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ASYMPTOTIC BIAS OF SOME ELECTION METHODS

SVANTE JANSON

Abstract. Consider an election where N seats are distributed among
parties with proportions p1, . . . , pm of the votes. We study, for the com-
mon divisor and quota methods, the asymptotic distribution, and in
particular the mean, of the seat excess of a party, i.e. the difference be-
tween the number of seats given to the party and the (real) number Npi

that yields exact proportionality. Our approach is to keep p1, . . . , pm

fixed and let N → ∞, with N random in a suitable way.
In particular, we give formulas showing the bias favouring large or

small parties for the different election methods.

1. Introduction

The idea of a proportional election method is that each party gets a num-
ber of seats that is proportional to the number of votes. The same math-
ematical problem arises if seats are to be apportioned (before the election)
between states in a union or between multi-member constituences according
to their populations. In particular, the problem of apportionment to the
House of Representatives in the United States has been the source of much
debate as well as much research since 1790, including the invention of sev-
eral important election methods; see Balinski and Young [1] for a detailed
history. (The European Union has yet to agree on a similar procedure; see
Grimmett [10] for a recent attempt to replace the current political bartering
with a “mathematical formula”, i.e. a well-defined method to allocate seats
in the European parliament to the member states.) To fix the terminology,
we talk in this paper about parties in an election; the case of apportionment
between states etc. differs mathematically only in language.

Of course, exact proportionality is in general not possible, since the num-
ber of seats has to be an integer, and the election method can be seen as
a method to “round” the real numbers that yield exact proportionality to
integers. The purpose of this paper is to study the resulting deviation from
perfect proportionality, i.e. the “rounding errors” introduced by the method.
In particular, we are interested in whether there is a systematic bias favour-
ing large or small parties for various election methods.

This problem has received a considerable amount of attention going back
to (at least) Pólya [23, 24, 25]. (Sainte-Laguë [27] did a related comparison
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2 SVANTE JANSON

between two different methods already in 1910, see Example 3.5.) Some in-
vestigations have analysed data from real elections or from simulations (with
party sizes chosen at random according to some predetermined distribu-
tions), see e.g. Balinski and Young [1] and Schuster, Pukelsheim, Drton and
Draper [28]. The problem has also been studied theoretically by assuming
that the parties have random sizes with a uniform distribution of the relative
sizes over all possibilities, see Pólya [23, 24, 25], Schuster, Pukelsheim, Drton
and Draper [28], Heinrich, Pukelsheim and Schwingenschlögl [13] and Drton
and Schwingenschlögl [30, 6, 31]. Random party sizes with more general
distributions have been considered by Heinrich, Pukelsheim and Schwingen-
schlögl [12, 13] and Schwingenschlögl [29]. (See also Section 6 below.)

The approach in the present paper is different. We consider a number of
parties with fixed sizes and let the total number of seats N be random. More
precisely, we let N be chosen uniformly at random in 1, 2, . . . , N0 for some
large integer N0, and then we take the limit as N0→ ∞. (Limits obtained
in this way, if they exist, can be regarded as results for “a random positive
integer” N . See also Remark 3.1.) The same approach has been used in [17]
for a related problem (the Alabama paradox for Hamilton’s method).

We use this approach for several different election methods, and calcu-
late, for given sizes of the parties (under a technical condition, see Sections
3 and 11), the (asymptotic) distribution of the deviation from perfect pro-
portionality as well as its mean, i.e. the systematic bias, and its variance.
In particular, this shows how the bias depends on the sizes of the parties in
a more detailed way than previous studies that consider random party sizes
(see the references given above).

The election methods that we consider are divisor methods of the “linear”
(or “stationary”) type (including Jefferson/D’Hondt and Webster/Sainte-
Laguë) and quota methods (including Hamilton/Hare and Droop). See fur-
ther Section 2, and Appendices A–B.

The main results are stated in Section 3 and proven in Sections 4–5. Sec-
tion 6 show that the results hold also in the more traditional approach with
deterministic house size N and random party sizes. The following sections
contain some simple applications of our main results: Section 7 discusses
the probability of violating quota, Section 8 the expected gain or loss for
parties forming an apparentement (coalition), Section 9 the Sainte-Laguë
divergence studied by Heinrich, Pukelsheim and Schwingenschlögl [12, 13]
and Section 10 some related goodness-of-fit functionals. Section 11 discusses
our technical condition and the case of rational sizes of the parties. The
appendices contain some background material.

Acknowledgement. I thank Friedrich Pukelsheim for many helpful com-
ments.
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2. Notation

We assume throughout that we have m parties with vi votes for party
i; we let V :=

∑m
i=1 vi be the total number of votes and pi := vi/V the

proportions of votes for party i. (In real elections there may also be votes
for parties that are disqualified because of a threshold rule, blank votes, and
other invalid votes; these are ignored here so

∑m
i=1 pi = 1. We consider only

parties that have received at least one vote, so pi > 0.) We further assume
that N seats are to be distributed (the house size), and let si be the number
of seats given to party i; thus

∑m
i=1 si = N . We occasionally write si(N)

when we need to specify the house size.
Strict proportionality would give

qi :=
vi
V
N = piN (2.1)

seats to party i. (This is usually not an integer.) We define the seat excess
for party i to be the difference

∆i := si − qi = si − piN. (2.2)

Note that
m∑

i=1

∆i =

m∑

i=1

si −N = 0. (2.3)

We use the standard notations ⌊x⌋ and ⌈x⌉ for rounding down and up of
a real number x, i.e. the largest integer ≤ x and the smallest integer ≥ x,
respectively. We denote the fractional part of x by {x} := x− ⌊x⌋.

More generally, let α be a real number. We say that the α-rounding of a
real number x is the integer [x]α such that

x− α ≤ [x]α ≤ x− α+ 1; (2.4)

equivalently,
[x]α + α− 1 ≤ x ≤ [x]α + α. (2.5)

If x − α is an integer, we regard [x]α as multiple-valued, and accept both
x−α and x−α+1 as values of [x]α. (This exceptional case typically occurs
at ties in the election methods.) Consequently,

[x]α = ⌈x− α⌉ = ⌊x+ 1− α⌋, (2.6)

except the case when x − α is an integer and both x − α and x − α + 1
are possible values. If 0 ≤ α ≤ 1, this means that x is rounded down if its
fractional part is less than α and up if its fractional part is greater than α.
In particular, α = 1

2 yields standard rounding, α = 0 yields rounding up and
α = 1 yields rounding down. (But note that we allow also α < 0 or α > 1,
in which case |x− [x]α | may be greater than 1.)

The two types of election methods that we consider can be defined as
follows; see further Appendices A–B where further details and equivalent
definitions are given. Note that all methods that we consider are homoge-
neous, i.e., the result depends only on the proportions pi of votes, but not
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on the total number V of votes; hence we will mainly use pi rather than vi
in the sequel.

• The β-linear divisor method, or the divisor method with divisors
d(n) = n+ β − 1 (where β is a real number): Let

si :=
[vi
D

]
β
=
[ pi
D′

]
β
, (2.7)

where D (or D′ = D/V ) is chosen such that
∑m

i=1 si = N . (If β < 0
or β > 1, there are some exceptions for small N , see Appendix A.1.)
This includes several important methods, in particular β = 1 (Jef-
ferson, D’Hondt), β = 1/2 (Webster, Sainte-Laguë), β = 0 (Adams).

• The γ-quota method (where γ is a real number): Let Q := V/(N+γ)
and let

si :=

[
vi
Q

]

α

= [(N + γ)pi]α , (2.8)

where α is chosen such that
∑m

i=1 si = N . In principle, γ can be any
real number (provided N + γ > 0); in practice only the cases γ = 0
(Hamilton, Hare, method of largest remainder) and γ = 1 (Droop)
are important, although also γ = 2 has some limited use.

Remark 2.1. In both divisor methods and quota methods ties may occur;
then the α-rounding in (2.7) or (2.8) has two possible values (because x−α ∈
Z in (2.4)) for (at least) two parties, with (at least) one of them rounded to
the larger value and (at least) one rounded to the smaller value. We assume
that ties are resolved at random, but ties will usually not be a problem for
us because of our assumptions below.

We let U(a, b) denote the uniform distribution on the interval (a, b). We
will use Ui and Ũi for random variables with Ui ∼ U(0, 1) and Ũi ∼ U(−1

2 ,
1
2),

and we assume that such variables with different indices are independent.
Recall that then EUi = 1/2, E Ũi = 0 and VarUi = Var Ũi = 1/12.

We denote convergence in distribution by
d−→, convergence in probability

by
p−→ and equality in distribution by

d
=.

3. Main results

As explained in the introduction, we assume that p1, . . . , pm are fixed,
and let the total number of seats (house size) N be random and uniformly
distributed on {1, . . . , N0} for some large integer N0; we then consider limits

as N0 → ∞. For convenience, we denote this situation by N
p∗−→ ∞. (Note

that this implies N
p−→ ∞.)

Remark 3.1. We assume that N is distributed in this way for simplicity,
but the results can easily be extended to more general sequence of random
N ∈ N. For example, we may take N uniformly distributed on an interval
[N1(k), N2(k)] and let k → ∞, for any two sequences N1(k) and N2(k) of
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positive integers with N2(k) −N1(k) → ∞. In fact, we conjecture that the
results hold for any N that satisfies the weak condition

ϕ(θ) := E eiNθ → 0 for any θ ∈ (0, 2π). (3.1)

(This implies N
p−→ ∞ and excludes parity restrictions.) Note that Weyl’s

Lemma 4.1 extends to this situation. However, we have not verified all details
for this case, and we leave further investigations to the interested reader.

In order to obtain simple asymptotic results, we will usually make one
mathematical simplification: we assume that p1, . . . , pm are linearly inde-
pendent over Q, i.e., that there is no relation

a1p1 + · · ·+ ampm = 0 (3.2)

with all coefficients ai rational and not all 0. (Equivalently, there is no
relation (3.2) with integer coefficients ai, not all 0.) The case when this
assumption does not hold is discussed in Section 11.

Remark 3.2. Mathematically, this assumption is reasonable, since if we
choose p1, . . . , pm at random (uniformly given that their sum is 1, as in
Section 6), they will almost surely be linearly independent over Q. However,
for real elections the assumption is clearly unreasonable since vote counts vi
are integers and the pi thus rational numbers. Nevertheless, the results below
are good approximations if the numbers pi have large denominators and there
are no relations (3.2) with small integers a1, . . . , am, see Section 11. For
practical purposes we thus can use the results below as good approximations
for any pi and any N that is large enough. (However, we do not investigate
the rate of convergence, and how large N has to be.)

3.1. Divisor methods. We begin with a simple deterministic bound, valid
for all house sizes and numbers of votes, cf. [18, Satz 6.2.11]. It follows from
the proof, or from Theorem 3.7 below, that the bounds are best possible.
Proofs of the results below are given in Section 4.

Theorem 3.3. Consider the β-linear divisor method. Then

pi − 1 + (β − 1) (mpi − 1) ≤ ∆i ≤ (β − 1) (mpi − 1) + (m− 1)pi. (3.3)

Equivalently,
∣∣∣∣∆i −

(
β − 1

2

)
(mpi − 1)

∣∣∣∣ ≤
1

2
+

m− 2

2
pi. (3.4)

For the asymptotic bias, we have a simple formula.

Theorem 3.4. Consider the β-linear divisor method, and suppose that p1,

. . . , pm are linearly independent over Q. Then, as N
p∗−→ ∞,

E∆i →
(
β − 1

2

)
(mpi − 1). (3.5)
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Note that the asymptotic bias in (3.5) for a party depends only on its size
pi and the number of parties, but not on the distribution of sizes between
the other parties. The limit in (3.5) agrees with the formula by Kopfermann
[18, (S) on p. 208] for the advantage (or disadvantage) for different parties,
derived by geometric considerations.

In particular, Theorem 3.4 shows that the bias is 0 for every party when
β = 1/2 (Webster/Sainte-Laguë). It is well-known that this divisor method
is (asymptotically) unbiased, see e.g. [25, 1, 28, 30, 6] for various justifications
of this; it is satisfying that our approach confirms this, and shows that the
method really is unbiased for a party of any size.

For β > 1/2 (for example Jefferson/D’Hondt with β = 1), the bias is
positive for pi > 1/m and negative for pi < 1/m. It is well-known that
these methods favour larger parties; we here see exactly how much parties of
different sizes are favoured, and that the boundary is exactly at the average
size 1/m. Note also that the bias grows with m, especially for large parties.
For example, for β = 1, a large party with pi ≈ 1/2 has bias ≈ (m − 2)/4,
while a small party (pi ≪ 1/m) always has a bias ≈ −1/2.

For β < 1/2 (for example Adams with β = 0), we have the opposite biases;
the boundary is still at pi = 1/m.

Example 3.5. Sainte-Laguë [27] compared in 1910 the results of his method
(which he called the method of least squares) and D’Hondt’s method in the
case of two parties (that he thought of as two of several parties in an election)
with p1 ≥ p2. He did not consider the biases in our sense, comparing the
distribution of the seats to the distribution of the votes, but his approach
means studying the difference of the two biases. (Since we know that Sainte-
Laguë’s method (β = 1/2) is unbiased, this is equivalent to calculating the
bias of D’Hondt’s method (β = 1).)

Sainte-Laguë found that if k := p2/p1 ∈ (0, 1], then the largest party gets
on the average (1− k)/(2(1 + k)) seats more with D’Hondt’s method. This
agrees with Theorem 3.4, with m = 2 and p1 = 1/(1 + k).

Sainte-Laguë [27] also considered the case of random pi, assuming that
the ratio p2/p1 is uniformly distributed over (0, 1], and found by integration
the average gain

∫ 1

0

1− k

2(1 + k)
dk = log 2− 1

2
≈ 0.193 (3.6)

for the larger party with D’Hondt’s method. (Note that this differs from
the average bias 1/4 = 0.25 for the largest of two parties derived by [28]
assuming that p2 is uniformly distributed on (0, 1/2), see Theorem 6.4 below
with m = 2. The reason is that the two probability distributions of the party
sizes are different; they are uniform in different ways.)

Remark 3.6. Sainte-Laguë [27] seems to have thought that this calculation
for two parties applies to any two of several parties, and that therefore, if
party A is larger than B, then B would on the average gain 0.193 seats
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compared to A if the method is changed from D’Hondt’s to Sainte-Laguë’s,
regardless of the number and sizes of the other parties. Theorem 3.4 shows
that this is incorrect; in fact, if A and B both are small parties, they both
have essentially the same bias −1/2 with D’Hondt’s method. It is true that
for divisor methods, the distribution of seats to two parties A and B is
the same as if the total number of seats for these two parties is distributed
between them by the same divisor method, see Theorem A.19. However, if
both A and B are small parties, they will by (3.5) get on the average almost
1 seat less together than their proportional share, and if their total number
is redistributed between them, most of this loss will be borne by the larger
party, which offsets the advantage of the larger party in the redistribution
and explains the fallacy. More generally, parties 1 and 2 will by (3.5) on the
average get together N ′ := N(p1 + p2) + (β − 1/2)(mp1 +mp2 − 2) seats. If
we distribute this number of seats between the two parties, the same formula
would yield that party 1 on the average gets, with p′1 := p1/(p1 + p2),

N ′p′1 + (β − 1
2 )(2p

′
1 − 1) = Np1 + (β − 1

2)
(
p′1(m(p1 + p2)− 2) + 2p′1 − 1

)

= Np1 + (β − 1
2)(mp1 − 1)

seats, in accordance with Theorem 3.4.

We can describe asymptotically not only the mean but also the distribu-
tion of the seat excess. We also obtain a joint limit distribution, which is
explicit although a little involved.

Theorem 3.7. Consider the β-linear divisor method, and suppose that p1, . . . , pm
are linearly independent over Q. Then, as N

p∗−→ ∞, for each i,

∆i
d−→ X̄i := (β − 1

2)(mpi − 1) + Ũ0 + pi

m−2∑

k=1

Ũk, (3.7)

where Ũk ∼ U(−1
2 ,

1
2) are independent. Moreover, jointly for i = 1, . . . ,m,

∆i
d−→ Xi, (3.8)

where the limit random variables Xi can be constructed as follows: Let
U1, . . . , Um ∼ U(0, 1) and let J ∈ {1, . . . ,m} be random with P(J = j) = pj ,
j = 1, . . . ,m, with all variables independent. Let

Vi := 1{J 6= i}Ui =

{
Ui, i 6= J,

0, i = J,
(3.9)

and let, finally,

Xi := pi

m∑

j=1

Vj − Vi + (β − 1)(mpi − 1). (3.10)

Of course, as we shall verify in Section 4, Xi
d
= X̄i.
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The description in (3.9)–(3.10) of the joint distribution of X1, . . . ,Xm

is explicit but rather involved, and it is quite possible that there exists a
simpler description; cf. Remark 10.3. For m = 2, X2 = −X1, and thus

(X1,X2)
d
= (X̄1,−X̄1) where X̄1 := (2β − 1)p1 − β + U0 by (3.7). We leave

it as an open problem to try to find alternative expressions for m ≥ 3.

Corollary 3.8. Consider the β-linear divisor method, and suppose that
p1, . . . , pm are linearly independent over Q. Then, as N

p∗−→ ∞,

Var∆i →
1 + (m− 2)p2i

12
(3.11)

and, when i 6= j,

Cov(∆i,∆j) →
(m− 2)pipj − pi − pj

12
. (3.12)

Note that the asymptotic distribution of the seat excess depends on β
only through its mean EXi (i.e., the asymptotic bias in (3.5)); the centred
random variable Xi−EXi does not depend on β. We see also, from (3.10) or
(3.11), that this random part of the seat excess tends to be larger in absolute
value for a large party.

In the limit as pi → 0, i.e. for very small parties, (3.9) and (3.10) yield

Vi
d−→ Ui and

Xi
d−→ −Ui − (β − 1) = 1− Ui − β

d
= Ui − β ∼ U(−β, 1− β).

Remark 3.9. A simple heuristic motivation for the bias in Theorem 3.4
is that the β-rounding in (2.7) is unbiased if β = 1/2, but otherwise, it
costs on the average each party β − 1/2 seats, compared to vi/D which is
truly proportional. In total, this makes a loss of m(β−1/2) seats, which are
redistributed proportionally (by shifting D), so party i gets back pim(β−1/2)
seats, on the average, giving a net gain of (mpi − 1)(β − 1/2), as shown by
Theorem 3.4.

For a related, but rigorous, argument, let us compare the methods with
parameters β and β + 1, temporarily using a superscript to distinguish the
methods. (For example, Adams’s method and Jefferson’s method.) By The-
orem A.12 (assuming that N is large enough),

s
(β)
i (N) = s

(β+1)
i (N −m) + 1. (3.13)

Hence,

∆
(β)
i (N) = s

(β)
i (N)−Npi = ∆

(β+1)
i (N −m)−mpi + 1. (3.14)

Taking the limit as N
p∗−→ ∞, we see that the asymptotic distributions also

differ by mpi − 1. Hence, it is not surprising that the bias in Theorem 3.4 is
mpi − 1 times a linear function of β.
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3.2. Quota methods. We again begin with a simple deterministic bound,
cf. [18, Satz 6.2.3]. It follows from the proof, or from Theorem 3.13 below,
that the bounds are best possible. Proofs of the results below are given in
Section 5.

Theorem 3.10. For the γ-quota method,

γ
(
pi −

1

m

)
− m− 1

m
≤ ∆i ≤ γ

(
pi −

1

m

)
+

m− 1

m
. (3.15)

Again we have a simple formula for the asymptotic bias.

Theorem 3.11. Consider the γ-quota method and suppose that p1, . . . , pm
are linearly independent over Q. Then, as N

p∗−→ ∞,

E∆i → γ
(
pi −

1

m

)
. (3.16)

As for the divisor methods, the asymptotic bias in (3.16) for a party
depends only on its size pi and the number of parties, but not on the dis-
tribution of sizes between the other parties. The limit in (3.16) agrees with
the formula by Kopfermann [18, (S) on p. 199] for the (dis)advantage for
different parties, derived by geometric considerations.

In particular, Theorem 3.11 shows that the bias is 0 for every party when
γ = 0 (method of largest remainder/Hamilton/Hare). Again it is well-known
that this quota method is (asymptotically) unbiased, see e.g. [25, 1, 28, 30, 6];
our approach confirms this and shows that the method is unbiased for a party
of any size.

For γ = 1 (Droop), the bias is positive for pi > 1/m and negative for
pi < 1/m, just as for Jefferson’s method discussed above; hence Droop’s
method too favours larger parties. (See [18, p. 118] for figures illustrating
the cases m = 2 and m = 3.) Note, however, that the bias for Droop’s
method does not grow with m. A comparison between (3.16) (with γ = 1)
and (3.5) (with β = 1) shows that the bias for Jefferson’s method is m/2
times the bias for Droop’s method, for any party of any size. Hence Droop’s
method is less biased than Jefferson’s for every m ≥ 3. (For m = 2 not only
the biases are the same; in fact the methods coincide when there are only
two parties, see Appendix B.1.)

Remark 3.12. There is a simple heuristic explanation of the formula (3.16)
for the bias, if we accept the fact that Hamilton/Hare’s method (γ = 0)
is unbiased. Consider γ = 1 (Droop); this method can be seen as doing
Hamilton’s method with N + 1 seats, but retracting the last seat. Since
Hamilton’s method is unbiased, this first distributes on the average (N+1)pi
seats to party i. The retracted seat is taken essentially uniformly at random,
since it depends on the fractional parts of the numbers qi = Npi only; hence
each party loses on the average 1/m seats in that step. This argument gives
a bias of pi − 1/m, in accordance with (3.16).

Again we have an explicit expression also for the asymptotic distribution
of the seat excess.



10 SVANTE JANSON

Theorem 3.13. Consider the γ-quota method and suppose that p1, . . . , pm
are linearly independent over Q. Then, as N

p∗−→ ∞, for each i,

∆i
d−→ Yi := γ

(
pi −

1

m

)
+ Ũ0 +

1

m

m−2∑

k=1

Ũk, (3.17)

where Ũk ∼ U(−1
2 ,

1
2) are independent.

Corollary 3.14. Consider the γ-quota method and suppose that p1, . . . , pm
are linearly independent over Q. Then, as N

p∗−→ ∞,

Var∆i →
1 + (m− 2)/m2

12
=

(m+ 2)(m− 1)

12m2
. (3.18)

As for the divisor methods in Theorem 3.7, the asymptotic distribution
of the seat excess depends on γ only through the mean in (3.16); Yi − EYi

does not depend on γ. Moreover, unlike the case of divisor methods, this
centred random variable does not depend on the party size pi. In particular,
for Hamilton/Hare’s method (γ = 0), the asymptotic distribution of the seat
excess is the same for every party.

Remark 3.15. Let for simplicity γ = 0. Note that the limit variable Yi in
(3.17) is uniform U(−1

2 ,
1
2) for m = 2; for m ≥ 3 the distribution is more

complicated, but as m → ∞, the limit converges to U(−1
2 ,

1
2) (by (3.17)

and the law of large numbers). Hence, for large m, Yi has essentially the
same distribution as for m = 2, and although the supremum and infimum
of the range of Yi tend to 1 and −1 as m → ∞, cf. (3.15), the probability
P(Yi /∈ [−1

2 ,
1
2 ]) → 0.

Similarly, it is seen from the variance formula (3.18) that the variance is
1/12 ≈ 0.08333 for m = 2, increases to 5/54 ≈ 0.09259 for m = 3 and to the
maximum 3/32 = 0.09375 for m = 4; the variance then decreases again and
converges to 1/12 as m → ∞.

The difference from a uniform variable is not very large, and it may in
practice be a good approximation to regard the seat excess ∆i in Hamilton’s
method as U(−1

2 ,
1
2 ) for any party and any reasonably large house size.

We have stated Theorem 3.13 only for individual parties. It is easy to see
that a joint asymptotic distribution exists, but (unlike the case of divisor
methods, cf. Theorem 3.7) we do not know any simple description of it.
(There is a description implicit in the proof of Theorem 3.16, see (5.14).)

Theorem 3.16. Consider the γ-quota method and suppose that p1, . . . , pm

are linearly independent over Q. Then, as N
p∗−→ ∞, ∆i

d−→ Ȳi jointly
for i = 1, . . . ,m for some random variables Ȳi such that the distribution of
(Ȳ1 − γp1, . . . , Ȳm − γpm) is symmetric (exchangeable) and independent of

p1, . . . , pm, and Ȳi
d
= Yi for each i.
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Corollary 3.17. Consider the γ-quota method and suppose that p1, . . . , pm
are linearly independent over Q. Then, as N

p∗−→ ∞, when i 6= j,

Cov(∆i,∆j) → Cov(Ȳi, Ȳj) = −Var Ȳi

m− 1
= −m+ 2

12m2
. (3.19)

Problem 3.18. Find an explicit formula for the limit variables Ȳ1, . . . , Ȳm

in Theorem 3.16.

4. Proofs for divisor methods

Proof of Theorems 3.3 and 3.7. For the β-linear divisor method, the seat
distribution is given by (2.7) with D and D′ = D/V such that

∑m
i=1 si = N .

We let D′ = 1/t; thus, using (2.7) and (2.6),

si = [pit]β = ⌊pit− β + 1⌋ (4.1)

(with the usual possible exception if pit− β is an integer). Let here t grow
from 0 to ∞; think of t as time. The seats are assigned one by one (unless
there is a tie).

Fix one party j and let tjr be the time when party j receives its r:th seat.
By (4.1), r = pjtjr − β + 1, and thus

tjr =
r + β − 1

pj
. (4.2)

At this time tjr, by (4.1) again, party i has si seats with

si = ⌊pitjr−β+1⌋ =
⌊
pi
pj

(r + β − 1)− β + 1

⌋
=

⌊
pi
pj

r +
( pi
pj

− 1
)
(β − 1)

⌋
.

(4.3)
Let, for i = 1, . . . ,m,

Wi := {pitjr − β + 1} =

{
pi
pj

r +
( pi
pj

− 1
)
(β − 1)

}
∈ [0, 1], (4.4)

defining Wi := 1 in the exceptional case when pitjr−β ∈ Z and si = pitjr−β.
(But Wi := 0 when pitjr − β ∈ Z and si = pitjr − β + 1.) Then (4.3) can be
written

si =
pi
pj

r +
( pi
pj

− 1
)
(β − 1)−Wi, i = 1, . . . ,m. (4.5)

Note that Wj = 0, since sj = r = pjtjr − β + 1.
The total number of seats at the moment tjr is, by (4.5),

N =

m∑

i=1

si =
1

pj
r +

( 1

pj
−m

)
(β − 1)−

m∑

i=1

Wi, (4.6)
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and thus the seat excess is, combining (4.5) and (4.6),

∆i = si −Npi =
( pi
pj

− 1
)
(β − 1)−Wi −

( pi
pj

−mpi

)
(β − 1) + pi

m∑

k=1

Wk

= pi

m∑

k=1

Wk −Wi + (β − 1)(mpi − 1). (4.7)

So far everything is deterministic. Theorem 3.3 follows from (4.7) since each
Wk ∈ [0, 1] and Wj = 0.

Let us now assume that p1, . . . , pm are linearly independent over Q; in
particular, this implies that pi/pj is irrational when i 6= j. Note that there is
a tie between parties i and j at time t if and only if both pit−β and pjt−β
are integers. If parties i and j tie at two different times t1 and t2, we thus
have pi(t1 − t2) ∈ Z and pj(t1 − t2) ∈ Z, and taking the quotient we find
pi/pj ∈ Q, a contradiction. Hence there is at most one tie for each pair of
parties, and thus at most

(m
2

)
values of t (and thus of N) for which there is

any tie. Since we consider asymptotics, we may ignore the ties and assume
that no tie occurs.

Let now N be random in {1, . . . , N0} and let J = J(N) be the party
getting the N :th seat. Then ∆i is given by (4.7), where Wi = Wi(N) for
each N is given by (4.4) with j = J and r = sJ(N). Fix again j and consider
first only N such that J = j. The number of such N ≤ N0 is sj(N0), the
number of seats party j receives when the house size is N0; note that, e.g.
by Theorem 3.3, sj(N0) = pjN0 +O(1).

We recall a well-known result by Weyl [32]. (The result is usually stated
with a1 = · · · = ak = 0; this case implies immediately the more general
version given here.) We say that an infinite sequence (vn)n≥1 ∈ [0, 1)k is
uniformly distributed if the empirical distributions n−1

0

∑n0

n=1 δvn converge to
the uniform distribution as n0 → ∞, where δvn denotes the Dirac measure.
(Recall that this means that if A ⊆ [0, 1)k with λ(∂A) = 0, then #{n ≤ n0 :
vn ∈ A}/n0 → λ(A), where λ is the usual Lebesgue measure, see e.g. [2].)

Lemma 4.1 (Weyl). Suppose that y1, . . . , yk and 1 are linearly independent
over Q, and let a1, . . . , ak be any real numbers. Then the sequence of vectors
({ny1 + a1}, . . . , {nyk + ak})n≥1 ∈ [0, 1)k is uniformly distributed in [0, 1)k.

�

(The standard proof is by showing that the Fourier transform (charac-
teristic function) 1

n0

∑n0

n=1 exp
(
2πi
∑k

j=1 ℓj{nyj}
)
→ 0, as n0 → ∞, for any

fixed integers ℓ1, . . . , ℓk, not all 0, see for example [9, Exercises 3.4.2–3].)
Since p1, . . . , pm are linearly independent over Q, so are p1/pj, . . . , pm/pj,

i.e. {pi/pj : i 6= j} ∪ {1}. Taking yi := pi/pj and ai := (yi − 1)(β − 1), we
thus see from Lemma 4.1 that (Wi)i 6=j , given by (4.4) for r = 1, . . . , sj(N0),
are uniformly distributed vectors in [0, 1)m−1. In probabilistic notation,
regarding Wi = Wi(N) as random variables, conditioning on J = j and
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recalling Wj = 0 when J = j, as N0 → ∞ and thus sj(N0)→ ∞,
(
(W1, . . . ,Wm) | J = j

) d−→
(
1{i 6= j}Ui

)m
i=1

. (4.8)

Since P(J = j) = sj(N0)/N0 → pj as N0 → ∞, the random variable J has
asymptotically the distribution given in Theorem 3.7, and it follows from
(4.8) that, with Vi defined as in Theorem 3.7,

(W1, . . . ,Wm)
d−→ (V1, . . . , Vm). (4.9)

Consequently, (4.7) yields ∆i
d−→ Xi, jointly for all i = 1, . . . ,m, with Xi

defined by (3.10).
To obtain the simpler form (3.7) for an individual ∆i, let

X̃i := Xi − (β − 1
2)(mpi − 1) = pi

m∑

j=1

Vj − Vi − 1
2mpi +

1
2 . (4.10)

Then, if J = i,

X̃i = pi
∑

j 6=i

Uj − 1
2mpi +

1
2

d
= pi

m−1∑

j=1

Ũj +
1
2 − 1

2pi,

and if J 6= i,

X̃i
d
= pi

∑

j 6=i,J

Uj + (pi − 1)Ui − 1
2mpi +

1
2

d
= pi

m−2∑

j=1

Ũj + (pi − 1)Ũ0 − 1
2pi.

Hence, if we define

Z :=

{
piŨm−1 +

1
2 − 1

2pi, J = i,

(pi − 1)Ũ0 − 1
2pi, J 6= i,

(4.11)

then

X̃i
d
= pi

m−2∑

j=1

Ũj + Z,

with Ũj (1 ≤ j ≤ m − 2) and Z independent. By (4.11), conditioning on
J , we have the distributions (Z | J = i) ∼ U(12 − pi,

1
2) and (Z | J 6= i) ∼

U(−1
2 ,

1
2 − pi); furthermore P(J = i) = pi, and it follows that Z ∼ U(−1

2 ,
1
2),

so Z
d
= Ũ0 and thus

X̃i
d
= pi

m−2∑

j=1

Ũj + Ũ0.

The definition (4.10) now shows that Xi
d
= X̄i, with X̄i defined in (3.7). �

Proof of Theorem 3.4 and Corollary 3.8. Since ∆i is bounded, e.g. by The-
orem 3.3 (or by the simpler Theorem A.17), the convergence in distribution

∆i
d−→ Xi in Theorem 3.7 implies convergence of all moments and mixed
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moments, see [11, Theorem 5.5.9]; hence it suffices to calculate the expecta-
tions, variances and covariances of Xi.

We have EUi = 1/2 and thus by (3.9), since J and Ui are independent,

EVi = P(J 6= i)EUi = (1− pi)
1
2 . (4.12)

Consequently, E
∑m

i=1 Vi =
1
2

∑m
i=1(1− pi) =

1
2 (m− 1) and, by (3.10),

EXi = pi E

m∑

j=1

Vj − EVi + (β − 1)(mpi − 1)

= pi
m− 1

2
− 1− pi

2
+ (β − 1)(mpi − 1) =

(
β − 1

2

)
(mpi − 1).

This shows Theorem 3.4.
For the variance and covariances, we have for any i

EV 2
i = P(J 6= i)EU2

i = (1− pi)
1
3

and, when i 6= j, by independence,

E(ViVj) = E
(
1{J 6= i}1{J 6= j}UiUj

)
= P(J /∈ {i, j})EUi EUj =

1− pi − pj
4

.

Consequently, using also (4.12),

Var(Vi) = EV 2
i − (EVi)

2 =
1− pi

3
− (1− pi)

2

4
=

1 + 2pi − 3p2i
12

,

Cov(Vi, Vj) =
1− pi − pj

4
− 1− pi

2
· 1− pj

2
= −pipj

4
= −3pipj

12
.

We obtain from this also

Cov
(
Vi,

m∑

j=1

Vj

)
=

m∑

j=1

Cov(Vi, Vj) =
1 + 2pi

12
−

m∑

j=1

3pipj
12

=
1 + 2pi

12
− 3pi

12
=

1− pi
12

,

Var
( m∑

i=1

Vi

)
=

m∑

i=1

Cov
(
Vi,

m∑

j=1

Vj

)
=

m∑

i=1

1− pi
12

=
m− 1

12
.

Consequently, (3.10) yields

Var(Xi) = p2i Var
( m∑

j=1

Vj

)
− 2piCov

(
Vi,

m∑

j=1

Vj

)
+Var(Vi)

= p2i
m− 1

12
− 2pi

1− pi
12

+
1 + 2pi − 3p2i

12
=

(m− 2)p2i + 1

12

and, for i 6= j,

Cov(Xi,Xj) = pipj Var
( m∑

k=1

Vk

)
− piCov

(
Vj ,

m∑

k=1

Vk

)
− pj Cov

(
Vi,

m∑

k=1

Vk

)

+Cov(Vi, Vj)
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= pipj
m− 1

12
− pi(1− pj) + pj(1− pi)

12
− 3pipj

12

=
(m− 2)pipj − pi − pj

12
.

Corollary 3.8 follows. �

5. Proofs for quota methods

Proof of Theorems 3.10 and 3.13. The proof for quota methods uses argu-
ments similar to the proof in [17], and the reader might wish to compare the
versions. (Only the case γ = 0 is treated in [17], but that is only a minor
simplification. For completeness we repeat some results from [17].) For no-
tational convenience, we show the results for party 1, i.e. we take i = 1 in
the proofs.

By definition, sj = [(N + γ)pj ]α for an α that makes
∑m

j=1 sj = N .
Explicitly, by (2.5),

sj + α− 1 ≤ (N + γ)pj ≤ sj + α. (5.1)

Thus, using party 1 as a benchmark,

sj − s1 − 1 ≤ (N + γ)(pj − p1) ≤ sj − s1 + 1. (5.2)

Since ∆j −∆1 = sj − s1 −N(pj − p1), (5.2) yields

∆j −∆1 − 1 ≤ γ(pj − p1) ≤ ∆j −∆1 + 1. (5.3)

Thus, summing over all j 6= 1, recalling that
∑m

j=1∆j = 0 and
∑m

j=1 pj = 1,

−m∆1 − (m− 1) ≤ γ(1 −mp1) ≤ −m∆1 + (m− 1). (5.4)

Hence,

γ
(
p1 −

1

m

)
− m− 1

m
≤ ∆1 ≤ γ

(
p1 −

1

m

)
+

m− 1

m
, (5.5)

which shows Theorem 3.10.
Suppose now that all pi − pj are irrational. A tie between parties i and j

can occur only if (N +γ)pi− (N+γ)pj ∈ Z. If this happens for two different
house sizes N1 and N2, then both (N1 + γ)(pi − pj) ∈ Z and (N2 + γ)(pi −
pj) ∈ Z, and thus by taking the difference (N1 −N2)(pi − pj) ∈ Z, which is
impossible if pi − pj /∈ Q. Hence, our assumption implies that there is a tie
between parties i and j for at most one value of N , and thus at most

(m
2

)

values of N for which there is any tie. Since we consider asymptotics, we
can ignore these N and assume that there are no ties. Hence we can choose
α such that there are strict inequalities in (5.1), and thus there are strict
inequalities in (5.2).

By (5.2) (with strict inequalities) ⌊(N+γ)(pj−p1)⌋ ∈ {sj−s1−1, sj−s1}.
Let

Ij := sj − s1 − ⌊(N + γ)(pj − p1)⌋. (5.6)
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Then Ij ∈ {0, 1} and I1 = 0. We have

∆j −∆1 = sj − s1 −N(pj − p1)

= sj − s1 − (N + γ)(pj − p1) + γ(pj − p1)

= Ij − {(N + γ)(pj − p1)}+ γ(pj − p1). (5.7)

Summing over j we obtain, again recalling
∑m

j=1∆j = 0,

−m∆1 =
m∑

j=1

Ij −
m∑

j=1

{(N + γ)(pj − p1)} + γ(1 −mp1). (5.8)

Let L :=
∑m

j=1 Ij. By (5.8), we then have the formula

∆1 = γ
(
p1 −

1

m

)
+

1

m




m∑

j=2

{(N + γ)(pj − p1)} − L


 . (5.9)

Note that L is an integer with 0 ≤ L ≤ m− 1 and, by (5.6),

L :=
m∑

j=1

Ij =
m∑

j=1

sj −ms1 −
m∑

j=1

⌊(N + γ)(pj − p1)⌋

= N −ms1 −
m∑

j=2

⌊(N + γ)(pj − p1)⌋

≡ N −
m∑

j=2

⌊(N + γ)(pj − p1)⌋ (mod m).

Let Modm(x) := m{x/m}, the remainder when x is divided by m. We thus
have

L = Modm

(
N −

m∑

j=2

⌊(N + γ)(pj − p1)⌋
)
. (5.10)

Let yj := pj−p1 and aj := γ(pj−p1); thus (N+γ)(pj−p1) = Nyj+aj. Let
us now assume that p1, . . . , pm are linearly independent over Q. It is easily
seen that then y2, . . . , ym and

∑m
1 pj = 1 also are linearly independent over

Q. (This can be seen as a change of basis, using a non-singular integer
matrix, in a vector space of dimension m over Q.)

We need the following extension of Lemma 4.1, slightly generalizing [17,
Lemma 4.3]. The proof is given in Appendix C.

Lemma 5.1. Suppose that y1, . . . , yk and 1 are linearly independent over Q,
and let a1, . . . , ak be any real numbers.

Let ℓn = Modm
(
n−∑k

j=1⌊nyj+aj⌋
)
∈ {0, . . . ,m−1}. Then the sequence

of vectors

({ny1 + a1}, . . . , {nyk + ak}, ℓn) ∈ [0, 1)k × {0, . . . ,m− 1} (5.11)

is uniformly distributed in [0, 1)k × {0, . . . ,m− 1}.
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Note that L is (5.10) equals ℓN in Lemma 5.1, with yj and aj as chosen
above. Consequently, (5.9) and Lemma 5.1 show that

∆1
d−→ γ

(
p1 −

1

m

)
+

1

m




m∑

j=2

Uj − L̄


 , (5.12)

where Uj ∼ U(0, 1) and L̄ is uniformly distributed on {0, . . . ,m − 1}, with

all variable independent. Moreover, U2
d
= 1−U2 and L̄+U2 ∼ U(0,m), and

thus
L̄− U2

d
= L̄+ U2 − 1

d
= mU0 − 1

d
= mŨ0 + (m− 2)/2.

Hence, (5.12) can be written

∆1
d−→ γ

(
p1 −

1

m

)
+

1

m




m∑

j=3

Ũj −mŨ0


 ,

with Ũj := Uj − 1
2 for j ≥ 1, which by Ũ0

d
= −Ũ0 proves Theorem 3.13. �

Proof of Theorem 3.11 and Corollary 3.14. Since ∆i is bounded, e.g. by The-

orem 3.10, the convergence in distribution ∆i
d−→ Yi in Theorem 3.13 implies

convergence of all moments and it suffices to calculate the expectation and
variance of Yi. This is immediate since E Ũk = 0 and Var Ũk = 1/12; thus
by (3.17),

EYi = γ
(
pi −

1

m

)
,

Var Yi =
1

12
+

m− 2

12m2
.

Theorem 3.11 and Corollary 3.14 follow. �

Proof of Theorem 3.16. Let Wi := {(N + γ)pi}. For any j, {pi}i 6=j and
1 =

∑m
i=1 pi are linearly independent over Q, and thus the vectors (Wi)i 6=j

are uniformly distributed in [0, 1)m−1 by Lemma 4.1. Moreover,
m∑

i=1

Wi ≡
m∑

i=1

(N + γ)pi = N + γ ≡ γ (mod 1),

so Wj ≡ γ −∑i 6=j Wi (mod 1) and

Wj =
{
γ −

∑

i 6=j

Wi

}
.

Consequently, (W1, . . . ,Wm)
d−→ (V1, . . . , Vm) where each Vi ∼ U(0, 1), any

m − 1 of them are independent, and any such set determines the last vari-
able by Vj = {γ −∑i 6=j Vi}. Obviously, the distribution of (V1, . . . , Vm) is
symmetric.

We have

∆i − γpi = si − (N + γ)pi = si − ⌊(N + γ)pi⌋ −Wi. (5.13)
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By the construction of the γ-quota method, the numbers si − ⌊(N + γ)pi⌋
depend only on (W1, . . . ,Wm), say si − ⌊(N + γ)pi⌋ = fi(W1, . . . ,Wm) for
some function fi, and it follows from (5.13) that, jointly for all i,

∆i − γpi
d−→ Zi := fi(V1, . . . , Vm)− Vi, (5.14)

where the distribution of (Z1, . . . , Zm) is symmetric. (The m functions fi
differ only by permutations of the variables.) Now let Ȳi := Zi + γpi. Then

∆i
d−→ Ȳi, and thus Ȳi

d
= Yi by comparison with Theorem 3.13. �

Proof of Corollary 3.17. By Theorem 3.16 and the fact that each ∆i is boun-
ded, Cov(∆i,∆j) → Cov(Ȳi, Ȳj). Moreover, by symmetry, Cov(Ȳi, Ȳj) is the
same for all pairs (i, j) with i 6= j. We have

∑m
i=1 Ȳi = 0 as a consequence

of (2.3), and thus

0 = Cov
(
Ȳi,

m∑

j=1

Ȳj

)
= Var(Ȳi) +

∑

j 6=i

Cov(Ȳi, Ȳj);

hence by symmetry Cov(Ȳi, Ȳj) = −Var(Ȳi)/(m − 1) = −Var(Yi)/(m − 1)
for i 6= j. The final equality follows from (3.18). �

6. Random party sizes

As said in the introduction, there is a long tradition of studying the
bias of election methods theoretically with a fixed house size and random
party sizes. More precisely, in this approach one (usually) assumes that the
vector (p1, . . . , pm) is random and uniformly distributed over the simplex
Sm := {(p1, . . . , pm) ∈ (0, 1)m :

∑m
i=1 pi = 1} for some given m. One then

orders the party sizes p1, . . . , pm as p[1] ≥ · · · ≥ p[m] and considers the seat
excesses ∆[1], . . . ,∆[m] of the parties in the same order. (Thus, ∆[1] is the seat
excess of the largest party, and so on.) Results for the mean E∆[k] of the seat
excess for the k:th largest party (either exact formulas for a fixed N or asym-
totic formulas as N → ∞) have been obtained by Pólya [23, 24, 25], Schuster,
Pukelsheim, Drton and Draper [28], Heinrich, Pukelsheim and Schwingen-
schlögl [13] and Drton and Schwingenschlögl [30, 6]; results on the variance
are given by Schwingenschlögl and Drton [31]. (We follow these papers and
order the parties in decreasing order, cf. Appendix D.)

Heinrich, Pukelsheim and Schwingenschlögl [12, 13] and Schwingenschlögl
[29] have also, more generally, considered other distributions of p1, . . . , pm
(with an absolutely continuous distribution on Sm). Note also that Sainte-
Laguë [27] considered a different distribution for two parties, see Example 3.5
(with p2/p1 uniformly distributed, which is not the same as p2 uniform).

We cannot obtain these results for a given N directly from our results
for random N , nor can we obtain our results for fixed p1, . . . , pm from these
results. However, by combining the methods, we can translate one type of
results to the other and thus see that our main results transfer to the case
of random p1, . . . , pm. (Now with random pi in e.g. (3.7) and (3.17).)
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Theorem 6.1. Let p1, . . . , pm be random with an absolutely continuous dis-
tribution on the simplex Sm, and let N → ∞ (with N deterministic).

(i) For the β-linear divisor method, the conclusions (3.7)–(3.10) of The-
orem 3.7 hold, with Ũi and Ui independent of p1, . . . , pm and with
P(J = j | p1, . . . , pm) = pj.

(ii) For the γ-quota method, the conclusions of Theorems 3.13 and 3.16
hold; in particular (3.17) holds, with Ũk ∼ U(−1

2 ,
1
2) independent of

each other and of p1, . . . , pm.

Proof. Consider first the β-linear divisor method. The proof of [13, Theorem
3.1(i)] shows that as N → ∞,

(∆1, . . . ,∆m)
d−→ (Z1, . . . , Zm) (6.1)

for some random variables Zj ; with the notation in [13],

Zj = −
(
Uj + q − 1

2 + sgn(Dc)mj(Dc)
)
+ c(q − 1

2 )Wj. (6.2)

Here Wj is our pj , c is our m, q is our β, Uj is our Ũj and sgn(Dc)mj(Dc) is
an explicit but rather complicated function of U1, . . . , Um and W1, . . . ,Wm;
however, the point is that for us it suffices to know the existence of some vari-
ables Zj such that (6.1) holds; we can ignore the construction. The proof of
(6.1) is based on the fact that for any (deterministic) sequence νn → ∞, the
vectors of fractional parts ({νnp1}, . . . , {νnpm−1}) are uniformly distributed
in [0, 1)m−1, see Lemma C.1, which is the analogue of Lemma 4.1 in the
present context.

Consider now N uniformly random on {1, . . . , N0} and let N0 → ∞, i.e.,

suppose N
p∗−→ ∞ in the notation used in the previous sections. Then N

p−→
∞, so by conditioning on N , it follows that (6.1) holds for such random N
as well. On the other hand, since the distribution of p1, . . . , pm is absolutely
continuous, almost surely p1, . . . , pm are linearly independent over Q. Thus,
by conditioning on p1, . . . , pm we may apply Theorem 3.7, which shows that

(∆1, . . . ,∆m)
d−→ (X1, . . . ,Xm), (6.3)

where X1, . . . ,Xm are given by (3.9)–(3.10) (with our random p1, . . . , pm).

In the case of random p1, . . . , pm and random N
p∗−→ ∞, we thus have both

(6.1) and (6.3); consequently,

(Z1, . . . , Zm)
d
= (X1, . . . ,Xm). (6.4)

Consider again deterministic N → ∞. We know that (6.1) holds, so (6.4)

implies that (6.3) holds in this case too. Finally, (X̄i | pi) d
= (Xi | pi) by

Theorem 3.7, and thus X̄i
d
= Xi, so (3.7) too holds in the present setting.

For the γ-quota method, the proof of Theorem 3.16 applies to the present
situation as well, provided we use Lemma C.1 instead of Lemma 4.1. In
particular, (5.14) holds, with V1, . . . , Vm ∼ U(0, 1) independent of p1, . . . , pm.
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Further. (Ȳi | p1, . . . , pm) = (Yi | p1, . . . , pm), and thus Ȳi
d
= Yi in the case of

random p1, . . . , pm too. The results follow. �

Remark 6.2. By considering p1, . . . , pm uniformly distributed on a small
neighbourhood maxi |pi−p0i | < ε of some (p01, . . . , p

0
m) ∈ Sm, and then letting

ε → 0, we recover the limit distributions in Section 3, with a somewhat
different interpretation as a double limit. (In this version p1, . . . , pm can be
any numbers, including rationals.)

In particular, we can apply Theorem 6.1 to the case of uniformly dis-
tributed p1, . . . , pm taken in decreasing order as above, since then (p[1], . . . , p[m])
has a uniform distribution on the subset Sm,≥ := {(p1, . . . , pm) ∈ Sm : p1 ≥
· · · ≥ pm} of Sm. This gives immediately the following theorem. (We leave
the case of joint distributions to the reader.)

Theorem 6.3. Let p1, . . . , pm be random and uniformly distributed on Sm,
and let N → ∞.

(i) For the β-linear divisor method, for each j ≤ m,

∆[j]
d−→ X̂j := (β − 1

2)(mp[j] − 1) + Ũ0 + p[j]

m−2∑

k=1

Ũk. (6.5)

(ii) For the γ-quota method, for each j ≤ m,

∆[j]
d−→ Ŷj := γ

(
p[j] −

1

m

)
+ Ũ0 +

1

m

m−2∑

k=1

Ũk. (6.6)

Here Ũk ∼ U(−1
2 ,

1
2) are independent of each other and of p1, . . . , pm. �

As before, this theorem implies moment convergence because ∆[j] is bounded.
In particular, for the bias in this approach we obtain the following re-
sult. This was (except for the case γ 6= 0 in (ii)) conjectured by Schuster,
Pukelsheim, Drton and Draper [28] and proven by Drton and Schwingen-
schlögl [6] and Heinrich, Pukelsheim and Schwingenschlögl [13].

Theorem 6.4. Let p1, . . . , pm be random and uniformly distributed on Sm,
and let N → ∞.

(i) For the β-linear divisor method, for each j ≤ m,

E∆[j] → E X̂j = (β − 1
2)(mE p[j] − 1) = (β − 1

2)

( m∑

i=j

1

i
− 1

)
. (6.7)

(ii) For the γ-quota method, for each j ≤ m,

E∆[j] → E Ŷj = γ
(
E p[j] −

1

m

)
=

γ

m

( m∑

i=j

1

i
− 1

)
. (6.8)
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Proof. The convergence to E X̂j or E Ŷj follows, as just said, from Theo-
rem 6.3. The first equalities in (6.7) and (6.8) follow immediately from (6.5)
and (6.6) since E Ũk = 0, cf. (3.5) and (3.16). It remains only to compute
E p[j]. This is a standard formula, and for completeness we give a proof in
Appendix D, see (D.6). �

We similarly obtain results for the variance. This was found for m = 2
and 3 (except the case γ 6= 0) by Schwingenschlögl and Drton [31].

Theorem 6.5. Let p1, . . . , pm be random and uniformly distributed on Sm,
and let N → ∞.

(i) For the β-linear divisor method, for each j ≤ m,

Var∆[j] → Var X̂j =
1

12

(
1 + (m− 2)E p2[j]

)
+ (β − 1

2 )
2m2 Var(p[j])

=
1

12
+

m− 2

12m(m+ 1)

m∑

i=j

1

i2
+

m− 2

12m(m+ 1)

( m∑

i=j

1

i

)2

+ (β − 1
2)

2


 m

m+ 1

m∑

i=j

1

i2
− 1

m+ 1

( m∑

i=j

1

i

)2

 . (6.9)

(ii) For the γ-quota method, for each j ≤ m,

Var∆[j] → Var Ŷj =
1

12

(
1 +

m− 2

m2

)
+ γ2 Var(p[j])

=
(m+ 2)(m − 1)

12m2
+ γ2


 1

m(m+ 1)

m∑

i=j

1

i2
− 1

m2(m+ 1)

( m∑

i=j

1

i

)2

 .

(6.10)

Proof. Again, by Theorem 6.3, we only have to calculate Var X̂j and Var Ŷj;
the calculations are similar and we give the details only for X̂j . We use the
standard decomposition

Var X̂j = E
(
Var(X̂j | p1, . . . , pm)

)
+Var

(
E(X̂j | p1, . . . , pm)

)
. (6.11)

The conditional variance and mean are obtained immediately from (6.5),
which yields, cf. (3.5) and (3.11),

E(X̂j | p1, . . . , pm) = (β − 1
2 )(mp[j] − 1), (6.12)

Var(X̂j | p1, . . . , pm) =
1 + (m− 2)p2[j]

12
. (6.13)

The first equality in (6.9) follows from (6.11)–(6.13). It remains only to
find E p2[j] and Var(p[j]); these are well-known and we give a computation in
Appendix D for completeness, see (D.6)–(D.8). �
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Example 6.6. For m = 3 and Jefferson/D’Hondt’s method we obtain from
(6.7) with β = 1, E(∆[1],∆[2],∆[3]) → ( 5

12 ,− 1
12 ,− 4

12 ), as found already by
Pólya [25].

For m = 3 and Droop’s method we obtain from (6.8) with γ = 1,
E(∆[1],∆[2],∆[3]) → ( 5

18 ,− 1
18 ,− 4

18).

Example 6.7. For m = 3, we have for the β-linear divisor method

(Var∆[1],Var∆[2],Var∆[3]) →(
301

2592
+

13

72
(β − 1

2)
2,

235

2592
+

7

72
(β − 1

2)
2,

220

2592
+

4

72
(β − 1

2 )
2

)

and for the γ-quota method

(Var∆[1],Var∆[2],Var∆[3]) →(
5

54
+

13

648
γ2,

5

54
+

7

648
γ2,

5

54
+

4

648
γ2
)
.

These were found by Schwingenschlögl and Drton [31] (where, however, the
case γ 6= 0 is not treated).

Asymptotic covariances can be computed in the same way, using (3.12),
(3.19) and (D.10).

In the same way as in Theorems 6.4–6.5, we can obtain results for the mean
and variance of ∆[j] for random p1, . . . , pm with other distributions than the
uniform one. In particular, this gives the formulas by Heinrich, Pukelsheim
and Schwingenschlögl [13] and Schwingenschlögl [29] for the asymptotic bias
in terms of E p[j] = E(pj | p1 ≥ · · · ≥ pm) (assuming that (p1, . . . , pm) has a
symmetric distribution).

For example, Heinrich, Pukelsheim and Schwingenschlögl [13] consider, as
a special case, the case of a threshold t (with 0 < t < 1/m) and uniform
distribution on p1 ≥ · · · ≥ pm ≥ t. In this case, one has (as in [13]) (p1 −
1/m, . . . , pm−1/m)

d
= (1−mt)(p∗1−1/m, . . . , p∗m−1/m), where (p∗1, . . . , p

∗
m)

has a uniform distribution on Sm,≥, and the mean and variance are easily
computed.

7. The probability of violating quota

We say that a seat assignment si satisfies lower quota if si ≥ ⌊qi⌋ and
satisfies upper quota if si ≤ ⌈qi⌉; it satisfies quota if both hold. In terms of
the seat excess ∆i = si − qi, the assignment satisfies lower [upper] quota if
and only if ∆i > −1 [∆i < 1], and it satisfies quota if and only if |∆i| < 1.

As is well-known, Hamilton/Hare’s method always satisfies quota, while
Jefferson’s and Droop’s methods satisfy lower quota and Adams method
satisfies upper quota, see e.g. [1] or Theorems 3.3 and 3.10 above. It is also
well-known that Webster/Sainte-Laguë does not always satisfy quota, but
that violations are unusual in practice.
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Theorems 3.7 and 3.13 enable us to calculate the (asymptotic) probabili-
ties that quota is violated for various methods. We give two examples.

Example 7.1. Consider Jefferson/D’Hondt’s method. By Theorem 3.3 with
β = 1, pi − 1 ≤ ∆i ≤ (m − 1)pi; hence lower quota is always satisfied
(as is well-known [1]), but upper quota can be violated for a party with
pi ≥ 1/(m−1). Consider the case m = 3, and suppose that p1 ≥ 1/2. (Then
p2, p3 < 1/2, so quota is always satisfied for the other two parties; thus at
most one party can violate quota.) By Theorem 3.7 with β = 1, letting
Ũi =

1
2 − Ui,

∆1
d−→ X̄1 =

1
2(3p1 − 1) + Ũ0 + p1Ũ1 = 2p1 − U0 − p1U1; (7.1)

hence the asymptotic probability of violating (upper) quota is

P(X̄1 ≥ 1) = P
(
U0 + p1U1 < 2p1 − 1

)
=

(2p1 − 1)2

2p1
. (7.2)

(The set of allowed (U0, U1) is a right-angled triangle with sides 2p1 − 1 and
(2p1 − 1)/p1.)

If we let (p1, p2, p3) be random and uniformly distributed on S3, as in Sec-
tion 6, then p1 has the density 2(1−p1) and thus the asymptotic probability
that party 1 violates (upper) quota is

∫ 1

1/2

(2p− 1)2

2p
· 2(1 − p)dp = ln 2− 2/3 ≈ 0.026. (7.3)

Consequently, the asymptotic probability that some party violates (upper)
quota is

3 ln 2− 2 ≈ 0.079, (7.4)

as found by Niemeyer and Wolf [21].

Example 7.2. Consider Jefferson/D’Hondt’s method, and a party i with
three times the average size: pi = 3/m. Then the bias E X̄i = 1, by Theo-
rem 3.4 with β = 1. It follows by (3.7) and symmetry that P(X̄i > 1) = 1/2,
so the (asymptotic) probability that the party violates quota is 1/2. For a
larger party, the probability is even greater.

Example 7.3. The Swedish parliament contains after the general election
in 2010 8 parties: two large with 30% of the votes each and 6 small with
5–8% percent each. The seats are in principle distributed by Sainte-Laguë’s
method. (We ignore here complications due to the division into 29 con-
stituencies and the system with adjustment seats, which in 2010 did not give
complete adjustment because the number of adjustment seats was insuffi-
cient.)

We note from Theorem 3.3 (with β = 1
2) that the small parties always sat-

isfy quota. In fact, (3.4) shows that for Webster/Sainte-Laguë, only parties
with pi ≥ 1/(m− 2) can violate quota.
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For the large parties we have (approximatively) pi = 0.3, and thus by
(3.7) (still with β = 1

2 ) X̄i = Ũ0 + 0.3
∑6

k=1 Ũk. An integration (using
Maple) yields P(X̄i ≥ 1) = P(X̄i ≤ −1) ≈ 0.00045. Hence, for each of the
two large parties the (asymptotic) probability of violating quota is 0.0009.

8. Apparentements

Suppose that two or more parties decide to form a coalition in the elec-
tion, so that their votes are counted together. (In some election systems,
parties can register such a coalition, called an apparentement, and continue
to have separate names and lists. Otherwise, the parties can always appear
on election day as one party with a common umbrella name. In any case we
assume that this does not attract or repel any voters, so the coalition gets
exactly as many votes as the parties would have had separately, and that all
other parties remain unaffected with the same number of votes as before.)

It is well-known that for a β-linear divisor method with β ≥ 1 (e.g. Jeffer-
son/D’Hondt’s method) parties can never lose by forming an apparentement;
they will get at least as many seats together as if they appear separately.
When β ≤ 0 (e.g. Adams’s method), the opposite is true, and parties will
never gain by forming an apparentement (conversely, they may gain by splin-
tering), and for 0 < β < 1 (e.g. Webster/Sainte-Laguë’s method), they may
both gain and lose. For D’Hondt’s method, this effect is politically impor-
tant in reality, especially in small constituencies, and apparentements are or
have been a regular feature in many countries, see e.g. [4].

Leutgäb and Pukelsheim [19] give a detailed study of the resulting gains
in a set of real elections, including examples, statistics and theoretical values
assuming that the party sizes are random (as in Section 6). We can now give
similar theoretical results for given party sizes. For simplicity, we consider
only the case of a single apparentement of two parties; larger apparentements
can be treated similarly as well as several apparentements (their effects are,
asymptotically at least, additive).

Let the parties be i and j, and consider the expectation of the gain sij −
(si + sj), where sij is the number of seats the parties get together as an
apparentement.

Theorem 8.1. Suppose that p1, . . . , pm are linearly independent over Q. If
two parties i and j form an apparentement in the election, the mean of their
seat gain sij − si − sj satisfies, as N

p∗−→ ∞,

E(sij − si − sj) → (β − 1
2)
(
1− pi − pj

)
(8.1)

for the β-linear divisor method, and

E(sij − si − sj) → γ
( 2

m
− 1

m− 1

)
= γ

m− 2

m(m− 1)
(8.2)

for the γ-quota method.
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Proof. If ∆ij is the seat excess for the apparentement, then

sij − si− sj = N(pi+ pj)+∆ij − (Npi+∆i)− (Npj +∆j) = ∆ij −∆i−∆j,

so E(sij − si − sj) = E∆ij − E∆i − E∆j, which by Theorems 3.4 and 3.11
converges to, recalling that ∆ij is the seat excess in a contest with m − 1
parties,

(β − 1
2)
(
(m− 1)(pi + pj)− 1− (mpi − 1)− (mpj − 1)

)

and

γ
((

pi + pj −
1

m− 1

)
−
(
pi −

1

m

)
−
(
pj −

1

m

))

for the β-linear divisor method and γ-quota method, respectively. �

One sees in the same way that these expected gains (which are negative if
β < 1/2 or γ < 0) are balanced by a loss for each other party k of (β − 1

2 )pk
for the β-linear divisor method and γ/(m(m− 1)) for the γ-quota method.

We have seen that apparentements are favoured when β > 1/2 or γ > 0,
but the effect is rather small, especially for quota methods. (Nevertheless, as
said above, the effect is large enough to be politically important in reality for
D’Hondt’s method.) Note that for the β-linear divisor method, the gain in
(8.1) does not depend on the number (or sizes) ot the other parties, while for
the γ-quota method, the gain in (8.2) is largest for m = 3 or 4 and decreases
as O(1/m) for large m.

Example 8.2. For Jefferson/D’Hondt’s method, two small parties that form
an apparentement gain at most 0.5 seats together, and two large parties gain
less.

Example 8.3. For Droop’s method, any two parties that form an appar-
entement gain at most 1

6 ≈ 0.167 seats together when there are 3 or 4 parties,
0.15 seats when there are 5 parties, and less if there are more.

Problem 8.4. What are, for the different methods, the asymptotic distri-
butions of the seat gain sij − si − sj for an apparentement?

We have so far studied the gain of the two parties combined, but the
parties are probably more interested in how the gain is split between them.
Typically, the seats given to an apparentement are distributed, in a sub-
apportionment, between the participating parties by the same election method
as for the main distribution (the super-apportionment). It seems reasonable
that the gain then, on the average, is split between the parties proportionally
to their sizes, cf. Theorems A.11 and B.3. However, we shall see that this
holds only for the divisor methods.

Consider first the β-linear divisor method. Theorem 3.4 shows that,
asymptotically as N

p∗−→ ∞, the number of seats the apparentement gets
is on the average

N(pi + pj) + (β − 1
2)
(
(m− 1)(pi + pj)− 1

)
. (8.3)
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If we use Theorem 3.4 again for the distribution of these seats between i and
j, we obtain that i gets on the average
(
N(pi+ pj)+ (β− 1

2)
(
(m− 1)(pi+ pj)− 1

)) pi
pi + pj

+(β− 1
2 )
(
2

pi
pi + pj

− 1
)

= Npi + (β − 1
2 )
(
(m− 1)pi +

pi
pi + pj

− 1
)

(8.4)

seats, which, comparing to Theorem 3.4 for an election without the appar-
entement, means an average gain for party i of

(β − 1
2)
( pi
pi + pj

− pi

)
=

pi
pi + pj

(β − 1
2 )(1− pi − pj), (8.5)

which indeed is the proportional share pi/(pi + pj) of the joint gain in (8.1).
There is, however, a gap in this argument. In our model, the seat assign-

ment is a deterministic function of N both in the super-apportionment and
in the sub-apportionment, and the calculation above using expectations for
random N assumes that there is no hidden correlation, where the numbers
of seats given to the apparentement are seat numbers that tend to favour
one of the two parties in the sub-apportionment. It seems very unlikely that
there will be such a correlation under our assumption that p1, . . . , pm are
linearly independent over Q, but we have so far no rigorous proof, so (8.5)
should only be regarded as a conjecture for the asymptotic average gain for
party i.

Problem 8.5. Verify rigorously that the expected gain for party i converges
to the value in (8.5) as N

p∗−→ ∞.

Nevertheless, if we tentatively use (8.5), and regard it as a valid approx-
imation for real elections with finite N (and arbitrary p1, . . . , pm), we can
draw some practical conclusions for D’Hondt’s method (β = 1). If the par-
ties i and j both are small, then (8.5) shows that the gain for party i is
almost pi/(pi+ pj). Thus most of the gain of the apparentement goes to the
larger party, and a party has very little to gain by an apparentement with
a party that is substantially larger. In fact, if party i can choose between
several parties to form an apparentement, we see, perhaps surprisingly, that
it gets the largest gain by choosing the smallest partner. (This is based on
asymptotics as N → ∞. For a real election with finite N there is a trade-off
since a really small partner will not help significantly; the advantage can
hardly be larger than Npj, so presumably only parties with qj = Npj being
at least 1/2 or so will be useful partners. It would be interesting to study
such effects for finite N , but that is beyond the scope of the present paper.)

Consider now instead the γ-quota method. One important complication
is that quota methods are not uniform, in the sense of Appendix A.3. Thus,
even if the apparentement gets the same number of seats as the two parties
would have got together if they had appeared separately in the election, the
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sub-apportionment may give a different distribution of these seats between
the parties.

We calculate as above, with the same reservation that a rigorous verifica-
tion still is lacking. Theorem 3.11 shows that, asymptotically as N

p∗−→ ∞,
the number of seats the apparentement gets is on the average

N(pi + pj) + γ
(
(pi + pj)−

1

m− 1

)
. (8.6)

If we use Theorem 3.11 again for the distribution of these seats between i
and j, we obtain that i gets on the average
(
N(pi + pj) + γ

(
(pi + pj)−

1

m− 1

)) pi
pi + pj

+ γ
( pi
pi + pj

− 1

2

)

= Npi + γ
(
pi +

m− 2

m− 1

pi
pi + pj

− 1

2

)
(8.7)

seats, which, compared to Theorem 3.11 for an election without the appar-
entement, means an average gain for party i of

γ
(m− 2

m− 1

pi
pi + pj

− m− 2

2m

)
. (8.8)

This is quite different from the proportional share pi/(pi + pj) of the joint
gain in (8.1). In fact, we see that for γ > 0 (e.g. Droop’s method), a party
gains only if pi/(pi+pj) > (m−1)/(2m). In other words, a party will lose if it
forms an apparentement with a party that is only a little larger. Typically,
the redistribution within the apparentement by the sub-apportionment is
more important than the collective gain.

9. The Sainte-Laguë divergence

Sainte-Laguë [26, 27] based his proposal of his method on the fact that it
is the least squares method minimising the sum

S :=

m∑

i=1

vi

(si
vi

− N

V

)2
=

m∑

i=1

(si −Npi)
2

vi
=

m∑

i=1

∆2
i

vi
; (9.1)

multiplying this by V we obtain the equivalent quantity

S̃ := V S =

m∑

i=1

∆2
i

pi
, (9.2)

which is called the Sainte-Laguë divergence by Heinrich, Pukelsheim and
Schwingenschlögl [12, 13], where the asymptotic distribution is studied un-
der the assumption of random party sizes (see Section 6). We obtain cor-
responding result in our setting as corollaries of the results in Section 3.
(Unfortunately, we do not get as explicit result for quota methods as for
divisor methods because Theorem 3.16 is less explicit.) The most interesting
case is the 1

2 -linear divisor method (Sainte-Laguë’s method) [12], since then
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S and S̃ are the minima over all allocations, but it is also interesting to see
how much larger S̃ is for other methods [13].

Theorem 9.1. Suppose that p1, . . . , pm are linearly independent over Q, and
let N

p∗−→ ∞.

(i) For the β-linear divisor method,

S̃
d−→ Sβ,m :=

m∑

i=1

(Vi + β − 1)2

pi
−
( m∑

i=1

(Vi + β − 1)
)2

, (9.3)

where V1, . . . , Vm are as in Theorem 3.7.
(ii) For the γ-quota method,

S̃
d−→ S̄γ,m :=

m∑

i=1

Ȳ 2
i

pi
, (9.4)

where Ȳ1, . . . , Ȳm are as in Theorem 3.16.

Proof. For the β-linear divisor method, we use Theorem 3.7 and obtain by
the continuous mapping theorem [2, Theorem 5.1] and (9.2) immediately

S̃
d−→
∑m

i=1X
2
i /pi. We write (3.10) as Xi = piA−Ai, where Ai := Vi+β−1

and A :=
∑m

i=1(Vi + β − 1) =
∑m

i=1 Ai. Thus
m∑

i=1

X2
i

pi
=

m∑

i=1

p2iA
2 − 2piAAi +A2

i

pi
=

m∑

i=1

piA
2 − 2

m∑

i=1

AiA+

m∑

i=1

A2
i

pi

=

m∑

i=1

A2
i

pi
−A2,

which is (9.3).
The result for the γ-quota method follows directly from Theorem 3.16. �

The expression in (9.3) for Sβ,m may be compared to the somewhat differ-
ent expression in [12, 13] for the limit for fixed N and random p1, . . . , pm; by
the argument in Section 6, the formulas have to be equivalent (for random
p1, . . . , pm).

For the expectation we similarly obtain:

Theorem 9.2. Suppose that p1, . . . , pm are linearly independent over Q, and
let N

p∗−→ ∞.

(i) For the β-linear divisor method,

E S̃ → 1

12

(
m∑

i=1

1

pi
+m− 2

)
+ (β − 1

2 )
2

(
m∑

i=1

1

pi
−m2

)
. (9.5)

(ii) For the γ-quota method,

E S̃ → (m+ 2)(m− 1)

12m2

m∑

i=1

1

pi
+

γ2

m2

(
m∑

i=1

1

pi
−m2

)
. (9.6)
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Proof. This can be shown from Theorem 9.1, but it is easier to use

E S̃ =

m∑

i=1

E∆2
i

pi
=

m∑

i=1

Var∆i + (E∆i)
2

pi

and Theorem 3.4, Corollary 3.8, Theorem 3.11, Corollary 3.14. �

Note that
∑m

i=1 1/pi ≥ m2, with equality if and only if all pi are equal.
We know that S̃ always is minimised by the 1

2 -linear divisor method (Sainte-
Laguë’s method). We see from Theorem 9.2 that also asymptotically, E S̃
is strictly larger for any β-linear divisor method or γ-quota method, except
when all parties have exactly the same size (a trivial case where all methods
yield the same result; note that we have excluded this case by our assump-
tions).

Furthermore, Theorems 9.1–9.2 show that S̃ is typically of the order m2

if all pi are of roughly the same order, but if some pi is very small, S̃ can
be substantially larger. Heinrich, Pukelsheim and Schwingenschlögl [12, 13]
consider S̃ and the limit Sβ,m for random, uniformly distributed, p1, . . . , pm,
and show that, as m → ∞,

Sβ,m/m2 −
(

1
12 + (β − 1

2 )
2
)
logm

d−→ S∗, (9.7)

where S∗ is a certain 1-stable random variable (depending on β). We see that
the logm term and the large tail of S∗ (we have ES∗ = ∞) depend on the
possibility of some very small pi; the asymptotic behaviour for deterministic
p1, . . . , pm with, say, (min pi)

−1 = O(m) is quite different. To see this better,
we first replace Vi (which are dependent) by Ui (which are i.i.d.) in (9.3); the
following lemma shows that for large m, the difference is small. (Cf. similar
approximations in [12, 13].)

Lemma 9.3. Let Ûi := Ui + β − 1, so Ûi are i.i.d. U(β − 1, β), and let

S′
β,m :=

m∑

i=1

Û2
i

pi
−
( m∑

i=1

Ûi

)2

. (9.8)

Then E
∣∣Sβ,m − S′

β,m

∣∣ = O(m), uniformly in p1, . . . , pm.

Proof. We have |Ui+β−1| ≤ |β|+1 = O(1) and similarly |Vi+β−1| = O(1).
Further, by (3.9), P(Vi 6= Ui) = P(J = i) = pi. Hence,

E

∣∣(Vi + β − 1)2 − (Ui + β − 1)2
∣∣

pi
=

O(pi)

pi
= O(1). (9.9)

Similarly,
∑m

i=1(Vi + β − 1)−∑m
i=1(Ui + β − 1) = −UJ = O(1) and thus

( m∑

i=1

(Vi + β − 1)

)2

−
( m∑

i=1

(Ui + β − 1)

)2

= O(m). (9.10)

The result follows by summing (9.9) and (9.10). �
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We can now state a normal limit theorem corresponding to (9.7), but for
deterministic p1, . . . , pm.

Theorem 9.4. Suppose that for each m, we are given p1, . . . , pm such that
m3/2 mini pi → ∞ as m → ∞. Let Am :=

∑m
i=1 p

−1
i , Bm :=

∑m
i=1 p

−2
i and

Cm :=

m∑

i=1

(p−1
i −m)2 = Bm − 2mAm +m3.

Then, as m → ∞,

Sβ,m −
(
Am/12 + (Am −m2)(β − 1/2)2

)
√

Bm/180 + (β − 1/2)2Cm/3

d−→ N
(
0, 1
)
.

Proof. Note first that, e.g. by Jensen’s inequality, Am ≥ m2, Bm ≥ m3 and
Cm ≥ 0.

Write, for convenience, b := β − 1/2. We have Ûi = Ũi + b and E Û = b.
Thus, (9.8) can be expanded as

S′
β,m =

m∑

i=1

Ũ2
i + 2bŨi + b2

pi
−
(
mb+

m∑

i=1

Ũi

)2

=

m∑

i=1

( Ũ2
i + 2bŨi

pi
− 2mbŨi

)
+ b2Am − b2m2 −

( m∑

i=1

Ũi

)2

.

The last term has expectation Var
∑m

i=1 Ũi = O(m), and can thus be ignored.
Define

Zi :=
Ũ2
i + 2bŨi

pi
− 2mbŨi.

Then

EZi =
E Ũ2

i

pi
=

1

12pi
and, by a straightforward calculation,

VarZi =
1

180p2i
+

b2

3

( 1

pi
−m

)2
.

The random variables Zi are independent and each is bounded with |Zi| =
O(1/pi + m) = o(m3/2) = o(B

1/2
m ). The result now follows by the central

limit theorem, using either Lindeberg’s or Lyapounov’s condition, see e.g.
[11, Section 7.2]. �

Remark 9.5. Sainte-Laguë [27] also studied the least squares functional
calculated per seat and not per voter:

m∑

i=1

si

(vi
si

− V

N

)2
=

V 2

N2

m∑

i=1

∆2
i

si
, (9.11)

and found that this is minimised by the divisor method with d(n) =
√

n(n− 1),
later suggested by Huntington, see Appendix A and Remark A.10. The
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asymptotics of this quantity is, after division by (V/N)3, the same as for S,
because si/N → pi.

10. Some other goodness-of-fit functionals

Many election methods, including the ones treated here, can be charac-
terised as minimising various functionals, see e.g. [1], [18] and [20]. Theorems
3.7 and 3.16 yield by the continuous mapping theorem asymptotic distribu-
tions for many such functionals for the methods treated here, under our
standard assumptions that p1, . . . , pm are linearly independent over Q and
N

p∗−→ ∞, which we assume below. We give some examples, leaving others
to the reader. Note, however, that our results for quota methods are less
complete, cf. Problem 3.18.

10.1. Hamilton divergences. Hamilton/Hare’s method, the 0-quota me-
thod, is the unique method minimising maxi |∆i|. It also the method min-
imising maxi∆i. Moreover, it is, for any convex function ϕ : R → [0,∞] with
ϕ(0) = 0 and ϕ(x) > 0 for x 6= 0, the unique method minimising

∑
i ϕ(∆i),

as was shown by Pólya [24].
For the β-linear divisor method, Theorem 3.7 implies

max
1≤i≤m

|∆i| d−→ max
1≤i≤m

|Xi| (10.1)

with Xi given by (3.10). However, we do not know any really simple descrip-
tion of this limit variable.

For the γ-quota method, including Hamilton/Hare’s method and thus the
minimum of maxi |∆i| over all allocations, Theorem 3.16 yields

max
1≤i≤m

|∆i| d−→ max
1≤i≤m

|Yi|, (10.2)

but we have no explicit description of this limit variable.
Similar results hold for maxi∆i.
We obtain more complete results if we instead consider the least squares

functional
∑m

i=1 ∆
2
i , which also yields Hamilton/Hare’s method by Polya’s

theorem [24]. (This case was shown earlier by Sainte-Laguë [27], who attrib-
uted the result to Zivy.)

Theorem 10.1. With assumptions and notations as in Section 3, for the
β-linear divisor method,

m∑

i=1

∆2
i

d−→ SH
β,m :=

m∑

i=1

X2
i , (10.3)

E

m∑

i=1

∆2
i → ESH

β,m =

m∑

i=1

1 + (m− 2)p2i
12

+ (β − 1

2
)2

m∑

i=1

(mpi − 1)2 (10.4)
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=
(m+ 2)(m− 1)

12m
+
(m− 2

12
+m2(β − 1

2
)2
) m∑

i=1

(
pi −

1

m

)2
,

(10.5)

and for the γ-quota method,
m∑

i=1

∆2
i

d−→ S̄H
γ,m :=

m∑

i=1

Ȳ 2
i , (10.6)

E

m∑

i=1

∆2
i → E S̄H

γ,m =
(m+ 2)(m− 1)

12m
+ γ2

m∑

i=1

(
pi −

1

m

)2
. (10.7)

Proof. By Theorems 3.7 and 3.16, calculating EX2
i and E Ȳ 2

i by Theo-
rem 3.4, Corollary 3.8, Theorem 3.11, Corollary 3.14 as in the proof of
Theorem 9.2. �

10.2. Jefferson and Adams divergences. Heinrich and Schwingenschlögl
[14] consider the functionals

SJ := max
1≤i≤m

(si
pi

−N
)
= max

1≤i≤m

∆i

pi
(10.8)

and

SA := min
1≤i≤m

(si
pi

−N
)
= min

1≤i≤m

∆i

pi
. (10.9)

(We could as well use the maximum and minimum of si/vi − N/V .) Since∑m
i=1∆i = 0, we have SJ ≥ 0 but SA ≤ 0, and we will therefore use

|SA| = −SA.
It is easy to see that SJ and |SA| are minimised, over all allocations of N

seats, by the Jefferson and Adams methods, respectively [27], [1].
Theorem 3.7 yields the asymptotic distribution of SJ and |SA| for any β-

linear divisor method; we consider for simplicity only the optimal methods.

Theorem 10.2. With assumptions and notations as in Section 3, for the
optimal allocations,

SJ d−→ SJ
m :=

m−1∑

j=1

Uj, (10.10)

and

|SA| d−→ |SA
m| := m−

m∑

j=1

Vj − min
1≤i≤m

1− Vi

pi
. (10.11)

We have

ESJ
m = E |SA

m| = m− 1

2
. (10.12)
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Proof. SJ is minimised by Jefferson’s method, so Theorem 3.7 with β = 1
yields, noting that minVi/pi = 0 by (3.9),

SJ := max
1≤i≤m

∆i

pi

d−→ max
1≤i≤m

Xi

pi
=

m∑

j=1

Vj − min
1≤i≤m

Vi

pi

=
m∑

j=1

Vj =
∑

j 6=J

Uj
d
=

m−1∑

j=1

Uj .

Similarly, |SA| is minimised by Adams’s method, so Theorem 3.7 with
β = 0 yields

|SA| := − min
1≤i≤m

∆i

pi

d−→ − min
1≤i≤m

Xi

pi
= −

m∑

j=1

Vj +m− min
1≤i≤m

1− Vi

pi
.

We have ESJ
m = (m− 1)/2 directly from (10.10).

For |SA
m|, we first note that if B := min1≤i≤m 1/pi, then for 0 < x < B,

P

(
min

1≤i≤m

1− Vi

pi
> x

)
= P

(
Vi < 1− xpi, i = 1, . . . ,m

)

=

m∑

j=1

pj P
(
Vi < 1− xpi, i = 1, . . . ,m | J = j

)

=
m∑

j=1

pj P
(
Ui < 1− xpi, i 6= j

)

=

m∑

j=1

pj
∏

i 6=j

(1− xpi),

while P

(
min1≤i≤m(1− Vi)/pi > x

)
= 0 for x ≥ B. Hence,

E min
1≤i≤m

1− Vi

pi
=

∫ ∞

0
P

(
min

1≤i≤m

1− Vi

pi
> x

)
dx

=

∫ B

0

m∑

j=1

pj
∏

i 6=j

(1− xpi)dx =

[
−

m∏

i=1

(1− xpi)

]B

x=0

= 1. (10.13)

Furthermore, E
∑m

j=1 Vj =
∑m−1

j=1 Uj = (m − 1)/2, and (10.12) follows
from (10.11). �

Remark 10.3. Note that SJ
m in (10.10) does not depend on p1, . . . , pm, but

for |SA
m|, the situation is more complicated; the representation in (10.11) de-

pends on p1, . . . , pm, but it is still possible that |SA
m| has the same distribution

for all p1, . . . , pm and that we just have found an unnecessarily complicated
description of it. Note that E |SA

m| does not depend on p1, . . . , pm. In the

case m = 2, it is easy to see that |SA
m| d

= U
d
= SJ

m for every (p1, p2), but we
do not know whether something similar is true for m ≥ 3.
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Problem 10.4. Is |SA
m| d

= SJ
m for every p1, . . . , pm?

The asymptotic results by [14], taking the limit of the limits as m → ∞,
follow easily in our setting too.

Theorem 10.5. For any p1, . . . , pm depending on m, as m → ∞,
√
m(SJ

m −m/2)
d−→ N(0, 1

12 ),
√
m(|SA

m| −m/2)
d−→ N(0, 1

12 ).

Proof. The result for SJ
m is immediate from (10.10) and the central limit

theorem.
For |SA

m| we use (10.11). We have
∑m

j=1(Uj − Vj) = UJ and consequently,
by (10.11) and (10.13),

E

∣∣∣∣|S
A
m| −

m∑

j=1

(1− Uj)

∣∣∣∣ ≤ E

∣∣∣∣∣

m∑

j=1

(Uj − Vj)− min
1≤i≤m

1− Vi

pi

∣∣∣∣∣

≤ EUJ + E min
1≤i≤m

1− Vi

pi
< 2,

and the result follows by the central limit theorem applied to
∑m

j=1(1 −
Uj). �

11. Rational pi

In our main results we have assumed that p1, . . . , pm are linearly indepen-
dent over Q, since this is necessary for Lemma 4.1. We consider briefly what
happens when this is not satisfied, i.e., when p1, . . . , pm are linearly depen-
dent over Q. In particular, we are for obvious practical reasons interested in
the case when p1, . . . , pm are rational. (See also the corresponding discussion
in [17].)

Note first that it may now happen that there are ties. We assume that any
ties are resolved randomly; thus the quantities si(N) and ∆i(N) in general
may be random variables, also for a fixed N . This is no real problem, how-
ever, and when discussing the means we may replace them by their average
over all solutions in case of a tie.

Lemma 4.1 does not apply when p1, . . . , pm are linearly dependent over
Q, but the proof of it sketched in Section 4 shows that the sequence ({ny1+
a1}, . . . , {nyk + ak})n≥1 is uniformly distributed on a coset of a subgroup
of [0, 1)k ; more precisely, if we for simplicity take all ai = 0, the empirical
distributions converge to the uniform probability measure µy on a subgroup,
with Fourier coefficients given by

µ̂y(ℓ1, . . . , ℓk) =

{
1 if

∑k
j=1 ℓjyj ∈ Z,

0 otherwise.
(11.1)

The proofs of Theorems 3.7 and 3.16 now show, with minor modifications,
that the seat excesses ∆i still converge jointly in distribution as N

p∗−→ ∞,
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but the limit distribution is different, and depends on p1, . . . , pm through
some measures of the type (11.1). In particular, the bias limE∆i is well-
defined, but we do not have an explicit formula for it.

However, if we consider a sequence of party size distributions (p1k, . . . , pmk),
k = 1, 2, . . . , (with a fixed m), such that pik → pi for each i as k → ∞ and
further, for every integer vector (a1, . . . , am) 6= 0, we have

∑m
i=1 aipik 6= 0

for all large k, then it follows from (11.1) and an inspection of the proofs of
Theorems 3.7 and 3.16 that the measures µy that now appear in the proofs
will converge to the uniform measure µ, and thus the limit variables Xi and
Ȳi will converge to the corresponding variables given in Section 3 for the case
when p1, . . . , pm are linearly independent over Q.

This shows that the results above are good approximations also for linearly
dependent p1, . . . , pm, as long as there is no linear relation (3.2) with small
integers ai. In particular, for rational p1, . . . , pm we typically have a good
approximation unless some pi has a small denominator.

In the remainder of this section, we suppose that p1, . . . , pm are rational,
with a common denominator L. Theorems A.11 and B.3 then show that
the sequence of seat excesses ∆i := si(N) − Npi, N ≥ 1, has period L. (If
β < 0, β > 1 or γ < 0 we may have to except some small N .) This gives

another (simpler) proof that the limit distribution of ∆i as N
p∗−→ ∞ exists

in this case, and shows that it is the same as the distribution if we take N
uniformly in a period {K + 1, . . . ,K +L} (for any K that is large enough).
In particular, the asymptotic distribution is discrete, and therefore not the
same as in Section 3. The asymptotic bias limE∆i is easily calculated by
taking the average of ∆i over a period.

Example 11.1. Let m = 2 and take (p1, p2) = (23 ,
1
3 ). Then the β-linear di-

visor method equals the γ-quota method with γ = 2β−1, see Appendix B.1.
Assume, for simplicity, 0 < β < 1, i.e., −1 < γ < 1. A simple calculation
shows that for N = 1, 2, 3, we have ∆1 = 1

3 ,−1
3 , 0. Hence the average is 0,

so the methods are unbiased in this case, for any β ∈ (0, 1) or γ ∈ (−1, 1).
(In fact, for this example the methods all coincide with Hamilton/Hare =
Webster/Sainte-Laguë.) In particular, Theorems 3.4 and 3.11 do not hold
for rational p1, . . . , pm and β ∈ (0, 12) ∪ (12 , 1) and γ ∈ (−1, 0) ∪ (0, 1).

If we instead take β = 1, i.e. γ = 1, we have a tie for N = 2, with ∆1 = −1
3

or 2
3 . The average of ∆1 over a period now is 1

6 .

For the methods with β = 1/2 and γ = 0, the result 0 in Example 11.1
agrees with Theorems 3.4 and 3.11. In fact, this is true for any rational
p1, . . . , pm.

Theorem 11.2. The 1
2 -linear divisor method (Webster/Sainte-Laguë) and

the 0-quota method (largest remainder/Hamilton/Hare) are asymptotically
unbiased for any rational p1, . . . , pm.

Proof. Let, as above, L be a common denominator of p1, . . . , pm. It is for
both methods easily seen, arguing similarly to the proofs of Theorems A.11
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and B.3, that si(L−N) = Lpi−si(N) for N = 0, . . . , L. Hence, ∆i(L−N) =
−∆i(N), and the average over a period N = 1, . . . , L vanishes. �

Also for β = 1 and γ = 1, the result in Example 11.1 agrees with Theorems
3.4 and 3.11. For divisor methods, we have the following general result. (By
Example 11.1 and (3.14), the result does not hold for any other β.)

Theorem 11.3. Consider the β-linear divisor method and suppose that β =
k/2 for some integer k. Then (3.5) holds for any rational p1, . . . , pm.

Proof. By (3.14), the result holds for β if and only if it holds for β + 1.
Hence it suffices to consider β = 1/2 and β = 1. The case β = 1/2 is part of
Theorem 11.2.

For β = 1, we argue similarly. (Cf. the proof of Theorem A.11.) Let
0 ≤ N < L and let t ≥ 0 be such that si(N) = [pit]1, see (2.7) and (A.3).
Recall that [pit]1 = ⌊pit⌋ except that ⌊pit⌋− 1 also is possible when pit is an
integer.

Since piL is an integer, if we first for simplicity assume that pit is not,

[pi(2L− t)]1 = 2piL− [pit]1 − 1 = 2piL− si(N)− 1, (11.2)

where summing over i yields
m∑

i=1

[pi(2L− t)]1 = 2L−
m∑

i=1

si(N)−m = 2L−N −m. (11.3)

Consequently, (A.3) again shows that these numbers yield the seat distri-
bution for 2L − N − m seats. (Note that L =

∑m
i=1 piL ≥ m, and thus

2L−N −m > 0.) Hence, using (11.2) again,

si(2L−m−N) = [pi(2L− t)]1 = 2piL− si(N)− 1. (11.4)

The argument works also, with a little care, if some pit is an integer, and
shows that (11.4) holds generally, and that ties in the distribution of si(N)
correspond to ties in the distribution of si(2L − m − N). Hence, we have,
regarding ∆i as a random variable when there is a tie,

∆i(2L−m−N) = si(2L−m−N)−(2L−m−N)pi = mpi−∆i(N)−1. (11.5)

Taking the expectations in case of a tie, and then the average over the
period N = 0, . . . , L−1, when 2L−m−N runs through the period L−m+
1, . . . , 2L−m, we see that if the average is x, then x = mpi − x− 1; hence
x = 1

2(mpi − 1), and thus (3.5) holds when β = 1. �

For the 1-quota method (Droop), we have seen that (3.16) holds in Ex-
ample 11.1; in fact, when m = 2, it holds for any (p1, p2) by Theorem 11.3,
because the 1-quota method equals the 1-linear divisor method when m = 2,
see Appendix B.1. However, it does not hold for m = 3.

Example 11.4. Let m = 3 and (p1, p2, p3) = (25 ,
2
5 ,

1
5). Consider the 1-

quota method (Droop). For N = 1, 2, 3, 4, 5, the smallest party gets, taking
the average when there is a tie, 0, 0, 1, 23 , 1 seats. (Note the non-monoticity,
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an instance of the Alabama paradox which frequently occurs for all quota
methods, cf. [17].) The seat excesses are −1

5 ,−2
5 ,+

2
5 ,− 2

15 , 0, with average
− 1

15 , while (3.16) would give p1 − 1
3 = − 2

15 . Thus (3.16) does not hold.
Note that this example shows that the heuristic argument in Remark 3.12

is not always valid when p1, . . . , pm are rational. In this example, the re-
tracted seat in Remark 3.12 is not taken uniformly; a calculation shows that
it is taken from the smallest party only 4

15 of the times.

We can ask the following for any β-linear divisor method or γ-quota
method, where the cases γ = 1 in Problem 11.5 and β = 1/2, β = 1 and
γ = 0 in Problem 11.6 are especially interesting. (By Theorem A.12, for the
linear divisor methods, it suffices to consider 0 < β ≤ 1.)

Problem 11.5. Find a general formula for the asymptotic bias limE∆i for
rational p1, . . . , pm. (Theorems 11.2 and 11.3 yield the answers for β ∈ Z/2
and γ = 0.)

Problem 11.6. Find a general formula for the asymptotic distribution of
∆i for rational p1, . . . , pm.

Appendix A. Divisor methods

A divisor method is based on a given sequence of numbers d(n), n ≥ 1,
with 0 ≤ d(1) < d(2) < d(3) < . . . . Different choices of d(n) give different
methods. A number of divisor methods that have been used or discussed are
shown in Table 1. The most important ones are the widely used methods by
Jefferson/D’Hondt and Webster/Sainte-Laguë. (Notation varies. In e.g. [1],
the sequence is denoted d(0), d(1), . . . ; thus their d(n) is our d(n+ 1).)

Divisor methods can be described in several different ways that yield the
same result. The methods have been invented and reinvented in different
guises; tradition varies, and different types of formulations are used in, for
example, election laws and other official and non-official descriptions from
different countries. There are two main types of formulation, and we give
each in two different versions. (The equivalence of the different types of
formulations have been known for a long time. For example, D’Hondt pro-
posed his method in [5] using essentially our formulation D1 below, and later
showed the equivalence to D4, see [18, p. 125].)

In the first type of formulation, the method is seen as a way of rounding.
Given a sequence d(1), d(2), . . . as above, we define the d-rounding of a real
number x > 0 by

[x]d := n if d(n) ≤ x ≤ d(n+ 1), (A.1)

where d(0) = 0. Note that this is unambiguous only if d(n) < x < d(n+ 1);
if x = d(n) for an integer n, then both [x]d = n and [x]d = n− 1 are accept-
able values. (This is important in the case of ties, see below.) In particular,
d(n) = n− 1

2 (Webster’s method) yields standard rounding; d(n) = n (Jeffer-
son’s method) yields rounding downwards; d(n) = n− 1 (Adams’s method)
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d(n) decimal values (rounded)
Jefferson, D’Hondt n 1, 2, 3, 4, . . .

Webster, Sainte-Laguë n− 1
2 0.5, 1.5, 2.5, 3.5, . . .

Adams n− 1 0, 1, 2, 3, . . .
Imperiali n+ 1 2, 3, 4, 5, . . .

Danish n− 2
3 0.333, 1.333, 2.333, 3.333, . . .

Adjusted Sainte-Laguë

{
0.7, n = 1

n− 1
2 , n ≥ 1

0.7, 1.5, 2.5, 3.5, . . .

Cambridge Compromise (n− 6)+ 0, 0, 0, 0, 0, 0, 1, 2, 3, . . .

Huntington
√

n(n− 1) 0, 1.414, 2.449, 3.464, . . .

Dean 2n(n−1)
2n−1 0, 1.333, 2.400, 3.429, . . .

Estonia n0.9 1, 1.866, 2.688, 3.482, . . .
Macau 2n−1 1, 2, 4, 8, . . .

Table 1. Some divisor methods. (For Dean’s method, d(n)
is the harmonic mean of n and n−1; cf. Webster’s and Hunt-
ington’s methods with the arithmetic and geometric means.)

yields rounding upwards. (Other choices of d(n) yield non-standard round-
ings. Note that “rounding” in general should be interpreted in a very weak
sense, and that | [x]d − x| > 1 may be possible, see Remark A.3.) In this
formulation, the numbers d(n) are sometimes called signposts, see [1] and
[8].

Using the concept of d-rounding, and the notation from Section 2, the
divisor method may be defined as follows:

Divisor method, formulation D1. Let

si :=
[vi
D

]
d
, (A.2)

where D is a (real) number chosen such that
∑m

i=1 si = N .

The rationale for this formulation is that D is regarded as the price of
a seat, i.e. the number of votes that a seat “costs”, which would give vi/D
seats to party i; this real number is d-rounded to an integer to obtain si.
The price D is set by “the market” (i.e. the election officer, or computer) so
that the desired total number of seats is distributed. This interpretation can
be further combined with the definition (A.1) to say that the price of n seats
is d(n)D votes.

Remark A.1. In particular, (A.1) yields [x]d = 0 if and only if x < d(1),
or perhaps x = d(1). Thus, if d(1) = 0, then [x]d ≥ 1 for every x > 0, while
if d(1) > 0, then [x]d = 0 for small positive x.

Hence, if d(1) = 0, then (A.2) yields si ≥ 1, so every party (with at least
one vote) is guaranteed at least one seat. This is unacceptable in general
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elections, where on the contrary there often are special threshold rules to
prevent small parties from getting seats. However, this is acceptable, and
may even be desirable, when distributing seats between states or constituen-
cies, where typically there is a side condition of at least one seat each (and
sometimes a minimum of two or more seats); a typical example is the United
States Constitution [1]. (If d(1) = 0, we assume that N ≥ m, so that there
are enough seats to satisfy this minimum requirement.)

A divisor method is by [8] called impervious if d(1) = 0 and pervious if
d(1) > 0.

If we move D continuously from ∞ down to 0, it is seen that the total
number of seats

∑m
i=1 si given by (A.2) grows monotonously from 0 (when

d(1) > 0) or m (when d(1) = 0) to ∞, and there is a value of D that yields
the desired sum

∑m
i=1 si = N . In general there is an interval of such D, all

yielding the same seat distribution si, and this determines all si uniquely. In
exceptional cases, there is only a single D that works; in this case we must
have equalities vi/D = d(si) for some party i and vj/D = d(sj − 1) for some
other party j, see (A.2) and (A.1), and in this case the result (si)

m
1 is not

unique; we may move one seat from party j to party i and (A.2) still holds.
Such cases are known as ties; they are usually resolved by drawing lots,
but other special rules for ties are used in some countries. The formulation
D1 thus gives a well-defined method in the sense that the numbers si are
uniquely determined, except possibly when there are ties. (Note that the
number D is not uniquely determined.)

It is sometimes, as in Section 4, convenient to rewrite (A.2) as follows
using x := 1/D or t := V/D. A divisor method may thus also be called a
multiplier method, as in [13].

Divisor method, formulation D2. Let

si := [vix]d = [pit]d , (A.3)

where x or t is a (real) number chosen such that
∑m

i=1 si = N .

Formulations of the type D1 of divisor methods are the standard in USA,
where Thomas Jefferson formulated a method of this type (with rounding
downwards) in 1792 for apportionment; Jefferson’s method was adopted by
Congress in 1792 and used until 1832 [1]. Four other divisor methods (using
formulation D1 with different d(n), see Table 1) have also been important
in USA; Huntington’s method is used since 1941 and Webster’s method has
been used earlier, while Adams’s and Dean’s methods have never been used
but have frequently figured in discussions, see [15] and [1].

In Europe, this type of formulation is unusual (although [10] and the
current German election law [35, § 6 (2)] are examples), and divisor methods
are more commonly defined by formulations such as the two following (closely
related) ones. Note that these formulations are algorithmic, in the sense that
they directly yield workable methods, while with D1 one has to search for
a suitable divisor. (Preferably by computer, where such searches are easy.)
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The European tradition of divisor methods is younger than the American
one, see e.g. [4], [7], [18]. D’Hondt’s method (which is the same as Jefferson’s)
was proposed by D’Hondt [5] in 1882 and first adopted in Belgium 1899; it
is now used in many countries. Sainte-Laguë’s method (which is the same as
Webster’s) was proposed by Sainte-Laguë [26, 27] in 1910, and is also used
in several places.

Divisor method, formulation D3. The N seats are awarded sequentially,
with each seat given to the party i that has the highest value of the quotient
vi/d(si + 1) where si is the number of seats that the party has received so
far.

The quotient vi/d(si + 1) is called the comparative figure of the party.
Note that the comparative figure is updated (decreased) each time the party
receives a seat.

Divisor method, formulation D4. Divide each vi by the numbers d(1),
d(2), . . . (as far as necessary). Assign the seats to the N largest quotients
vi/d(j).

With formulation D4, the quotients vi/d(j) can be arranged in a table
(matrix); alternatively, the sequences of quotients obtained for different par-
ties can be merged into a single sequence in decreasing order. It is immediate
that formulations D3 and D4 are equivalent; D3 picks the largest quotients
in D4 in decreasing order.

Of course, ties can occur in formulations D3 and D4 as well, and again they
are resolved by drawing lots, or possibly by some other rule. (In formulation
D3, ties may also occur at intermediate stages, but they do not affect the
final result.)

To see that the formulations D1–D4 are equivalent and yield the same
method, note first that (A.2) can be written, using the definition (A.1),

d(si) ≤
vi
D

≤ d(si + 1), i = 1, . . . , N, (A.4)

or, equivalently (interpreting vi/0 = +∞)
vi

d(si + 1)
≤ D ≤ vi

d(si)
, i = 1, . . . , N. (A.5)

Consequently, (si)Ni=1 are such that

max
i

vi
d(si + 1)

≤ min
i

vi
d(si)

; (A.6)

conversely, for any such si we may choose D such that (A.5) holds. Thus
formulation D1 is equivalent to:

Divisor method, formulation D5. s1, . . . , sm are chosen such that∑m
i=1 si = N and (A.6) holds.

Furthermore, it is easily seen that formulation D5 is equivalent to D4, and
thus also to D3. Hence all formulations are equivalent. (It is easily verified
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that also ties appear simultaneously in the different formulations, except
that in formulation D3 there may be additional intermediate ties that do
not affect the result.) Further equivalent formulations are given by [8].

We see also, from (A.5), that the possible choices of D in formulation D1
that yield s1, . . . , sm are D ∈ [D−,D+], where

D− := max
i

vi
d(si + 1)

, D+ := min
i

vi
d(si)

. (A.7)

Thus, D+ equals the winning comparative figure when the last seat is awarded
in formulation D3, and D− equals the winning comparative figure for the next
seat (if there were one).

Remark A.2. It follows immediately from any of the formulations D1–D5
that the sequences d(n) and cd(n), for any constant c > 0, define the same
divisor method. For example, Sainte-Laguë’s method is given in Table 1
with d(n) = n − 1

2 ; it can as well be defined with d(n) = 2n − 1. (In fact,
the method is traditionally defined with this sequence, see e.g. Sainte-Laguë
[26, 27]. It is therefore also called the odd-number method.) Similarly, the ad-
justed Sainte-Laguë’s method (used in Sweden and Norway) is traditionally
defined with the sequence 1.4, 3, 5, 7, . . . , and the Danish method with the
sequence 1, 4, 7, 10, . . . . (This method is used in Danish parliamentary elec-
tions for part of the distribution of adjustment seats between consituencies;
the main distribution among parties is by the method of largest remainder.)
It may be convenient to use integers; on the other hand, Imperiali’s method
(used in Belgian local elections) is in the election law [33, Art. 56] described
using 1, 11

2 , 2, 21
2 , . . . , i.e., (n + 1)/2. In Table 1, we have normalised d(n)

to the form n+ β whenever possible, cf. Section A.1.

Remark A.3. Several papers impose the condition that n − 1 ≤ d(n) ≤ n,
but this is really not necessary. This condition is natural for the interpre-
tation of the method as a kind of rounding in formulation D1, since it is
equivalent to [n]d = n for any integer n ∈ N, see (A.1). In particular, this
means that if the exact proportions qi = piN happen to be integers, then the
divisor method gives si = qi. (Take D = V/N in (A.2); cf. (2.1).) However,
the method is well-defined also for other sequences d(n), and as seen in Ta-
ble 1, there are some divisor methods currently in use for general elections
that do not satisfy this condition (the Imperiali method [33, Art. 56] and the
methods in Estonia [34, § 62 (5)] and Macau [36, Artigo 17]). Formulation
D1 remains formally valid in these cases too, but in practice these methods
are described using e.g. formulation D3 where there are no problems of in-
terpretation for any increasing sequence d(n). (Methods satisfying si = qi
when all qi are integers are called weakly proportional by [1].)

Remark A.4. We required above that the sequence d(n) is strictly increas-
ing. In fact, it can be defined assuming only 0 ≤ d(1) ≤ d(2) ≤ . . . , with
only a few minor modifications above. This extension is hardly used in prac-
tice, except that a minimum requirement of at least r seats for each party
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for some r > 1 can be achieved by taking d(1) = d(2) = · · · = d(r) = 0, cf.
Remark A.1 for the case r = 1. (We then need N ≥ rm.)

For example, the Cambridge Compromise [10] proposed for apportion-
ment of the European Parliament can be described as giving each state a
“base” of 5 seats and distributing the rest by Adams’s method (subject to a
maximum of 96 seats for each state); this is (e.g. by formulation D1, see also
Theorem A.12 below) equivalent to giving each state 6 seats and distributing
the rest by D’Hondt’s method (subject to the same maximum). If we ignore
the restriction to at most 96 seats (as done in Table 1 for simplicity), this is
the same as a divisor method with d(n) = 0 for n ≤ 6 and d(n) = n− 6 for
n > 6, i.e. d(n) = (n− 6)+. The maximum restriction is easily implemented
if e.g. formulation D3 is used, cf. [10]; formally we can also implement it by
redefining d(n) = ∞ for n > 96.

Remark A.5. The name “divisor method” is used for methods of this type
in any of the formulations above. However, the word divisor is usually used
for the (variable) number D in formulation D1, but for the (fixed) numbers
d(1), d(2), . . . in formulations D3–D4.

A.1. Linear divisor methods. We say that a divisor method is linear if
d(n) = an + b for some a > 0 and b ∈ R. By Remark A.2, we may replace
d(n) by d(n)/a = n+ b/a. We define β := b/a+ 1. In other words, we may
assume that a = 1 and

d(n) = n− 1 + β (A.8)

for some real β. The reason for our choice of β as parameter, and thus
formula (A.8), is (A.9) below. Note that β = d(1).

We call the divisor method with d(n) given by (A.8) the β-linear divisor
method. The parameter β is called proportionality index (Proportionali-
tätsindex) by [18]. The method is called q-stationary multiplier method
(where q = β) by [13].

With a linear divisor method (A.8), the definition (A.1) of d-rounding
yields that if [x]d = n, then n− 1 + β ≤ x ≤ n+ β, or equivalently x− β ≤
n ≤ x − β + 1. Consequently, d-rounding equals the β-rounding defined in
(2.4) and (2.5); i.e.

[x]d = [x]β , (A.9)

at least provided x > 0 and x > β − 1. Hence, the β-linear divisor method
can, using formulation D1, be defined by (2.7) as we did in Section 2. If
β > 1, we here have to assume that N is so large that vi/D > β − 1 and
thus [vi/D]β ≥ 0.

Remark A.6. If β > 1 and N is small, (2.7) may give a negative seat
number si for a very small party. Of course, this has to be replaced by 0,
as given by (A.2). Hence, we may still use (2.7) if we ignore any party that
would get a negative number of seats.



ASYMPTOTIC BIAS OF SOME ELECTION METHODS 43

If [vi/D]β ≤ −1 for some i, then vi/D ≤ β − 1 by (2.5) and thus for any
party j, using (2.4),

[vj
D

]
β
≤
[
vj
vi
(β − 1)

]

β

=

[
pj
pi
(β − 1)

]

β

≤
(pj
pi

− 1
)
(β − 1),

and summing over j we get N ≤ (1/pi − m)(β − 1). Hence, if N >
(1/mini pi −m)(β − 1), then (2.7) holds without exception.

Remark A.7. The definition above requires β = d(1) ≥ 0. We can extend
it to β < 0 by replacing (A.8) by

d(n) = (n− 1 + β)+, (A.10)

i.e., letting d(n) = 0 for n ≤ 1 + ⌊|β|⌋, cf. Remark A.4. Then (A.9) still
holds for x > 0, and (2.7) holds as before. By Remark A.4, every party now
gets at least ⌊|β|⌋ + 1 seats, and thus we need N ≥ m

(
⌊|β|+ 1⌋

)
.

The Cambridge Compromise (without maximum rule) is an example, with
β = −5.

Remark A.8. Linear divisor methods are often considered only for the case
0 ≤ β ≤ 1, which is equivalent to the condition n − 1 ≤ d(n) ≤ n discussed
in Remark A.3. However, we see that they are well-defined for arbitrary real
β, although some care may be needed for small N . Note that at least the
case β = 2 is used in practice.

In the main part of the paper we consider only linear divisor methods.
Note that many of the methods in Table 1 are linear: Jefferson/D’Hondt
(β = 1); Webster/Sainte-Laguë (β = 1/2); Adams (β = 0); Imperiali (β =
2); Danish (β = 1/3); Cambridge Compromise (β = −5).

Remark A.9. The adjusted Sainte-Laguë method also has a linear d(n) as
in (A.8) (β = 1/2) except for d(1), which does not affect asymptotic results.
More precisely, the adjusted Sainte-Laguë method differs from Sainte-Laguë’s
method only in the value of d(1), and [x]d is the same for both methods for
all x ≥ 0.7; hence they give exactly the same result as soon as every party
gets at least one seat by the adjusted method. (But the adjustment makes it
more difficult for a small party to get the first seat.) For asymptotic results
as in the present paper, there is thus no difference between the adjusted
Sainte-Laguë method and Sainte-Laguë’s method.

Remark A.10. Huntington’s and Dean’s methods are asymptotically linear
in the sense that d(n) = n−1+β+o(1) as n → ∞, in both cases with β = 1/2.

An argument similar to the proof in Section 4 shows that as N
p∗−→ ∞, the

probability that these methods yield the same result as Webster’s tends to
1. In particular, Theorem 3.7 (with β = 1/2) holds for these methods too,
and Theorem 3.4 shows that they are asymptotically unbiased.
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Note that our asymptotic approach does not answer the controversial ques-
tion whether Webster’s or Huntington’s method is the most fair and unbi-
ased, see [1]; this depends mainly on how one measures the bias for small
parties (states), in particular for the ones obtaining just 1 seat.

Although linear divisor methods may be biased, see Section 3, they are
perfectly proportional with respect to changes in the total number of seats.
(If β < 0 or β > 1, we assume that N is not too small, see Remarks A.6–A.7.)

Theorem A.11. Consider a β-linear divisor method. If the number of seats
is increased from N to N +L, and Lp1, . . . , Lpm all are integers, then party
i gets exactly Lpi seats more:

si(N + L) = si(N) + Lpi. (A.11)

Proof. This is easiest seen using the multiplier formulation D2. If t yields
si(N) = [pit]β with

∑m
i=1 si(N) = N , then t+ L yields

si = [pi(t+ L)]β = [pit]β + piL = si(N) + piL,

with
∑m

i=1 si =
∑m

i=1 si(N) +
∑m

i=1 piL = N + L. �

There is also a simple relation between the methods for two different values
of β that differ by an integer.

Theorem A.12. Consider the β-linear divisor method and suppose that N
is so large that every party gets at least one seat. (Otherwise, ignore the
remaining parties.) Then the β-linear divisor method yields the same result
as first giving one seat to each party and then distributiong the remaining
N −m seats by the (β + 1)-linear divisor method.

Proof. This follows immediately from formulation D4, noting that by (A.8),
or more generally (A.10), dβ+1(n) = dβ(n + 1) (using β as a subscript to
denote the divisor sequences).

Alternatively, this follows from (2.7) and the relation [x]β+1 = [x]β − 1,
which follows from (2.6). �

By repeated applications of this theorem, we can reduce any β-linear di-
visor method to the case 0 < β ≤ 1.

Example A.13. Adams’s method (β = 0) is the same as giving each party
one seat and distributing the rest by Jefferson’s method (β = 1).

Example A.14. The Imperiali method (β = 2) is equivalent to using
D’Hondt’s method (β = 1) but retracting one seat from each party and
redistribute them (among the parties that had at least one seat) by contin-
ued application of D’Hondt’s method.

Example A.15. The Cambridge Compromise (β = −5), is as said in Re-
mark A.4 the same as giving each party (state) 5 seats and distributing the
rest by Adams’s method (β = 0), or as giving each party (state) 6 seats and
distributing the rest by Jefferson/D’Hondt’s method (β = 1).
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A.2. Divisor methods and proportionality. We make a formal defini-
tion of proportionality for election methods, using an asymptotic property,
since no election method is exactly proportional except in exceptional cases.
(Balinski and Young [1] uses a different definition, cf. Remark A.3.)

Definition A.16. An election method is (asymptotically) proportional if,
for any number m of parties and any proportions of votes p1, . . . , pm, for
each party i,

si(N)/N → pi as N → ∞. (A.12)

Many proportional methods that are used are divisor methods, but not all
divisor methods are proportional. In order to characterise the proportional
divisor methods, recall that a positive measurable function f on some interval
(A,∞) is regularly varying with index ρ, where ρ is a real number, if

f(λx)/f(x) → λρ as x → ∞, (A.13)

for every λ > 0. In the special case ρ = 0, i.e. when f(λx)/f(x) → 1 as
x → ∞ for every λ > 0, we say that f is slowly varying. A typical example
of a slowly varying function is log x. A sequence cn is said to be regularly
varying with index ρ (and slowly varying if ρ = 0) if the function c⌊x⌋ is; this
is equivalent to c⌊λn⌋/cn → λρ as n → ∞, for every λ > 0. (See [3], where
many more results are given.)

Theorem A.17. For a divisor method defined by d(1), d(2), . . . , the follow-
ing are equivalent.

(i) The method is proportional.
(ii) For any m and p1, . . . , pm, and all i, j ≤ m,

sj(N)

si(N)
→ pj

pi
as N → ∞. (A.14)

(iii) x 7→ [x]d is regularly varying with index 1.
(iv) x 7→ [x]d /x is slowly varying.
(v) The sequence d(n) is regularly varying with index 1.
(vi) The sequence d(n)/n is slowly varying.

The proof shows that it suffices that (A.12), or (ii), holds when m = 2.

Proof. (i) ⇐⇒ (ii). If (A.12) holds for each i, then also (A.14) holds. On
the other hand, if (A.14) holds, then summing (A.14) over all j we obtain
N/si(N) → 1/pi, and thus (A.12).

(ii) ⇐⇒ (iii). By (A.2), si = [vi/D]d = [pix]d with x := V/D, and hence
(A.14) can be written

[pjx]d
[pix]d

→ pj
pi

as x → ∞, (A.15)

since N =
∑m

i=1 si =
∑m

i=1 [pix]d and thus N → ∞ ⇐⇒ x → ∞. If
[x]d is regularly varying with index 1, then (A.15) follows from (A.13) with
λ = pj/pi. Conversely, if (ii) holds, and λ > 0, consider the case m = 2 and
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p1 = λ/(1+λ), p2 = 1/(1+λ). Then (A.15) with (j, i) = (1, 2) and y := p2x
yields [λy]d / [y]d → λ, which is (A.13) with ρ = 1.

(iii) ⇐⇒ (iv). Directly by the definition (A.13).
(iii) ⇐⇒ (v). Let g(x) be the inverse of [x]d defined by g(x) := inf{y :

[y]d > x}. Then (A.1) shows that g(x) = d(⌊x⌋ + 1). [3, Theorem 1.5.12]
shows that if [x]d is regularly varying with index 1, then so is g(x). This
implies d(n + 1)/d(n) → 1 as n → ∞, and it follows that d(n) is regularly
varying with index 1. The converse follows in the same way, now using the
inverse of d(⌊x⌋) which is [x]d + 1.

(v) ⇐⇒ (vi). Directly by the definition. �

In particular, Theorem A.17 shows that any divisor method with

d(n)/n → a as n → ∞, (A.16)

for some a > 0, is proportional. Of the methods in Table 1, the only methods
that do not satisfy (A.16), and thus are proportional, are the methods of
Estonia and Macau. In fact, it is easily seen from formulation D3 or D4 that
the Estonian method is the same as D’Hondt’s method applied to v

1/0.9
i =

v1.111...i ; thus it makes si proportional to v1.111...i . This gives a small but clear
advantage to larger parties. Macau’s method, on the contrary, favours small
parties and encourages splintering. (With only 12 directly elected members
of the Legislative Assembly of Macau, it essentially imposes a maximum of
2 seats per party.)

In fact, the proportional divisor methods in Table 1, and all linear divisor
methods, satisfy the following stronger form of proportionality.

Theorem A.18. For a divisor method with d(n) = an + O(1) for some
a > 0, si(N) = piN + O(1). (The implicit constant may depend on m, but
not on anything else.)

Proof. By Remark A.2, we may replace d(n) by d(n)/a, and thus assume
d(n) = n+O(1).

If d(n) = n + O(1), then also d(n − 1) = n + O(1) and thus (A.1) shows
that if [x]d = n, then x = n+O(1); in other words,

[x]d = x+O(1). (A.17)

Consequently, (A.2) yields, with y := V/D,

si =
vi
D

+O(1) = piy +O(1). (A.18)

Summing over i we find N =
∑m

i=1 piy +O(1) = y + O(1), and thus (A.18)
yields si = piN +O(1). �

A.3. Uniformity. Divisor methods satisfy the following consistency prop-
erty, called uniformity in [1], when we consider subsets of the set of all
parties. This is obvious from any of the formulations D1–D5, and would
perhaps not be worth mentioning, except for the fact that it does not hold
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for quota methods; in fact, under some weak extra conditions, it is satisfied
only by divisor methods [1].

Theorem A.19. Suppose that some set of parties A1, . . . , Aℓ (where 1 ≤ ℓ ≤
m) get together N ′ seats in an election by a divisor method. Then the number
of seats for each of these parties is the same as if N ′ seats were distributed, by
the same divisor method, in an election with only these parties participating
(and obtaining the same numbers of votes vi). �

Appendix B. Quota methods

In a quota method one first determines a quota Q; different quota methods
differ in the formula for Q, see below. (Q can be seen as the standard price
of a seat, just as the divisor D in the formulation D1 of divisor methods.)
The seats are then distributed as follows:

Quota method, formulation Q1. Divide the numbers of votes vi by Q,
and give first each party as many seats as the integer part ⌊vi/Q⌋ of its
fraction. Any remaining seats are given to the parties that have largest
fractional part {vi/Q} = vi/Q−⌊vi/Q⌋. (Or, equivalently, largest remainder
at the division vi/Q, since the remainder is vi − ⌊vi/Q⌋Q, which is Q times
the fractional part vi/Q− ⌊vi/Q⌋.)

The most common quota method is the method of largest remainder, or
Hamilton’s method, in Europe often called Hare’s method, which uses the
simple quota, also called Hare quota, Q := V/N , i.e. the average number
of votes per seat. Note that then vi/Q = qi, the exactly proportional real
allocation, see (2.1). (Alexander Hamilton suggested the method in 1792
for apportionment to the US Congress; it was approved by Congress but
vetoed by president Washington; it made a comeback and was used (under
the name Vinton’s method) 1850–1900, see [1]. The namn Hare’s method
is also well-established but is a misnomer; Thomas Hare really advocated a
different method, the Single Transferable Vote, STV, which is not based on
party lists and is not treated here.)

Another version is Droop’s method which uses the Droop quota Q :=
V/(N + 1). Also the Imperiali quota Q := V/(N + 2) has occasionally been
used (e.g. in Italy until 1993 [7]).

We define, more generally, for any real number γ, the γ-quota method to
be the quota method with quota

Q :=
V

N + γ
. (B.1)

(For γ < 0, we assume that N > |γ|.) Thus Hamilton/Hare’s method
is the case γ = 0, Droop’s method is γ = 1, and the Imperiali quota is
γ = 2. (Kopfermann [18] calls the γ-quota method Rundungsverfahren mit
dem Proportionalitätsindex ρ, where his ρ = (γ + 1)/2, i.e., γ = 2ρ− 1.)
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Remark B.1. The quotas above are sometimes rounded to integers (up-
wards, downwards or by standard rounding); see [22] for several different
examples in current use. There is no mathematical reason to round the
quota; on the contrary, there are reasons against. Kopfermann [18] points
out that quota methods involve rounding at the end, but that, as a gen-
eral principle, intermediate values in a calculation should not be rounded.
A specific problem is that rounding the quota means that the method is
no longer homogeneous (see Section 2). Moreover, with a rounded quota,
in some cases a party may lose a seat by getting an additional vote, which
ought to be unacceptable; see [16] for a simple example with Droop’s method
(although there formulated for STV, which in the example gives the same
result). In a general election with a large number of votes, and therefore a
large quota, rounding the quota will usually make no difference, but in the
exceptional cases when it does make a difference, it can be harmful and lead
to undesirable results.

In the present paper, we consider the methods with unrounded quotas.

Remark B.2. In formulation Q1, it is implicitly assumed that N − m ≤∑m
i=1⌊vi/Q⌋ ≤ N , so that the number of remaining seats is non-negative

and not larger than m, the number of parties. For the γ-quota method, this
is always satisfied if −1 ≤ γ < 1 (including Hamilton/Hare), and also if
γ = 1 (Droop) except in a very special case when all parties tie for the last
seat. For γ < −1 or γ > 1, formulation Q1 may have to be amended; in
such cases we interpret it by using one of the equivalent formulations Q2–Q4
below. (These formulations are well-defined for all Q and N , up to the usual
possibility of ties.)

The rule in Q1 that the remaining seats are distributed to the parties with
largest remainders vi/Q−⌊vi/Q⌋ can also be expressed by saying that we find
a suitable α and round vi/Q upwards if the fractional part is greater than
α, and downwards if the fractional part is smaller. In other words, recalling
the notion of α-rounding in Section 2, a quota method can equivalently be
described as follows.

Quota method, formulation Q2.

si :=

[
vi
Q

]

α

, (B.2)

where α is chosen such that
∑m

i=1 si = N .

For the γ-quota method we have Q = V/(N + γ), and thus vi/Q =
piV/Q = pi(N + γ). Hence we have also the following formula.

Quota method, formulation Q3. The γ-quota method is given by

si := [(N + γ)pi]α , (B.3)

where α is chosen such that
∑m

i=1 si = N .
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Formulations Q2–Q3 are the same as (2.8).
Quota methods can also be described using a sequential allocation of seats

by comparative figures as in formulation D3 of divisor methods. (This is not
the usual way to define quota methods, but it appears in proofs in [27] and
[23].) It is easy to see that Q2 is equivalent to the following.

Quota method, formulation Q4. The N seats are awarded sequentially,
with each seat given to the party i that has the highest value of the difference
vi − siQ where si is the number of seats that the party has received so far.

It is easy to see that every γ-quota method satisfies si(N) = Npi +O(1),
uniformly in all m and p1, . . . , pm, and hence is proportional, cf. Defini-
tion A.16 and Theorem A.18. We omit the easy proof since we show a
precise version of this in Theorem 3.10.

Moreover, a γ-quota method is perfectly proportional with respect to
changes in the total number of seats, just as a β-linear divisor method,
cf. Theorem A.11.

Theorem B.3. Consider a γ-quota method. If the number of seats is in-
creased from N to N + L, and Lp1, . . . , Lpm all are integers, then party i
gets exactly Lpi seats more:

si(N + L) = si(N) + Lpi. (B.4)

Proof. Obvious from (B.3), since the same α works for N and N + L. �

B.1. Two parties. In the simple case m = 2, when there are only two
parties, the β-linear divisor method and the γ-quota method with γ = 2β −
1 coincide [18, Satz 6.2.6]. (In particular, then Webster/Sainte-Laguë =
Hamilton/Hare and Jefferson/D’Hondt = Droop.) In fact, it is easy to see
that

si := [(N + 2β − 1)pi]β , i = 1, 2, (B.5)

gives s1 + s2 = N , (at least for some choice in case of a tie). Thus, for the
β-linear divisor method we can take D′ = 1/(N + 2β − 1) = 1/(N + γ) and
D = D′V = V/(N + 2β − 1) in (2.7), and for the γ-quota method we can
take α = β in (2.8). Hence, both methods yield the result given by (B.5).

Appendix C. Lemmas on uniform distribution

Proof of Lemma 5.1. First, by Lemma 4.1, the sequence

({ny1/m+ a1/m}, . . . , {nyk/m+ ak/m}) (C.1)

is uniformly distributed in [0, 1)k . Thus, by the definition of Modm,
(
Modm(ny1 + a1), . . . ,Modm(nyk + ak)

)
(C.2)

is uniformly distributed in [0,m)k. If a sequence (xn) is uniformly distributed
in [0,m), then the sequence of pairs ({xn}, ⌊xn⌋) is uniformly distributed in



50 SVANTE JANSON

[0, 1) × {0, . . . ,m − 1}. This extends to k dimensions, and thus it follows
from (C.2) that if ℓ̃nj := Modm(⌊nyj + aj⌋) = ⌊Modm(nyj + aj)⌋, then

(
{ny1 + a1}, . . . , {nyk + ak}, ℓ̃n1, . . . , ℓ̃nk

)
(C.3)

is uniformly distributed in [0, 1)k × {0, . . . ,m− 1}k.
The argument just given shows that (C.3) is uniformly distributed also

along any subsequence n = mν + n0, ν ≥ 1. We have ℓn = Modm(n −∑k
j=1 ℓ̃nj), and it follows that along any such subsequence, ℓn is determined

by ℓ̃n1, . . . , ℓ̃nk. Consequently, the vectors (5.11) are uniformly distributed
along any such subsequence, and therefore also along the full sequence. �

The following lemma is essentially taken from [12]. (There Riemann in-
tegrability is assumed, but as the proof below shows, Lebesgue integrability
suffices.)

Lemma C.1. Let X = (X1, . . . ,Xk) be a random variable with an absolutely
continuous distribution in Rk. Let νn be any sequence of constants with
νn → ∞. Then
(
{νnX1}, . . . , {νnXk},X1, . . . ,Xk

) d−→
(
U1, . . . , Uk,X1, . . . ,Xk

)
(C.4)

where U1, . . . , Uk ∼ U(0, 1) are independent of each other and of X.

Proof. The assumption that X is absolutely continuous means that it has a
density function f , which is a Lebesgue integrable function on Rk.

We regard {νnXj} and Uj as elements of the circle group T = R/Z. Thus
the random vectors in (C.4) are elements of the group Tk × Rk, and by
standard Fourier analysis, it suffices to show that for any integers ℓ1, . . . , ℓk
and real numbers t1, . . . , tk,

E e
∑

j 2πiℓj{νnXj}+
∑

j itjXj → E e
∑

j 2πiℓjUj+
∑

j itjXj . (C.5)

Since νnXj − {νnXj} is an integer, we have, with f as above,

E e
∑

j 2πiℓj{νnXj}+
∑

j itjXj = E e
∑

j 2πiℓjνnXj+
∑

j itjXj

= E e
∑

j i(2πℓjνn+tj)Xj = f̂(2πℓ1νn + t1, . . . , 2πℓkνn + tk). (C.6)

If (ℓ1, . . . , ℓk) = (0, . . . , 0), then (C.5) is trivial. If (ℓ1, . . . , ℓk) 6= (0, . . . , 0),
then |(2πℓ1νn+t1, . . . , 2πℓkνn+tk)| → ∞, and thus (C.6) and the Riemann–
Lebesgue lemma show that the left-hand side of (C.5) tends to 0, which
verifies (C.5) in this case too, since

E e
∑

j 2πiℓjUj+
∑

j itjXj =
∏

j

E e2πiℓjUj · E e
∑

j itjXj = 0

because E e2πiℓjUj = 0 when ℓj 6= 0. �
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Appendix D. Moments of order statistics for random pi

Let p1, . . . , pm be random and uniformly distributed on Sm as in Section 6,
and let p(1) ≤ · · · ≤ p(m) be the order statistics. We give here, for complete-
ness, a calculation of moments of p(k) by a well-known method. Note that we
here follow standard convention for order statistics in probability theory and
order pi in increasing order, in contrast to Section 6 where we order them in
decreasing order; thus p[k] = p(m+1−k), which should be remembered when
using the results below in Section 6.

Let T1, . . . , Tm be m independent identically distributed random variables
with the exponential distribution Exp(1), and let Z :=

∑m
i=1 Ti. Then

(T1/Z, . . . , Tm/Z) is uniformly distributed on the simplex Sm, and more-
over independent of Z. This means that we can take pi = Ti/Z. For the
corresponding order statistics we thus have p(k) = T(k)/Z; moreover p(k) and
Z are independent and thus, for any k and ℓ,

E(T(k))
ℓ = E(Zp(k))

ℓ = E(Zℓ)E(pℓ(k)), (D.1)

so the moments of p(k) are given by

E(p(k))
ℓ =

E(T(k))
ℓ

EZℓ
. (D.2)

Furthermore, Z :=
∑m

i=1 Ti has the Gamma distribution Γ(m) with moments

EZℓ =
Γ(m+ ℓ)

Γ(m)
= m(m+ 1) · · · (m+ ℓ− 1). (D.3)

To find the moments of the order statistics T(k), we regard T1, . . . , Tm as
the times of the first events in m independent Poisson processes. (Alterna-
tively, we may regard them as life-lengths of m identical radioactive atoms.)
It is then well-known, and easy to see by the lack of memory in exponen-
tial distributions, that the increments (or waiting times) Vj := T(j) − T(j−1)

(with T(0) := 0) are independent exponential random variables with Vj ∼
Exp(1/(m+1− j)). Hence T(k) =

∑k
j=1 Vj with these Vj , and moments are

easily computed. In particular,

ET(k) =

k∑

j=1

EVj =

k∑

j=1

1

m+ 1− j
=

m∑

i=m−k+1

1

i
. (D.4)
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(This can be written as Hm − Hm−k, where Hm =
∑m

i=1 1/i is the m:th
harmonic number.) Similarly,

ET 2
(k) = Var T(k) +

(
ET(k)

)2
=

k∑

j=1

Var Vj +




k∑

j=1

EVj




2

=

k∑

j=1

1

(m+ 1− j)2
+




k∑

j=1

1

m+ 1− j




2

=
m∑

i=m−k+1

1

i2
+

(
m∑

i=m−k+1

1

i

)2

. (D.5)

Hence, by (D.2)–(D.3),

E(p(k)) =
ET(k)

m
=

1

m

m∑

i=m−k+1

1

i
, (D.6)

E(p(k))
2 =

ET 2
(k)

m(m+ 1)
=

1

m(m+ 1)

m∑

i=m−k+1

1

i2
+

1

m(m+ 1)

(
m∑

i=m−k+1

1

i

)2

,

(D.7)

Var(p(k)) = E(p(k))
2 − (E p(k))

2

=
1

m(m+ 1)

m∑

i=m−k+1

1

i2
− 1

m2(m+ 1)

(
m∑

i=m−k+1

1

i

)2

. (D.8)

Covariances are computed similarly. If 1 ≤ k ≤ ℓ ≤ m, then

Cov(T(k), T(ℓ)) =

k∑

j=1

Var Vj =

k∑

j=1

1

(m+ 1− j)2
=

m∑

i=m−k+1

1

i2
(D.9)

and, calculating as in (D.5) and (D.6),

Cov(p(k), p(ℓ))

=
1

m(m+ 1)

m∑

i=m−k+1

1

i2
− 1

m2(m+ 1)

m∑

i=m−k+1

1

i

m∑

i=m−ℓ+1

1

i
. (D.10)

Example D.1. For m = 3, the covariance matrix of (p[1], p[2], p[3]) =
(p(3), p(2), p(1)) is

1

648




13 −8 −5
−8 7 1
−5 1 4


 .
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