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Abstract

The early sections of this paper present an analysis of adadkcision model that is known as the
multi-armed bandit under the assumption that the utilitycfion of the decision maker is either linear
or exponential. The analysis includes efficient procedforesomputing the expected utility associated
with the use of a priority policy and for identifying a prityipolicy that is optimal. The methodology
in these sections is novel, building on the use of elememtamoperations. In the later sections of this
paper, the analysis is adapted to accommodate constia@tgik the bandits.

1 Introduction

The colorfully-namednulti-armed bandifl0] is the following Markov decision problem: Atepochg, .. .,

a decision maker observes the current state of each of $8eneov chains with rewards (bandits) and plays

one of them. The Markov chains that are not played remaindir tturrent states. The Markov chain that

is played evolves for one transition according to its trémsiprobabilities, earning an immediate reward

(possibly negative) that can depend upon its current stat®a the state to which transition occurs. Hence-
forth, to distinguish the states of the individual Markowauis from those of the Markov decision problem,

the latter are called multi-states; each multi-state piless a state for each of the Markov chains.

A key result for the multi-armed bandit is that attention tenrestricted to a simple class of decision
procedures that are based on “labelings.lTafeling is an assignment of a number to each state of each
bandit such that no two states have the same number (labet) ifedhey are in different bandits. priority
rule is a policy that is determined by a labeling in this way; giesth multi-state, the priority rule plays
the Markov chain whose current state has the lowest label.seminal 1974 paper, Gittins and Jones [12]
(followed by [10]) demonstrated the optimality of a prigritle for a model whose objective is to maximize
expected discounted income with a per-period discounbrfadbaving0 < ¢ < 1. The (optimal) priorities
that they identified are based on a family of stopping times, for each state of each chain. Given state
1 of banditk, the decision maker is imagined to play banditor any numberr (= > 1) of consecutive
epochs, observing the state to which each transition ocandsstopping whenever he or she wishes to do
so. The discounted present value of the (random) incomarsttkat is received during epochs 1 through
is denotedX (7). The stopping times for statei are used to assign that stateiadex (i) by

. E[X (7]
1(7) :mgx{l—iE[cT]} . (1.2)
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It was demonstrated in[12, 110] that, given each multi-stiaie optimal to play any Markov chain (bandit)
whose current state has the largest index (lowest label).

Following [12,[10], the multi-armed bandit problem has stiated research in control theory, eco-
nomics, probability, and operations research. A samplingoteworthy papers includes Bergemann and
Valimakim [2], Bertsimas and Nifio-Moral[4], El Karoui drKaratzas|[[B], Katehakis and Veinott [15],
Schlag[[17], Sonin[18], Tsisikli$ [19], Variaya, WalrandchBuyukkoc [20], Webef [22], and Whittle [24],.
Books on the subject (that list many references) includeyBand Fristedt[[B], Gittins[[11], Gittins, Glaze-
brook and Webei [13]. The last and most recent of these bowksdes a status report on the multi-armed
bandit that is almost up-to-date.

An implication of the analysis in[12, 10] is that the largesall of the indices equals the maximum over
all states of the ratie(i)/(1 — ¢), wherer (i) denotes the expectation of the reward that is earned if state
1's bandit is played once while statés observed and wheres the discount factor. In 1994, Tsitsiklis [19]
observed that repeated play of a bandit while it is in theegtathose ratio is largest leads to a multi-armed
bandit with one fewer state and random transition times.

In 2007 Denardo, Park and Rothblum [6] considered a gematan of classic multi-armed bandit
model with the following new features:

e The utility function of the decision maker can be exponén&apressing sensitivity to risk.

e In the case of linear utility functions, the assumption tteatards are discounted is replaced by the
introduction of stopping (which captures discounting).

The analysis of([6] focused on pair-wise comparisons lt@egithe use of stopping times, which had been
a common feature of the prior analyses of multi-armed banditrelied on linear algebra, rather than on
probability theory. It avoided the need to deal, in the maragal cases, with ratios that had zeros in their
denominators. It included efficient algorithms for compgtindices and for identifying an optimal priority
rule.

Constraints that link the bandits (for the extension coergd in [6]) are dealt with in Sections 7-8 of
the current paper. An optimal solution to the multi-armeddigproblem withi¥ constraints is shown to be
an initial randomization ovell’ + 1 priority rules, each of which is the optimal solution to arcanstrained
bandit problem whose rewards are determined by a partiselaof prices (multipliers) on the constraints.
A column generation algorithm is described for computinghsaen optimal solution. In each stage, the
coefficients of the column that enters the basis are fountdgpplication of the policy evaluation procedure
of Section 4.

As concerns contributions to methodology, the analysishandarlier sections of this paper rests on
elementary row operations. Row operations are used inosesc8-4 to present the first efficient algorithm
for computing the utility function gained when beginningaadiven multi-state and using any given priority
rule (solving the optimality equation is inefficient as thember of multi-states can be enormous). Row
operations are also used in Section 5-6 to determine effigian optimal priority policy and to provide a
proof for its optimality. The approach in the current papaitds on that of[[6], but simplifies the theoretical
development and the computation. In particular, the coatfmrt effort that the method requires matches the



best existing bound for computing Gittins indices (obtdine[16], seel[1B, p.43] (in fact, the same bound
applies to the method developed|in [6]).

2 Themodel

Let K be the number of Markov chains (bandits), and let them be euedi through /K. Markov chaink
has a finite sefV,, of states. No loss of generality occurs by assuming, as wehdbthe states of distinct
Markov chains are disjoint. Thus, each statdentifies the Markov chaif(j) of which itis a member, i.e.,
J € Ny(j- The set of all states of all bandits is given By= N, U --- U Nk.

If bandit & is played while its state i, this bandit experiences transition to statevith probability
p(i,7), and it experiencetermination of playwith probability p(i, 0) given by

p(i,0) =1— Z p(i,j) VieN,, Vke{l,2...,K}.
JEN
If bandit & is played when its state isand if transition is to occur to stage payoffz(i, j) is earned at the
start of the period; if termination is to occur instead, gaydi, 0) is earned at the start of the period. Each
of these “payoffs” can be positive, negative or zero.

Termination stops the play of alt” bandits, not merely of the bandit that is being played. Teatidn
is modeled as transition to staieNo action is possible after transition to state~or this reason, stateis
excluded fromV,, for eachk, and hence froniv.

Each multi-state is a set that contains, for eathexactly one state ifV;,. Whens is a multi-state, the
symbols; denotes the state of bandithat is included ins, and the symbot, ;. is defined bys,;, = s\ {sy}.
Thus,s\; contains all the states iother thans,.. Let.S denote the set of all multi-states. Given any multi-
states, one of the bandits must be played. Hence, for this modsiaonary nonrandomized polidyis
any map that for each multi-statec S picks a bandit(s) € {1,2,...,K}. Let A denote the set of all
stationary nonrandomized policies.

2.1 Utility

The goal is to maximize expected utility. This will be accdisiped with alinear utility functionu(z) = x,
with arisk-averse exponential utility functiom(z) = —e~** where)\ is a positive constant that is known
as the coefficient of risk aversion and withisk-seeking exponential utility functiar(z) = ¢** where)\ is

a positive constant.

All three cases are described and analyzed usintptte utility functionh(s, k£, v) whose value equals
the expectation of the total utility that is earned in thdifiarally-truncated) one-transition model if multi-
states is observed now, if bandit is selected now, and if utility(¢) is earned if transition occurs to
multi-statet.



2.2 Linear utility

In the case of linear utility, the local utility function is

h(S, k‘,’U) = T(Sk) + Z Q(8k>j)v(s\k U {]}) ’ (21)
JENK

with datar (i) andq(i, j) that are specified by

r(i) =p(i,0)z(i,0) + Y p(i,j)z(i,j) VieN, (2.2)
JENy(5)
q(i, j) = p(i, j) Vi, j€ Ny, Vke{l2,...,K}. (2.3)

Interpretr(i) as the expectation of the reward that is earned immedidtélgnidit b(¢) is played while its
state isi, and interpret (i, j) as the probability that bandit(7) will experience transition to stategiven
that it is played while its state is As noted earlier, playing bandit:) while its state ig causes termination
(rather than transition to some stgtén N,;)) with probability p(4, 0), which may be positive. The above
model captures the classic discounted model, which hasiti@m probabilityp(i, j) and discount factoe
satisfying0 < ¢ < 1, by replacingp(i,0) andp(i, j) in (2.2)-(Z23) bycp(i,0) andep(i, j), respectively.
Incorporating the discount factor into the transition sage&elds a fundamental advantage — it facilitates an
analysis that applies linear algebraic arguments instéatbpping times.

2.3 Exponential utility

With the risk-averse exponential utility function(z) = —e %, one hasu(z + y) = —e @ty =
e *u(y), and the local utility function is given by (2.1) with dat&) andq(i, ;) that are specified, for
eachi € N andj € Ny, by

r(i) = —p(i,0) e 200 and (i, ) = p(i, j) e D), (2.4)

With the risk-seeking exponential utility functiar(z) = ¢, the local utility function is given by (2]1)
with data
r(i) = p(i,0) X0 and q(i, j) = p(i, j) 7). (2.5)

With all three utility functionsy(7) is called aeward andg(i, 7) is called aransition rate In the linear-
utility model, (4, j) is a probability. In the risk-averse exponential-utilitydel, ¢(i, 7) is the product of a
probability and a disutility.

Bandit & has an|N,| x |N,| matrix ¢ whoseij* entry equals;(i, ) for each ordered paifi, j) of
states inN;,. In each case, the entriesfi are nonnegative. In the linear-utility cagé, is substochastic
which is to say that its entries are nonnegative and thesantrieach row sum tbor less. In the risk-averse
exponential case, each stathas reward-(i) < 0. In the risk-seeking exponential case, each statas
rewardr(i) > 0.



24 A hypothesis

A square matrixQ is transientif and only if each entry in the matriQ)? approache$ ast — co. A
hypothesis that is shared by all three utility functionsrssented below as:

Hypothesis C. Expressiond (2]6) and at least one[of(2[7).](2.8) (2e93atisfied.

¢" is nonnegative and transient far=1,2,... K. (2.6)
¢" is substochastic fok=1,2,..., K. (2.7)
r(i) <0 for i =1,2,...,|N|. (2.8)
r(i) >0 for i=1,2,...,|N|. (2.9)

In the case in which(216) an@(2.7) hold is dubbdygpothesis RNshort for risk neutral). This case
includes the classic discounted model, which has tranggtiobabilityp(i, 7), discount factor: that satisfies
0 < ¢ < 1andq(i,j) = ep(i, j), so that each row ofg,)* sums toc, which guarantees that is transient.
Hypothesis RN also encompasses linear-utility models iithviatios akin to[(1J1) would havé&s in their
denominator. Hypothesis RN is relaxed in Section 10.

The case in whicH(216) and (2.8) hold is dublh&gpothesis RAshort for risk-averse). In this case, the
assumption thag” is transient excludes a bandit whose repeated play woutdesguected utility of—oc.
Hypothesis RA is also relaxed in Section 10.

The case in which[{216) an@(2.9) hold is dublbdgpothesis R$short for risk-seeking). In it, the
assumption thaj* is transient rules out bandits whose repeated play woultegrected utility of+oo.

Hypothesis C supports nearly all of the results in this pafyiarexception occurs in Sections 7-8, where
Hypothesis RN (and only it) is shown to accommodate comgsdhat link the bandits.

2.5 Transient matrices

A central role is played by matrices that are nonnegativeteantsient. Relevant information about these
matrices is contained in Propositibn 2.1, below. It emplibys nomenclature; vectorsandy that have the
same number of entries satisfy> y if and only if z; > y; for each;.

Proposition 2.1. Let( be a nonnegative x n matrix. The following are equivalent:
(@) The matrixQ is transient.
(b) The matrix(I — Q) is invertible, and I — Q) ' =T+ Q + Q* +---.
(c) There exists an x n vector f > 0 such that the equatioff — Q)x = f has a solutionz > 0.

(d) There exists an x 1 vectory > 0 such thaty > Qy.

Proof. Demonstration thafa) = (b) = (¢) = (d) = (a) is routine and is omitted. u

Parts of the analysis that follows could be simplified in timedr-utility case because a substochastic
matrix ¢* is transient if and only if termination occurs with positpebability after at mositVy,| transitions.
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2.6 Inheritance

Hypothesis C is a property of the individual bandits. Itslicgtions for the multi-armed bandit are investi-
gated next. Let us recall thatdenotes the set of all multi-states of the multi-armed Harftdich stationary
nonrandomized policyr has an|.S| x |S| transition rate matrixQ™ that is given, for each pak andt of
multi-states, by
. q(8x(s),J) T t=s\x Ui}
s,t) = _ 2.10
Q" (s.0) { 0 otherwise. ( )
Each stationary nonrandomized policyalso has anS| x 1 reward vectorR™ that is defined for each state
sin S by
R™(s) = 1(57(s)) - (2.12)

Proposition 2.2. . Consider any stationary nonrandomized policyCondition [2.6) guarantees théi™ is
nonnegative and transient.

Proof. (adapted from[[6]) By hypothesis, each bandithas a transition matri¥* that is nonnegative and
transient. Thaf)™ is nonnegative is immediate frofn (2]110). Part (d) of PrajpmsiZ. 1 guarantees that each
banditk has a column vectar® > 0 such thatr* > ¢¥2*. Denote ag the |S| x 1 vector whose entry
ys for multi-states is given byy, = wilxi . xﬁi It is clear thaty > 0. Consider any multi-state; set

k = 7(s) and set = s. The nonzero entries in thé" row of Q™ correspond to the nonzero entries in the
i™ row of ¢*, and the inequality” >> ¢*2* guaranteeg, > [Q™y],. This holds for each multi-state so

part (d) of Propositioh 211 guarantees th#t is transient. "

That [2.6) is inherited by the multi-armed bandit is the gitPropositiol 2.2. Tha{(2.7}=(2.9) are
inherited is evident from{2.10) anf (2111). Thus, the malthed bandit inherits the hypothesis that is
satisfied by the individual bandits.

2.7 A sequential decision process

A well-developed theory of sequential decision processds Denardol[[5] or Veinott [21]) can be applied
to the model whose local utility function is given Hy (2.1 )tviransition rates that satisfy (2.6). Proposition
[2.2 shows that each stationary nonrandomized pealitys a transition rate matri®™ that is nonnegative
and transient, so Part (b) of Propositlonl2.1 shows that Q™) is invertible. With the|S| x 1 vectorV™
defined by

Vi=(I-Q") 'R™ VmeA. (2.12)

Part (b) of Propositiol 211 also justifies the interpretatid the s™® entry in V™ as the expected utility for
starting in states and using stationary nonrandomized polieyuntil termination occurs. Premultiplying
(2.12) by(I — Q™) produces the familigpolicy evaluation equatign

VT =R"+Q"V". (2.13)



With the |S| x 1 vector F' defined by
F(s) = max{V‘;(s) 10 € A} VselS, (2.14)

the numberF'(s) equals the largest expected utility obtainable from antiostary nonrandomized policy,
given starting state. A policy = is said to beoptimalif V™ = F'. The restriction to stationary nonrandom-
ized policies is justified because Hypothesis C has beenrstmauffice for such a policy to be optimal over
the class of all history-remembering policies, s€e [5] dfl [Further, such a policy can be found by linear
programming, by policy improvement, or by successive axpration. None of these methods is practical
when the numbelrS| of multi-states is large, however.

3 Labeling and datarevision

Let us recall that each bandithas a distinct seW,, of states, thaiV is the union of all states of all bandits,
that0 is a special state that is not i¥i, and that termination is modeled by transition to staté labeling
L is the assignment to eaghe N U {0} of a label L(j) that is an integer betweehand |N| + 1, with
L(0) = |N|+ 1 and with no two states having the same label. Thus, eachdghelassigns a distinct label
to each state iV, and it assigns the highest label to state

A stationary nonrandomized poliey for the multi-armed bandit is called@iority rule if it is deter-
mined by a labelind. like so:

m(s) =argmin{L(sg): 1 <k < K} VseS. (3.2)
The priority rulew in (3.J) is said to béeyedto the labelingL.. Given any multi-state, this priority rule
plays the bandik whose current state, has the lowest label.

3.1 Revised rewards and transition rates

The notation is now simplified somewhat. For the remaindehisf section, bandik hasn states (rather
than|N| states), and these states are numbergioughn. This bandit's transition rates form thex n
matrix ¢*, and its rewards form the x 1 vectorrF.

Consider the statein banditk that has

i=argmin{L(j):j € Ni}. (3.2

Suppose a multi-stateis observed that includes state N;, and for which the priority ruler hasr(s) = k.
The priority rulew will continue to call for bandit: to be played until it experiences a transition to a state
other thani. This motivates the replacement of each transition g&tep) and each reward(;) in banditk



by q(4, p) andr(j), where:

q(i,p) = q(i,p)/[1 —q(i, )] if p#1, (3.3)
q(,p) = a(,p)+q(4,1)q(i,p) if j#i andp #1i, (3.4)
q(3,4) = 0 for eachj , (3.5
r@) = r@)/[1—q(i,9], (3.6)
() = r()+a(h,)r() ifj#i. (3.7

The selection of borrows from [19], but that reference does not suggest amgrse to update the data as
is done in[(3.B){317).

Repeated play replaces the bandit's transition rate mafrixy the matrixg® whose entries are given
by (3.3)3.5), and it replaces the bandit’s reward vectoby the vector7* whose entries are given by
(3.6)-[3.T). The revised transition matrix and reward eeare for a model in which transitions to state
do not occur. It will soon be demonstrated tiatnd#* inherit the version of Hypothesis C that is satisfied
by ¢* andr*.

3.2 Elementary row operations

Equations[(3.4),[(3]5) and (3.7) describe a model in whiehdata of bandit has been revised so that
no transitions occur to the state This process can be iterated. The second executioh_df (8 @)rs
with state: removed fromV;, and it selects the staien N;, whose label is second lowest. And so forth.
Algorithmically, the effect of repeated data revision iskiegin with then x (n + 1) matrix (tableau)
[(I — ¢*),r*] and to use elementary row operations to alter the entridssriableau like so:

Triangularizer (for banditk in accord with labelingl).
1. Begin with the tablea(I — ¢*), r*]. SetM = N,. While M is nonempty, do Steps 2 and 3.
2. Find the staté € M whose label (i) is smallest. Sett = 1/[1 — ¢"(i,1)].

(a) Replace row of the tableau(I — ¢*),r*] by itself times the constant.

(b) For each statg € M \ {i}, replace row; of this tableau by itself plus the constarty, i) times
(the updated) row; this update equateg; to O fort = i and for eacht in NV \ M.

3. ReplaceM by M \ {i}.

The first execution of Step 2 replaces the tablgdu- ¢*), v*] by [(I — ¢*), 7] where the entries in the
n x 1 vector7 and in then x n matrix §* are specified by[(313)=(3.7) withas the state whose label is
lowest. The second execution of Step 2 replagey the transition rate matrig® for which transitions to
statei are not observed and in which transitions to the statbose label is second lowest are not observed,
except for transition fromito i. And so forth.

Proposition 3.1. Suppose that the data for banditsatisfy Hypothesis RN, RA, or RS. When the data
for bandit £ are triangulated in accord with a labeling., each iteration of Step 2 produces a tableau
[(I — @), 7*] that satisfies the same hypothesis.



Proof. By hypothesisg* is nonnegative and transient. The initial execution of Rtepthe Triangularizer
replaceq(I — ¢*),*] by [(I — g*),7"]. It does so by multiplying row by the positive numbet and then
replacing each row other thani by itself plus the nonnegative multiplg j, i) times the updated ro).
This guaranteeg® > 0. It further guarantees that < 0 if v* < 0 and that?* > 0 if * > 0. In particular,
(2.8) and[(2.P) are preserved.

Sinceq” is nonnegative and transient, Part (c) of Propos(iich 2oWvstthat there exists a vectprs> 0
such that the equatioff — ¢*)z = f has a solution: >> 0. Let us apply the Triangularizer to the tableau
[(I—¢"), f]. The initial execution of Step 2 replacks —q¢*), f] by [(I—¢"), f]. Elementary row operations
preserve the solutions to equation systems, so the stotitive vector: satisfies(I — ¢°)z = f. Since
g" > 0, part (c) of Propositiof 211 also shows tljatis transient, hence thdt(2.6) is preserved.

Finally, suppose that* satisfies[(2]7). Witl as then x 1 vector of 1's, note that/ — ¢*)e = g with
g > 0. As noted above(l — ¢*)e = g with g > 0, which shows thaf(2]7) is preserved.

It has been demonstrated that Hypotheses RN, RA and RS a@ryed by the first execution of Step 2
of the Triangularizer. Iterating this argument completesroof. "

The computational effort for executing the Triangularizedetermined in the next result.

Proposition 3.2. Withn = | Ny
arithmetic operations.

, executing the Triangularizer on banditentails |n|> — 1|n|? + 2|n|

Proof. The computation of th —¢*(i,4)]'s is Step 1 requirea subtractions. Next consider the execution
of Step 2 whenM| = m. As the entries in row indexed by the columns a¥}, \ M are zero and are not
changed in Substep 2(a) a”d%‘% = 1, Substep 2(a) requires divisions (including the update or
r#(i)). Also, Substep 2(b) requirggn — 1)m additions andm — 1)m multiplications. Thus, the total
number of arithmetic operation needed to execute both epbssm + 2m(m — 1) = 2m? — m. As
S m? =" 2T+ () = 20" + ("5 = e 4 In? + Lnand Y m = 252 the total

m=1
. . . . . 2
number of arithmetic operations needed to execute thegtilarizer isn + 2[2n? + in? + in] — 22 =
2,3 _ 1,2 4 2

3.3 lllustration

The net effect of the Triangularizer is easiest to visualiben state 1 has the lowest label, state 2 has the
next lowest label, and so forth. In this case, the Triangzgartransforms the tabled(l — ¢*), r*] into the
n x (n+ 1) tableau[(I — ¢*),#*] whose entries have the format,

1 —4(1,2) —¢(1,3) -+ —=q(L,n) 7(1)
0 —q(2,3) —q(2, 7(2)
0 0 1 <o —q(3,n) 7(3) , (3.8)
IR T

with 1's on the principal diagonal and 0's below that diagon&ith finalized data, each transition is to a
state having a larger label, and termination is guaranteeddur aftem = | Ny | transitions.
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With linear utility—but not with exponential utility—the rialized data have simple interpretations:
Given that bandib(7) is in statei, the number+(:) equals the expectation of the income that will be earned
if bandit & is played until it experiences transition to a state whobellaxceedd.(:), andq(i, j) is the
probability that this transition will occur to staje

3.4 Finalized data

Here and henceforth, tildes are used to identify the rewamdgransition rates with which the Triangularizer
ends, as irf(i), (i, j), #*, andg”, and these data are said tofielized The data for staté reach their
finalized values when Step 2 is executed for sfatim other words, after Step 2 is executed for stateo
further changes occur in th& row or column of the tableal{l — ¢*), *].

Letr be the priority rule that is keyed to the labelifg Equations[(2.70) and{2.111) specify ti#8 x | S|
matrix Q™ and the|S| x 1 vector R™ in terms of the original data. Their analog§ and k™ using finalized
data are:

A _ Q(SN(S)’j) ift:s\”(s)u{j}
Q7(s,t) = { 0 otherwise ’ &9
R™(s) = T(Sx(s)) - (3.10)

It was demonstrated in Section 3 that Hypothesis C is indblily the multi-armed bandit. Hence, with
V7™ (s) as the expected utility for starting in stateand using priority ruler, the vectorV™ is the unique
solution toV™ = R™ + Q™V7™. Propositiorl 31 shows that the model with finalized data aiberits
Hypothesis C, hence that its reward vedtt is the unique solution to the policy evaluation equation

VI=R"+Q"VT". (3.11)
That finalizing the data preserves expected utility is tist ofi
Proposition 3.3. Suppose Hypothesis C is satisfied. fdie a priority rule that is keyed to a labeling.
ThenV™ = VT,

Proof. A sequence of elementary row operations akin to those intia@dularizer transforms the tableau
[(I —QT),R™]into[(I —Q™), R™]. Elementary row operations preserve the set of solutioas equation
system. Hence, SinCE™ is the unique solution t§/ — Q™)V™ = R7, it is the unique solution t¢/ —
@W),UT( — RW. -

The Triangularizer first appeared inl [6], with an elaboratalgsis. An antecedent to it appeared in
Kaspi and Mandelbaum [14], and a contemporaneous acconfitecound in Sonin [18]. That elementary
row operations simplify the analysis seems not to have bbeareved previously, however.

4 Policy evaluation

Throughout this sectiorg is any given multistateL is any given labeling and is the priority rule that is
keyed toL. An algorithm that computes the expected utiliff () will be presented. Propositign8.3 shows
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that V™ = V™ for which reason/™(3) can - and will be - computed using finalized data. With finalize
data, for (any given) statebanditb(i) is played at most once while in statand the finalized returi(i) is
earned if that event occurs. The expected utility/(3) is then a linear combination of the finalized rewards
say

VT(8) =) 2(0)7(i); (4.1)

in the case of linear utilityz(7) is the probability that bandi is played when its state is with finalized
data.
A recursion will be used to compute th¢i)’'s. Each step of this recursion updates entries in a set of

vectors, on per bandit. For=1, ..., K, the vectory” has|N, | entries, one per state, and is initialized by
1 if j=38
P(4) = P . 4.2
v {O if j€Np\ {5} (42
Successively, fon = 1,2,...,|N]|, this procedure selects the statbaving L(i) = n, setsk = b(i),

updates/* by
v« WG+ YR @aG, ) if G e N\ {i}, (4.3)
yi(i) 0, (4.4)

and makes no change i for anyp # k. Equation [4.B) augments the transition raté;) to statej by
the transition rate/*(i)g(i, j) to statei and then directly tg. Equation [44) reflects the fact that no state
is revisited when finalized data are employed.

The analysis of this procedure is eased by definingpfer1,2,...,|N|,

P,={seS:n>min{Ll(s): 1 <k<K}. (4.5)
Evidently, P, contains those multi-states that include a state whostikaless tham.

Proposition 4.1. Suppose Hypothesis C is satisfied. Interrupt the executidd.8)-[4.4) just prior to
the iteration in which it selects the statdaving L(i) = n. At this moment, the quantigy’(j) equals the
aggregate transition rate with finalized data of baneiftom states,, to statej due to play at each multi-state
in P,.

Proof. Whenn = 1, this result corresponds to the initial conditions. Sugpibfolds forn > 1. Expres-
sions [(4.8) and (4]4) show that it holds for+ 1. .

Propositio 4.1l prepares for the analysis of the:

Evaluator (for starting multi-state, labeling L and priority ruler that is keyed td.).

1. For each bandi, definey” by #.2). Set/ = 0 andn = 1. Whilen < |N

, do Steps 2 and 3.
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2. Leti be the state whose labli) equalsn, and setc = b(i). Replacel” by

Vi@t ]| DS v | - (4.6)

p#k [JENp

3. Execute[(413) and theh (#.4) for bankitThen replace: by n + 1.

The next result shows that the Evaluator determinéss).

Proposition 4.2. Suppose Hypothesis C is satisfied. The Evaluator termiméthd” = V7 (3).

Proof. Fori € N, setn = L(i) andk = b(i). The coefficient:(¢) in (4.1) equals the aggregate transition
rate from multi-state to the set of multi-statesthat have: = min{L(s,) : 1 < p < K'}. From Proposition
4.1, we obtaire(i) = y* (i) [T, 4 [ZjeN,, yp(j)} , which completes the proof. .

The computational effort for executing the Evaluator isedeiined in the next result.

Proposition 4.3. Withn = S"1_| |N;|, executing the Evaluator entails;-_, 3|Nk|? + Zn — 5 arithmetic
operations (beyond the effort required to apply the Tridagaer on each bandit).

Proof. Augment the evaluator by keeping a recordwf = ZjeNp yP(j) for eachp and ofw =

]"[ij1 {ZJENP yp(j)}. The initial value of each of these expressions is 1. Keepi&ugrd of these ex-
pression will facilitate the computation of the bracketedrts in (5.5) by a single division.

Consider the implementation of Step 2 whieg N, is selected andh is the number of states iV
whose label is lager thah(z). In this case the execution of (5.5) is Step 2 requires ongiadd2 multipli-
cations and one division, totalling 4 arithmetic operasioAlso, in step 3, (5.2) has to be implemented only
to them states inVy, whose label is higher thah(i), requiringm additions andrn multiplications, totalling
2m arithmetic operations. NexEjeNp yP(j) has to be updated only fer = k£ and this update requires

m — 1 additions. Also, the update @ﬂfi'l [Z]ENP yp(j)] requires the multiplication of the old value by
the ratio of the new and old values EjeNk y*(4), requiring 2 arithmetic operations. The total number of
arithmetic operation applied to execute steps 2 and 3 ovstadési is then

K

K K
_ N GINe[+H10)([Nkl = 1) 32, 7
YD Bm+s =) 5 =Y 5Nl +gn -5 .
k=1 m=1 k=1 k=1

To our knowledge, the computation 6f ($) for a particular priority policyr and particular starting state
5 is new. With a different functior (412), the Evaluator arglvitork bound apply to any initial distribution
over the multi-states that is in product form (except thatithtial values of thav?’s andw of the proof of
Theorem 5.2 will require n-1 additional arithmetic opesas).
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5 Pairwise comparison and preference

In this section, pairwise comparison will be used to idgrgifstate that is “best” amongst a group of states,
and the data for that state’s bandit will be revised accatglin The amplificationa(i) of statei is now
defined by
a(i) =Y q(i,j). (5.1)
JEN(i)

Under Hypothesis RN, each amplificationtisr less. In the risk-averse and risk-seeking cases, sotes sta
can have amplifications that excebechowever.

Playing chairb(i) when its state i$ earns reward (i) and multiplies future rewards by the facto(i).
Statei is now said to bgreferableto statej if

r(@) + a(i)r(j) > () + a(f)r(i). (5.2)
Suppose that statds preferable to statg if a multi-states is observed that includes statesndj, playing
banditb(7) first andb(j) second is better than the other way around. The definitiomedépence is applied
even when statesand; are in the same bandit, however.
It will soon be seen that preference is not transitive, bat thcan be refined in a way that is transitive.

To this end, states will be grouped into “categories.” THe hy which a category is assigned to each state
varies with the hypothesis.

5.1 Categoriesunder HypothesisRN

Under Hypothesis RN, each stgt@éasa(j) < 1, and each state is assigned a category by this rule:

e Category Iconsists of each stagethat hasu(j) = 1 andr(j) > 0.
e Category 2consists of each stagethat hasa(j) < 1.

e Category onsists of each stagethat hasu(j) = 1 andr(j) < 0.

It is easy to see that each stgtén category 1 that has(j) > 0 is preferable to every state in category
2 and that each state in category 2 is preferable to every statategory 3. But no state in category 1 is
preferable to any state in category 3. For this reason, fnede is not transitive. Statds now said to be
weakly preferable¢o statej if the inequality,

r(@) + a(i)r(j) = r(j) +a(j)r(i), (5.3)
holds strictly or if this inequality holds as an equation #melcategory of is at least as small as the category
of j. Under Hypothesis RN, each statis assigned &atio p(i) by the following rule:

+00 if state: is in category 1,
p(i) =< r@@)/[1 — a(i)] if state: is in category 2, (5.4)
—00 if states is in category 3.

It is easy to check that staieis weakly preferable to statgif and only if p(i) > p(j). Evidently,
weak preference is transitive. A stat¢hat is weakly preferable to all others can be found with — 1
comparisons.
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5.2 Categoriesunder Hypothesis RA

Under Hypothesis RA, a statecan haveu(j) > 1, but each statg hasr(j) < 0, and the states group
themselves into categories like so:

e Category Iconsists of each stagethat has(j) = 0 anda(j) < 1.
e Category 2consists of each stagethat has-(j) < 0.
e Category 3consists of each stafethat has-(j) = 0 anda(:) > 1.

As before, staté is said to beweakly preferableo state; if (£.3) holds strictly or if [5.8) holds as an
equation and the category of stats at least as small as the category of sjatdnder Hypothesis RA, each
statei is assigned &atio p(i) by this rule:

+o00 if statei is in category 1,
p(i) =< [1—a(d)] /r(i) if state: is in category 2, (5.5)
—0 if statei is in category 3.

It is easy to check thatis weakly preferable to stateif and only if p(i) > p(j).

5.3 Categoriesunder HypothesisRS

In the risk-seeking case, each stateasr(j) > 0, and the states group themselves into categories by this
rule:

e Category Iconsists of each stagethat has-(i) = 0 anda(:) > 1.
e Category 2consists of each stagethat has-(j) > 0.
e Category 3consists of each stagethat has(j) = 0 anda(j) < 1.

Statei’s ratio is now defined by:

400 if statei is in category 1,
p(i) = ¢ [a(i) — 1] /r(7) if state: is in category 2, (5.6)
-0 if states is in category 3.

With this categorization, the definition of weak preferewo®s not change. Again, statés weakly pre-
ferred to statg if and only if p(i) > p(j).

5.4 Finding aweakly preferred statein a set

The characterization of “weakly preferred” under RN, RA &f8lby comparing(-) shows that the relation
is transitive. Further, if the(¢)'s and the[l — a(¢)]'s for each stateé in a setU are available, theri(3.4),
(5.0) or [5.6), respectively, facilitate the identificatiof a weakly preferred state i by applying at most
|U| divisions andU | comparisons.
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55 A keyresult

Propositio 5.11 (below) would seem to have a simple prodgait in the case of linear utility, but we are
not aware of one. The interested reader is referred to thef pfoTheorem 5.2 in[[6], which employs a
delicate interchange argument.

Proposition 5.1. Suppose Hypothesis C is satisfied, and consider any sthst is weakly preferred to all
others. It is optimal to play bandit(i) for every multi-states that includes state.

5.6 Nomenclature

In the discussion to follow, the data for bandits 1 throughwill be triangularized in parallel, rather than
one after the other. At any stage in that computation:

e r(7) andq(j,p) denote theurrentvalues of the data for stage

e 7(j) andq(j,p) denote values of the data after they have hgaatedby the next execution of Step
2 of the Triangularizer,

e 7(j) andq(j, p) denote the finalized values of the data.

The amplification for statg is denoted:(j), a(j) anda(j) when itis given in terms of current, updated and
finalized data, respectively. The same is true of the ratip).

It is recalled the data for staieattain their finalized values when Step 2 is executed foe stdroposi-
tion[5.2 (below) indicates how each execution of Step 2 ofTiti@ngularizer affects the ratios.

Proposition 5.2. Suppose Hypothesis C is satisfied. Withas any nonempty subset &f,, suppose that
statei in bandit k be weakly preferable to the other stat&swith current values of the data for bandit
Executing Step 2 of the Triangularizer for stateas these effects:

p(i) = p(i), (5.7)
p(i) = p(j) = p(d) vjeM\{i}. (5.8)

Equation [[5.)7) states that finalizing the data for stgdeeserves its ratio. Expressidn (5.8) states that
updating the ratio for a statg other than; can improve its ratio, but not above that for stateThese
observations are insightful, but Proposition] 5.2 is notlisehis paper, and its proof is omitted. Proposition
facilitates the use of finalized data for each banditettne enabling parallel computation.

6 Optimization

A labeling L is said to beoptimalif the priority ruler that is keyed td. hasV™ = F, i.e.,m maximizes the

expected utility that can be obtained from each startingirstdte. Proposition 51 lays the groundwork for
a variety of algorithms that identify an optimal labelindhélfOptimizer, which appears below, triangularizes
the bandits contemporaneously, rather than one after liee. dts first execution of Step 3 identifies the state
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i that is weakly preferable to all others with respect to thgioal data. Its first execution of Steps 3(a) and
3(b) update the data for banditi) in accord with repeated play while in statand then remove state
The Optimizer then repeats Step 3 with updated data. Thiss®en stops as soon as all states in one bandit
have been removed

Optimizer

1. BeginC equal to the empty set. For each baridiinsert inC' a statei € N, that is weakly preferable
to every other statg € N, with respect to the original data. Set= 1. For each bandik, set
My, = Nk.

2. Do Step 3 whileV,, is nonempty for each.

3. Find a staté € C that is weakly preferable to all other statesCirwith respect to current data. Set
k = b(i) and setL(i) = n. Then replace: by n + 1.

(a) Use Step 2 of the Triangularizer to finalize the data fatestand to update the data for each
statej € M \ {i}.

(b) Remove statéfrom C'. Remove statéfrom M. If M, is nonempty, insert id' a statej € M,
that is weakly preferable to all other stateslify with respect to updated data.

The Optimizer stops as soon as all of the states in any baawittheen labeled, with— 1 as the highest
of the labels. The unlabeled states can be assigned ths fabi@lough|N| in any way. It will not matter:
no bandit whose state is labeledr higher will ever be played because it cannot have the lolabsl.

The Optimizer applies the Triangularizer with respect talzeling that is determined on line. At each
stage, the state that gets the next label is selected sd thateakly preferred to all states that have not yet
been labeled, i.e., the states.iff_, M.

Proposition 6.1. Suppose Hypothesis C is satisfied. The Optimizer constulatseling L that is optimal.

Proof. Let i be the state selected at the initial execution of Step 3. Vgeaference is transitive, so
Propositio 5.1 shows that it is optimal to play baridit) at each multi-state that includes stateSetting
L(i) = 1 is optimal.

Step 3(a) equates tothe transition probabilityj(j,:) for each statg in b(i), and, for each statgin
banditb(i), it updates the reward(j), the transition probabilitieg(j, p) for eachp # i to account for
repeated play while in staie

Step 3(b) removes statdrom banditb(i). What remains is a multi-armed bandit with one fewer state.
Propositior 3.11 implies that the same version of Hypoth€sssatisfied by the bandit with one fewer state.
Since weak preference is transitive, the statieat is selected at the second iteration of Step 3 is weakly
preferable to all others in the model with revised data arelfewer state. Propositidn 5.1 can be applied a
second time, and statecan be assigned the labg(j) = 2. Iterating this argument completes the proef.

The computational effort for executing the Optimizer isadatined in the next result.

16



Proposition 6.2. Withn = >_+_, | N, the Optimizer can be executed W@I{:szl |Ni|? + & arithmetic
operations ands S8 |V, + n(K — 1) + (%) comparisons plus the effort required to execute the Tri-

nangularizer on each bandit).

Proof. Augment the optimizer by recording a ranking of the elementS' in decreasing weakly prefer-
able order and corresponding ratios of those stat&s ihat are in category 2. The initial ranking can be
accomplished witr(*’; ) comparisons whereas the ratios of the states in categot 21titerC' in Step 1 are
computed when the those states are selected to €nter

When statei € N; gets a label,M;, changes and the Triangularizer updates the data of itssstate
including ther(j)'s and[1 — a(j)]'s. At each stage, finding a weakly preferred statelip can be ac-
complished with at mogt\/;| divisions (determining ratios for states in category 2) ahchost| M| — 1
comparisons. Updating the ranked I&treplaces the old state froi{i) by ¢, requires at mosk” — 1
comparisons. So, the effort for executing the Optimizeyobe the effort required to execute the Trinan-
gularizer on each bandit, is bounded By, Z',ffi‘l m = %fo:l |Ni|> + 2 arithmetic operations and
SE SN (K —14m—1)+ (5) = 33K N2+ (K — 1) + (¥) comparisons. .

m=1

Propositior 6.1 3]1, 4.3 aid 6.2 show that an optimal piyiotile and its expected utility'(s) for a
particular starting state can be computed wit§ >°, |Ni|* + O(N?) = O(N?) arithmetic operations and
O(N?) comparisons. These last two bounds match the best existimgdofor computing Gittins indices
(obtained in[[16], see [13, p.43)).

This section is closed with the mention of an alternativehi® ©ptimizer. This alternative has two
steps: First, optimize within each individual bandit. Setcuse finalized data for each bandit and pair-wise
comparison to rank the statéshrough|N| by weak preference. Propositibn 5.2 shows that the priority
rule that is keyed to this ranking (labeling) is optimal. Jlprocedure also requires work proportional to

>k [Nk,

7 Optimization with Constraints

For the case of a linear utility function that satisfies Hyyestis RN, the multi-armed bandit is now general-
ized to include a finite numbé#” of constraints, each on a particular type of reward. Inclgdhe objective,
there are nowV + 1 types of reward, which are number@dhroughWW. The objective measuregpe-0
reward and thes*" constraint places a lower bouii®, on the expectetype-wreward.

The initial multi-states is given, and the object is to maximize the expectation oftyipe-0 reward
subject to constraints that, for each keep the expectation of the typereward is at least as large &5%,.
The main thrust of this section is to use column generati@oitstruct an optimal solution to the constrained
problem that is an initial randomization ovBr + 1 priority rules. At the end of the section, the approach
taken here is compared with a more classic one.

It is known (c.f., Feinberg and Rothblum [9]) that an optimalicy can be found among the initial ran-
domizations over stationary deterministic policies. Tais the multi-armed bandit problem with constraints
be formulated as:
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Program 1. Maximize>_; oV (s), subject to the constraints

Y50l =1,
S5’ VO(s) > Cy for w=1,2,...,W,
a® >0 for all 4,

where it is understood that the sum is taken over all statjodaterministic policies) and whereV;’(s)
denotes the expectation of the typeuditility that is earned if one starts at multi-statend uses policy.
Program 1 has onli#” + 1 constraints, but it can have a gigantic number of decisioabtes (one for each
stationary deterministic policy and one for each slack variable), and its data include the«iypeward
V() for eachw and each policy.

Program 2, below, is in the same format as Program 1. Progrhas 2ne decision variable for each
priority rule 7, rather than for each policy.

Program 2. Maximize)__a™ V' (s), subject to the constraints

Yo dopal =1,
e E Yo a™Vi(s) > Cy for w=1,...,W,
a™ >0 for all 7.

There are fewer priority rules than polices, but the numlbgriority rules can still be enormous. Mul-
tipliers have been assigned to the constraints of Prograntt®se multipliers will be used in column
generation.

7.1 Preview

Although Program 2 has fewer columns than does Program Ipuiimg the data it requires would still be
onerous. Much of this computation can be avoided by couplirgimplex method with column generation.
To indicate how, we suppose that a feasible basis for Prograas been found. This feasible basis consists
of W + 1 columns (the constraint matrix has full rank). It prescsilvalue of the basic variables and of the
multipliers yo and—y1, . .., —yw. These multipliers are used to define rewards in an uncanstrdandit
problem whose optimal solution (found by the Optimizer)niiges a priority rulex whose corresponding
column has reduced cost (marginal profit) that is the largest. It equals zero, the current basis is
optimal. Alternatively, ifc* is positive, the Evaluator is used to compute the coeffisigft, . . ., VV?,. A
simplex pivot is then executed, and the process is repeated.

7.2 Feasibility

Each column of Program 2 is a column of Program 1. Thus, if Rirog? is feasible, Program 1 must also
be feasible. The converse is established in:

Proposition 7.1. Suppose Hypothesis RN is satisfied. If Program 1 is feagfiodgram 2 is also feasible.
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Proof. We will prove the contrapositive. Suppose that Program @i$easible. An application of Farkas’
lemma (equivalently of the duality theorem of linear pragraing) shows that there exist numbegsand
y1 throughy,, such that

w
- vVa(s) = 0  forall , (7.1)
w=1
Yo > 0 forw=1,..., W, (7.2)
w
vo— > yuCu < 0. (7.3)
w=1

The numbers); throughyy will be used as weights for the rewards(:) throughry (7). Consider
an unconstrained multi-armed bandit in which the rewa(d) for playing bandity(i) while its state is is
given by R(i) = y1r1(i) + - - - + ywrw (i). Expression[(7]1) states that with rewak¢i) for each state,
no priority rulew has aggregate reward that excegglsPropositio 5.11 shows that a priority rule is optimal.
Thus,

w
Yo— Y yuVi(s) =0 forall 4. (7.4)
w=1

whered ranges over all stationary deterministic policies. A soluiexists to[(Z.R)£(714), so a second appli-
cation of Farkas’ lemma shows that no solution exists to tmstaints of Program 1. "

Thus, Program 1 is feasible if and only if Program 2 is feasilflhase | of the simplex method will be
soon used to determine whether Program 2 is feasible andl, ib €onstruct a feasible basis with which to
initiate Phase Il of the simplex method. For the moment, &ssumed that a feasible basis for Program 2
has been found.

7.3 Phasell

The constraint matrix for Program 2 includes a column fotheaicthe W slack variables. These columns
are linearly independent of each other, and they are lipéadependent of the other columns. Thus, the
rank of its constraint matrix equals the numbgr+ 1 of its rows, and each basis for Program 2 consists of
exactlyW + 1 columns. Let us consider an iteration of Phase Il. At handhatstart of this iteration is a
feasible basis, its basic solution and its multipliers.sTihformation includes:

e The data (column) for each of th& + 1 basic variables.
e The basic solution (tha™'s) for this basis.
e The multipliersy, andy, throughyyy for this basis.

The multipliersy; throughyy, are nonnegative, and each priority raléaas reduced cost' that is given by
w
A=V s)+ D> yuVia(s) — wo-
w=1
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Computation of the reduced cost of each nonbasic priorlgy Xwould be an onerous task, but it is not
necessary. To determine whether or not the current basggima and, if not, to find a priority rule has the
largest (most positive) reduced cost, one can solvaititenstrainedmulti-armed bandit problem with the
rewardR(7) for playing bandit)(i) when its state i$ given by

w
R(i) =ro(i) + > _ yuru(i). (7.5)
w=1

With these rewards, the Optimizer in Section 7 computes @ipyrirule 7 that is optimal. Also, the
Evaluator in Section 5 computes the expected rekdit(xs) for starting in multi-state and using this priority
rule. If V™(s) < yo, N0 nonbasic variable has a positive reduced cost, so thentusasis is optimal.
If V™(s) > yo, the column for priority ruler enters the basis. To compul€; (s) for eachw, use the
Triangularizer and Evaluator for priority rute In this computation, the finalized rewards vary witrbut
the y*(4)’s do not. To complete an iteration of Phase Il, execute aliEapivot with o™ as the entering
variable.

7.4 Phasell recap

Each feasible basis and its basic solution prescribe ailindgndomization (with weighty™ assigned to
priority rule 7) over (W + 1 — p) priority rules, wherey equals the number of slack variables that are basic.

The multipliers for the current basis determine the datanofiaconstrained bandit problem, and the
procedure in prior sections computes its optimal prioritherr and its expected retury,™(s). If V7(s)
does not exceegl, the current basis is optimal. ¥™(s) exceedsyy, the Evaluator is used to compute the
coefficientsV{" throughVij; of the entering variable. A simplex pivot is then executed.

The pivot itself requires work proportional & + 1)3. Identifying the entering variable and its column
of coefficients entails work proportional t& +2)[>", |Nx|3]. Only a few iterations may be needed to find
a good basis, or an optimal basis, but that is not guaranteed.

75 Phasel

It remains to determine whether or not Program 2 is feasibtk d it is feasible, to construct a feasible
basis with which to initiate Phase Il. These tasks will becatglished by “bringing in” the constraints of
Program 2, one at a time. Starting with= 1, then'" iteration of Phase | is initialized with a randomization
overn — 1 priority rules that satisfy the first — 1 constraints. The'" iteration maximizes type-reward,
using the Phase Il column generation scheme described .alidhe type« income can be made as large
asC,,, a basis has been found with which to initiate the- 15! iteration. If not, no feasible solution exists
to Program 2.

7.6 Theclassicformulation

An optimal policy for a discounted Markov decision problerithiil constraints can be found among the
stationary randomized policies (c.f., Altman [1, page }0Zhis can be accomplished by a linear program
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whose constraint matrix has one column per state-actionga row per state, and one row per constraint.
The multi-armed bandit has = [];_, | x| multi-states and¢ actions per multi-state. Its constraint matrix
hasW + J rows andK x J columns. The classic formulation has fewer columns thars Rvegram 2, but
it has many more rows.

The classic formulation can also be attacked by column gdiner but doing so would be unattractive
because the formulation would have more columns and mang rowrs than the one we propose.

7.7 A roadblock

With a linear utility function, multiple types of reward cdoe handled by column generation and by the
classic method. Both methods utilize the fact that eactsitian rateq(i, j) is independent of the reward
type.

Let us consider what occurs when multiple types of rewardgdiroduced in the model with exponential
utility. Note from (2.4) and[{Z]5) that the payaffi, j) appears in the formula for the transition rafe, ;).
Having multiple types of income causes the transition¢étej) to vary with the reward type. Consequently,
our column generation method (and the classical one) capfigd only when the types payoff x., (i, j)
is independent ofv, for instance, this is the case when income is earned ongr@ination.

8 Structural properties

In the prior section, it was demonstrated that an optimaicpdbr a constrained bandit problem can be
found among the initial randomization ov@r + 1 priority rules. In the current section, the structure o$thi
optimal policy is probed.

A transient Markov decision problem (MDP) with” constraints has an optimal solution that is an initial
randomization oveiV + 1 deterministic policiess' throughs" ! each of which differs from the next at
precisely one state of the MDP; see Feinberg and RothklunV{@jen this MDP is a multi-armed bandit,
these deterministic policies need not be priority rulesyéacer.

Two labelings are now said to kedjacentif they are identical except that they exchange the states
having labels: andk + 1 for exactly one value of. The aforementioned property raises the question: Does
Program 2 have an optimal solution that is an initial randm@tidn over priority rules that are keyed to a
sequence of” + 1 labelings with the property that each labeling is adjacerihé next? This question will
be answered in the affirmative in the case of one constradhtrathe negative in the case of more than one
constraint.

8.1 Adjacency with one constraint

Let us consider a multi-armed bandit with one constraint.nate seen that an optimal basis for Program 2
prescribes a randomization over at most two priority ruleiés basic solution for this basis set$ = 1 for
any j, only priority rule is used, and adjacency is trivial.

Let us denote ag!” andV}’ as the type-0 and type-1 utility for colunpn The case that requires analysis
is that in which the optimal basis for Program 2 consists &diroms j andk whose priority rules are keyed
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to different labelings. For this to occur, the slack varafir the inequality constraint in Program 2 must
not be basic, so this optimal basis assigns the coluiam k£ nonnegative values; andoy, that satisfy

aVi+ eV =Cy and aj+ap=1. (8.1)

The optimal basis for Program 2 assigns to its constraiftgesaof the multipliersy, and —y; for which
columnsj andk have0 as their reduced costs. In other words,

0=V +uV/ -y and 0=VF+uVf -y (8.2)

If Vlj = V¥, equation[(811) guarantees that both columns I@avas their type-1 utility, and equation (8.2)
shows that both columns have the same type-0 utility, in vbase it is optimal to play either column with
probability 1, and a deterministic priority rule is optimal

It remains to analyze the case in whi€h lies strictly betweeerj and V¥, The labelings to which
columnsj andk are keyed need not be adjacent, but colurhasdk can be used to construct an optimal
basis with labelings that are adjacent. To indicate how,use to the example in Table 1. In this example,
columns; andk assign identical labels to the states, except for the{$e® 8,9} and{13, 14} of labels.

Table 1. An optimal basis.

label 6 7 8 9 ... 13 14
columnj ... a b c¢c d ... f g
columnk d ¢c b a g f

Optimal solutions to the unconstrained multi-armed banaWing R (i) = ro(i) + y171(¢) for each state
1 are in product form. As a consequence, every colpmnose labeling permutes the labels assigned to the
sets{a, b, c,d} and{f, g} of states ha$ as its reduced cost in Program 2. Atotaliof=1+3+2+ 1
interchanges of states whose labels are adjacent convenpetmutation for columh into the permutation
for columnj. One of these interchanges must move the type-1 reward frerside ofC; on whicth’“ lies
to the side on which/lj lies, and that switch identifies a pair of adjacent labelingkis switch identifies
a pair of priority rules that are keyed to adjacent labeliagd whose columns form an optimal basis. The
pattern exhibited by this example holds in general. Thenbudarizer and Evaluator can be used to compute
the reward vector for each labeling.

8.2 Non-adjacency with two constraints

For a multi-armed bandit problem with two constraints, atidhrandomization over 3 priority rules has
been shown to be optimal. Examples exist in which no optiroalt®n is an initial randomization over
priority rules that are keyed to a sequence of three adjdabstings. Such an example is now presented.
This example has 3 chains (bandits), each of which consisissmgle state. The three bandit's states are
a, b ande, respectively. The multi-state:, b, ) is observed initially. Playing any bandit causes immediate
termination. Playing the bandit whose state isarns the reward vectdt, 0,0) whose entries are, respec-
tively, the type-0, type-1 and type-2 reward. Similarlyayihg the bandit whose state lisesarns reward
vector (0, 1,0), and playing the bandit whose state-isarns reward vectd, 0, 1). The lower bounds on
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expected type-1 and type-2 rewards &fe= 0.3 andC, = 0.1. There are six labelings, which are listed
below. Labeling (v) had.(a) = 3, L(b) = 1 andL(c) = 2, for instance.

state a b c
labeling (i) 1 2 3
labeling (i) 1 3 2
labeling (i) 2 1 3
labeling (iv) 2 3 1
labeling(v) 3 1 2
labeling (vi) 3 2 1

For this example, it is optimal to use labeling (i) or (ii) tviprobability of0.6, to use labeling (iii) or
(iv) with probability 0.3 and to use labeling (v) or (vi) with probability @f1. But no sequence of three
labelings, one from each pair, is adjacent. For instantelitags (i) and (iii) are adjacent to each other, but
neither is adjacent to labeling (v) or (vi).

9 Relaxing HypothesisC

The model with a risk-averse exponential utility functicendoe generalized by replacing Hypothesis RA
with these conditions:

e Each bandit: has a transition rate matri¥ that is nonnegative.
e At least one bandit has a transition rate matrip¥ that is transient.

e Every closed communicating class of states in any bandit has spectral radius df;")c¢ that
exceedd.

When Hypothesis RA is weakened in this way, the analysistesanore intricate. One difficulty stems
from the fact that if a policyr has a transition rate matri@™ that is not transient, its utility vectdr™ cannot
satisfy [2.18). The fact that the risk-averse exponentifityufunction hasu(0) = —1 and the weakened
hypothesis can be used to work around this difficulty by milbt any stationary policy that plays a bandit
at each state in any closed communicating class. A secoficlittif arises from the fact that the interchange
argument in Proposition 3.1 can no longer rest on the classidts in [5] or[[21]. The interested reader is
referred to the analysis ihl[6] and to the characterizatiomptimal policies in[[7].

The linear-utility model can be generalized in a similar witysuffices that each bandit has a matrix
¢" that is substochastic, that at least one bahditais a matrix;* that is transient, and that every closed
communicating class of states in any bandit has a gain ratéstihegative.

With each of these generalizations, only a minor changegsired in the computation. The change is
to avoid playing bandib(j) if at some point in the computation it has transition rafg j) that equals or
exceedd.
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