T12010-013/4
Tinbergen Institute Discussion Paper

U Optimal Balanced Control for Call
Centers

Sandjar Bhulai’

Taoying Farenhorst-Yuan’
Bernd Heidergott'?
Dinard van der Laan’?

T VU University Amsterdam,
2 Tinbergen Institute.

Tinbergen Institute

The Tinbergen Institute is the institute for economic
research of the Erasmus Universiteit Rotterdam,
Universiteit van Amsterdam, and Vrije Universiteit
Amsterdam.

Tinbergen Institute Amsterdam
Roetersstraat 31

1018 WB Amsterdam

The Netherlands

Tel.: +31(0)20 551 3500
Fax: +31(0)20 551 3555

Tinbergen Institute Rotterdam
Burg. Oudlaan 50

3062 PA Rotterdam

The Netherlands

Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Most Tl discussion papers can be downloaded at
http:/ /www.tinbergen.nl.

Optimal Balanced Control for Call Centers

Sandjai Bhulai * Taoying Farenhorst-Yuan !
Bernd Heidergott * Dinard van der Laan

January 18, 2010

Abstract

In this paper we study a challenging call center operation problem.
The goal of our analysis is to identify an optimal policy for allocat-
ing tasks to agents. As a first step, we discuss promising randomized
policies and use stochastic approximation for finding the optimal ran-
domized policy when implemented via a Bernoulli scheme. As we
will show in this paper, the performance of the call center can be
improved if the randomized policy is implemented by a deterministic
sequence satisfying some regularity conditions. Such sequences are
called balanced and we will show that implementing randomized poli-
cies by balanced sequences provide an additional step in optimization
and control. This motivates our new approach where we avoid the
intermediate step of first finding an optimal randomized control and
directly find the optimal balanced sequence for control of the call cen-
ter via stochastic approximation.

Keywords: Call Center; Measure—Valued Differentiation; Bal-
anced Sequence, Optimization.

*Faculty of Sciences, Vrije Universiteit Amsterdam,
Email: sbhulai@few.vu.nl

tDepartment of Econometrics and Operations Research, Vrije Universiteit Amsterdam,
Email: tyuan@feweb.vu.nl

tTinbergen Institute, and Department of Econometrics and Operations Research, Vrije
Universiteit Amsterdam, Email: bheidergott@feweb.vu.nl

$Tinbergen Institute, and Department of Econometrics and Operations Research, Vrije
Universiteit Amsterdam, Email: dalaan@feweb.vu.nl

1 Introduction

The call center industry is a large and rapidly growing sector that provides
a variety of services to organizations and customers, e.g., handling of orders,
complaints, and questions, providing technical support, etc. This is an in-
tegral part of the customer relationship management of many organizations,
which is an easy concept but a hard reality. As more and more organizations
diversify and their products and services become more complex, the efficient
operational control of call centers has grown in complexity as well. In partic-
ular, efficient workforce management has been the center of attention, since
this forms a substantial part of the operational costs. Generally speaking,
the objective of the call center is to constrain the expected waiting time in
the queue of an arbitrary customer. On the other hand, modern call centers
are also faced with other tasks with a less strict requirement, such as emails,
web messages, and outbound calls. This work typically has a less tight con-
straint, and therefore the objective of the call center is to serve as many jobs
as possible per time unit (called throughput).

In this paper, we study a call center where we can distinguish the two
types of work by type 1 (incoming calls) and type 2 (emails, outbound calls,
etc.) jobs. Both job types have different service requirements, and there is
a common pool of agents to serve both of them in a non-preemptive regime.
The system is depicted in Figure 1. More specifically, the two types of jobs
have independent exponentially distributed service requirements with rates
py and po, and we let puy # puo. Type 1 jobs arrive according to a Poisson
process with rate A, and there is an infinite waiting capacity for jobs that
cannot be served yet. There is an infinite supply of type 2 jobs. There are
a total of C' identical agents (servers). The question is how to efficiently use
the workforce to maximize the throughput of type 2 jobs while guaranteeing
that the long-term average waiting time of type 1 jobs is below a predefined
constant a.

While this type of system has been intensively studied in the literature,
no exact optimal policy has been identified yet in the case of unequal service
rates (i.e., 1 # po), which is due to the complexity of the solution and the
model. See Section 2 for a detailed discussion of the available literature.

In this paper, we develop a new approach to finding an optimal control
for the described call center by means of deterministic sequences enjoying
the property of “balancedness”. Balanced sequences have been introduced
for implementing randomized policies. We set off with the classical approach

Server Pool

& Arrival Servi t
& rate ervice rate |,
* Agent 1

|
|
|
LH '
Incoming |
calls |
& Job Queue 1 | &
|
|
| .
| .
| .
|
|
|
|
|
|
|

Serve which

queue?
Service rate p,
Outgoing
calls

= A
% / Job Queue 2

Figure 1: A call center system

by first introducing randomized policies for the call center control problem
via the Bernoulli scheme. Secondly, we apply stochastic approximation tech-
niques to find the optimal randomized policy. Finally, we model the optimal
randomized policy by a balanced sequence to show that this leads to an even
better system performance.

A key observation of our analysis is that the overall optimal randomized
sequence can be improved if the optimization is directly carried out over the
set of balanced sequences. To this end we will introduce an estimator for the
sensitivity of the call center performance with respect to the density of the
balanced sequence. This leads to the following optimal balanced control
(OBC) approach:

1. Identifying Policies: Define competing deterministic policies for the
control problem at hand.

2. Stochastic Optimization: Apply stochastic approximation techniques
in order to find the optimal balanced sequence.

3. Implementation: Give the deterministic balanced sequence resulting
from the previous step to the call center manager for implementation.

The OBC method transcends to other call center problems, which is an
important methodological contribution in call center management. OBC is
focused on mixing well-understood policies to achieve multiple objectives,
and finds mixing parameters to randomize insightful policies in a determin-
istic fashion. This has a major impact on control policies in hardware (such
as automatic call distributors [ACDs] in call centers).

This paper is organized as follows. A detailed review literature is pro-
vided in Section 2. In Section 3 we present a challenging call center operation
problem, which we will use throughout the paper for numerical experiments.
In Section 4 we address optimization of the call center for Bernoulli scheme,
and we will provide a phantom gradient estimator. In Section 5, we intro-
duce balanced sequences, and show that applying a balanced sequence to the
control of the call center yields better performance than when a Bernoulli
control policy is used. Moreover, our approach to finding the optimal bal-
anced sequences is presented. Extended numerical results are provided in
Section 6.

2 Literature Review on MDP and Balanced
Sequences

2.1 The Call Center Model in the Literature

The call center model under discussion has been initially studied for the case
of equal service rates (i.e., u; = p2) by Bhulai and Koole (2003), Gans and
Zhou (2003), Perry and Nilsson (1992), and by Gurvich et al. (2008) who
study multiple classes of calls. Shumsky (2004), Stanford and Grassmann
(2000), and Wallace and Whitt (2005) consider fixed, static priority policies.
A similar approach is adopted by Koole and Talim (2000) and Franx et al.
(2006), who provide an approximate analysis of the overflow behavior from
one pool of agents to another. For a literature survey on asymptotic heavy-
traffic regimes we refer to Koole and Mandelbaum (2002) and Gans et al.
(2003).

Armony and Maglaras (2004) study a problem which is related to our
model but in many ways different. The authors assume that the service
rates of both job types are equal and do not address the more difficult case of
unequal service rates. Moreover, they perform an asymptotic analysis based
on ‘many-server’ limits. A similar remark holds for Dai and Tezcan (2008),

and Gurvich, Armony and Mandelbaum (2008). However, our method does
not require an asymptotic analysis and provides a policy that works well
in all regimes, not only the QED-regime or the Halfin-Whitt regime. This
is a much stronger result especially when practically applied to smaller call
centers with a mix of heterogeneous call types.

2.2 Randomized Policies and MDP

A standard approach for deriving effective scheduling and routing policies for
workforce management in call centers is via dynamic programming, respec-
tively, Markov decision processes. This technique results in dynamic policies
that depend on the current state of the call center, i.e., the number of calls
currently in service and the number of calls in the queues distinguished by
their type if there are multiple customer classes. Unfortunately, the iden-
tification of effective scheduling policies via dynamic programming is often
impractical, both analytically and numerically, due to the dimensionality
of the state space. Hence, standard algorithms such as value iteration or
policy iteration for computing optimal policies break down. Moreover, in a
constrained problem the optimal policy is usually found within the class of
randomized policies as opposed to the class of deterministic policies (see Alt-
man (1999)). This provides another reason why standard techniques fail,
since they are not tailored to find the optimal randomized policy.

A randomized policy introduces a probabilistic law over the set of possible
actions and tries to find the optimal distribution so that the (steady-state)
performance is maximized. In the simplest case, there is in each state the
choice between two actions, say a; and a,. Both actions define a particular
Markov kernel, say a; yields P and a, yields). The randomized policy is
then modeled through

Qs = 0P+ (1-0)Q, (1)

with 6 € [0,1]. Denoting the stationary distribution of @y by 7, (existence
assumed), the dynamic programming problem can be expressed as follows

maXge(o,1] 7o f (2)
s.t. meg < c,

where f, g are performance indicators and ¢ is a constant.
Given the optimal solution 6* of the above optimization problem, the
actual policy that has to be implemented is that at each transition moment

a coin is tossed with probability of success 6*, and action a; is taken if the
experiment yields “success” and as is taken otherwise. This is called the
Bernoulli scheme. This interpretation of * has two major disadvantages: (i)
The coin tossing mechanism introduces additional randomness to the sys-
tem; and (ii) the implementation of the policy is somewhat awkward as, for
example, a manager of a call center has to agree to let the control actions be
governed by a coin-tossing experiment.

2.3 Balanced Sequences

This problem of implementing randomized policies has been acknowledged in
the literature, see, for example, Altman and Shwartz (1993). To overcome the
above drawbacks of randomized policies, we propose to use so-called balanced
sequences for the modeling and interpretation of randomized MDPs. The
basic idea of balanced sequences is a rather simple one. Suppose 0* equals
2/5, and let 1 refer to decision a; and 0 to decision as. A property of a
(recurrent) balanced sequence for 2/5 is that it is a deterministic sequence
of zeros and ones for which in each subsequence of length 5 there are exactly
2 occurrences of a “one”. More specifically, for 2/5 a possible balanced
sequence is 0010100101001.... Details on balanced sequences will be
provided latter on in the paper.

Balanced sequences obviously overcome the drawback of a randomized
policy that for the later one control decisions are drawn according to a ran-
dom mechanism, see (ii) above. An even more interesting fact is that the
variance reduction induced by balanced sequences, see (i) above, can lead
to better performance than a straightforward implementation of the corre-
sponding randomized policy. For some special cases this could be proved
with mathematical rigor, see Altman et al. (2003) and the references therein.

Balanced sequences have been studied for a long time (see, e.g., Morse
and Hedlund (1940)) and many properties were derived but this was not in
the context of optimal control. However, in Hajek (1985) it was proved for
some specific admission control problem that the optimal control sequence
U = (uy,us,...) is within this subset of sequences with “good balance”.
After that control by such sequences have been applied to more scheduling,
admission and routing problems in the area of queueing and discrete-event
systems, see, for example, Altman et al. (2002), Altman et al. (1998), Altman
et al. (2000a), Altman et al. (2000b), Shinya et al. (2004).

Using the concept of multimodularity, Altman et al. (2003) gives an

overview of control problems for which optimality of such sequences follows.
However, quite some assumptions and specific type of control policies were
needed to apply the concept of multimodularity. First it was used for ad-
mission control and then extended to some specific routing and/or polling
problems. In this paper we apply these sequences with “good balance” to
problems which do not fall within the framework for which multimodular-
ity was established in Altman et al. (2003). Therefore we do not know a
priori that the optimal control sequence is within the subset of sequences
with “good balance”. However, our objective is to show that restricting the
optimization to such sequences is still very useful since the obtained pol-
icy outperforms other well-known and applied policies such as the Bernoulli
policies.

3 The Call Center Operation Optimization
Problem

A detailed description of the model will be given in Section 3.1. In Sec-
tion 3.2 and Section 3.3 we will introduce two randomized policies for the
call center operation problem. The optimization problem will be presented
in Section 3.4.

3.1 The System Process

We model the system through the queue length process embedded at event
epochs, where each arrival of a job, the finishing of a service by an agent
and the assignment of a job to an agent is called an event. Specifically, we
introduce the following variables:

e L,(n), the queue length just before the nth event;

e Si(n), the number of type 1 jobs being in service at the nth event;
e S3(n), the number of type 2 jobs being in service at the nth event;
e 7(n), the time at which the nth event occurs, with 7(0) = 0;

e T'(n), the time elapsed between the (n — 1)st and the nth event; more
specifically, T'(n) = 7(n) — 7(n — 1), for n > 1.

We describe the system by a Markov chain:
X 2 {X(n) 2 (Ly(n), $1(n), S(n), 7(n), T(n)) : n € N},

and denote its state space by S 2 N x {0,...,C}? x [0, 00)2.

The objective for type 2 jobs is to maximize its throughput, i.e., to serve
on average per unit of time as many type 2 jobs as possible, of course at the
same time obeying the constraint on type 1 waiting time. Due to the fact
that we are considering long-term average performance it is only optimal to
schedule jobs at completion or arrival instants. Indeed, if it is optimal to
keep a server idle at a certain instant, then this remains optimal until the
next event in the system. Therefore it suffices to consider the system only
at completion or arrival instants. Note that the policy for assigning jobs
to vacant servers is not specified at the moment and we will discuss in the
subsequent section two standard policies.

3.2 Trunk-6 Reservation Policy

In Bhulai and Koole (2003), the optimal policy for the case of equal service
requirements (i.e., iy = fio) is trunk reservation. In this study we will ex-
plore the performance of a trunk reservation for the case of unequal service
requirements. For trunk reservation, there will be always K agents reserved
for type 1 jobs. Only when there are more than K agents idle, those extra
idle agents will serve type 2 jobs. Figure 2 displays the behavior of the wait-
ing time of type 1 jobs and the throughput of type 2 jobs when K varies. In
this example with time unit of one minute the used values of parameters are
A=1/2, 1 =4/10, uy = 3/10, and C = 5. We see that the average waiting
time decreases slowly, while the throughput decreases almost linearly.

The figure could be interpreted as follows, for a given waiting time con-
straint « (the guaranteed maximum average waiting time of type 1 jobs),
one can read the optimal threshold value K. Suppose o = 1/6 minutes, then
the optimal K value is between 1 and 2. So we would like to have a policy
where the threshold of trunk reservation is randomized between K; — 1 and
K, = 2. This means that at an arrival or service completion instant, with
probability € the trunk reservation policy with threshold K; will be used,
and with probability (1 — @) the one with threshold K5 will be used. We call
such policy a trunk-0 reservation policy.

performance

—g— waiting time E(W‘)]
- © - throughput E(TPZ)

Figure 2: The performance of a trunk reservation policy as a function of K

The performance of the trunk-0 reservation policy with Ky = 0, Ky = 1
are displayed in Figure 3(a), and with K; = 1, Ky = 2 are shown in Figure

3(b).

As we can see from the figures, both the average waiting time and

the throughput increase as 6 increases. Thus the throughput of type 2 job
reaches its maximum at the point where the average waiting of the type 1
job is equal to the constraint a.

£
]
E o7

0 0.1

02 03 04 05 06
0

(a) Kl = O,KQ

07

08 09 1

1

f

b) K1 =1,Ky =2

Figure 3: The performance of a randomized trunk-6# reservation policy

For the trunk-6 reservation policy, P denotes the transition kernel of a
Markov chain when the trunk reservation policy with threshold K is used
and () denotes the transition kernel of a Markov chain when the trunk reserva-
tion policy with threshold K is used. Thus the Markov kernel corresponding

to the randomized trunk reservation policy is given by
Qo =0P+ (1-0)Q.

Solving the dynamic programming problem stated in (2) will lead to an
optimal randomized policy, i.e., it will find the optimal value for 6 that
maximizes the throughput while satisfying the waiting time constraint.

3.3 Flow Rate Policy

Bhulai and Koole (2003) noted that if a agent becomes idle while there are
type 1 jobs waiting in the queue, then the action that schedules a type 1 job
is among the set of optimal actions. Furthermore, since we are interested in
the long-term throughput, delaying the processing of a type 2 job does not
change the performance for this class. Based on these reasons, we propose
the following flow rate policy: if there is a type 1 customer in the queue, idle
agents will always serve them; only when the queue is empty, idle agents have
probability 6 to serve type 2 customers. More specifically: at each arrival
and departure instant, assume that there are N idle agents, and there are
M type 1 jobs in the queue. If N < M, all idle agents will serve type 1
jobs. If N > M, M idle agents will serve type 1, and at the same time, each
of the extra N — M idle agents will simultaneously and independently flip
a coin, where with probability 6 this idle agent will serve a type 2 job and
with probability 1 — 6 this agent will remain idle in order to wait for the next
possible arriving type 1 job. We call this the 0-flow rate policy.

Figure 4 displays the average waiting time of type 1 jobs and the through-
put of type 2 jobs as a function of # while the flow rate policy is used. The
system parameters are A = 1/2, u; = 4/10, o = 3/10, and C = 5. As we
can see from Figure 4, both the waiting time and the throughput increase
when 6 increases. Intuitively 6 presents the service capacity assigned to type
2 jobs. We tend to increase # to obtain a larger throughput for type 2 jobs.
On the other hand, we cannot choose 6 too large since the constraint on the
waiting time of type 1 job has to be satisfied.

Denote P as the transition kernel of a Markov chain where idle agents
first check whether there are type 1 jobs, if there are, they will serve a type
1 job. If there are no type 1 jobs, they will serve a type 2 job. Denote () as
the transition kernel of a Markov chain where idle agents check also whether
there are type 1 jobs, if there are, they will serve a type 1 job. If there are

10

E(W,) minutes

1 I 1 I 1 I 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: The waiting time and the throughput of the system with the flow
rate policy

no type 1 jobs, they will always stay idle. Then the Markov kernel of the
system under the f-flow rate policy is given by

Qo =0P +(1-0)Q (3)

and solving the dynamic programming problem stated in (2) will lead to an
optimal randomized policy, i.e., it will find the optimal value for 6.

Remark 1. Note that the model put forward in (3) is simplified in the sense
that transitions of the Markov chains are triggered by arrivals and service
completions only; and, for the sake of simplicity, we have omitted specify-
ing the detailed transition dynamic modeling the assignment of tasks to the
agents.

3.4 The Optimization Problem

Observe that both E[WW;(0)] and E[T P,(0)] increase as # increases for the
flow rate policy as well as for the trunk-6 reservation policy. The optimiza-
tion problem in (2) is therefore equivalent to solving the implicit equation

11

E[W.(0)] = a, which has the same solution as E[(WW;(f) — «)?] = 0. Since
E[(W,(0)—a)?] > 0, the constrained optimization problem in (2) is equivalent
to the following unconstrained optimization problem

: - 2
Jnin. E[A(W:(0) — o)7],

where A is a scaling factor to compensate for the fact that (WW,(0) — a)? is
usually small.
For s = (I, 51, $2,7,t) € S, let

g(s)=1-t (4)

denote the queue length mapping.
The long-run average queue length L,(6) is then given as:

L,(6) = lim 2 izt 9(Xo (D)) (5)

e (n)

where we introduce the #-subscript to the system process X (n) to indicate
the #-dependence of the process. By Little’s law:

Lq\Y) _ > i1 9(Xo (i)
A n—o00 A7 (n) '

Denote the long-run cost function by C(0):

n . 2
_ _)] = lim 4 (2= 9(Xe(@)
C(0) =E [A(Wi(0) —)] = nh_)ngoA <) al . (6)
To keep the presentation simple, we will approximate the long-run average
cost by a transient simulation experiment over a fixed time horizon 7. Let
M(T, 0) denote the (random) number of the events until time 7" and choose
T sufficiently large so that

2

CO ~C(T,0)=E|A|— Z g(Xe(i)) —a | | . (7)

This way we avoid a discussion on simulation techniques of steady-state char-
acteristics which would distract from the main analysis of the paper. Note
that the model in (7) allows for letting 7" denote the operation period of the
call center, for example, the opening time during a week-day.

12

4 Optimizing the Bernoulli Control Policy

As we have explained in the previous section, the constrained optimization
problem (2) is equivalent to the following unconstrained version of the opti-
mization problem:

o

C(0") = min C(0). (8)
In words, the optimal scheduling policy is given by the value of # that yields
the minimal long-run average cost C'(0) = Eq [A(W;(0) — «)?]. In general,
call centers violate the rather restrictive conditions for solving (8) analyti-
cally. Thus one has to resort to simulation for obtaining the optimal value
of the control parameter. A standard method for finding the optimal value
in an iterative procedure is stochastic approximation (SA). The general form
of SA is as follows

Ore1 = o) (0 — axVCy) , (9)

where 0 is the parameter vector at the beginning of iteration k, VCj is an
estimate of VC(6) (the gradient of C(6y)), ax is a (positive) sequence of
step sizes, and Il 1 is the projection onto (0,1). It can be shown that under
suitable conditions 0, — 6* for k towards oc with probability one.

The randomized policy between P and () is given by the convex combi-
nation

and differentiating the above expression yields
Qy=Pr—Q.

The above representation of the derivative of)y with respect to 6 as dif-
ference between two Markov kernels is called a measure-valued derivative in
the literature. Measure-valued differentiation (MVD) is an extension of the
concept of weak differentiation introduced by Pflug, see Pflug (1996). The
theory of MVD for Markov chains as worked out in Heidergott and Vazquez-
Abad (2008, 2006), Heidergott and Hordijk (2003), Heidergott et al. (2006)
is an operator approach to calculating derivatives of Markov kernels such as
Qo

An MVD based estimator evaluates the gradient by the difference be-
tween the performance evaluated for variants of the processes, called phan-
tom processes. Evaluating the difference between sample paths of the same

13

Markov chain with different initial values are also called perturbation realiza-
tion factors in the literature, see Cao (2007). There is a close relationship
between gradient estimation via realization factors and that via measure-
valued differentiation, see Heidergott and Cao (2002).

A phantom estimator for the Markov chain with kernel (Qy can be obtained
as follows. We simulate the system process Xy(n) according to Qp. At a
particular transition of the system process we split the sample path. We do
this by performing this particular transition for one sub—path according to
the positive part of)}, that is, P, and for the other sub-path according to
the negative part of 0}, that is, (). Then, we again generate the transitions of
the two processes according to (y. We estimate the gradient by the difference
between the performance evaluated for both variants of the processes. More
specifically, we introduce “plus” and “minus” processes {Xj (s, k) : k > 1}
, called phantoms, as follows. At a particular state s, the nominal process
“splits” in three different trajectories. The transition from s to X, (s, 1) is
governed by P and that from s to X, (s,1) by @, respectively. For k > 1,
the transition from X (s, k—1) to X;(s, k) is governed by Q. That is, from
then on, the remaining transitions are governed by (g, and the phantoms
and the nominal process show statistical identical transition behavior.

Let M*(s,T,0) denote the number of events until time T of the “plus”
and “minus” phantoms where the phantoms are generated from the state s
in the nominal path, and let

1 M*E(s,T,0)—j+1
Wi =15 >, 9(X5(shk)

k=1

denote the waiting time estimate for the phantoms originated from perturb-
ing the transition out of state s = Xy(j). With this notation, the performance
measure A(WW,(0) —a)? obtained by the “plus” and “minus” phantoms where
the phantom generated from perturbing from the jth transition is given by

2
1 M=*(s,T,0)—j+1

AWE(s,§) =)’ = A | 17 Y. 9X{f(s k) —a| . (10)

k=1

The difference between the cumulative costs over the “plus” and “minus”
phantoms for the transient simulation is given by

D(s,j) & AW (Xo(s,5)) — a)* = A(W[(Xo(s,5)) —)®, (11)

14

with s € S and j > 1. The Phantom Estimator (PhE) is obtained by:

M(T,9)
PhE(T) £ Y~ D(Xy(k), k). (12)

The above expression for PhE(T') can be phrased as follows: at each state of
the nominal process a “plus” and a “minus” phantom is generated and the
derivative is estimated by the scaled difference between the cumulative costs
over the “plus” and “minus” phantoms. By standard theory of MVD, see
Heidergott and Vazquez-Abad (2006), it then holds that

d 2] _
ZFEIAWL(0) —)*] = E[PhE(T)].

In words, the phantom estimator is unbiased for the derivative of the weighted
average waiting costs.

4.1 Coupling schemes

A straightforward application of the phantom estimator requires to simulate
the phantoms until they reach the fixed time horizon 7'. Fortunately, due to
the strong Markov property and the fact that service and interarrival times
are exponential (and thus memoryless), as soon as the phantoms reach the
same physical state, i.e., the number of jobs waiting and the number of type 1
and type 2 jobs in service, then their future is, given that state, independent
from the past. This allows to identify their sample paths from that state on.
More precisely, let

Xi(n) = (LE(n), SE(n), S5 (), (), T*(m)).

for n € N. Then, as soon as for some n it holds that information on the
physical state is identical, that is,

(Lg (n),S1"(n), 85 (n)) = (L, (n), Sy (n), S (n)),

the future of the phantoms can be identified and we may set X, (m) =
X, (m), for m > n. This coupling is called discrete time coupling (DTC) and
the phantom estimator with this coupling scheme is called the DT C-phantom
estimator.

15

Alternatively, a different coupling can be constructed elaborating on the
fact that X, (n) and X, (n) are embedded chains of a continuous-time queue-
length process. To see this, introduce the continuous-time physical process
as follows. For ¢t > 0 let

(L (1), ST (), S5 (1) = (L5 (n), ST (n), Sy (n)), 75 (n—1) <t <7%(n).

At a transition of the, say, “plus” phantom we compare the new state of the
“plus” phantom with the state of the “minus” phantom at the same instance
in time. Specifically, if either

(L), SHE (), S5 (7)) = (L (7 (), S7 (7 (), S5 (7 ()

(L), St (), S () = (L7 (7 (), ST (7~ (), S5 (r~ (),

then the physical states of both phantoms coincide at time 71 (n) (respec-
tively, 77 (n)) and we can couple the phantoms from that moment on. We
call this the continuous time coupling (CTC) and the phantom estimator
with this coupling scheme is called the C'T'C-phantom estimator.

Before we apply the above gradient estimators to finding the optimal
for the Bernoulli sequence via the optimization procedure put forward in (9),
we will first introduce the balanced control scheme in the subsequent section.

5 Balanced Control

5.1 Introduction

Recall that P and @ denote the two Markov kernels that are mixed to control
the call center. A mixture of P and () is represented by an infinite sequence
U := (uy,uy,...) of zeros and ones where u; corresponds to the policy that
is applied at the j-th decision event for j = 1,2,.... Moreover, we let u; =1
correspond to applying P while u; = 0 corresponds to applying () at the j-th
decision event. More formally, we denote a transition kernel obtained from
mixing P and @) according to u € {0,1} by R(u) and define it as follows:

LOES P 1

16

For any 6 € [0,1] and ¢ € R a balanced sequence Uy , of density 6 is obtained
by putting

uoo(j) = 10+ 6] = (G = 1)0+6) for j=1,2..... (14)

where |x] is the largest integer smaller than or equal to z. Sequences con-
structed in this way are also called lower bracket sequences which are known
to be regular, see Appendix 9 for details. The density # uniquely determines
the sequence modulo a shift and in fact by varying the so-called wnitial phase
¢ the sequence is only shifted. Thus varying ¢ in this construction does not
change the performance of the corresponding balanced control policy and in
practice any ¢ can be chosen, in particular, ¢ = 0. For example, letting
6 = 1/2 and ¢ = 0, yields the sequence 0,1,0,1,... whereas, for example,
¢ = 3/4 yields 1,0, 1,0,.. ..

A key observation for balanced sequences is that when ¢ is taken to be a
uniformly [0, 1] distributed random variable, then the marginal distribution
of up,(j) is again a Bernoulli distribution. In this paper we will use this
fact to simulate balanced control of rate 6 as follows. Let ® be uniformly
distributed on [0, 1], and independent of everything else. Then for given
0 € [0,1] we have an infinite sequence of Markov kernels {R(Uys(j))}32,
defined by

R(Uye(j)) = Upa(5) P+ (1 = Upe(j)) @, (15)

where Uy ¢(j) is defined in (14).

We call the random sequence {R(Ups(j))}32, of Markov kernels a ran-
domized balanced (P, Q)-policy of rate 6. For a given realization ¢ € [0, 1) of
random variable ®, we get a corresponding deterministic sequence
{R(Up (7)) 32, of Markov kernels, where R(Upg(j)) = ugg(j)P + (1 —
up (7))@ for j = 1,2,... as shown in Equation (15). This is called the
lower bracket (P, Q)-policy of rate 6 and shift ¢. As shown in the following
lemma, when the expected value of the Markov kernel defined in (15) is taken
with respect to @ it yields the convex combination §P + (1 — 0)Q. The proof
of the lemma is provided in Appendix 10.

Lemma 2. Let {R(Ups(j))}32, be a randomized balanced (P, Q)-policy of
rate 0. Then for j = 1,2,... we have that

Eo[R(Uss(j))] = 0P + (1 - 0)Q.

17

Sampling over ®, yields a sequence of Markov kernels R(Up (1)), R(Up(2)),
... that has marginal distribution Qy = P + (1 —)@, which is identical to
the Bernoulli mixture of P and Q. However, due to the construction in (14),
the elements of R(Uy(n)) are not mutually independent, as opposed to the
Bernoulli scheme, where an i.i.d. sequence Uy(n) of Bernoulli random vari-
ables with probability P(Up(n) = 1) = 6 is used and the resulting sequence
of kernels {R(Up(n))} is an i.i.d. sequence.

5.2 Balanced Sequences are Better
For an infinite sequence U = (uy, us, . ..) of zeros and ones let

k+n—1

s(k,n) = Z uj, k<mn,
=k

denote the numbers of ones in the subsequence of length n beginning at the
k-th element of U. With this notation s(n) := s(1,n) is the number of ones
in the prefix of length n of U. We say that U = (uy,us,...) has density
6 € [0,1] if lim,,_, s(n)/n exists and is equal to 6.

Let {Uyp(n)} be an i.i.d. Bernoulli sequence with probability of success 6.
From the strong law of large numbers it follows that {Uy(n)} has density 6
almost surely. For the sequence constructed in (14) it can be shown that that
| s(k,n) —nb |< 1 for every k,n € N. On the other hand for the Bernoulli
sequence s(k,n) is a random variable that is binomially distributed with n
trials and success probability 6. Hence the expectation of s(k,n) equals nf,
but it has a variance equal to nf(1—0). Moreover, the deviation | s(k,n)—n# |
is no longer bounded as n goes to infinity. Because of this variance in s(k,n)
one could expect that a Bernoulli policy for 6 has worse performance than a
regular policy with corresponding density . Numerical results shown in the
following example confirm this for the policies we apply in this paper. The
following example shows that this effect on the variance is present in the call
center.

Example 3. We apply the flow rate policy as introduced in Section 3.3. A
policy with parameter 6 is implemented in two ways:

(1) Bernoulli sequence: at each decision event a new random number u is
generated uniformly distributed on [0,1]. If u < 0, a type 2 job will be
scheduled.

18

1 T T T T T
“ —©&— Balanced Control Policy| 4
@ 08 — * — Bernoulli Control Policy | -
>
2 _ =
= 0.6 = 1
E _ -
sy
> 04p = _ o =20 :
=3 -~ T seconds
w 0.2f - 4
= 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
T T T T T T T T
1F \M
/w/
— 0.8 = 4
o’ =
E 0.6 ~ b
0.4 7 4
0.2 1
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: The performance comparison between the balanced control policy
and the Bernoulli control policy

(2) Balanced sequence: at the n-th decision event the next symbol u from
the reqular sequence of density 6 s picked. If u =1, a type 2 job will
be scheduled.

We have simulated the call center using both methods for generating a control
policy. The average waiting time of type 1 jobs and the throughput of type 2
jobs are plotted in Figure 5. As can be seen from Figure &, using balanced
control leads to better performance than using a simple Bernoulli random
control. The average waiting time of a type 1 job by using balanced control
1s much smaller than the one by using the Bernoulli policy in the area of 6 €
[0.3,0.7]. Especially for values of 6 around 0.5 the differences in performance
between the Bernoulli policy and the balanced policy are quite significant, but
the difference becomes much smaller if 8 is small (close to 0) or large (close
to 1). This can be explained by the fact that in that case the variance in
s(k,n) for the Bernoulli policy, nf(1 —), is relatively small.

To illustrate this effect in more detail, Figure 6(a) shows the average wait-
ing time of type 1 customers, denoted by E[W1], and its 95 percent confidence

19

e Pl
s k\y//ff
X

] N /
¢ o
= -7
/ W oss . K \
7 1)/j/
; o -~ Bernoulli Control Policy
- &N ¥
\ 08 s’

/7 Balanced Control Policy .

075 L
05 052 054 056 058 060 062 064 066 068 07 05 052 054 056 058 Oes 062 064 066 068 07
0

——— -
045 A 095 //-73 -
‘ Balanced Control Policy, -~ ©
Bernoulli CW ¥ alanced Control Policy, " -

02" g

(a) The average waiting time (b) The throughput

Figure 6: The performance comparison with confidence interval between the
balanced control policy and the Bernoulli control policy

interval, and Figure 6(b) shows the average throughput of type 2 customers,
denoted by E[T Py, and its 95 percent confidence interval. As shown in Fig-
ure 6, the balanced control policy yields significantly shorter average waiting
times and a higher average throughput than the Bernoulli control policy.

Furthermore, Figure 5 can be also interpreted as follows. To a given mean
waiting time « (the guaranteed mazimum average waiting time of type 1 jobs),
one can read the optimal value of 8. Next, one can read the throughput of type
2 jobs associated with o under the policy using the flow rate of 6. Suppose
the service level of type 1 jobs is 20 seconds. As we can see from Figure 5,
for the balanced control policy, by setting 6 around 0.46, we can obtain the
mazximum throughput of type 2 jobs around 0.95 while satisfying the waiting
constraint on type 1 jobs; whereas for the Bernoulli control policy, by setting
0 around 0.37, the obtained mazimum throughput of type 2 jobs is around
0.8. Thus it is clear that the throughput of type 2 jobs by using the balanced
control policy is higher than the one by using the Bernoulli policy, when they
both reach the constraint on the waiting time of type 1 jobs (i.e., a = 20
seconds).

As shown in the above example, the balanced control policy yields better
performance than the Bernoulli policy, that is, lower expected waiting times
and a higher throughput for a given 6. Most importantly, the optimal bal-
anced control yields better performance than the balanced control version of
the optimal Bernoulli control.

20

5.3 Optimizing the Balanced Control Policy

Recall that, by Lemma 2, it holds that E¢[R(Up¢(j))] = 0P + (1 — 0)Q, and
therefore

CERUsa ()] = (0P + (1-0)Q) =P~ @

df

In words, the derivative of the marginal Markov kernel of the Bernoulli se-
quence and that of the balanced sequence are equal. This makes it possible
to apply the phantom estimator presented in Section 4 to the balanced se-
quence. Indeed, for the Bernoulli sequence as for the balanced sequence the
input of the gradient estimator is identical: a sequence of 0,1 decisions, and
the derivative is given by forcing a particular decision to either equal to 1
or to 0; for details on the adaptation of the phantom estimator to balanced
sequences we refer to Appendix 8. Unfortunately, the resulting estimator is,
in general, biased. However, as we will illustrate by numerical experiments
the gradient estimator yields the correct results for the call center problem.
A deeper investigation on the unbiasedness of the phantom estimator expe-
rienced in our numerical experiments will be a topic of further research.

6 Optimal Balanced Control: Numerical Ex-
amples

6.1 Derivative Estimation

In this section, we consider a call center system with trunk-6 reservation
policy. The system parameters are o = 0.167,\ = 1/2, 1y = 4/10, us =
3/10,C = 5, T = 840 (measured in minutes representing 14h of operating
time of the call center) and K; = 1, K3, = 2. In order to reduce variance in the
simulation, we use three independent random number streams for generating
interarrival times and service times of type 1 and type 2 jobs.

We first perform an intensive simulation of Ey[W;] for various values of ¢
and fit a polynomial to the observed values. The derivative of the polynomial
serves as numerical approximation for the unknown true derivative.

We first address the question which phantom coupling scheme introduced
in Section 4 is preferable. Specifically, we compare

e the naive phantom estimator, i.e., without coupling;

21

e the DTC phantom estimator; and
e the CTC phantom estimator.

A comparison of the three variants of the phantom estimator is shown
in Figure 7. The phantom estimator without coupling shows considerable
numerical inaccuracy, while the other estimators yield good results compared
to the numerical approximation.

0.35 T T T T T T
— % — numerical approximation
—#*— PhE without coupling
031 | e DTCPhE

—4— CTC PhE

0.25

S
0.15F

dEW,) / do

0.1

0.05

0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

Figure 7: The derivative estimation comparison between different implemen-
tations of the phantom estimator

The direct implementation of the naive phantom estimator is not only
computationally inefficient it also tends to have high variance. The DTC
estimator avoids computing the period of the regular sequence correspond-
ing to a rational #, however it has more simulation burden than the CTC
phantom estimator.

To compare the efficiency of the estimators, we use the concept of work-
normalized variance, which balances the computational effort and variance of
the estimator, and is given by the product of the variance and the expected
work per run balancing computational effort and estimator variance, see
Glynn and Whitt (1992). We compare the work-normalized variance of three
variants of the phantom estimator in Table 1. The naive estimator without
coupling has poor performance. Its work-normalized variance is 53371 times

22

Table 1: The work-normalized variance of three implementations of phantom

estimator
the work-normalized variance
0 0.4 0.5 0.6 0.7 0.8
Without coupling 3.5654 3.3037 2.6927 13.4690 21.4063
DTC 0.0070 0.0055 0.0111 0.0181 0.0257
CTC 0.0977¢7993 1 0.0330e799 | 0.1000e79 | 0.3094e799 | 0.1231e7903

as high as that of the CTC estimator. Furthermore, the work-normalized
variance of the DTC method is on average 93 times higher than the one of
the CTC method.

Based on the above experiment results, the CTC estimator turns out
to have the best performance. We now compare the performance of this
phantom estimator with the gradient-free method of Finite Difference (FD).
FD estimates the derivative through

dC(0)

L C(B+A)-C(9)
a A '

The quality of the FD estimate heavily depends on the value of A, and for
our experiments, we set A = 0.01. Figure 8 shows the WNV of the CTC
phantom estimator and the FD estimate. On average the WNV of the FD
method is equal to 5 times the one of the CTC phantom estimator. Note
that apart from a significantly smaller WNV the CTC estimator does not
require the choice of A which is of key importance for the FD method.

6.2 Optimization

In this section we illustrate the application of the phantom estimator for
finding the optimal rate for the trunk-6 reservation policy, where we use the
stochastic approximation algorithm (9) for optimization.

For our experiment we set the waiting time constraint to @ = 10s. Conse-
quently we conduct the randomized policy with K; = 1, Ky = 2. The initial
guess is 0y = 0.3. The gain sequences are: ay = a/(k + 1). The value of
parameters are chosen as a = (0.7. The iteration algorithm is terminated if

23

x107°

-©-FD)
3.5/ —*—CTC PhE L]
© 4
2 -
g 3 .o
®© P
225 o
[0} ’,
N ’
®© 2 /'
€
5 6.._ Lo
€15 “o . -7
é -~ o_ - - _ef
E
[0}
£
0.5F i

b

0 . ‘ . ‘ . .

0.2 03 0.4 05 06 0.7 08 0.9

Figure 8: The performance comparison of CTC phantom estimator and the
FD method

|C'(0k+1) —C(0k)| < 0.01 in three successive iterates. Since the numerical val-
ues for E[(W; — 7)?] are rather small, we scale the performance function by
a factor A =100 and the resulting problem is to minimize E[100(WW; — 7)2].

For the CTC phantom estimator, the simulation time per iteration de-
pends on the coupling rate of two phantoms. In order to fairly compare
the performance between the phantom estimator and the FD method, we
give both methods for each iteration of the optimization algorithm around
30 seconds of CPU time. The optimization trace using the CTC phantom
estimator and the one using FD are shown in Figure 9. As can be seen in
this figure, the phantom estimator has a better performance than FD. Specif-
ically, the FD method requires 11 iterations to find the optimal setting of
0 = 0.576424 and the optimal performance measure is 0.130642; whereas the
phantom estimator finds the optimal setting after 5 iterations, with optimal
setting of 6 = 0.535893 the performance measure is 0.110930 which is better
than that obtained by FD.

6.3 Which Policy to Choose?

So far we have dealt with the problem of finding the optimal parameter
for a balanced mixing policy. We conclude this section with a comparison
between the two policies under discussion. For illustration purposes, we

24

0.9

rin cost function
——- CTC PhE optimization trace ||
—o— FD optimization trace

0.8

0.7

0.6

0.5

041

E[100 (W, - 7)°]

0.3

0ol starting point

W
\

wh
K
o

0.1 L I L Y
0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1

Figure 9: The optimization trace FD and phantom estimator of Ky = 1, Ky =
2, and a = 0.167

compare the performance of these two policies as in Figure 10. As we have
pointed out before, in order to solve the constrained optimization problem,
the figure can be interpreted as follows: to a given guaranteed waiting time
of type 1 jobs a, one can read the optimal value of §. Next, one reads the
throughput of type 2 jobs associated with « for this value of . Suppose
that the service level of type 1 jobs is 10 seconds and choose a randomization
between K; = 1, Ky = 2. As shown in Figure 10(a), the optimal throughput
of the flow rate policy is smaller than the one using the trunk reservation
policy. Figure 10(b) shows the performance for the waiting time constraint
a = 20 seconds, and K; = 0, Ky = 1. In this setting, both policies reach a
similar throughput for type 2 jobs.

The numerical examples put forward in this paper indicate that the flow
rate policy proposed in this paper yields a performance that is comparable
to the well-known trunk reservation policy, which has been proven to be
optimal in the case of equal service requirement in Bhulai and Koole (2003).
It is worth noting that the trunk reservation policy requires to identify the
values K, and K5, see Section 3.2. This makes the flow rate policy easier to
implement in practice.

25

T T T T T T T T T =
0.8k Trunk-6 reservation policy| |

" = = = Flow rate policy
O —
S o6} - g
£ -7
-
E o4l e - J
z .-
o o2f _-~-"0o=10 seconds .
=

e R
0'8:’/,\(45/_)]
A’y

o™
= 0.6 /~’ b
w .
0.4 B |
-’
.
0.2 - i
.
0 M L 1 L 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 T T T T T
8 = Trunk-0 reservation policy
5 08| == Flow rate policy b
c —
= 06 - 1
S Pie
04 Pthe o = 20 seconds 1
2 o I -
(A1) == - |
0 - - ! 1 1 ! 1 1 1 1
0 0.1 0.2 0.3 04 ' 05 0.6 0.7 0.8 0.9 1
| 0
I
1.5 T T T ™ T T T T T
|
—_ 1 = v -
N ==
o PRI
= -
w osf PR J
ke
R
L d
0 N 1 1 Il 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

(b) K1 =0,K; =1 and a = 20s

Figure 10: The performance of flow rate policy compared with the one of
trunk-6 reservation policy

26

7 Conclusion

We presented a new approach to the control of call centers via randomized
policies. Our approach relies on balanced sequences as implementation of
randomized policies and we have presented a gradient estimator that allows
to find the optimal balanced sequence for the control problem discussed in
this paper. This is a first result on the application of balanced sequences
in optimal control for complex systems. Topics of further research are to
find sufficient conditions for unbiasedness of our estimator. Another line of
further research will be studying control problems where the constraint is
given by a quantile.

References

Altman, E. (1999). Constrained Markov Decision Processes. London: Chapman
and Hall.

Altman, E., B. Gaujal, and A. Hordijk (2000a). Balanced sequences and optimal
routing. Journal of the ACM 47, 4.

Altman, E., B. Gaujal, and A. Hordijk (2000b). Multimodularity, convexity and
optimization properties. Mathematics of Operations Research 25(2), 324-347.

Altman, E., B. Gaujal, and A. Hordijk (2002). Regular ordering and applications
in control policies. Discrete Event Dynamic Systems 12(2), 187 — 210.

Altman, E., B. Gaujal, and A. Hordijk (2003). Discrete-Event Control of Stochastic
Networks: Multimodularity and Regularity. ASecaucus, NJ, USA: Springer-
Verlag New York, Inc.

Altman, E., B. Gaujal, A. Hordijk, and G. Koole (1998). Optimal admission,
routing and service assignment control: the case of single buffer queues. In
37th IEEE Conference on Decision and Control, Volume 2, Tampa, FL, USA,
pp. 2119-2124.

Altman, E. and A. Shwartz (1993). Time-sharing policies for controlled Markov
chains. Operations Research 41(6), 1116-1124.

Bhulai, S. and G. Koole (2003). A queueing model for call blending in call centers.
IEEE Transactions on Automatic Control 48, 1434 —1438.

Cao, X. (2007). Stochastic Learning and Optimization: A Sensitivity-Based Ap-
proach. New York: Springer.

Franx, G., G. Koole, and S. Pot (2006). Approximating multi-skill blocking sys-

27

tems by hyperexponential decomposition. Performance FEvaluation 63(8),
799-824.

Gans, N., G. Koole, and A. Mandelbaum (2003). Telephone call centers: tuto-
rial, review, and research prospects. Manufacturing and Service Operations
Management 5, 79-141.

Gans, N. and Y. Zhou (2003). A call-routing problem with service-level constraints.
Operations Research 51, 255-271.

Glynn, P. W. and W. Whitt (1992). The asymptotic efficiency of simulation esti-
mators. Operations Research 40(3), 505-520.

Gurvich, I., M. Armony, and A. Mandelbaum (2008). Service level differentation in
call centers with fully flexible servers. Management Science 54(2), 279-294.

Hajek, B. (1985). Extremal splittings of point processes. Mathematics of Opera-
tions Research 10(4).

Hardy, G. H. and E. M. Wright (1960). An Introduction to the Theory of Numbers
(Fourth ed.). Oxford: The Clarendon Press.

Heidergott, B. and X. R. Cao (2002). A note on the relation between weak deriv-
atives and perturbation realization. IEEE Transactions on Automatic Con-
trol 47(7), 1112-1115.

Heidergott, B. and A. Hordijk (2003). Taylor series expansions for stationary
Markov chains. Advances in Applied Probability 23, 1046-1070.

Heidergott, B., A. Hordijk, and H. Weisshaupt (2006). Measure-valued differentia-
tion for stationary Markov chains. Mathematics of Operations Research 31 (1),
154-172.

Heidergott, B. and F. Vazquez-Abad (2006). Measure-valued differentiation for
random horizon problems. Markov Processes and Related Fields 12, 509-536.
Heidergott, B. and F. Vazquez-Abad (2008). Measure-valued differentiation for
Markov chains. Journal of Optimization and Applications 136(2), 187-209.

Koole, G. and A. Mandelbaum (2002). Queueing models of call centers: an intro-
duction. Annals of Operations Research 113, 41-59.

Koole, G. and J. Talim (2000). Exponential approximation of multi-skill call cen-
ters architecture. In QNETs 2000: Fourth International Workshop on Queue-
ing Networks with Finite Capacity, Craiglands Hotel, Ilkley, West Yorkshire,
UK, pp. 23/1-10.

Lothaire, M. (2002). Algebraic Combinatorics on Words. Cambridge University
Press.

Morse, M. and G. Hedlund (1940). Symbolic dynamics II: Sturmian trajectories.
American Journal of Mathematics 62, 1-42.

28

Perry, M. and A. Nilsson (1992). Performance modeling of automatic call distrib-
utors: Assignable grade of service staffing. In 14th International Switching
Symposium, Yokohama, pp. 294-298.

Pflug, G. (1996). Optimization of Stochastic Models. Boston: Kluwer Academic
Publishers.

Shinya, S., M. Naoto, and K. Ryohei (2004). m-Balanced words: A generalization
of balanced words. Theoretical computer science 314 (1), 97-120.

Shumsky, R. (2004). Approximation and analysis of a queueing system with flexible
and specialized servers. OR Spektrum 26, 307-330.

Stanford, D. and W. Grassmann (2000). Bilingual server call centers. In D. Mec-
Donald and S. Turner (Eds.), Analysis of Communication Networks: Call
Centers, Traffic and Performance, Volume 208, pp. 31-47. Fields Institute
Communications.

Wallace, R. and W. Whitt (2005). A staffing algorithm for call centers with skill-
based routing. Manufacturing and Service Operations Management 7(4),
276-294.

8 Appendix A: Implementation of the Phan-
tom Estimator

In the following we discuss the implementation of the phantom estimator.
Denote the waiting time difference between two phantoms by A, (s):

Aw(‘svj) = W;—(S,j) - Wl_(svj)

1 M+(37T=0)_j+1 M_(S,T,e)_j+1
v DGO D SR (6 X V0l)
k=1 k=1

Note that there are only two different choices for the Markov kernel (P or
@) at the splitting point. Therefore, one of the two phantoms is equal to the
nominal path. Specifically, if the decision variable (either zero or one) for the
j-th choice is u(j) = 1, then the “plus” phantom is equal to the nominal path,
which yields Wi (s,) = Wi(f). In this case, using the difference variable
Ay (s), then average waiting time of the “minus” phantom is obtained by

Wi (s,7) = Wi (s,) — Au(s, j) = Wi(0) — Au(s,). (17)

29

On the other hand, if u(j) = 0, then average waiting time of the “minus”
phantom is equal to the nominal path, which yields W (Xy(s,7) = W1(0)
and

Wi (s,5) = Wi (5,4) + Au(s,5) = Wi(0) + Ay(s, j)- (18)

Let Z(j) be the indicator whether the transition kernel of the nominal path
is equal to P or Q:

S\]-7 if u(j) - 17
70) = { —1, ifu(j)=0.

The nominal path coincides with either of the phantoms and the average
waiting time of the phantom that has to be additionally simulated is obtained
from combining (17) with (18):

WI(G) _I(])Aw(saj)

Following this train of thoughts, the difference between the cumulative costs
in Equation (11) can be written as

D(s,5) = AZG) (Wa(0) — a) = (Wa(0) = Z(j) - Aus,9) — a)?) (19)
and the resulting gradient estimator is

d o
@EO[A(Wl(e) —a)] =

M(T,0

)
E Z AZ(j) (Wi(0) —) — (Wi(0) — Z(j) - Au(s,) —a)®) | . (20)

In the following we discuss implementation issues for the phantom esti-
mator when the balanced control policy is used. Let 6 be a rational number.
In this case # can be written as a fraction of two division-free integers, that
is, # = p/q, for p,q € N. In the balanced sequence for , there will be p
Is in any subsequence of length ¢ of ug4(n), and {ug4(k)} will be periodic
with the period length ¢. For example, the period of the balanced sequence
generated for § = 0.3 = 3/10 and ¢ = 0 is: (0,0,0,1,0,0,1,0,0,1) with
period length ¢ = 10. Let n%¢q denote the position in the period of the nth
element of {ug4(k)}. It is easy to see that if m%q = n%q, then for k > 1, it
holds that

ugg(m + k) = ugg(n + k).

30

We extend the state-space of the phantom process X 5t (n) with the auxiliary
variable ugf 4(n) denoting at which position in the period of the f-balanced
sequence the process is. For irrational #, using the fact that, on a computer, 0
is given in finite decimal notation, we may obtain a rational number equal or
arbitrarily close to 6 by applying the continued fraction algorithm on 6 (see,
for example, Chapter 10 in Hardy and Wright (1960)). Then in the coupling
schemes we extend the physical state by ugt’ ¢(n) In words, the “plus” and
“minus” version couple as soon as the following variables are identical: the
number of jobs waiting, the number of type 1 jobs in service, the number of
type 2 jobs in service, and the balanced sequences driving the policy have
the same position in the period.

9 Appendix B: Balanced Sequences

For an infinite sequence U = (uq, us, .. .) of zeros and ones,

k+n—1

s(k,n) = Z uj, k<mn,
=k

denotes the numbers of ones in the subsequence of length n beginning at
the k-th element of U. With this notation s(n) := s(1,n) is the number
of ones in the prefix of length n of U. We say that U = (uq,us,...) has
density 6 € [0,1] if lim, , s(n)/n exists and is equal to #. Consider, for
example, the case § = 1/2. Then the sequence (0,1,0,1,0,1,...) has rate
1/2 and could be used for modeling a mixing policy at § = 1/2. However,
(0,1,0,0,1,1,0,0,0,1,1,1,...) has also rate 1/2. The latter sequence is prob-
ably not a good choice as the sequences of consecutive ones and zeros lead
to a rater unbalanced system behavior.

In the following we introduce the concept of uniformly recurrent se-
quences. An infinite sequence U = (uy,us, ...) is uniformly recurrent if for
every finite subsequence W of U, an integer k exists such that W is a sub-
sequence of every subsequence of U of length k. Note that any periodic
sequence is uniformly recurrent. For example, the sequence (0,1,0,1,...) is
uniformly recurrent as any subsequence of length [is contained in any other
finite subsequence of length [+ 1.

Note that if U has some density 6, it is the asymptotic frequency of
the ones in U. If such U is applied as control sequence then policy P is

31

applied with fraction # of all decision events while () is applied with remaining
fraction 1 — #. Moreover, it follows for £ = 0,1,... that

lim s(k,n) —nf _
n—00 n

0.

Intuitively a small maximal absolute deviation between s(k, n) and nf means
that the ones and zeros are regularly distributed with density 6. Thus U
should be such that the maximal absolute deviation is small. It can be
shown that for every density 6 € [0, 1] there exists U for which the maximal
deviation of |s(k,n) — n#| is smaller than one. Such sequences are called
regular. Following, for example, (Altman et al. (2000a)), a sequence of zeros
and ones is called balanced if the difference in number of ones (or zeros which
is equivalent) for subsequences of the same length is at most one.

Obviously any regular sequences is a balanced sequence. Also it can be
proved (see, for example, Lothaire (2002) Chapter 1 and Chapter 2) that
regular sequences are uniformly recurrent.

Example 4. An example of a reqular sequences with density 0 = 2/5 is
the periodic sequence (1,0,1,0,0,1,0,1,0,0,1,0,1,0,0,...) . If 0 is rational
then corresponding reqular sequences are always periodic with period equal to
the denominator of 0. Thus 5 is the period of the sequence in this example.
Another ezample of a reqular sequence is the well-known (see Lothaire (2002))
Fibonacci sequence (1,0,1,1,0,1,0,1,1,0,1,1,0,...) with density § = (v/5 —
1)/2 which can not be periodic since its density 0 is irrational. However, also
the Fibonacci sequence is uniformly recurrent as any reqular sequence is.

By the classification of balanced sequences (see Morse and Hedlund (1940))
it follows that any sequence which is both uniformly recurrent and balanced
is in fact a regular sequence. Thus within the subset of uniformly recurrent
control sequences to which we restricted earlier regular is equivalent to bal-
anced. Therefore in this paper we use the term “balanced control policy” in
the following sense:

A balanced control policy of rate 6 € [0, 1] is a deterministic policy mix-
ing P and () according to an infinite control sequence U = (uy,us,...) of
zeros and ones where U is regular of density #. This implies that U is both
uniformly recurrent and balanced. Moreover, on average over all decision
events P is applied with fraction 6 and () with fraction 1 — 6.

32

Another useful fact is that regular sequences of given density 6 have the
same finite subsequences (see Lothaire (2002)) which implies that regularity
of a given density 6 uniquely determines the sequence (and thus also the
policy) modulo a shift ¢. Therefore balanced control policies of the same
density 0 have the same Césaro average performance and thus we may speak
of the balanced policy of rate # instead of a balanced policy of rate 6.

In this paper we compare while varying over 6 € [0, 1] the performance
of the balanced control policy of rate § with the Bernoulli policy of rate 6
while varying over § € [0, 1]. For simulation a practical implementation of
the balanced policy of rate 6 is necessary, several ways to construct regular
sequences are known. In this paper we use the one given by (14).

10 Appendix C: Proof of Lemma 2

Lemma 2: Let {R(Uys(j))}32, be a randomized balanced (P, Q)-policy of
rate 0. Then for j = 1,2, ... we have that

Eo[R(Use(j))] = 0P + (1 - 0)Q.

Proof. From 0 < 6 < 11t is easily seen that Uy ¢(j) €= {0,1} for j = 1,2,....
Thus the random variable Uy ¢(j) has a Bernoulli distribution. Also for any
r € R we trivially have that

/0[x+q§Jd¢:x. (21)

By (21) it follows that
Eo[Uns(j)] = / (10 + 6] — (G — 10+ 6))do
- / (130 + 6])do - / (LG —)0+ 6))do
— - (j—1)0=6.
Hence
1, with probability 6,

U (j) = { 0, with probability 1 — 4.

33

Thus

Eo[R(Uss(7))] = Ea[Up.e (7)1 + (1 = Eo[Up o (1))@ = 0P + (1 - 0)Q.

O

34

