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ABSTRACT. Classical list scheduling is a very popular and efficient technique for sched-
uling jobs in parallel and distributed platforms. It is inherently centralized. However, with
the increasing number of processors, the cost for managing a single centralized list be-
comes too prohibitive. A suitable approach to reduce the contention is to distribute the
list among the computational units: each processor has only a local view of the work to
execute. Thus, the scheduler is no longer greedy and standard performance guarantees are
lost.
The objective of this work is to study the extra cost that must be paid when the list is
distributed among the computational units. We first present a general methodology for
computing the expected makespan based on the analysis of an adequate potential function
which represents the load unbalance between the local lists. We obtain an equation on the
evolution of the potential by computing its expected decrease in one step of the schedule.
Our main theorem shows how to solve such equations to bound the makespan. Then, we
apply this method to several scheduling problems, namely, for unit independent tasks, for
weighted independent tasks and for tasks with precendence constraints. More precisely,
we prove that the time for scheduling a global workload W composed of independent unit
tasks on m processors is equal to W/m plus an additional term proportional to log2 W .
We provide a lower bound which shows that this is optimal up to a constant. This result
is extended to the case of weighted independent tasks. In the last setting, precedence task
graphs, our analysis leads to an improvement on the bound of Arora et al (2001). We
finally provide some experiments using a simulator. The distribution of the makespan is
shown to fit existing probability laws. Moreover, the simulations give a better insight on
the additive term whose value is shown to be around 3 log2 W confirming the tightness of
our analysis.

1. INTRODUCTION

1.1. Context and motivations. Scheduling is a crucial issue while designing efficient
parallel algorithms on new multi-core platforms. The problem corresponds to distribute the
tasks of an application (that we will called load) among available computational units and
determine at what time they will be executed. The most common objective is to minimize
the completion time of the latest task to be executed (called the makespan and denoted
by Cmax). It is a hard challenging problem which received a lot of attention during the
last decade (Leung, 2004). Two new books have been published recently on the topic
(Drozdowski, 2009; Robert and Vivien, 2009), which confirm how active is the area.

List scheduling is one of the most popular technique for scheduling the tasks of a par-
allel program. This algorithm has been introduced by Graham (1969) and was used with
profit in many further works (for instance the earliest task first heuristic which extends the
analysis for communication delays in Hwang et al (1989), for uniform machines in Chekuri
and Bender (2001), or for parallel rigid jobs in Schwiegelshohn et al (2008)). Its principle
is to build a list of ready tasks and schedule them as soon as there exist available resources.
List scheduling algorithms are low-cost (greedy) whose performances are not too far from
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optimal solutions. Most proposed list algorithms differ in the way of considering the pri-
ority of the tasks for building the list, but they always consider a centralized management
of the list. However, today the parallel and distributed platforms involve more and more
processors. Thus, the time needed for managing such a centralized data structure can not
be ignored anymore. Practically, implementing such schedulers induces synchronization
overheads when several processors access the list concurrently. Such overheads involve
low-level synchronization mechanisms.

1.2. Related works. Most related works dealing with scheduling consider centralized list
algorithms. However, at execution time, the cost for managing the list is neglected. To our
knowledge, the only approach that takes into account this extra management cost is work
stealing (Blumofe and Leiserson, 1999) (denoted by WS in short).

Contrary to classical centralized scheduling techniques, WS is by nature a distributed
algorithm. Each processor manages its own list of tasks. When a processor becomes
idle, it randomly chooses another processor and steals some work. To model contention
overheads, processors that request work on the same remote list are in competition and
only one can succeed. WS has been implemented in many languages and parallel libraries
including Cilk (Frigo et al, 1998), TBB (Robison et al, 2008) and KAAPI (Gautier et al,
2007). It has been analyzed in a seminal paper of Blumofe and Leiserson (1999) where they
show that the expected makespan of series-parallel precedence graph with W unit tasks on
m processors is bounded by E [Cmax] ≤ W/m + O(D) where D is the critical path of
the graph (its depth). This analysis has been improved in Arora et al (2001) using a proof
based on a potential function. The case of varying processor speeds has been analyzed
in Bender and Rabin (2002). However, in all these previous analyses, the precedence
graph is constrained to have only one source and out-degree at most 2 which does not easily
model the basic case of independent tasks. Simulating independent tasks with a binary tree
of precedences gives a bound of W/m+ O(logW ) as a complete binary tree of W nodes
has a depth of D ≤ log2W . However, with this approach, the structure of the binary tree
dictates which tasks are stolen. Our approach achieves a bound of the same order with a
better constant and processors are free to choose which tasks to steal. Notice that there
exist other ways to analyze work stealing where the work generation is probabilist and that
targets steady state results (Berenbrink et al, 2003; Mitzenmacher, 1998; Gast and Gaujal,
2010).

Another related approach which deals with distributed load balancing is balls into bins
games (Azar et al, 1999; Berenbrink et al, 2008). The principle is to study the maximum
load when n balls are randomly thrown into m bins. This is a simple distributed algorithm
which is different from the scheduling problems we are interested in. First, it seems hard
to extend this kind of analysis for tasks with precendence constraints. Second, as the load
balancing is done in one phase at the beginning, the cost of computing the schedule is not
considered. Adler et al (1995) study parallel allocations but still do not take into account
contention on the bins. Our approach, like in WS, considers contention on the lists.

Some works have been proposed for the analysis of algorithms in data structures and
combinatorial optimization (including variants of scheduling) using potential functions.
Our analysis is also based on a potential function representing the load unbalance between
the local queues. This technique has been successfully used for analyzing convergence to
Nash equilibria in game theory (Berenbrink et al, 2007), load diffusion on graphs (Beren-
brink et al, 2009) and WS (Arora et al, 2001).
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1.3. Contributions. List scheduling is centralized in nature. The purpose of this work is
to study the effects of decentralization on list scheduling. The main result is a new frame-
work for analyzing distributed list scheduling algorithms (DLS). Based on the analysis of
the load balancing between two processors during a work request, it is possible to deduce
the total expected number of work requests and then, to derive a bound on the expected
makespan.

This methodology is generic and it is applied in this paper on several relevant variants
of the scheduling problem.

• We first show that the expected makespan of DLS applied on W unit indepen-
dent tasks is equal to the absolute lower bound W/m plus an additive term in
3.65 log2W . We propose a lower bound which shows that the analysis is tight up
to a constant factor. This analysis is refined and applied to several variants of the
problem. In particular, a slight change on the potential function improves the mul-
tiplicative factor from 3.65 to 3.24. Then, we study the possibility of processors
to cooperate while requesting some tasks in the same list. Finally, we study the
initial repartition of the tasks and show that a balanced initial allocation induces
less work requests.

• Second, the previous analysis is extended to the weighted case of any unknown
processing times. The analysis achieves the same bound as before with an extra
term involving pmax (the maximal value of the processing times).

• Third, we provide a new analysis for the WS algorithm of Arora et al (2001) for
scheduling DAGs that improves the bound on the number of work requests from
32mD to 5.5mD.

• Fourth, we developed a complete experimental campaign that gives statistical evi-
dence that the makespan of DLS follows known probability distributions depend-
ing on the considered variant. Moreover, the experiments show that the theoretical
analysis for independent tasks is almost tight: the overhead to W/m is less than
37% away of the exact value.

1.4. Content. We start by introducing the model and we recall the analysis for classical
list scheduling in Section 2. Then, we present the principle of the analysis in Section 3 and
we apply this analysis on unit independent tasks in Section 4. Section 5 discusses variations
on the unit tasks model: improvements on the potential function and cooperation among
thieves. We extend the analysis for weighted independent tasks in Section 6 and for tasks
with dependencies in Section 7. Finally, we present and analyze simulation experiments in
Section 8.

2. MODEL AND NOTATIONS

2.1. Platform and workload characteristics. We consider a parallel platform composed
of m identical processors and a workload of n tasks with processing times pj . The total
work of the computation is denoted by W =

∑n
j=1 pj . The tasks can be independent or

constrained by a directed acyclic graph (DAG) of precedences. In this case, we denote
by D the critical path of the DAG (its depth). We consider an online model where the
processing times and precedences are discovered during the computation. More precisely,
we learn the processing time of a task when its execution is terminated and we discover
new tasks in the DAG only when all their precedences have been satisfied. The problem is
to study the maximum completion time (makespan denoted by Cmax) taking into account
the scheduling cost.
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FIGURE 1. A typical execution of W = 2000 unit independent tasks on
m = 25 processors using distributed list scheduling. Grey area repre-
sents idle times due to steal requests.

2.2. Centralized list scheduling. Let us recall briefly the principle of list scheduling as
it was introduced by Graham (1969). The analysis states that the makespan of any list
algorithm is not greater than twice the optimal makespan. One way of proving this bound
is to use a geometric argument on the Gantt chart: m · Cmax = W + Sidle where the last
term is the surface of idle periods (represented in grey in figure 1).

Depending on the scheduling problem (with or without precedence constraints, unit
tasks or not), there are several ways to compute Sidle. With precedence constraints, Sidle ≤
(m − 1) ·D. For independent tasks, the results can be written as Sidle ≤ (m − 1) · pmax

where pmax is the maximum of the processing times. For unit independent tasks, it is
straightforward to obtain an optimal algorithm where the load is evenly balanced. Thus
Sidle ≤ m− 1, i.e. at most one slot of the schedule contains idle times.

2.3. Decentralized list scheduling. When the list of ready tasks is distributed among the
processors, the analysis is more complex even in the elementary case of unit independent
tasks. In this case, the extra Sidle term is induced by the distributed nature of the problem.
Processors can be idle even when ready tasks are available. Fig. 1 is an example of a sched-
ule obtained using distributed list scheduling which shows the complicated repartition of
the idle times Sidle.

2.4. Model of the distributed list. We now describe precisely the behavior of the dis-
tributed list. Each processor i maintains its own local queue Qi of tasks ready to execute.
At the beginning of the execution, ready tasks can be arbitrarily spread among the queues.
While Qi is not empty, processor i picks a task and executes it. When this task has been
executed, it is removed from the queue and another one starts being processed. When
Qi is empty, processor i sends a steal request to another processor k chosen uniformly at
random. If Qk is empty or contains only one task (currently executed by processor k),
then the request fails and processor i will send a new request at the next time step. If Qk
contains more than one task, then i is given half of the tasks and it will restart a normal
execution at the next step. To model the contention on the queues, no more than one steal
request per processor can succeed in the same time slot. If several requests target the same
processor, a random one succeeds and all the others fail. This assumption will be relaxed
in Section 5.2. A steal request is said successful if the target queue contains more than one
task and the request is not aborted due to contention. In all the other cases, the steal request
is said unsuccessful.

This is a high level model of a distributed list but it accurately models the case of
independent tasks and the WS algorithm of Arora et al (2001). We justify here some
choices of this model. There is no explicit communication cost since WS algorithms most
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often target shared memory platforms. In addition, a steal request is done in constant time
independently of the amount of tasks transfered. This assumption is not restrictive as the
description of a large number of tasks can be very short. In the case of independent tasks,
a whole subpart of an array of tasks can be represented in a compact way by the range of
the corresponding indices, each cell containing the effective description of a task (a STL
transform in Traoré et al (2008)). For more general cases with precedence constraints, it is
usually enough to transfer a task which represents a part of the DAG. More details on the
DAG model are provided in Section 7. Finally, there is no contention between a processor
executing a task from its own queue and a processor stealing in the same queue. Indeed, one
can use queue data structures allowing these two operations to happen concurrently (Frigo
et al, 1998).

2.5. Properties of the work. At time t, let wi(t) represent the amount of work in queue
Qi (cf. Fig. 2). wi(t) may be defined as the sum of processing times of all tasks in Qi as in
Section 4 but can differ as in Sections 6 and 7. In all cases, the definition of wi(t) satisfies
the following properties.

(1) Whenwi(t) > 0, processor i is active and executes some work: wi(t+1) ≤ wi(t).
(2) When wi(t) = 0, processor i is idle and send a steal request to a random processor

k. If the steal request is successful, a certain amount of work is transfered from
processor k to processor i and we have max{wi(t+ 1), wk(t+ 1)} < wk(t).

(3) The execution terminates when there is no more work in the system, i.e. ∀i, wi(t) =
0.

We also denote the total amount of work on all processors by w(t) =
∑m
i=1 wi(t) and

the number of processors sending steal requests by rt ∈ [0,m − 1]. Notice that when
rt = m, all queues are empty and thus the execution is complete.

w4(t)

w3(t)

w2(t)

w1(t)

(a) Workload at time t

w4(t+ 1)

w3(t+ 1)

w2(t+ 1)

w1(t+ 1)

(b) Workload at time step t+ 1

FIGURE 2. Evolution of the workload of the different processors during
a time step. At time t, processors 2 and 3 are idle and they both choose
processor 1 to steal from. At time t + 1, only processor 2 succeed in
stealing some of the work of processor 1. The work is split between the
two processors. Processors 1 and 4 both execute some work during this
time step (represented by a shaded zone).

3. PRINCIPLE OF THE ANALYSIS AND MAIN THEOREM

This section presents the principle of the analysis. The main result is Theorem 1 that
gives bounds on the expectation of the steal requests done by the schedule as well as the
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probability that the number of work requests exceeds this bound. As a processor is either
executing or requesting work, the number of work requests plus the total amount of tasks to
be executed is equal to m ·Cmax, where Cmax is the total completion time. The makespan
can be derived from the total number of work requests:

(1) Cmax =
W

m
+
R

m
.

The main idea of our analysis is to study the decrease of a potential Φt.The potential Φt
depends on the load on all processors at time t, w(t). The precise definition of Φt varies
depending on the scenario (see Sections 4 to 7). For example, the potential function used
in Section 4 is Φt =

∑m
i=1(wi(t) − w(t)/m)2. For each scenario, we will prove that the

diminution of the potential during one time step depends on the number of steal requests,
rt. More precisely, we will show that there exists a function h : {0 . . .m} → [0; 1] such
that the average value of the potential at time t+ 1 is less than Φt/h(rt).

Using the expected diminution of the potential, we derive a bound on the number of steal
requests until Φt becomes less than one, R =

∑τ−1
s=0 rs, where τ denotes the first time that

Φt is less than 1. If all rt were equal to r and the potential decrease was deterministic, the
number of time steps before Φt ≤ 1 would be

⌈
log Φ0/ log h(r)

⌉
and the number of steal

requests would be r/ log h(r) log Φ0. As r can vary between 1 and m, the worst case for
this bound is mλ · log Φ0, where mλ = max1≤r≤m r/ log(h(r)).

The next theorem shows that number of steal requests is indeed bounded by mλ log Φ0

plus an additive term due to the stochastic nature of Φt. The fact that λ corresponds to
the worst choice of rt at each time step makes the bound looser than the real constant.
However, we show in Section 8 that the gap between the obtained bound and the values
obtained by simulation is small. Moreover, the computation of the constant λ is simple and
makes this analysis applicable in several scenarios, such as the ones presented in Sections
4 to 7.

In the following theorem and its proof, we use the following notations. Ft denotes
the knowledge of the system up to time t (namely, the filtration associated to the process
w(t)). For a random variable X , the conditional expectation of A knowing Ft is denoted
E [X | Ft]. Finally, the notation 1A denotes the random variable equal to 1 if the event
A is true and 0 otherwise. In particular, this means that the probability of an event A is
P {A} = E [1A].

Theorem 1. Assume that there exists a function h : {0 . . .m} → [0, 1] such that the
potential satisfies:

E [Φt+1 | Ft] ≤ h(rt) · Φt.

Let Φ0 denotes the potential at time 0 and λ be defined as:

λ
def
= max

1≤r≤m

r

−m log2(h(r))

Let τ be the first time that Φt is less than 1, τ def
= min{t : Φt < 1}. The number of steal

requests until τ , R =
∑τ−1
s=0 rs, satisfies:

(i) P {R ≥ m · λ · log2 Φ(0) +m+ u} ≤ 2−u/(m·λ)

(ii) E [R] ≤ m · λ · log2 Φ(0) +m(1 +
λ

ln 2
).
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Proof. For two time steps t ≤ T , we call RTt the number of steal requests between t and
T :

RTt
def
=

min{τ,T}−1∑
s=t

rs.

The number of steal requests until Φt < 1 is R =
∑τ−1
s=0 rs = limT→∞RT0 .

We show by a backward induction on t that for all t ≤ T :

(2) if Φt ≥ 1, then ∀u ∈ R : E
[
1RTt ≥m·λ·log2 Φt+m+u | Ft

]
≤ 2−u/(m·λ).

For t=T , RTT = 0 and E
[
1RTt ≥m·λ·log2 Φt+m+u | Ft

]
= 0. Thus, (2) is true for t=T .

Assume that (2) holds for some t+1 ≤ T and suppose that Φt ≥ 1. Let u > 0 (if u ≤ 0
... ). Since RTt = rt + RTt+1, the probability P

{
RTt ≥ m · λ · log2 Φt +m+ u | Ft

}
is

equal to

E
[
1RTt ≥mλ log2 Φt+m+u | Ft

]
= E

[
1rt+RTt+1≥mλ log2 Φt+m+u | Ft

]
(3)

= E
[
1rt+RTt+1≥mλ log2 Φt+m+u1Φt+1≥1 | Ft

]
(4)

+ E
[
1rt+RTt+1≥mλ log2 Φt+m+u1Φt+1<1 | Ft

]
(5)

If Φt+1 < 1, then RTt+1 = 0. Since m ≥ rt and Φt ≥ 1, mλ log2 Φt + m + u − rt ≥ 0.
This shows that the term of Equation (5) is equal to zero. (4) is the probability that RTt+1

is greater than

mλ log2 Φt +m+ u− rt = mλ log2 Φt+1 +m+ (u− rt −mλ log(Φt+1/Φt)

Therefore, using the induction hypothesis, (4) is equal to

E
[
1RTt+1≥mλ log2 Φt+m+u−rt1Φt+1>1 | Ft

]
= E

[
2−

u−rt−mλ log(Φt+1/Φt)

mλ 1Φt+1>1 | Ft

]
= 2−

u−rt
mλ E

[
Φt+1

Φt
1Φt+1>1 | Ft

]
= 2−

u−rt
mλ h(rt)

= 2−
u
mλ 2rt/λ+log2(h(rt)),

where at the first line we used both the fact that for a random variable X , E [X | Ft] =
E [E [X | Ft+1] | Ft] and the induction hypothesis.

If rt = 0, 2rt/λ+log2(h(rt)) = h(rt) ≤ 1. Otherwise, by definition of λ = max1r≤m r/−
log(h(r)), rt/λ + log2(h(rt)) ≤ 0 and 2rt/λ+log2(h(rt)) ≤ 1. This shows that (2) holds
for t. Therefore, by induction on t, this shows that (2) holds for t = 0: for all u ≥ 0:

E
[
1RT0 ≥m·λ·log2 Φt+m+u | F0

]
≤ 2−u/(m·λ)

As rt ≥ 0, the sequence (RT0 )T is increasing and converges to R. Therefore, the sequence
1RT0 ≥m·λ·log2 Φ0+m+u is increasing in T and converges to 1R≥m·λ·log2 Φ0+m+u. Thus, by
Lebesgue’s monotone convergence theorem, this shows that

P {R ≥ m · λ · log2 Φ0 +m+ u} = lim
T→∞

E
[
1RT0 ≥m·λ·log2 Φ0+m+u

]
≤ 2−

u
mλ .
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The second part of the theorem (ii) is a direct consequence of (i). Indeed,

E [R] =

∫ ∞
0

P {R ≥ u} du

≤ m · λ · log2 Φ0 +m+

∫ ∞
0

P {R ≥ m · λ · log2 Φ0 +m+ u} du

≤ m · λ · log2 Φ0 +m+

∫ ∞
0

2−
u
mλ du

≤ m · λ · log2 Φ0 +m(1 +
λ

ln 2
).

� �

4. UNIT INDEPENDENT TASKS

We apply the analysis presented in the previous section for the case of independent unit
tasks. In this case, each processor i maintains a local queue Qi of tasks to execute. At
every time slot, if the local queue Qi is not empty, processor i picks a task and executes
it. When Qi is empty, processor i sends a steal request to a random processor j. If Qj is
empty or contains only one task (currently executed by processor j), then the request fails
and processor i will have to send a new request at the next slot. If Qj contains more than
one task, then i is given half of the tasks (after that the task executed at time t by processor
j has been removed from Qj). The amount of work on processor i at time t, wi(t), is the
number of tasks in Qi(t). At the beginning of the execution, w(0) = W and tasks can be
arbitrarily spread among the queues.

4.1. Potential function and expected decrease. Applying the method presented in Sec-
tion 3, the first step of the analysis is to define the potential function and compute the
potential decrease when a steal occurs. For this example, Φ(t) is defined by:

Φ(t) =

m∑
i=1

(
wi(t)−

w(t)

m

)2

=

m∑
i=1

wi(t)
2 − w2(t)

m
.

This potential represents the load unbalance in the system. If all queues have the same load
wi(t) = w(t)/m, then Φ(t) = 0. Φ(t) ≤ 1 implies that there is at most one processor with
at most one more task than the others. In that case, there will be no steal until there is just
one processor with 1 task and all others idle. Moreover, the potential function is maximal
when all the work is concentrated on a single queue. That is Φ(t) ≤ w(t)2 − w(t)2/m ≤
(1− 1/m)w2(t).

Three events contribute to a variation of potential: successful steals, tasks execution and
decrease of w2(t)/m.

(1) If the queue i has wi(t) ≥ 1 tasks and it receives one or more steal requests, it
chooses a processor j among the thieves. At time t + 1, i has executed one task
and the rest of the work is split between i and j. Therefore,

wi(t+ 1) =
⌈
(wi(t)− 1)/2

⌉
and wj(t+ 1) =

⌊
(wi(t)− 1)/2

⌋
.

Thus, we have:

wi(t+ 1)2 +wj(t+ 1)2 =
⌈
(wi(t)−1)/2

⌉2

+
⌊
(wi(t)−1)/2

⌋2

≤ wi(t)2/2−wi(t) + 1.

Therefore, this generates a difference of potential of

(6) δi(t) ≥ wi(t)2/2 + wi(t)− 1.
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(2) If i has wi(t) ≥ 1 tasks and receives zero steal requests, it potential goes from
wi(t)

2 to (wi(t)− 1)2, generating a potential decrease of 2wi(t)− 1.
(3) As there are m − rt active processors, (

∑m
i=1 wi(t))

2/m goes from w(t)2/m
to w(t + 1)2 = (w(t) − m + r)2/m, generating a potential increase of 2(m −
rt)w(t)/m− (m− rt)2/m.

Recall that at time t, there are rt processors that send steal requests. A processor i receives
zero steal requests if the rt thieves choose another processor. Each of these events is
independent and happens with probability (m−2)/(m−1). Therefore, the probability for
the processor to receive one or more steal requests is q(rt) where

q(rt) = 1−
(

1− 1

m− 1

)rt
.

If Φt=Φ and rt=r, by summing the expected decrease on each active processor δi, the
expected potential decrease is greater than:

∑
i/wi(t)>0

q(r)(wi(t)2

2
+ wi(t)−1

)
︸ ︷︷ ︸

≥δi

+(1− q(r))(2wi(t)−1)

− 2w(t)
m− r
m

+
(m− r)2

m

=

 ∑
i/wi(t)>0

q(r)

2
wi(t)

2

− q(r)w(t) + 2w(t)− (m− r)− 2w(t)
m− r
m

+
(m− r)2

m
.

Using that 2w(t) − 2w(t)m−rm = 2w(t) rm , that −(m − r) + (m−r)2

m = −(m − r) rm and
that

∑
wi(t)

2 = Φ + w(t)2, this equals:

q(r)

2
Φ +

q(r)

2

w(t)2

m
− q(r)w(t) + 2w(t)

r

m
− (m− r) r

m

=
q(r)

2
Φ +

q(r)

2

w(t)2

m
− q(r)w(t) +

r

m
(2w(t)−m+ r)

=
q(r)

2
Φ +

q(r)w(t)

2

(
w(t)

m
− 2 +

2r

mq(r)

)
+

r

m
(w(t)−m+ r) .

By concavity of x 7→ (1 − (1 − x)r), (1 − (1 − x)r) ≤ r · x. This shows that q(r) =
1− (1− 1

m−1 )r ≤ r/(m− 1). Thus, r/q(r) ≥ m− 1. Moreover, as m− r is the number
of active processors, w ≥ m− r (each processor has at least one task). This shows that the
expected decrease of potential is greater than:

q(r)

2
Φ +

q(r)w(t)

2

(
w(t)

m
− 2 + 2

m− 1

m

)
=
q(r)

2
Φ +

q(r)w(t)

2m
(w(t)− 2).

If w(t) ≥ 2, then the expected decrease of potential is greater than q(rt)Φt/2. If w(t) < 2,
this means that w(t) = 1 and w(t+ 1) = 0 and therefore Φt+1 = 0. Thus, for all t:

(7) E [Φt+1 | Ft] ≤
(

1− q(rt)

2

)
· Φt.

4.2. Bound on the makespan. Using Theorem 1 of the previous section, we can solve
equation (7) and conclude the analysis.

Theorem 2. Let Cmax be the makespan of W = n unit independent tasks scheduled by
DLS and Φ0

def
=
∑
i(wi −

W
m )2 the potential when the schedule starts. Then:
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(i) E [Cmax] ≤ W

m
+

1

1− log2(1 + 1
e )
·
(

log2 Φ0 +
1

ln 2

)
+ 1

(ii) P
{
Cmax ≥

W

m
+

1

1− log2(1 + 1
e )
·
(

log2 Φ0 + log2

1

ε

)
+ 1

}
≤ ε

In particular:

(iii) E [Cmax] ≤ W

m
+

2

1− log2(1 + 1
e )
·
(

log2W +
1

2 ln 2

)
+ 1

These bounds are optimal up to a constant factor in log2W .

Proof. Equation (7) shows that E [Φt+1|Ft] ≤ g(rt)Φt with g(r) = 1− q(r)/2. Defining
Φ′t = Φt/(1 − 1/(m − 1)), the potential function Φ′t also satisfies (7). Therefore, Φ′t
satisfies the conditions of Theorem 1. This shows that the number of work requests R until
Φ′t < 1 satisfies

E [R] ≤ m · λ log2(Φ0) +m
(

1 +
λ

ln 2

)
,

with λ = max1≤r≤m−1 r/(−m log2 h(r)). One can show that r/(−m log2 h(r)) is de-
creasing in r. Thus its minimum is attained for r = 1. This shows that λ ≤ 1/(1−log2(1+
1
e )).

The minimal non zero-value for Φt is when one processor has one task and the others
zero. In that case, Φt = 1− 1/(m− 1). Therefore, when Φ′t < 1, this means that Φt = 0
and the schedule is finished.

As pointed out in Equation (1), at each time step of the schedule, a processor is either
computing one task or stealing work. Thus, the number of steal requests plus the number
of tasks to be executed is equal to m · Cmax, i.e. m · Cmax = W +R. This shows that

E [Cmax] ≤ W

m
+

1

1− log2(1 + 1
e )
·
(

log2 Φ0 +
1

ln 2

)
+ 1.

This concludes the proof of (i). The proof of the (i) applies mutatis mutandis to prove
the bound in probability (ii) using Theorem 1 (ii).

We now give a lower bound for this problem. Consider W = 2k+1 tasks and m = 2k

processors, all the tasks being on the same processor at the beginning. In the best case, all
steal requests target processors with highest loads. In this case the makespan is Cmax =
k + 2: the first k = log2m steps for each processor to get some work; one step where all
processors are active; and one last step where only one processor is active. In that case,
Cmax ≥ W

m + log2W − 1. � �

This theorem shows that the factor before log2W is bounded by 1 and 2/(1− log2(1 +
1/e)) < 3.65. Simulations reported in Section 8 seem to indicate that the factor of log2W
is slightly less than 3.65. This shows that the constants obtained by our analysis are sharp.

4.3. Influence of the initial repartition of tasks. In the worst case, all tasks are in the
same queue at the beginning of the execution and Φ0 = (W − W/m)2 ≤ W 2. This
leads to a bound on the number of work requests in 3.65m log2W (see the item (iii) of
Theorem 2). However, using bounds in terms of Φ0, our analysis is able to capture the
difference for the number of work requests if the initial repartition is more balanced. One
can show that a more balanced initial repartition (Φ0 � W 2) leads to fewer steal requests
on average.

Suppose for example that the initial repartition is a balls-and-bins assignment: each
tasks is assigned to a processor at random. In this case, the initial number of tasks in queue
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i, wi(0), follows a binomial distribution B(W, 1/m). The expected value of Φ0 is:

E [Φ0] =
∑
i

E
[
w2
i

]
− W 2

m
=
∑
i

(
Var [wi] + E [wi]

2
)
− W 2

m
=
(

1− 1

m

)
·W

Since the number of work requests is proportional to log2 Φ0, this initial repartition of
tasks reduces the number of steal requests by a factor of 2 on average. This leads to a
better bound on the makespan in W/m+ 1.83 log2W + 3.63.

5. GOING FURTHER ON THE UNIT TASKS MODEL

In this section, we provide two different analysis of the model of unit tasks of the pre-
vious section. We first show how the use of a different potential function Φt =

∑
i wi(t)

ν

(for some ν > 1) leads to a better bound on the number of work requests. Then we show
how cooperation among thieves leads to a reduction of the bound on the number of work
requests by 12%. The later is corroborated by our simulation that shows a decrease on the
number of work requests between 10% and 15%.

5.1. Improving the analysis by changing the potential function. We consider the same
model of unitary tasks as in Section 4. The potential function of our system is defined as

Φt =

m∑
i=1

wi(t)
ν ,

where ν > 1 is a constant factor.
When an idle processor steals a processor with wi(t) tasks, the potential decreases by

δi = wi(t)
ν −

⌈wi(t)− 1

2

⌉ν
+
⌊wi(t)− 1

2

⌋ν
≥ wi(t)ν −

⌊wi(t)
2

⌋ν
+
⌊wi(t)

2

⌋ν
≥
(
1− 21−ν)wi(t)ν .

This shows that the expected value of the potential at time t+ 1 is

E [Φt+1] ≤ (1− q(r)(1− 21−ν)) · Φt.
where q(r) is the probability for a processor to receive at least one work request when r

processors are stealing, q(r) = 1−
(

1− 1
m−1

)r
.

Following the analysis of the previous part, and as Φ0 ≤W ν the expected makespan is
bounded by:

W

m
+ λ(ν) ·

(
log Φ0 + 1 +

1

ln 2

)
≤ W

m
+ νλ(ν) ·

(
logW + 1 +

1

ln 2

)
,

where λ(ν) is a constant depending on ν equal to:

(8) λ(ν)
def
= max

r

{ r

− log2(1− q(r)(1− 21−ν))

}
As for ν = 2 of Section 4, it can be shown the maximum of Equation 8 is attained for
r = m− 1.

The constant factor in front of logW is νλ(ν). Numerically, the minimum of νλ(ν) is
for ν ≈ 2.94 and is less than 3.24.

Theorem 3. Let Cmax be the makespan of W = n unit independent tasks scheduled DLS.
Then:

E [Cmax] ≤ W

m
+ 3.24 ·

(
log2W +

1

2 ln 2

)
+ 1



12 MARC TCHIBOUKDJIAN, NICOLAS GAST, AND DENIS TRYSTRAM

In Section 4, we have shown that the makespan was bounded by

W

m
+ 2λ(2) ·

(
log2 Φ0 +

1

ln 2

)
+ 1 ≤ W

m
+ 3.65 ·

(
log2W +

1

2 ln 2

)
+ 1.

Theorem 3 improves the constant factor in front of log2W . However, we loose the infor-
mation of the initial repartition of tasks Φ0.

5.2. Cooperation among thieves. In this section, we modify the protocol for managing
the distributed list. Previously, when k > 1 steal requests were sent on the same processor,
only one of them could be served due to contention on the list. We now allow the k
requests to be served in unit time. This model has been implemented in the middleware
Kaapi (Gautier et al, 2007). When k steal requests target the same processor, the work
is divided into k + 1 pieces. In practice, allowing concurrent thieves increase the cost of
a steal request but we neglect this additional cost here. We assume that the k concurrent
steal requests can be served in unit time. We study the influence of this new protocol on
the number of steal requests in the case of unit independent tasks.

We define the potential of the system at time t to be:

Φ(t) =

m∑
i=1

(
wi(t)

ν − wi(t)
)
.

Let us first compute the decrease of the potential when processor i receives k ≥ 1 steal
requests. If wi(t) > 0, it can be written wi(t) = (k + 1)q + b with 0 ≤ b < k + 1. We
neglect the decrease of potential due to the execution tasks (ν > 1 implies that execution
of tasks decreases the potential).

After one time step and k steal requests, the work will be divided into r parts with q+ 1
tasks and k + 1 − r parts with q tasks.

∑
i wi(t) does not vary during the stealing phase.

Therefore, the difference of potential due to these k work requests is

δki = ((k + 1)q + b)ν − b(q + 1)ν − (k + 1− b)qν .

Let us denote α def
= b/(k+1) ∈ [0; 1) and let f(x) = (x+α)ν +(1−21−ν)(x+α)− (1−

α)xν −α(x+ 1)ν . The first derivative of f is f ′(x) = ν(x+α)ν−1 + (1− 21−ν)− ν(1−
α)xν−1 − α(x+ 1)ν−1 and the derivative of f ′ is f ′′(x) = ν(1− ν)((x+ α)ν−2 − (1−
α)xν−2 − α(x+ 1)ν−2. As ν < 3, the function x 7→ xν−2 is concave which implies than
f ′′(x) ≥ 0. Therefore, f ′ is increasing. Moreover, f ′(0) = ν(αν−1−α)+(1−21−ν) ≥ 0.
This shows that for all x, f ′(x) ≥ 0 and that f is increasing. The value of f in 0 is
f(0) = αν − (1 − 21−ν)α − α = αν(1 − (2α)1−ν) ≥ 0 which implies that for all x,
f(x) ≥ 0.

Recall that wi(t) = (k + 1)q + b and α = b/(k + 1). Using the notation f and the fact
that (k + 1)1−ν ≤ 21−ν , the decrease of potential δki can be written

δki = (1− (k + 1)1−ν) · (wi(t)ν − wi(t)) + (k + 1) · f(q)

≥ (1− (k + 1)1−ν) · (wi(t)ν − wi(t)).(9)

Let qk(r) be the probability for a processor to receive k work requests when r processors
are stealing. qk(r) is equal to:

qk(r) =

(
r
k

)
1

(m− 1)k

(
m− 2

m− 1

)r−k
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The expected decrease of the potential caused by the steals on processor i is equal to∑r
k=0 δ

k
i qk(r). Using equation (9), we can bound the expected potential at time t+ 1 by

E [Φt − Φt+1 | Ft] =

m∑
i=0

r∑
k=0

δki · qk(r)

E [Φt+1 | Ft] ≤
(

1−
r∑

k=0

(1− (k + 1)1−ν) · qk(r)
)
· Φt

Theorem 4. The makespan Ccoop
max of W = n unit independent tasks scheduled with coop-

erative work stealing satisfies:

(i) E [Ccoop
max ] ≤ W

m
+ 2.88 · log2W + 3.4

(ii) P
{
Ccoop

max ≥
W

m
+ 2.88 · log2W + 2 + log2

(
1

ε

)}
≤ ε.

Proof. The proof is very similar to the one of Theorem 2. Let

h(r)
def
= 1−

r∑
k=0

(1− (k + 1)1−ν) · qk(r)

and
λcoop(ν)

def
= max

1≤r≤m

r

−m · log2 h(r)
.

Using Theorem 1, we have:

E [Ccoop
max ] ≤ W

m
+ νλcoop(ν) · log2W +

λ(ν)

ln 2
+ 1.

In the general case the exact computation of h(r) is intractable. However, by a numerical
computation, one can show that 3λcoop(3) < 2.88.

When Φt < 1, we have
∑
i wi(t)

ν − wi(t) < 1. This implies that for all processor i,
wi(t) equals 0 or 1. This adds (at most) one step of computation at the end of the schedule.
As λ(3)/ ln(2) + 1 + 1 = 3.4, we obtain the calimed bound. � �

Compared to the situation with no cooperation among thieves, the number of steal re-
quests is reduced by a factor 3.24/2.88 ≈ 12%. We will see in Section 8 that this is close
to the value obtained by simulation.

Remark. The exact computation can be accomplished for ν = 2 (Tchiboukdjian et al,
2010) and leads to a constant factor of 2λcoop(2) ≤ −2/ log2(1− 1

e ) < 3.02.

6. WEIGHTED INDEPENDENT TASKS

In this section, we analyze the number of work requests for weighted independent tasks.
Each task j has a processing time pj which is unknown. When an idle processor attempts
to steal a processor, half of the tasks of the victim are transfered from the active processor
to the idle one. A task that is currently executed by a processor cannot be stolen. If the
victim has 2k(+1) tasks (plus one for the task that is currently executed), the work is split
in k(+1), k. If the victim has 2k + 1(+1) tasks, the work is split in k(+1), k + 1.

In all this analysis, we consider that the scheduler does not know the weight of the
different tasks pj . Therefore, when the work is split in two parts, we do not assume that
the work is split fairly (see for example Figure 3) but only that the number of tasks is split
in two equal parts.
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p1 p2 p3 p4 p5

∅
(a) Workload at time t

Work executed by 1

p1 p3 p5

p2 p4

(b) Workload at time t+ 1

FIGURE 3. Evolution of the repartition of tasks during one time step.
At time t, one processor has all the tasks. p1 can not be stolen since the
processor 1 has already started executing it. After one work request done
by the second processor, one processor has 3 tasks and one has 2 tasks
but the workload may be very different, depending on the processing
times pj .

6.1. Definition of the potential function and expected decrease. As the processing
times are unknown, the work cannot be shared evenly between both processors and can
be as bad as one processor getting all the smallest tasks and one all the biggest tasks (see
Figure 3). Let us call wi(t) the number of tasks possessed by the processor i. The potential
of the system at time t is defined as:

(10) Φt
def
=
∑
i

(wi(t)
ν − wi(t)) .

During a work request, half of the tasks are transfered from an active processor to the
idle processor. If the processor j is stealing tasks from processor i, the number of tasks
possessed by i and j at time t+ 1 are wj(t+ 1) =

⌈
wi(t)/2

⌉
and wi(t+ 1) =

⌊
wi(t)/2

⌋
.

Therefore, the decrease of potential is equal to the one of the cooperative steal of Equation 9
for k = 1:

δi ≥ (1− 21−ν) · (wi(t)ν − wi(t)) .
Following the analysis of Section 5.2, this shows that in average:

(11) E [Φt+1] ≤ (1− (1− 21−ν)q(r)) · Φt.

6.2. Bound on the makespan. Equation 11 allows us to apply Theorem 1 to derive a
bound on the makespan of weighted tasks by the distributed list scheduling algorithm.
This bound differs from the one for unit tasks only by an additive term of pmax.

Theorem 5. Let pmax
def
= max pj be the maximum processing times. The expected makespan

to schedule n weighted tasks of total processing time W =
∑
pj by DLS is bounded by

E [Cmax] ≤ W

m
+
m− 1

m
pmax + 3.24 ·

(
log2 n+

1

2 ln 2

)
+ 1

Proof. Let Φt be the potential defined by Equation 10. At time t = 0, the potential of the
system is bounded by W ν −W . Therefore, by Theorem 1, the number of work requests
before Φt < 1 is bounded by

m · λ ·
(

log2 Φ0 + 1 +
1

ln 2

)
≤ m · νλ(ν) ·

(
2 log2W + 1 +

1

ln 2

)
,

where νλ(ν) < 3.24 is the same constant as the bound for the unit tasks with the potential
function

∑
i w

ν
i of Theorem 3.
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As Φt ∈ N, Φt < 1 implies that Φt = 0. Moreover, by definition of Φt, this implies
that for all i: wi(t)ν − wi(t) = 0, which implies that for all i: wi(t) ≤ 1. Therefore, once
Φt is equal to 0, there is at most one task per processor. This phase can last for at most
pmax unit of time, generating at most (m− 1)pmax work requests. � �

Remark. The same analysis applies for the cooperative stealing scheme of Section 5.2
leading to the same improved bound in 2.88 log2 n instead of 3.24 log2 n.

7. TASKS WITH PRECEDENCES

In this section, we show how the well known non-blocking work stealing of Arora et al
(2001) (denoted ABP in the sequel) can be analyzed with our method which provides
tighter bounds for the makespan. We first recall the WS scheduler of ABP, then we show
how to define the amount of work on a processor wi(t), finally we apply the analysis of
Section 3 to bound the makespan.

7.1. ABP work-stealing scheduler. Following Arora et al (2001), a multithreaded com-
putation is modeled as a directed acyclic graph G with W unit tasks task and edges define
precedence constraints. There is a single source task and the out-degree is at most 2. The
critical path ofG is denoted byD. ABP schedules the DAGG as follows. Each processor i
maintains a double-ended queue (called a deque) Qi of ready tasks. At each slot, an active
processor i with a non-empty deque executes the task at the bottom of its deque Qi; once
its execution is completed, this task is popped from the bottom of the deque, enabling – i.e.
making ready – 0, 1 or 2 child tasks that are pushed at the bottom of Qi. At each top, an
idle processor j with an empty deque Qj becomes a thief: it performs a steal request on
another randomly chosen victim deque; if the victim deque contains ready tasks, then its
top-most task is popped and pushed into the deque of one of its concurrent thieves. If j
becomes active just after its steal request, the steal request is said successful. Otherwise,
Qj remains empty and the steal request fails which may occur in the three following sit-
uations: either the victim deque Qi is empty; or, Qi contains only one task currently in
execution on i; or, due to contention, another thief performs a successful steal request on i
simultaneously.

7.2. Definition of wi(t). Let us first recall the definition of the enabling tree of Arora et al
(2001). If the execution of task u enables task v, then the edge (u, v) of G is an enabling
edge. The sub-graph of G consisting of only enabling edges forms a rooted tree called the
enabling tree. We denote by h(u) the height of a task u in the enabling tree. The root of
the DAG has height D. Moreover, it has been shown in Arora et al (2001) that tasks in the
deque have strictly decreasing height from top to bottom except for the two bottom most
tasks which can have equal heights.

We now define wi(t), the amount of work on processor i at time t. Let ht be the
maximum height of all tasks in the deque. If the deque contains at least two tasks including
the one currently executing we define wi(t) = (2

√
2)ht . If the deque contains only one

task currently executing we define wi(t) = 1
2 · (2

√
2)ht . The following lemma states that

this definition of wi(t) behaves in a similar way than the one used for the independent unit
tasks analysis of Section 4.

Lemma 1. For any active processor i, we have wi(t + 1) ≤ wi(t). Moreover, after any
successful steal request from a processor j on i, wi(t + 1) ≤ wi(t)/2 and wj(t + 1) ≤
wi(t)/2 and if all steal requests are unsuccessful we have wi(t+ 1) ≤ wi(t)/

√
2.
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Proof. We first analyze the execution of one task u at the bottom of the deque. Executing
task u enables at most two tasks and these tasks are the children of u in the enabling
tree. If the deque contains more than one task, the top most task has height ht and this
task is still in the deque at time t + 1. Thus the maximum height does not change and
wi(t) = wi(t+ 1). If the deque contains only one task, we have wi(t) = 1

2 · (2
√

2)ht and
wi(t+ 1) ≤ (2

√
2)ht−1. Thus wi(t+ 1) ≤ wi(t).

We now analyze a successful steal from processor j. In this case, the deque of processor
i contains at least two tasks and wi(t) = (2

√
2)ht . The stolen task is one with the maxi-

mum height and is the only task in the deque of processor j thuswj(t+1) = 1
2 ·(2
√

2)ht ≤
wi(t)/2. For the processor i, either its deque contains only one task after the steal with
height at most ht and wi(t+ 1) ≤ 1

2 · (2
√

2)ht ≤ wi(t)/2, either there are still more than
2 tasks and wi(t+ 1) ≤ (2

√
2)ht−1 < wi(t)/2.

Finally, if all steal requests are unsuccessful, the deque of processor i contains at most
one task. If the deque is empty wi(t + 1) = wi(t) = 0 and thus wi(t + 1) ≤ wi(t)/

√
2.

If the deque contains exactly one task, wi(t) = 1
2 · (2

√
2)ht and wi(t + 1) ≤ (2

√
2)ht−1

thus wi(t+ 1) ≤ wi(t)/
√

2. � �

7.3. Bound on the makespan. To study the number of steals, we follow the analysis
presented in Section 3 with the potential function Φ(t) =

∑
i wi(t)

2. Using results from
lemma 1, we compute the decrease of the potential δi(t) due to steal requests on processor
i by distinguishing two cases. If there is a successful steal from processor j,

δi(t) = wi(t)
2 − wi(t+ 1)2 − wj(t+ 1)2 ≥ wi(t)2 − 2 ·

(wi(t)
2

)2

≥ 1

2
· wi(t)2.

If all steals are unsuccessful, the decrease of the potential is

δi(t) = wi(t)
2 − wi(t+ 1)2 ≥ wi(t)2 −

(wi(t)√
2

)2

≥ 1

2
· wi(t)2.

In all cases, δi(t) ≥ wi(t)2/2. We obtain the expected potential at time t+ 1 by summing
the expected decrease on each active processor:

E [Φt − Φt+1 | Ft] ≥
m∑
i=0

wi(t)
2

2
· q(rt)

E [Φt+1 | Ft] ≤
(

1− q(rt)

2

)
· Φ(t)

Finally, we can state the following theorem.

Theorem 6. On a DAG composed of W unit tasks, with critical path D, one source and
out-degree at most 2, the makespan of ABP work stealing verifies:

(i) E [Cmax] ≤ W

m
+

3

1− log2(1 + 1
e )
·D + 1 <

W

m
+ 5.5 ·D + 1.

(ii) P
{
Cmax ≥

W

m
+

3

1− log2(1 + 1
e )
·
(
D + log2

1

ε

)
+ 1

}
≤ ε

Proof. The proof is a direct application of Theorem 1. As in the initial step there is only
one non empty deque containing the root task with height D, the initial potential is

Φ(0) =
(1

2
·
(

2
√

2
)D)2

.
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Thus the expected number of steal requests before Φ(t) < 1 is bounded by

E [R] ≤ λ ·m · log2

[(1

2
·
(

2
√

2
)D)2]

+m ·
(

1 +
λ

ln(2)

)
≤ 2λ ·m ·D · log2(2

√
2) +m ·

(
1 +

λ

ln(2)
− 2λ

)
≤ 3λ ·m ·D (as 1 + λ/ ln(2)− 2λ < 0)

where λ = (1 − log2(1 + 1/e))−1 is the same constant as the bound for the unit tasks of
Section 4.

Moreover, when Φ(t) < 1, we have ∀i, wi(t) < 1. There is at most one task of height
0 in each deque, i.e. a leaf of the enabling tree which cannot enable any other task. This
last step generates at most m − 1 additional steal requests. In total, the expected number
of steal requests is bounded by E [R] ≤ 3λ ·m ·D +m− 1. The bound on the makespan
is obtained using the relation m · Cmax = W +R.

The proof of (i) applies mutatis mutandis to prove the bound in probability (ii). � �

Remark. In Arora et al (2001), the authors established the upper bounds :

E [Cmax] ≤ W

m
+ 32 ·D and P

{
Cmax ≥

W

m
+ 64 ·D + 16 · log2

1

ε

}
≤ ε

in Section 4.3, proof of Theorem 9. Our bounds greatly improve the constant factors of
this previous result.

8. EXPERIMENTAL STUDY

The theoretical analysis gives an upper bounds on the expected value of the makespan
and deviation from the mean for the various models we considered. In this section, we
study experimentally the distribution of the makespan. Statistical tests give evidence that
the makespan for independent tasks follows a generalized extreme value (gev) distribu-
tion (Kotz and Nadarajah, 2001). This was expected since such a distribution arises when
dealing with maximum of random variables. For tasks with dependencies, it depends on
the structure of the graph: DAGs with short critical path still follow a gev distribution but
when the critical path grows, it tends to a gaussian distribution. We also study in more
details the overhead to W/m and show that it is approximately 2.37 log2W for unit inde-
pendent tasks which is close to the theoretical result of 3.24 log2W (cf. Section 5).

We developed a simulator that strictly follows our model. At the beginning, all the tasks
are given to processor 0 in order to be in the worst case, i.e. when the initial potential Φ0 is
maximum. Each pair (m,W ) is simulated 10000 to get accurate results, with a coefficient
of variation about 2%.

8.1. Distribution of the makespan. We consider here a fixed workloadW = 217 onm =
210 processors for independent tasks and m = 27 processors for tasks with dependencies.
For the weighted model, processing times were generated randomly and uniformly between
1 and 10. For the DAG model, graphs have been generated using a layer by layer method.
We generated two types of DAGs, one with a short critical path (close to the minimum
possible log2W ) and the other one with a long critical path (around W/4m in order to
keep enough tasks per processor per layer). Fig. 4 presents histograms forCmax−dW/me.

The distributions of the first three models (a,b,c in Fig. 4) are clearly not gaussian: they
are asymmetrical with an heavier right tail. To fit these three models, we use the general-
ized extreme value (gev) distribution (Kotz and Nadarajah, 2001). In the same way as the
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FIGURE 4. Distribution of the makespan for unit independent tasks 4(a),
weighted independent tasks 4(b) and tasks with dependencies 4(c)
and 4(d). The first three models follow a gev distribution (blue curves),
the last one is gaussian (red curve).

normal distribution arises when studying the sum of independent and identically distributed
(iid) random variables, the gev distribution arises when studying the maximum of iid ran-
dom variables. The extreme value theorem, an equivalent of the central limit theorem for
maxima, states that the maximum of iid random variables converges in distribution to a
gev distribution. In our setting, the random variables measuring the load of each processor
are not independent, thus the extreme value theorem cannot apply directly. However, it is
possible to fit the distribution of the makespan to a gev distribution. In Fig. 4, the fitted dis-
tributions (blue curve) closely follow the histograms. To confirm this graphical approach,
we performed a goodness of fit test. The χ2 test is well-suited to our data because the
distribution of the makespan is discrete. We compared the results of the best fitted gev to
the best fitted gaussian. The χ2 test strongly rejects the gaussian hypothesis but does not
reject the gev hypothesis with a p-value of more than 0.5. This confirms that the makespan
follows a gev distribution. We fitted the last model, DAG with long critical path, with a
gaussian (red curve in Fig. 4(d)). In this last case, the completion time of each layer of the
DAG should correspond to a gev distribution but the total makespan, the sums of all layers,
should tend to a gaussian by the central limit theorem. Indeed the χ2 test does not reject
the gaussian hypothesis with a p-value around 0.3.

8.2. Study of the log2W term. We focus now on unit independent tasks as the other
models rely on too many parameters (the choice of the processing times for weighted tasks
and the structure of the DAG for tasks with dependencies). We want to show that the
number of work requests is proportional to log2W and study the proportionality constant.
We first launch simulations with a fixed number of processors m and a wide range of work
in successive powers of 10. A linear regression confirms the linear dependency in log2W
with a coefficient of determination (”r squared”) greater than 0.99991.

Then, we obtain the slope of the regression for various number of processors. The value
of the slope tends to a limit around 2.37 (cf. Fig. 5(left)). This shows that the theoretical
analysis of Theorem 2 is almost accurate with a constant of approximately 3.24. We also
study the constant factor of log2W for the cooperative steal of Section 5. The theoretical
value of 2.88 is again close to the value obtained by simulation 2.08 (cf. Figure 5(left)).
The difference between the theoretical and the practical values can be explained by the
worst case analysis on the number of steal requests per time step in Theorem 1.

1the closer to 1, the better
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FIGURE 5. (Left) Constant factor of log2W against the number of pro-
cessors for the standard steal and the cooperative steal. (Right) Ratio of
steal requests (standard/cooperative).

Moreover, simulations in Fig. 5(right) show that the ratio of steal requests between
standard and cooperative steals goes asymptotically to 14%. The ratio between the two
corresponding theoretical bounds is about 12%. This indicates that the biais introduced by
our analysis is systematic and thus, our analysis may be used as a good prediction while
using cooperation among thieves.

9. CONCLUDING REMARKS

In this paper, we presented a complete analysis of the cost of distribution in list sched-
uling. We proposed a new framework, based on potential functions, for analyzing the
complexity of distributed list scheduling algorithms. In all variants of the problem, we
succeeded to characterize precisely the overhead due to the decentralization of the list.
These results are summarized in the following table comparing makespans for standard
(centralized) and decentralized list scheduling.

Centralized Decentralized (WS)

Unit Tasks (W = n)
⌈W
m

⌉ W

m
+ 3.24 log2W + 3.33

Initial repartition –
W

m
+ 1.83 log2

m∑
i=0

(
wi −

W

m

)2

+ 3.63

Cooperative –
W

m
+ 2.88 log2W + 3.4

Weighted Tasks
W

m
+
m− 1

m
· pmax

W

m
+
m− 1

m
· pmax + 3.24 log2 n+ 3.33

Tasks w. predecences
W

m
+
m− 1

m
·D W

m
+ 5.5D + 1

In particular, in the case of independent tasks, the overhead due to the distribution is
small and only depends on the number of tasks and not on their weights. In addition, this
analysis improves the bounds for the classical work stealing algorithm of Arora et al (2001)
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from 32D to 5.5D. We believe that this work should help to clarify the links between
classical list scheduling and work stealing.

Furthermore, the framework to analyze DLS algorithms described in this paper is more
general than the method of Arora et al (2001). Indeed, we do not assume a specific rule
(e.g. depth first execution of tasks) to manage the local lists. Moreover, we do not refer
to the structure of the DAG (e.g. the depth of a task in the enabling tree) but on the
work contained in each list. Thus, we plan to extend this analysis to the case of general
precedence graphs.

Acknowledgements. The authors would like to thank Julien Bernard and Jean-Louis
Roch for fruitful discussions on the preliminary version of this work.
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NICOLAS GAST, EPFL, IC-LCA2, BÂTIMENT BC, STATION 14, 1015 LAUSANNE, SWITZERLAND

E-mail address: nicolas.gast@epfl.ch

DENIS TRYSTRAM GRENOBLE UNIVERSITY, 51 AV JEAN-KUNTZMAN, 38330 MONTBONNOT, FRANCE

E-mail address: denis.trystram@imag.fr


	1. Introduction
	1.1. Context and motivations
	1.2. Related works
	1.3. Contributions
	1.4. Content

	2. Model and notations
	2.1. Platform and workload characteristics
	2.2. Centralized list scheduling
	2.3. Decentralized list scheduling
	2.4. Model of the distributed list
	2.5. Properties of the work

	3. Principle of the analysis and main theorem
	4. Unit independent tasks
	4.1. Potential function and expected decrease
	4.2. Bound on the makespan
	4.3. Influence of the initial repartition of tasks

	5. Going further on the unit tasks model
	5.1. Improving the analysis by changing the potential function
	5.2. Cooperation among thieves

	6. Weighted independent tasks
	6.1. Definition of the potential function and expected decrease
	6.2. Bound on the makespan

	7. Tasks with precedences
	7.1. ABP work-stealing scheduler
	7.2. Definition of wi(t)
	7.3. Bound on the makespan

	8. Experimental study
	8.1. Distribution of the makespan
	8.2. Study of the log2 W term

	9. Concluding Remarks
	References

