014 

No. of Constraints 18 189 2,187 

 
Table 5   Problem sizes of the second-stage problem of the numerical examples 

Problem Size Instance 1 Instance 2 Instance 3 
No. of Continuous 
  Variables 

423 3,703 75,352 

No. of Constraints 201 1,301 52,682 

 
The computational performances of the standard and multicut versions of the 

Benders algorithm are shown in Figures 6 – 11. We can see that how the upper bound 

decreases and the lower bound increases with the number of iterations, and how the 

computational time increases for both solution methods in all these figures. For 

Instance 1, the small-scale problem (results shown in Figures 6 and 7), the standard 

Benders method requires 21 iterations (around 12 CPU-seconds) to converge, while 

the multicut versions can reach the same optimality gap in 6 iterations (4 CPU-

seconds). Similarly, for Instance 2 with a medium-size supply chain network (results 

shown in Figures 8 and 9), the multicut method requires only 45 iterations (around 5 

CPU-minutes) to converge, while the standard Benders method takes 534 iterations 

(around 45 CPU-minutes) to reach to the same optimality tolerance. As the problem 

size becomes larger, the multicut Benders method is computationally much more 

efficient than the standard method. For Instance 3, the largest problem (results shown 

in Figures 10 and 11), the multicut version needs only 47 iterations (around 11 CPU-

minutes), while the standard Benders method requires 564 iterations (about 3.5 CPU-

hours).  

The high computational efficiency of the multicut Benders method is because its 

master problem requires relatively small solution times despite its large size, and the 

number of iterations is significantly reduced as a result of the “multiple” cuts. In 

contrast, while the master problem in the standard Benders method is smaller in size 

and faster to solve, it also requires a significantly larger number of iterations. Note 

that both algorithms would benefit from solving the scenario subproblems with 

parallel computing and coordinate through a master-worker computational framework 
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(Linderoth & Wright, 2003), which could significantly reduce the computational times.  

 

 

Figure 6   Comparison between the standard Benders method and the multicut 
version in terms of number of iterations for the first instance of the global supply 

chain planning problem 
 

 

Figure 7   Comparison between the standard Benders method and the multicut 
version in terms of CPU-seconds for the first instance of the global supply chain 
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planning problem 
 

 

Figure 8   Comparison between the standard Benders method and the multicut 
version in terms of number of iterations for the second instance of the global 

supply chain planning problem 
 

 

Figure 9   Comparison between the standard Benders method and the multicut 
version in terms of CPU-seconds for the second instance of the global supply 

chain planning problem 
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Figure 10   Comparison between the standard Benders method and the multicut 
version in terms of number of iterations for the third instance of the global 

supply chain planning problem 
 

 

Figure 11   Comparison between the standard Benders method and the multicut 
version in terms of CPU-seconds for the third instance of the global supply chain 

planning problem 
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5. Conclusion 

In this work, we described a multicut version of the Benders decomposition 

method for the solution of two-stage stochastic programming problems. We discussed 

the theory behind this algorithm and proved its convergence property. Two examples 

were presented to illustrate the application of the proposed solution method. The first 

example involves production-transportation planning under demand uncertainty. A 

small example, for which the global optimal solution can be easily obtained by 

solving its deterministic equivalent, was solved with both the standard and the 

multicut versions of the Benders decomposition method. The results illustrated the 

effectiveness of the multicut method. The second example involved a global chemical 

supply chain planning under demand and freight rate uncertainty. The decomposition 

method was tested on three large-scale instances, which cannot be solved directly 

with a regular personal computer. Computational studies showed that although both 

versions of the Benders decomposition method can solve large-scale stochastic 

programming problems with reasonable computational effort, significant savings in 

CPU time can be achieved by using the proposed multicut algorithm.  

Future work will focus on investigating valid inequalities, such as the ones 

proposed by Georgios et al. (2011) and Santoso et al (2005) that can be used to 

initialize the decomposed problems and improve the efficiency of the proposed 

algorithm. Another future research direction is to investigate how to accelerate the 

Benders decomposition algorithm, such as developing efficient cut bundle generation 

method (Saharidis, et al. 2010). 
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Nomenclature for Section 3 

Sets/Indices 

I Set of production plants indexed by i 
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L Set of demand zones indexed by l 

S  Set of scenarios indexed by s  

Decision Variables (values: 0 to  ) 

[ ]E profit  Total expected profit 

iprod  Production amount at plant i 

,l ssale  Total amount of the product sold to demand zone l of scenario s 

,i lship  Transportation amount from plant i to demand zone l 

,l sunsold  Unsold amount at demand zone l of scenario s 

Parameters 

icap  Production capacity of plant i 

icpd  Unit production cost at plant i  

,i lctr  Unit transportation cost from plant i to demand zone l 

lcus  Unit unsold product cost in demand zone l 

ldemand  Demand in demand zone l of scenario s 

,l sdemand  Demand in demand zone l of scenario s 

sp  Probability of scenario s 

lprice  Sale price at demand zone l 

 

Nomenclature for Section 4 

Sets, Subsets, and Indices 

J  Set of products indexed by j  

K  Set of facilities (including plants and distribution centers) indexed by k  

DCK  Set of distribution centers indexed by k  

PK  Set of manufacturing plants indexed by k  

M  Set of transportation modes indexed by m  

R  Set of customers indexed by r  

S  Set of scenarios indexed by s  
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T  Set of time periods indexed by t  

KKJM  Subset of the combination of (k, k’, j, m) that has a minimum transportation level 
requirement if selected 

KRJM  Subset of the combination of (k, r, j, m) that has a minimum transportation level 
requirement if selected 

Decision Variable (values: 0 or 1) 

, ', ,k k j mZF  
Binary variable, equal to 1 if transportation mode m for interfacility freight of 

product j from facility k to k’ is selected 

, , ,k r j mZS  
Binary variable, equal to 1 if transportation mode m for facility-customer freight of 

product j from facility k to customer r is selected 

Decision Variables (values: 0 to  ) 

1Cost  First-stage cost 

sCost2  Second-stage cost of scenario s 

[ ]E Cost  Total expected cost 

, ', , ,k k j m tF  Interfacility freight of product j from facility k to k’ with mode m at time period t 

, ', , , ,k k j m t sF  
Interfacility freight of product j from facility k to k’ with mode m at time period t of 

scenario s 

tjkI ,,  Inventory level of product j at facility k at time period t 

stjkI ,,,  Inventory level of product j at facility k at the end of time period t of scenario s 

, , , ,k r j m tS  
Facility-customer freight of product j from facility k to customer r with mode m at 

time period t 

, , , , ,k r j m t sS  
Facility-customer freight of product j from facility k to customer r with mode m at 

time period t of scenario s 

stjrSF ,,,  Unmet demand of product j in customer r at time period t of scenario s 

, ,k j tW  Production amount of product j at plant k at time period t, Pk K  

, , ,k j t sW  Production amount of product j at plant k at time period t of scenario s, Pk K  

Parameters 

stjrd ,,,  Demand of product j in customer r at time period t of scenario s 

, ,k j th  Unit inventory cost of product j in facility k at time period t 

, ', ,
L

k k j mF  
Minimum transportation amount of product j from facility k to k’ with mode m at 

each time period if this transportation link/mode is selected  
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0
,k jI  Initial inventory level of product j at facility k 

m
tjkI ,,  Minimum inventory of product j at facility k at time period t 

sp  Probability of scenario s 

,k jQ  Capacity of plant k for product j, Pk K  

, , ,
L
k r j mS  

Minimum transportation amount of product j from facility k to customer r with 

mode m at each time period if this transportation link/mode is selected 

, ', , ,k k m j t  Freight rate of product j from facility k to k’ with mode m at time period t 

, , , ,k r j m t  Freight rate of product j from facility k to customer r with mode m at time period t 

, ', , , ,k k j m t s  Freight rate of product j from facility k to k’ with mode m at time t of scenario s 

, , , , ,k r j m t s  
Freight rate of product j from facility k to customer r with mode m at time period t 

of scenario s 

, ,k j t  Unit throughput cost of product j in facility k at time period t 

, ,r j t  Unit penalty cost of product j for lost unmet demand in customer r at time period t 

, ', ,k k j m  Shipping time of product j from facility k to facility k’ with mode m 

, , ,k r j m  Shipping time of product j from facility k to customer r with mode m 
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