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Abstract

We study a new class of problems – recurrent projects with random material delays, at the

interface between project and supply chain management. Recurrent projects are those similar

in schedule and material requirements. We present the model of project-driven supply chain

(PDSC) to jointly optimize the safety-stock decisions in material supply chains and the crashing

decisions in projects. We prove certain convexity properties which allow us to characterize the

optimal crashing policy. We study the interaction between supply chain inventory decisions

and project crashing decisions, and demonstrate the impact of the PDSC model using examples

based on real-world practice.

Keywords: Recurrent projects, random material delays, dynamic programming, crashing, safety-

stock.

1 Introduction

Today, complex projects frequently spend a significant portion of their budgets on material sup-

plies sourced from an extensive supply network. The success of these projects depends critically

on both the project and the supply chain operations. Examples can be found in construction and
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airspace/defense industries in particular, and in engineering-procurement-construct (EPC) indus-

tries in general.

While some of these projects are unique and one of a kind, many of them are routine and recur-

rent, i.e., they share similar schedule and material supplies. Indeed, as companies standardize their

processes and components to streamline their operations, recurrent projects are becoming increas-

ingly popular in practice. In these cases, the project and supply chain operations are intertwined

because the demand for the supply chain is driven by projects’ material requirement and project

progresses are constrained by random material delays. Despite the extensive literature of project

and supply chain management, project operations and supply chain operations are rarely studied

jointly in academia, and they are almost always managed separately in industry. This paper ex-

plores ways to improve the efficiency of recurrent projects by integrating project and supply chain

operations.

Specifically, we study a new class of problems - recurrent projects with random material delays

where the future projects’ occurrence and material requirement cannot be fully predicted in advance.

The project and supply chain decisions are naturally coupled because under-stocked supply chains

lead to excessive material delays which may increase project crashing (i.e., expediting) and delay

costs. To track down these problems, we develop a modeling framework to integrate project crashing

and supply chain safety-stock decisions. Our objective is to validate a new approach - carrying safety

stock for materials used in recurrent projects, in performance improvement for projects and their

material supply chains.

One motivating example is the Intercontinental Construction Management (ICM) Inc., a con-

struction management firm specialized in military buildings (the name is disguised to protect pro-

prietary information). Although each construction project has a unique goal, they are recurrent -

similar in schedule and material requirement. Structural steel is the most expensive material used

in all projects, which is subject to a long and random lead time. Because projects are awarded

through a bidding process, ICM cannot fully anticipate the occurrence of future projects and their

material requirement, and thus cannot order materials before projects are awarded. Consequently,

structural steel may be delayed behind schedule, in which case, ICM has to crash (i.e., expedite)

the remaining tasks as needed to meet the due date.

ICM has never looked at the safety-stock of structural steel as a part of the solution because

it assigns each project to a project manager who manages the project as a separate and unique

2



entity. ICM’s practice does not stand alone - project and supply chain are rarely managed jointly

in practice because of the distinct approaches to manage them. Projects are often managed on a

one-for-one basis while supply chains are often managed continuously across demand from multiple

projects. Such a one-for-one (or project-based) approach fails to take advantage of the similarity

across recurrent projects.

Recurrent projects are widely seen in many industries, e.g., construction and build-to-order

manufacturing, where standard components are combined in different ways to build complex and

customized products (e.g., houses, ships, aircrafts). In addition to ICM, other examples of recurrent

projects can be found in Walsh, et al. (2004), Brown, et al. (2004) and Elfving, et al. (2010).

Specifically, Walsh, et al. (2004) presents a case study of a food company that is frequently engaged

in projects of expanding an existing or adding a new facility. The key concern is on the critical

material of stainless steel components that are used in all projects and are subject to the longest

and most variable lead time. Brown, et al. (2004) presents the case study of Quadrant Homes

Inc. which follows a standard schedule in construction of residential houses. Elfving, et al. (2010)

conducts an empirical study on 180 projects by one Finnish construction company in five years

and shows that many projects share make-to-stock standardized materials. Finally, Schmitt and

Faaland (2004) shows that in addition to houses, projects of constructing airplanes and ships can

be recurrent.

The industry reports of Kerwin (2005) and Xu and Zhao (2010) further confirm the popularity of

recurrent projects in the construction industry. Kerwin (2005) shows that home-builders like Pulte

Homes Inc. offer only the most popular floor plans to boost efficiency in fulfilling tens of thousand of

new home orders in a year. Xu and Zhao (2010) surveys an important trend in construction industry

– prefabricated housing, where houses have limited variety and are assembled by prefabricated

materials. All these cases are characterized by repeating projects with limited variety and their

supply chains of standardized materials (see Figure 1 for an illustration).

One key issue of the recurrent projects is the coordination of material delivery and project

progress which is critical for on-time and on-budget completion of the projects. This is especially

true when materials account for a significant portion of the budget (e.g., 65% for residential houses

– Somerville 1999), and when material availability and delivery lead times are random, as illustrated

by the examples of ICM and Walsh, et al. (2004), and confirmed by an investigation of time waste

in construction (see Yeo and Ning 2002) which reveals that the site work-force spends a considerable
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Figure 1: Recurrent projects with standardized material requirements.

amount of time waiting for approval or for materials to arrive on site.

One way to improve the efficiency of recurrent projects is to explore the similarity among

these projects and plan for them on a continuing basis rather than for each project separately.

Specifically, the supply-based options, such as inventory management and strategic alliance, have

been considered to improve material supply management for recurrent projects. We refer the

reader to Walsh, et al. (2004), Brown, et al. (2004), and Elfving, et al. (2010) for case studies,

and Tommelein, et al. (2003), Tommelein, et al. (2009) for conceptual frameworks. These studies

focus only on material supplies rather than the integration between project-based and supply-based

decisions. However, the supply chain decisions are coupled with the project decisions: if materials

are in shortage and the project due date cannot accommodate the delays, project tasks will have

to be expedited which can be very costly, and the project is subject to delay. On the other hand,

holding inventory to guarantee immediate availability of all materials may not be wise. While

one can minimize the project crashing and delay costs, the supply chain inventory cost can be

unaffordably high.

In this paper, we develop an integrated approach to optimize supply chain and project decisions

simultaneously. Specifically, we provide a modeling framework, namely, the project-driven supply

chain (PDSC) model, to jointly optimize supply chain safety-stock and project crashing decisions

for recurrent projects with random material delays. In a nutshell, the PDSC model is a multi-stage

mathematical model where we make supply chain inventory decisions in the first stage, and then
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make crashing decisions dynamically as material delays are realized in subsequent stages. The

objective is to minimize the total safety-stock and project cost per unit of time. We prove certain

convexity properties of the cost functions and characterize the optimal crashing policy for each

project. We study the interaction between supply chain inventory decisions and project crashing

decisions. We also apply the PDSC model to a real-world example and demonstrate its potential

by comparing to the current practice. Finally, we conduct an extensive numerical study to generate

insights on when the PDSC model may provide significant savings.

The paper is organized as follows: after reviewing the related literature in §2, we present the

modeling framework in §3. Then, we provide an analysis for the optimal crashing policy in §4, and

study the interaction between inventory and crashing decisions in §5. In §6, we apply the model to

ICM and quantify its impact. In §7, we conduct a numerical study to generate managerial insights.

Finally, we conclude the paper in §8.

2 Literature Review

The project-driven supply chain (PDSC) model in particular and the integration of supply chain

and project management in general are related to the literature of project management, supply

chain management, and their interfaces such as project scheduling and material ordering (PSMO)

and construction supply chain management. We shall review related literature in each area.

Project Management Literature. The project management literature focuses primarily on

the planning and execution of a single project, which includes the classic results of critical path

method (CPM), time-costing analysis (TCA), project evaluation and review techniques (PERT) and

resource constrained project scheduling (RCPS). We refer to Ozdamar and Ulusoy (1995), Pinedo

(2005) and Jozefowska and Weglarz (2006) for recent surveys. The time-cost analysis (TCA) or

crashing analysis is a well developed technique in the project management literature to balance the

duration and budget of a project. Most work on RCPS focuses on non-consumable and reusable

resources such as machine and labor. For consumable resources (e.g., materials), the standard

approach is to assume fixed lead times and then model material procurement processes as tasks.

Supply Chain Management Literature. There is a vast literature of supply chain inven-

tory management mainly grown out of applications in the manufacturing industry. We refer to

Zipkin (2000), Porteus (2002) and Axsater (2006) for comprehensive reviews. For inventory place-
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ment/positioning models in general structure supply chains, we refer to Axsater (2006), Graves and

Willems (2003) and Simchi-Levi and Zhao (2011) for recent reviews. Graves and Willems (2005)

presents a general model to optimize stock decisions and supply chain configurations simultane-

ously for new product introductions. All of these works focus on material supply chains without

considering the project decisions and their interactions.

Our work is related to three models of stochastic inventory systems. The first model, see Hadley

and Whitin (1963), assumes full backorder and that the system fulfills demand as soon as on-hand

inventory becomes available. The second model, see Hariharan and Zipkin (1995), assumes also

full backorder but that the system fulfills demand only on or after it is due. Clearly, it is possible

to hold inventory and demand (not due) simultaneously in the second model. The third model,

see Graves and Willems (2000), assumes guaranteed service-time (unsatisfied demand is filled by

extraordinary measures other than on-hand inventory) and that the system fulfills demand only on

or after it is due. Graves and Willems (2003) calls the first two models “stochastic service-time”

models, and the third one the “guaranteed service-time” model.

In this paper, we cannot assume the guaranteed service-time model because the random material

delay (due to stock-out and/or random processing times) is a necessary part of the problem. We

shall use the stochastic service-time models – both the first and the second models for different

stages of the material supply chain.

Interface – Project Scheduling and Material Ordering (PSMO). One approach to incor-

porate consumable resources in project management is the PSMO model which jointly plans for

project schedule and material order quantities. This approach is based on the observation that

a project may repetitively require the same material over time. Given the project schedule, the

timing and size of material requirement are known, which serve as input to optimize material or-

der quantities so as to balance the fixed ordering cost and inventory holding cost. Clearly, the

project scheduling and material ordering decisions are coupled, and the question is how to jointly

optimize both sets of decisions for a project. Aquilano and Smith (1980) initiates this approach

by considering joint CPM and MRP planning with constant task durations. Smith-Daniels and

Aquilano (1984) and Smith-Daniels and Smith-Daniels (1987) present various extensions. More

recently, Dodin and Elimam (2001) considers varying task duration, early reward/late penalty and

quantity discount.

The PDSC model complements the PSMO model by taking uncertainty and the safety-stock
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issue into account. While the PSMO model focuses on the cycle stock issues for a single project

facing economies of scale in ordering, the PDSC model focuses on the safety-stock issues for re-

current projects subject to random material delays. While the PSMO model jointly optimizes

project schedule and material order quantities, the PDSC model jointly optimizes project crashing

decisions and material safety-stock levels.

Interface – Construction Supply Chain Management. The literature of construction man-

agement has traditionally focused on the management of individual projects (Tommelein, et al.

2003). Since middle 1990s, the supply chain management concepts and methodologies have been

introduced into this field and gained substantial attention. However, supply chain management is

still relatively new in the construction industry (O’Brien, et al. 2002, Tommelein, et al. 2003),

and most published results focus on qualitative and conceptual frameworks (Vrijhoef and Koskela

2000, Vaidyanathan and Howell 2007) or on case studies (Walsh, et al. 2004, Brown, et al. 2004).

There is a lack of rigorous mathematical modeling that integrates the issues of projects and ma-

terial supply chains, and resolves them jointly. We refer to O’Brien, et al. (2002) for a survey on

construction supply chain management.

In this literature, Walsh, et al. (2004), Brown, et al. (2004) and Elfving, et al. (2010) are

mostly related to our work. In particular, Walsh, et al. (2004) use simulation to determine the

proper positions of safety-stock in the supply chain of stainless steel components, independently of

any specific project, to reduce and stabilize the random lead time. These papers focus on supply

chain operations only without considering the project scheduling issues.

3 The Modeling Framework

In this section, we present the model of Project-Driven Supply Chain.

3.1 Preliminaries

We consider recurrent projects that share the same schedule and the same type of materials which

may be subject to random lead times. The starting times of the projects and the amount of each

material required are random. The model is depicted in Figure 2 where each project consists of a

set of tasks that are conducted sequentially. Each task (except the first one) requires a material

which is provided by a supply chain. Specifically, there are n + 1 tasks and task i (i > 0) requires
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Figure 2: The model of project driven supply chain.

a material which is supplied by supply chain i. Task i can start only after the required material

becomes available and task i − 1 completes. Orders for all materials are placed as soon as the

project starts. All projects share a standard schedule. We point out that the model remains

mathematically identical if task i is replaced by a group of tasks.

Assumption 1 We make the following assumptions on the project and supply chain operations,

as well as their interface:

• Project operations: (1) each task has a known duration and a known crashing cost function.

(2) The project delay penalty function is known. (3) There is no reward for completing the

project earlier than the due date. (4) No task can start prior to the planned starting time by

the standard schedule. (5) The standard schedule assumes no crashing for each task and no

time buffer between consecutive tasks.

• Supply chain operations: (1) every stage in the supply chains operates under a periodic-

review base-stock policy. (2) Processing times at all stages of the supply chain are sequential.

(3) Unsatisfied demand is fully backordered at each stage. (4) Orders are fulfilled on a first-

come-first-serve basis (FCFS) at each stage. (5) For any supply chain, delivery is made as

soon as inventory becomes available in all stages except the last one where no early delivery
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can be made to projects on-site. (6) The delivery lead time from the last stage of a supply

chain to projects on-site is negligible.

• Interface: (1) the occurrences of projects are independent, and the amount of each type of

material required are independent across projects. (2) All needed materials for one task of a

project must be delivered in one set. (3) Material delivery status cannot be updated along with

time. (4) Supply chains for materials required at different tasks operate independently. (5)

Material inventory cannot be held at projects on-site.

While most assumptions are common sense, a few require more explanation. Project assumption

(4) is standard in construction industry as equipment and personnel are typically not available

prior to the planned schedule. Project assumption (5) is based on the fact that tasks i (0 <

i ≤ n) are critical, and the observed practice that no time buffer is planned for material delays.

Supply chain assumption (5) and Interface assumption (5) are true when the project sites have

limited space – often applicable in construction. Interface assumption (2) is true when there are

significant economies of scale in transportation. We make Supply chain assumption (6) and Interface

assumption (3) for simplicity. Relaxations are discussed at the end of this section.

Given the standard schedule, the project-driven supply chain (see Figure 2) operates as follows:

task 0 is always on schedule because it is not subject to random material delays. Once task 0 is

completed and material 1 is delivered, task 1 starts immediately. If material 1 is ready before the

completion time of task 0, we hold it in inventory and pay a holding cost before delivering it at

task 0’s completion. Otherwise, material i is delivered immediately once it is ready. Depending on

the material delay beyond the standard schedule, task 1 may be expedited (but not earlier than

the completion time planned by the standard schedule) and incurs a crashing cost. Similar events

take place for subsequent tasks and supply chains. Finally, if task n is delayed beyond the planned

due date, a penalty is charged.

3.2 The Mathematical Model

To construct the model, we define the following notation:

• zi: the duration crashed for task i = 1, 2, ..., n.

• Zi: an upper bound on zi.
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• Di: the amount of material i required at task i for a project. Define D̄ = {D1,D2, ...,Dn}.
Let di (d̄) be the realization of Di (D̄, respectively).

• s̄i: the base stock levels in the supply chain i, a vector.

• Δi: the time when material i is ready subtracts the planned starting time of task i. Let δi be

its realization. If δi > 0, it refers to the material delay of supply chain i beyond the planned

starting time of task i; otherwise, it indicates how much earlier material i is ready than the

planned schedule.

• Δ′
i ≥ 0: the delay of task i − 1’s completion beyond the planned starting time of task i,

i = 1, 2, . . . , n. Let δ′i be the realization of Δ′
i.

• Wi((Δ
′
i − Δi)+): the inventory holding cost of material i at the last stage of supply chain i

if this material is ready before the completion time of task i − 1.

• Hi(s̄i): the annual inventory holding cost in supply chain i excluding Wi(·).

• Ci(zi): crashing cost function of task i.

• Δ′: project delay. Let δ′ be its realization.

• Π(Δ′): penalty cost if a project is delayed by Δ′.

• λ: the average number of projects completed in one year.

We construct a multi-stage mathematical model to determine the optimal base-stock levels for

all supply chains and the crashing decisions for all tasks of projects. In the first stage, we set

the base-stock levels for the supply chains. In subsequent stages, we consider each project and

determine the optimal crashing policy for each task as material delays are realized over the current

and subsequent tasks. Our objective is to minimize the annual supply chain and project cost.

Specifically, we utilize the flow-unit method (see Axsater 1990, Zipkin 1991, Zhao and Simchi-

Levi 2006) by keeping track of a specific project and its material requirement. To identify the

optimal crashing policy given a set of inventory decisions, we use a dynamic programming model

where we denote Gi(δ
′
i; s̄i, s̄i+1, ..., s̄n, di, di+1, . . . , dn) to be the minimum expected cost incurred

from task i on to the end of the project, including both supply chain and project costs, given the

delay from task i−1 being δ′i, the base-stock levels in supply chains i, i+1, ..., n being s̄i, s̄i+1, ..., s̄n,

and the amount of materials required from stages i to stage n being di, di+1, ..., dn.
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Consider i = n, because the probability distribution of Δn depends on s̄n and dn,

Gn(δ′n; s̄n, dn) = EΔn [Wn((δ′n − Δn(s̄n, dn))+)] +

EΔn [ min
0≤zn≤Zn

{Cn(zn) + Π((max{δ′n,Δn(s̄n, dn)} − zn)+)}], (1)

where the notation EΔn indicates that the expectation is taken with respect to Δn.

Similarly, for any i = 2, 3, ..., n − 1, we have,

Gi(δ′i; s̄i, s̄i+1, ..., s̄n, di, di+1, . . . , dn)

= EΔi [Wi((δ′i − Δi(s̄i, di))+)] +

EΔi [ min
0≤zi≤Zi

{Ci(zi) + Gi+1((max{δ′i,Δi(s̄i, di)} − zi)+; s̄i+1, ..., s̄n, di+1, ..., dn)}], (2)

and the transition function Δ′
i+1 = (max{δ′i,Δi} − zi)+.

For i = 1, because task 0 is not subject to any random material delay, Δ′
1 = 0 and we drop Δ′

1

from the notation. Following a similar logic as Eqs. (1)-(2), G1(s̄1, s̄2, ..., s̄n, d̄) can be written as,

G1(s̄1, s̄2, ..., s̄n, d̄)

= EΔ1 [W1((−Δ1(s̄1, d1))+)] +

EΔ1 [ min
0≤z1≤Z1

{C1(z1) + G2((max{0,Δ1(s̄1, d1)} − z1)+; s̄2, ..., s̄n, d2, ..., dn)}]. (3)

Consider all projects conducted per unit of time, our first-stage optimization problem is,

min
s̄1,s̄2,...,s̄n

∑n
i=1 Hi(s̄i) + λED̄[G1(s̄1, s̄2, ..., s̄n, D̄)] (4)

s.t. s̄i ≥ 0,∀i = 1, 2, ..., n.

In this model, we first determine the optimal crashing decisions upon each scenario of material

delays, then we optimize the inventory decisions accordingly.

4 Convexity and The Optimal Crashing Policy

In this section, we characterize the optimal crashing policy given the inventory decisions.

Assumption 2 We make the following assumptions:

1. Ci(·) and Π(·) are convex and increasing.
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2. Wi(·) is convex and increasing.

The convexity of the crashing cost, Ci(·), of a single task is justified by Nahmias (2004) Chapter

9. The crashing cost of a set of tasks is convex in the time crashed because one would first crash

the cheapest tasks. The assumption on the delay penalty Π(·) and inventory holding cost Wi(·)
includes the commonly seen practice of linear functions as a special case.

The following observations are straightforward, we omit the proof.

Observation 1 f(x, y) = (max{x, x0}− y)+ is jointly convex in (x, y) ∈ R2; if g(z) is convex and

increasing in z and f(x, y) is jointly convex in (x, y), then g(f(x, y)) is also jointly convex in (x, y).

By Observation 1, (max{δ′i, δi}− zi)+ is jointly convex in (δ′i, zi). By Assumption 2 and Obser-

vation 1, Π((max{δ′n, δn}− zn)+) is jointly convex in (δ′n, zn). These results are summarized in the

following observation.

Observation 2 (max{δ′i, δi} − zi)+ is jointly convex in (δ′i, zi) for 1 ≤ i ≤ n. Π((max{δ′n, δn} −
zn)+) is jointly convex in (δ′n, zn).

Proposition 1 Gi(δ′i; s̄i, ..., s̄n, di, ..., dn) is convex and increasing in δ′i for i > 1.

Proof. We use induction by first considering i = n. By Assumption 2, Cn(zn) is convex in zn.

By Zipkin (2000) Proposition A.3.10 and Observation 2, min0≤zn≤Zn{Cn(zn) + Π((max{δ′n, δn} −
zn)+)} is convex in δ′n. By Eq. (1),

Gn(δ′n; s̄n, dn) = EΔn [Wn((δ′n − Δn(s̄n, dn))+)] +

EΔn [ min
0≤zn≤Zn

{Cn(zn) + Π((max{δ′n,Δn(s̄n, dn)} − zn)+)}].

To show Gn(δ′n; s̄n, dn) is convex in δ′n, we only need Wn((δ′n − δn)+) to be convex in δ′n, which is

true by Assumption 2. Gn(δ′n; s̄n, dn) is also increasing in δ′n because Wn((δ′n − δn)+) is increasing

in δ′n (Assumption 2), and Π((max{δ′n, δn} − zn)+) is increasing in δ′n.

Now we consider 1 < i < n. By the induction assumption, Gi+1 is convex and increasing in

δ′i+1. By Eq. (2),

Gi(δ′i; s̄i, . . . , s̄n, di, ..., dn)

= EΔi [Wi((δ′i − Δi(s̄i, di))+)] +

EΔi [ min
0≤zi≤Zi

{Ci(zi) + Gi+1((max{δ′i,Δi(s̄i, di)} − zi)+; s̄i+1, . . . , s̄n, di+1, . . . , dn)}].
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By Observations 1-2 and the induction assumption, Gi+1((max{δ′i, δi}−zi)+; s̄i+1, ..., s̄n, di+1, ..., dn)

is increasing in δ′i and jointly convex in δ′i and zi. Following the same logic as for i = n, we can

show that Gi(δ′i; s̄i, . . . , s̄n, di, ..., dn) is increasing and convex in δ′i. The proof is completed. �

Theorem 1 There exists a threshold level, z∗i (depending on δ′i and δi), for task i (0 < i ≤ n),

such that the optimal crashing policy for task i, is to crash its duration by z∗i if feasible, otherwise

not crash if z∗i < 0 or crash Zi if z∗i > Zi.

Proof. We first consider i = 1. By Eq. (3),

G1(s̄1, s̄2, ..., s̄n, d̄) = EΔ1[W1((−Δ1(s̄1, d1))+)] +

EΔ1[ min
0≤z1≤Z1

{C1(z1) + G2((max{0,Δ1(s̄1, d1)} − z1)+; s̄2, ..., s̄n, d2, . . . , dn)}].

By Assumption 2, Proposition 1 and Observation 1, C1(z1)+G2((max{0, δ1}−z1)+; s̄2, ..., s̄n, d2, ..., dn)

is convex in z1. Let its global minimum be achieved at z∗1 , thus it is optimal to crash task 1 by z∗1

if 0 ≤ z∗1 ≤ Z1, otherwise not crash if z∗1 < 0 or crash Z1 if z∗1 > Z1.

For 1 < i < n, it follows by Eq. (2) and the above logic that there exists a z∗i (depending on

δ′i, δi) achieving the global minimum for Ci(zi) + Gi+1((max{δ′i, δi} − zi)+; s̄i+1, ..., s̄n, di+1, ..., dn),

and the optimal policy is to crash task i by z∗i if feasible, otherwise not crash if z∗i < 0 or crash Zi

if z∗i > Zi. The same logic applies to i = n. �

We now discuss some relaxations of Assumption 1. Project assumption (5) can be relaxed by

allowing time buffers between consecutive critical tasks. To accommodate this generality, we must

introduce additional notation on the starting times of the standard and crashed schedule rather

than relying only on their difference. Supply chain assumption (6) can be relaxed without changing

the model and results by properly adding a constant to Δn. We can relax Interface assumption (3)

by assuming that material delivery status can be updated as project processes. While Proposition

1 and Theorem 1 remain true, the optimal crashing policy of a task shall depend on the material

delivery status for all subsequent tasks.

Finally, we should point out that the cost function
∑n

i=1 Hi(s̄i) + λED̄[G1(s̄1, s̄2, ..., s̄n, D̄)] is

generally not convex in the base-stock levels. An example is given in §6.

13



5 Interaction of Supply Chain and Project Decisions

In this section, we study the interaction between supply chain inventory decisions and project

crashing and delay decisions. Our key result is that if we reduce the inventory levels for material k

which feeds task k and thus increase the delay of this material, Δk, with probability one (w.p.1),

then the cumulative time crashed for all tasks preceding task k will reduce w.p.1 to match the

delayed material k; while for each task succeeding task k, the time crashed will increase w.p.1 to

catch up with the delayed schedule. The project delay will also increase w.p.1. More specifically,

we derive the following results:

• By increasing the delay of material k (feeding task k) w.p.1, we show that the cumulative

time crashed for all tasks prior to task k decreases w.p.1. (Proposition 2). We prove it by

first showing that the right derivatives of the optimal cost functions for all tasks prior to k+1

decrease for each cumulative delay (Lemma 1), and then we show that the cumulative delays

for all tasks prior to k increase w.p.1 (Lemma 2).

• By increasing the delay of material k (feeding task k) w.p.1, we also show that the time

crashed for task k and all the subsequent tasks increases w.p.1 (Proposition 3). We prove

it by first showing that the time crashed at task k increases w.p.1 (Lemma 3), and then we

show that the cumulative delays for task k and all subsequent tasks as well as the project

delay increase w.p.1 (Lemma 4).

For the ease of exposition, we drop the notation of demand and stock levels the following

analysis. We consider the right derivatives in the following proofs.

Impact On Tasks Preceding Task k

We first study the impact of a stochastically greater material k delay, Δk, on the optimal cost

functions.

Lemma 1 For any j ≤ k, G′
j(δ

′
j) decreases for each δ′j as Δk increases w.p.1.

Proof. When j = k, Gk(δ′k) = EΔk
[Wk((δ′k − Δk)+) + min0≤zk≤Zk

[Ck(zk) + Gk+1((max(δ′k,Δk) −
zk)+)]]. Because it is not optimal to set zk > max(δ′k,Δk), we remove ()+ from Gk+1 for simplicity

in the rest of this section. The results still hold without this simplification.
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Suppose Δk increases to Δk +E, where E is a non-negative random variable and its realization

is ε, let G̃k(δ′k) = EΔk+E[Wk((δ′k−Δk−E)+)+min0≤zk≤Zk
[Ck(zk)+Gk+1(max (δ′k,Δk + E)−zk)]].

Consider a sample path of Δk = δk and E = ε, we have three cases:

1. δ′k < δk. g̃k(δ′k) = min0≤zk≤Zk
[Ck(zk) + Gk+1(δk + ε− zk)] and gk(δ′k) = min0≤zk≤Zk

[Ck(zk) +

Gk+1(δk − zk)]. Since neither of them is a function of δ′k, g̃′k(δ
′
k) = g′k(δ

′
k) = 0.

2. δk ≤ δ′k < δk + ε. g̃k(δ′k) = min0≤zk≤Zk
[Ck(zk) + Gk+1(δk + ε − zk)] and gk(δ′k) = Wk(δ′k −

δk) + min0≤zk≤Zk
[Ck(zk) + Gk+1(δ′k − zk)]. Here g̃′k(δ

′
k) = 0 and g′k(δ

′
k) ≥ 0 (gk(δ′k) is convex

increasing in δ′k by Proposition 1), so g̃k
′(δ′k) ≤ g′k(δ

′
k).

3. δ′k ≥ δk + ε. g̃k(δ′k) = Wk(δ′k − δk − ε) + min0≤zk≤Zk
[Ck(zk) + Gk+1(δ′k − zk)]. Because

W ′
k(δ

′
k − δk − ε) ≤ W ′

k(δ
′
k − δk) for each δ′k (Wk(·) is convex increasing by Assumption 2) and

the second terms of g̃k(δ′k) and gk(δ′k) are the same, so g̃′k(δ
′
k) ≤ g′k(δ

′
k).

By Assumption 2, it is easy to see that for any δ′k, the right derivatives, g′k(δ
′
k) and g̃′k(δ

′
k), exist

for all sample paths; furthermore, the right derivatives, g′k(δ
′
k) and g̃′k(δ

′
k), are bounded from above.

By Rubinstein and Shapiro (1993), Lemma A2, p. 70, the sample path derivatives are unbiased.

Thus, G′
k(δ

′
k) decreases for each δ′k when Δk increases w.p.1.

To prove the same result for task j < k, we use induction by making the following induction

assumption: for a given j (j < k), G′
j(δ

′
j) decrease for each δ′j when Δk increases w.p.1. Then, we

consider G′
j−1(δ

′
j−1), where

Gj−1(δ′j−1) = EΔj−1 [Wj−1((δ′j−1−Δj−1)+)+ min
0≤zj−1≤Zj−1

[Cj−1(zj−1)+Gj(max (δ′j−1,Δj−1)−zj−1)]].

Consider a sample path of Δj−1 = δj−1, we first note that Wj−1((δ′j−1−δj−1)+) does not depend

on Δk, so we omit it in the following analysis. For the second part of Gj−1, we replace zj−1 by

max(δ′j−1, δj−1) − δ′j and ignore the boundary of zj−1 for the ease of exposition (the same result

holds with the boundaries), we arrive at minδ′j [Cj−1(max (δ′j−1, δj−1)− δ′j)+Gj(δ′j)]. Let δ
′∗
j be the

δ′j that minimizes this expression, δ
′∗
j should satisfy the first order condition (FOC):

C ′
j−1(max (δ′j−1, δj−1) − δ

′∗
j ) = G′

j(δ
′∗
j ).

Note that Cj−1(·) and Gj(·) are both increasing convex functions (by Assumption 2 and Proposition

1) and G′
j(δ

′
j) decreases for each δ′j when Δk increases w.p.1 by the induction assumption, we

conclude that the optimal δ
′∗
j increases when Δk increases w.p.1.
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We now take the derivative of Cj−1(max (δ′j−1, δj−1) − δ
′∗
j ) + Gj(δ

′∗
j ) with respect to δ′j−1 and

use the FOC for δ
′∗
j to arrive at,

d(Cj−1(max (δ′j−1, δj−1) − δ
′∗
j ) + Gj(δ

′∗
j ))/dδ′j−1 =

⎧⎪⎨
⎪⎩

0, if δ′j−1 < δj−1

C ′
j−1(δ

′
j−1 − δ

′∗
j ), otherwise .

Because the optimal δ
′∗
j increases when Δk increases w.p.1, C ′

j−1(δ
′
j−1 − δ

′∗
j ) decreases for each

δ′j−1 when Δk increases w.p.1. Consequently, g′j−1(δ
′
j−1) decreases for each δ′j−1 when Δk increases

w.p.1. Using a similar analysis and by Rubinstein and Shapiro (1993), Lemma A2, p. 70, we can

show that the sample path derivatives are unbiased. Thus, we conclude that G′
j−1(δ

′
j−1) decreases

for each δ′j−1 when Δk increases w.p.1. By induction, we have proven that G′
j(δ

′
j) decreases for

each δ′j for all j ≤ k when Δk increases w.p.1. �

We then study the impact of a stochastically greater Δk on the cumulative delays for the tasks

preceding task k. For the ease of exposition, we ignore the boundaries on zk in the following

analysis. The results stay the same if we include these boundaries.

Lemma 2 Δ
′∗
j increases w.p.1 for any j ≤ k if Δk increases w.p.1.

Proof. For task 1, we consider a sample path of Δ1 = δ1. We must have minδ′2 [C1(max (δ′1, δ1) −
δ′2) + G2(δ′2)]. By definition, δ′1 = 0. By Lemma 1, G′

2(δ
′
2) decreases for each δ′2 as Δk increases

w.p.1, thus it follows from the first order condition (FOC) that the optimal δ
′∗
2 increases (hence,

Δ
′∗
2 increases w.p.1) as Δk increases w.p.1 because C1(max (δ′1, δ1)− δ′2) is convex decreasing in δ′2

and G2(δ′2) is convex increasing in δ′2.

To prove the same result for tasks 1 < j ≤ k, we use induction and make the following induction

assumption: Δ
′∗
j (j < k) increases w.p.1 as Δk increases w.p.1. Consider task j and a sample path

of Δ
′∗
j = δ

′∗
j and Δj = δj , we must have minδ′j+1

[Cj(max (δ
′∗
j , δj)− δ′j+1) + Gj+1(δ′j+1)]. By Lemma

1, G′
j+1(δ

′
j+1) decreases for each δ′j+1 as Δk increases w.p.1. Meanwhile, C ′

j(max(δ
′∗
j , δj) − δ′j+1)

decreases in δ′j+1. By the induction assumption, max(δ
′∗
j , δj) increases as Δk increases w.p.1, and

so C ′
j(max(δ

′∗
j , δj) − δ′j+1) increases for each δ′j+1 as Δk increases w.p.1. It follows from the FOC

that the optimal solution δ
′∗
j+1 also increases as Δkincreases w.p.1. This concludes the induction

and yields the desired result. �

We are now ready to study the impact of a stochastically greater Δk on project crashing

decisions.

Proposition 2 z∗1 + z∗2 + . . . + z∗k−1 decreases w.p.1 if Δk increases w.p.1.
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Proof. We consider a sample path of Δi = δi for all i ≤ k. By definition, we have

δ1 − z∗1 + (δ2 − δ
′∗
2 )+ − z∗2 + (δ3 − δ

′∗
3 )+ − . . . − z∗k−1 + (δk − δ

′∗
k )+ = max (δ′k, δk).

Rewrite the equation,

z∗1 + . . . + z∗k−1 = δ1 + (δ2 − δ
′∗
2 )+ + . . . + (δk − δ

′∗
k )+ − max(δ

′∗
k , δk)

= δ1 + (δ2 − δ
′∗
2 )+ + . . . + (δk−1 − δ

′∗
k−1)

+ − δ
′∗
k .

Because δ
′∗
2 , . . . , δ

′∗
k increase as Δk increases w.p.1, we conclude, from above equation, z∗1 + z∗2 +

. . . + z∗k−1 decrease for any sample path, and thus decrease w.p.1 as Δk increases w.p.1. �

Impact On Task k and Succeeding Tasks

We first focus on the time crashed at task k.

Lemma 3 z∗k increases w.p.1 if Δk increases w.p.1.

Proof. We consider a sample path of Δi = δi for all i ≤ k. At task k, the optimization problem is

minzk
[Ck(zk) + Gk+1(max(δ

′∗
k , δk) − zk)], and the FOC is,

C ′
k(zk) = G′

k+1(max (δ
′∗
k , δk) − zk).

Because Ck(zk) is a convex increasing function on zk, C ′
k(zk) is positive and increasing on zk.

We also note that because Gk+1(·) is a convex increasing function, then G′
k+1(max (δ

′∗
k , δk) − zk)

is positive and decreasing on zk. By Lemma 2, it follows by the assumption that δk increases,

max (δ
′∗
k , δk) shall increase as Δk increases w.p.1. As a result, G′

k+1(max (δ
′∗
k , δk) − zk) increases

for each zk as Δk increases w.p.1, and thus the optimal z∗k increases for any sample path as Δk

increases w.p.1. �

We then study the cumulative delays of task k and all subsequent tasks as well as the project

delay.

Lemma 4 Δ
′∗
j (for any j > k) and the project delay Δ

′∗ increase w.p.1 if Δk increases w.p.1.

Proof. For task k, we consider a sample path of Δi = δi for all i ≤ k. The optimization problem

is minδ′
k+1

[Ck(max(δ
′∗
k , δk)− δ′k+1)+ Gk+1(δ′k+1)]. We note that Ck(max(δ

′∗
k , δk)− δ′k+1) is a convex

decreasing function in δ′k+1 and Gk+1(δ′k+1) is a convex increasing function in δ′k+1. By Lemma 2,

max(δ
′∗
k , δk) increases as δk increases, consequently, the optimal δ

′∗
k+1 increases when δk increases.
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For task j > k, we use induction and assume that, for j > k + 1, Δ
′∗
j increase if Δk increases.

Using a sample path of Δi = δi for all i ≤ j, we consider the optimization problem at task j,

minδ′j+1
[Cj(max (δ

′∗
j , δj) − δ′j+1) + Gj+1(δ′j+1)]. We first note that Cj(max (δ

′∗
j , δj) − δ′j+1) is a

convex decreasing function in δ′j+1 and Gj+1(δ′j+1) is a convex increasing function in δ′j+1. By

the induction assumption, max(δ
′∗
j , δj) increases as δk increases, consequently, the optimal δ

′∗
j+1

increases when δk increases. This concludes the induction for tasks j > k.

The project delay Δ′ = Δ′
n+1 if we extend the definition of Δ′

j to n + 1. Because the penalty

function is also a convex increasing function in Δ′, by a similar proof, we can show that the optimal

project delay increases w.p.1 when Δk increases w.p.1. �

Finally, we study the impact of a stochastically greater Δk on the crashing decisions.

Proposition 3 z∗j increases w.p.1 for all j > k if Δk increases w.p.1.

Proof. For task j (j > k), we consider a sample path of Δi = δi for all i ≤ j and the optimization

problem

min
zj

[Cj(zj) + Gj+1(max(δ
′∗
j , δj) − zj)].

We note that Cj(zj) is convex increasing in zj and Gj+1(max(δ
′∗
j , δj) − zj) is convex decreasing in

zj . By Lemma 4, max(δ
′∗
j , δj) increases when δk increases, and G′

j+1(max(δ
′∗
j , δj) − zj) increases

for each zj as max(δ
′∗
j , δj) increases. As a result, the optimal z∗j increases if δk increases. Thus, z∗j

increases w.p.1 for all j ≥ k if Δk increases w.p.1. �

6 An Illustrating Example

In this section, we apply the PDSC model and analysis to a real-world example, ICM, to demon-

strate its potential.

6.1 ICM Overview

ICM is a U.S. based construction management firm that keeps internally only design, engineering,

bidding, project planning and management functions. The company follows a standard bidding

process for each project, and the outcome of which is not predictable. Once a project is awarded,

ICM assigns it to a project manager who puts the plan into action by securing subcontractors

(for labor) and ordering materials from suppliers. The project manager oversees the entire project
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Figure 3: Standard project schedule at ICM.

execution and is not connected in any formal way to other project managers. We refer the reader

to Shah and Zhao (2009) for a detailed case study.

Project operations. All construction projects follow a standard schedule (see Figure 3) where

the tasks in darker color are on the critical path. The total duration of a project is 25 weeks. The

structural steel is needed for Task 5 (Framing) at the beginning of the 7th week. One project only

requires one set of structural steel at this point in time. If this material is delayed, the tasks that

can be crashed (expedited) to bring the schedule back on track are 5 (Framing), 6 (Roofing), 16

(Painting), and 18 (Bathroom, Kitchen and Cabinets). Crashing a task reduces its duration but

must maintain the total labor hours. Crashing cost comes from the over-time wage which is 50%

higher than the regular wage. The delay penalty per week for a project is 1% of the project revenue

(less materials).

Structural steel supply chain. Structural steel is the most expensive material and is used in

all projects. The structural steel supply chain consists of three stages: producer, service center

and fabricator. The producer manufactures standardized shapes. The service center serves as a

warehouse before fabricator. The fabricator customizes the structural steel according to engineering

drawings. We refer to Figure 4 for a detailed description. These companies are the only government

authorized suppliers in proximity and thus cannot be switched. Currently, the entire structural steel

supply chain makes to order and the total lead time ranges from 5 to 8 weeks.
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Figure 4: The structural steel supply chain.

Because projects may start at different times and require different amount of structural steel,

ICM’s weekly material requirement is highly sporadic and possibly zero if no projects require

framing at a certain week.

6.2 PDSC Model for ICM

Assumption 1 holds for ICM. In addition, we need,

Assumption 3 For ICM’s projects and its structural steel supply chain, we assume

• Project operations: (1) There is at most one project requiring structural steel at any given

period. (2) Project delay penalty is a linear function of the period delayed.

• Supply chain operations: (1) Safety-stock can only be held at the service center in the form

of standardized shapes; (2) All stages in the structural steel supply chain share an identical

review period – one week.

The assumption on projects is justified by the real-world data and the fact that ICM receives

about 20 projects a year. Safety-stock cannot be held at the fabricator because customized steel is

project-specific and thus very risky to hold before the project is awarded.

For the structural steel supply chain, we assume the standard sequence of events at each stage

(see, e.g., Hadley and Whitin 1963): At the beginning of a period, the stage receives replenishment,
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then reviews inventory and places orders if appropriate. At the end of the period, all demand is

realized, deliveries are made, and all costs are calculated for the period.

The PDSC model of §3 can be applied to ICM as follows: we group all tasks prior to Task 5

(where the structural steel is required) as task 0. We also group Task 5 and all subsequent tasks

as task 1. The structural steel supply chain is denoted as supply chain 1. We define the following

additional notation for the structural steel supply chain:

• Dt
1, d

t
1: the demand for structural steel at the tth week, and its realization. Note that each

project only requires one set of structural steel at one point in time and thus this demand

process is formed by material requirement of consecutive projects. By the same nature of lead

time demand, we define D1[t, t + k] =
∑k

i=0 Dt+i
1 for k ≥ 0. If k < 0, then D1[t, t + k] = 0.

We also define D1(l) be demand during l periods of time.

• L: the total lead time of the service center that includes the processing times at the producer

and the service center.

• S: the base-stock level at the service center.

• X: the service time provided by the service center.

• Y : the processing time at the fabricator.

• hs, hf : The annual inventory holding cost per unit at the service center and fabricator re-

spectively.

• T : the due date – the time when structural steel is needed for a project since the beginning

of the project.

By definition,

Δ1 = X + Y − T. (5)

By Eq. (3), G1(·) for ICM is

G1(S, d1) = EΔ1[W1((−Δ1(S, d1))+)] +

EΔ1[ min
0≤z1≤Z1

{C1(z1) + π(max{0,Δ1(S, d1)} − z1)+)}], (6)

where the first term is the inventory holding cost at the Fabricator for materials that are ready

before they are needed at a project.
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For ICM, the first-stage optimization problem is,

min
S

H1(S) + λED1[G1(S,D1)] (7)

s.t. S ≥ 0,

where H1(S) is the annual inventory holding cost at the service center.

We now characterize how the base-stock level, S, determines the distribution of the service time

(X) at the service center, the random material delay (Δ1) to projects, and the cost of the supply

chain. Define Rk(dt
1) to be the probability that demand dt

1 (> 0) is satisfied within the period t+k

at the service center. For a constant lead time L, Rk(dt
1) = Pr{S − D1[t − L + k, t] ≥ 0|dt

1 > 0}
for k ≤ L (Hausman, et al. 1998). For stochastic and sequential lead time L (see Zipkin (2000)

Chapter 7), we let the probability of L = Li be Pr{L = Li}, then Rk(dt
1) =

∑
i Pr{S − D1[t −

Li + k, t] ≥ 0|dt
1 > 0}Pr{L = Li} for 0 ≤ k ≤ maxi{Li}. Let X(dt

1) be the service time of dt
1

(> 0), then R0(dt
1) = Pr{X(dt

1) = 0} and Rk(dt
1) = Pr{X(dt

1) ≤ k} for k > 0. Consequently,

Pr{X(dt
1) = 0} = R0(dt

1) and Pr{X(dt
1) = k} = Rk(dt

1) − Rk−1(dt
1) for k > 0.

With the distribution of X(dt
1) (for dt

1 > 0), we can calculate the distribution of Δ1 by Eq.

(5). The expected inventory holding cost at the fabricator for a project that requires d units of

structural steel can be calculated by,

EΔ1 [W1((−Δ1(d))+)] = EΔ1 [W1((T − X − Y )+)] = hf × d × E[(T − X(d) − Y )+]. (8)

The net inventory at the end of period t at the service center is N(t) = S − D1[t − L, t], and the

on-hand inventory at the service center is Is(t) = N(t)+. In steady state, the annual inventory

holding cost at the service center is

H1(S) = hsE[Is] = hsE[(S − D1(L + 1))+]. (9)

6.3 Impact of the PDSC Model

Using historical data, we construct an empirical distribution for the weekly demand of structural

steel, Dt
1, as shown in Table 1. Here we use the approximation of discrete demand by rounding up,

for instance, all values in [41, 50] to 50.

With S = 0 at the service center, the structural steel supply chain can deliver an order to

project on-site at the beginning of 7th, 8th, 9th, and 10th week due to the review period and the

22



Value Frequency Probability Value Frequency Probability

0 32 0.604 60 4 0.075

10 0 0 70 1 0.019

20 0 0 80 2 0.038

30 1 0.019 90 0 0

40 7 0.132 100 2 0.038

50 4 0.075 110 0 0

Table 1: The empirical distribution of Dt
1.

sequence of events of the structural steel supply chain. Thus it may cause a delay of 1, 2, or 3

weeks because it is needed at the beginning of 7th week. We assume that the processing time at

the producer has an equal chance to be 3, 4, and 5 weeks, and the processing time at the fabricator

has an equal chance to be 1 and 2 weeks. The monthly inventory holding cost is $16.6 per ton, and

thus the annual inventory holding cost hs = hf = $199.2 per ton per year.

For ICM, the average number of construction projects conducted annually, λ, is 20. T = 6

weeks. The crashing cost function is piece-wise linear where,

C1(z1) − C1(z1 − 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

$4, 500 z1 = 1,

$6, 500 z1 = 2, 3, 4, 5,

$8, 000 z1 = 6, 7.

(10)

The project delay penalty per week, π = $13, 700. Clearly the delay penalty is much more expensive

than the crashing costs and thus should be avoided.

We now compare the PDSC model to the current practice of ICM which holds zero inventory

(S = 0) in the structural steel supply chain. Figure 5 summarizes the numerical result, where the

vertical axis stands for the annual operating costs while the horizontal axis presents the base-stock

level at the service center, S. We make the following observations:

• The total cost function is not convex in S. It first increases slightly (due to the bulky material

requirement of projects, a small amount of inventory does not reduce lead time but adds to

cost) and then decreases as S increases before it reaches the global minimum at S = 140.

Then it slowly increases as S further increases.

• The components of the total cost behave as we expected in §1: as we increase the base-stock

level from S = 0, the inventory cost increases slowly but the project crashing cost decreases
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Figure 5: The annual operating costs.

P{Δ1 = 0 week} 1 2 3 E[Δ1]

S = 0 0.167 0.333 0.333 0.167 1.5

S = 140 0.954 0.037 0.008 0 0.054

Table 2: Delays of structural steel.

sharply, and thus the total cost decreases sharply. Beyond S = 140, the project crashing

cost almost reaches zero but the inventory cost becomes significant, and so further increasing

the base-stock level becomes un-economical. Comparing to the current practice with S = 0

(ignoring material supply in project decisions), the PDSC model (integrated supply chain and

project decisions) brings the cost down from $161,667 to $24,164, with a 85.1% saving.

• The delay of structural steel, Δ1, at the optimal base-stock level, S = 140, is much smaller

(stochastically) than Δ1 at S = 0, see Table 2. Thus the safety-stock at the service center

reduces the random material delays and stabilizes the schedule of the projects, such benefits

far outweigh the holding cost of the safety-stock.

7 Numerical Study

In this section, we conduct an extensive numerical study to gauge the potential savings of the

PDSC model by solving various environments that companies may face in practice. We use ICM
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as a base case and conduct a sensitivity analysis with respect to its parameters, such as demand

variability, inventory holding cost, lead time and due date.

Demand Variability and Project Arrival Rate λ. We first study the impact of demand

variability on the savings. We define D̃ to be the nominal weekly demand which follows a normal

distribution. Since demand cannot be negative, we set the weekly demand distribution to be discrete

truncated normal where P{D1(1) = 0} = P{D̃ ≤ 0}, and P{D1(1) = k} = P{D̃ ≤ k} − P{D̃ ≤
k − 10} for k = 10, 20, .... In the numerical study, we set E[D̃] = 30 tons and change the standard

deviation of D̃ from 3 tons to 48 tons while keeping everything else the same as in §6.
Consistent to intuition, our numerical results (not reported here) shows that when the demand

variability increases, more inventory is needed to buffer against demand uncertainty and to reduce

material delays down to the same level. Thus, the optimal base stock level and the total cost

increase. Given the cost of the benchmark, S = 0, remains unchanged, the percentage saving

decreases as demand variability increases.

We also studied the impact of project arrival rate, λ, on the percentage savings. Here we set

E[D̃] = 30 tons and the standard deviation of D̃ to be 15 tons but vary λ from 10 to 50. Our

numerical study (not reported here) shows that the percentage savings increase as λ increases.

Intuitively, it is more beneficial to integrate inventory and project decisions if projects occur more

frequently.

Inventory Cost. Second, we study the impact of inventory holding cost on the savings from the

PDSC model. We set the coefficient of variation of the nominal demand to be 0.8 and change the

inventory holding cost per ton per week (at the service center and fabricator) according to $3.82

× an inventory cost factor which varies from 0.6 to 1.4. The result (not reported here) shows that

when holding inventory becomes more expensive, the percentage savings decrease. The result is

intuitive because more expensive inventory cost means less valuable the option of holding inventory,

and so the smaller the percentage saving from integrating safety-stock and crashing decisions.

We also study the sensitivity of the optimal base-stock level with respect to the inventory

holding cost. To test the robustness of the solution, we compare the cost of a benchmark base-

stock level, S = 150, to the optimal cost at various inventory holding costs for which this benchmark

base-stock level is not optimal. Table 3 shows that when the holding cost increases, the optimal

base-stock level tends to decrease but not by much. Even if the optimal base-stock level differs
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Inventory Optimal % Cost increment at S = 150

cost factor base-stock level over the optimal cost

1.4 140 2.99%

1.3 140 2.39%

1.2 140 1.7%

1.1 140 0.91%

1 150 0

0.9 150 0

0.8 150 0

0.7 150 0

0.6 160 1.34%

Table 3: Robustness of the optimal base-stock level.

Lead Time Range (3,5) (4,6) (5,7) (6,8) (7,9)

% Cost Savings 85.6% 89.1% 93.2% 94.9% 93.7%

Table 4: Impact of the lead time.

from the benchmark, the cost of benchmark solution is only slightly higher than the optimal cost.

In summary, these studies show that inventory holding cost may have a significant impact on the

percentage savings of the PDSC model but much less an impact on the optimal base-stock level.

Lead Time. To study the impact of lead time on the effectiveness of the PDSC model, we assume

that the lead time for the service center follows a uniform distribution with different ranges, see

Table 4. We set the coefficient of variance of the nominal demand to be 0.8, inventory holding cost

per ton per week to be $3.82, and everything else remains unchanged.

The impact of lead time is more complex than that of demand variability and inventory holding

cost because the latter only affects the supply chain inventory cost but the former affects both the

project crashing and supply chain inventory costs. Table 4 shows that as the lead time increases,

the % saving tends to increase but not always. This is true because as lead time increases, the

project crashing cost may increase significantly in all solutions, and thus lead to smaller percentage

savings.

Due Date. Finally, we study the impact of the project due date, T , on the effectiveness of
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Figure 6: The impact of project due date.

the PDSC model. For this purpose, we set the lead time for the service center to be uniformly

distributed from 3 to 8 weeks, the coefficient of variance of the nominal demand to be 0.8, and

inventory holding cost per ton per week to be $3.82. We choose a wider ranged lead time than

previous studies because it allows us to study a wider range of the due date.

In the standard schedule of ICM, task 0 (task 1, see definition in §6.2) has a duration of 6

(19) weeks. So the project duration is 25 weeks. Because task 0 cannot be expedited and task 1

can be expedited by seven weeks at most, the shortest duration of the project is 18 weeks without

considering material delays. Considering the worst case of material delay and no expediting of any

task, the longest duration of the project is 30 weeks.

Figure 6 illustrates the following insight,

• When the project due date is very tight (approaching the shortest duration), the saving of

the PDSC model diminishes because the high penalty cost and the tight due date force us

to crash all tasks to their minimum in all solution approaches. In this case, safety-stock only

helps to balance the project delay penalty and inventory holding cost.

• When the project due date is very loose (approaching the longest duration), the saving again

diminishes. This is true because there is plenty of time to accommodate material delays, and

thus it is not necessary to consider material supply while planning for projects.

• When the due date is in between the shortest and longest durations, the savings can be quite
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significant because one has the flexibility to coordinate safety-stock and crashing decisions so

as to balance the inventory and project costs. Specifically, the percentage saving reaches its

peak value at 23 weeks. We note that if the due date is less than 23 weeks, the percentage

saving is low because the total cost is high due to project delay penalty paid in some events.

If the due date is greater than 23 weeks, we can manage not to pay delay penalty in any

event, which reduces the total cost and increases the percentage savings.

In summary, the saving of integrating safety-stock and crashing decisions reaches its peak value

when the due date is moderate, which is most likely the case in practice.

8 Conclusion

In this paper, we study a new class of problems – recurrent projects with random material de-

lays, at the interface between supply chain and project management. We present the model of

project-driven supply chains to jointly optimize safety-stock and project crashing decisions. We

prove certain convexity properties for the model which facilitate fast computation of the optimal

crashing decisions. We also study the dependence of the project crashing decisions on the supply

chain inventory decisions. We demonstrate the impact of the model by a real-world example and

study its sensitivity with respect to several system parameters. The model, although ignoring the

economies of scale in production as well as material/project customization, captures the trade-off

between supply chain operations and project operations for recurrent projects under uncertainty.

It demonstrates that a certain amount of material inventory, if placed at the right location(s)

of the supply chain, can help stabilizing the schedule of projects and reducing system-wide cost

substantially.

One variation of the problem not considered in this paper is recurrent projects with different

schedules. For instance, the same material may be required by different types of projects at different

tasks. While the general trade-off and idea of the PDSC model still apply, we must modify the

model to account for different project types. In this paper, we only test the effectiveness of the

model in examples with one critical material. It would be interesting to see the impact of the PDSC

model in practice with multiple materials. Finally, the structure of the projects considered in this

paper is simplified into a sequence of critical tasks. In reality, projects can be more complex with

parallel non-critical paths. The development and application of the PDSC model in these areas
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remain as our future research directions.
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