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Abstract

In this paper we examine the possibility of using the standard Kruskal-Wallis

rank test in order to evaluate whether the distribution of e�ciency scores re-

sulting from Data Envelopment Analysis (DEA) is independent of the input

(or output) mix.

Recently, a general data generating process (DGP) suiting the DEA method-

ology has been formulated and some asymptotic properties of the DEA esti-

mators have been established. In line with this generally accepted DGP, we

formulate a conditional test for the assumption of mix independence. Since

the DEA frontier is estimated, many standard assumptions for evaluating the

test statistic are violated. Therefore, we propose to explore its statistical

properties by the use of simulation studies. The simulations are performed

conditional on the observed input mixes. The method, as it is shown here,

is applicable when comparing distributions of e�ciency scores in two or more

groups in models with multiple inputs and one output with constant returns

to scale.

The approach is illustrated in an empirical case of demolition projects where

we reject the assumption of mix independence. This means that it, in this

1



case, is not meaningful to perform a complete ranking of the projects based

on their e�ciency scores. Thus the example illustrates how common practice

can be inappropriate.

Keywords: Data Envelopment Analysis (DEA), homogeneous e�ciencies, small
sample properties, Kruskal-Wallis, ranking, demolition projects
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1 Introduction

Many e�ciency studies employing the nonparametric Data Envelopment Analysis
(DEA) technique use the resulting e�ciency scores to make a complete ranking of
the set of observed units (see e.g. Adler et al., 2002 for a review). Yet, it is ques-
tionable whether such a comparison of e�ciency scores is appropriate, c.f. e.g. the
discussion in Bogetoft and Otto (2011). When comparing units with benchmarks on
di�erent facets of the e�cient frontier, the units are in e�ect compared based on an
evaluation using di�erent underlying (shadow) prices. The theoretical requirement
for a complete ranking is clear: comparisons of e�ciency scores only make sense if
the distribution of e�ciency scores is independent of the input and output mix; a
requirement we here call the assumption of mix independence. It is, however, less
obvious how to test this assumption empirically. In the present paper we suggest a
statistical test for whether the hypothesis of mix independence can be rejected.

From a theoretical point of view the e�ciency scores have a straightforward interpre-
tation for each observation taken separately, namely the factor by which we can scale
inputs, or outputs, in order to become as e�cient as those observations spanning
the frontier (the common benchmark). However, it is not obvious that e�ciency
scores can be compared directly between observations for which there is no dom-
inance relation. Such units will typically be benchmarked against di�erent facets
of the frontier (or dually against di�erent underlying weights (shadow prices)) and,
strictly speaking, such a comparison is questionable from an economic viewpoint.

Thus, any comparison of e�ciency scores for observations with di�erent input (or
output) mixes does, in fact, rely on the hypothesis of mix independence, i.e. that the
distribution of e�ciencies is independent of the input (or output) mix. If the mix
independence assumption is violated, we know that there are di�erences between
the e�ciency distributions for di�erent input mixes, which means that it may be
inappropriate to compare e�ciency scores across the sample or, for instance, rank
all observations based on their e�ciency scores.

When using DEA, an estimate of the true but unknown production function is
obtained from a convex envelopment of the observed data points (Charnes et al.,
1978). Banker (1993) was the �rst to show that the estimated DEA frontier is a
consistent maximum likelihood estimator within a certain class of sensible functions.
Since then, the statistical properties of the e�ciency estimators have been subject
to numerous studies. Simar and Wilson (2000a) summarize the most important
recent results, among which results on consistency and convergence rates for DEA
estimators are prominent.

It is well known that both the estimate of the production frontier and the e�ciency
scores are downward biased. The distribution of the estimated e�ciency scores is
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unknown except for the very special case of one input and one output. This case
is, however, too simple for practical applications and much e�ort has been devoted
to the development of consistent bootstrap methods for both the estimated DEA
frontier and the estimated e�ciencies in the general case (Simar and Wilson, 2000a,
2000b). Kneip et al. (2008) �nd an expression for the asymptotic distribution of
the empirical ine�ciencies in the general variable returns to scale (VRS) set-up.
However, the distribution depends on several unknown values, and they suggest
consistent bootstrap methods to obtain quantiles for the 'unknown' distribution.

Recently, Simar and Zelenyuk (2006) investigated the possibility of using the test of
Li (1996, 1999) for similarity of two unknown distributions within a DEA context.
They show that a modi�cation of Li's test can be useful for comparing distribu-
tions of e�ciencies based on the estimated scores. However, Li's test is restricted
to a comparison of two densities. Therefore, there is a need for investigating the
possibility of using tests for comparison of more than two density functions.

The aim of this paper is to investigate the properties of the popular Kruskal-Wallis
test for comparison of distributions of e�ciency scores. Speci�cally we here consider
a multiple-input one-output DEA model with constant returns to scale and investi-
gate how the uncertainty arising from the estimation of the frontier and e�ciency
scores in�uences the statistical properties of the test statistic. The proposed method
is illustrated using an empirical dataset of 169 demolition projects.

In section 2 and 3 below, the theoretical model is introduced followed by a description
of the Kruskal-Wallis test statistic together with the simulation approach designed
to investigate its statistical properties. The empirical data and simulation results are
presented in section 4 followed by a discussion of the applicability of the proposed
method as well as some further practical considerations in Section 5.

2 The Model

Consider production plans (X, Y ) where r inputs, X ∈ Rr
+, are used to produce

one output, Y , such that (X, Y ) ∈ Rr+1
+ . Let Z ∈ Rr

+ describe the output scaled
production plan (i.e. Z = X/Y ). Further, let V = ‖Z‖ be the Euclidian norm of Z
and U = Z

‖Z‖ be the direction of Z (U is on the unit sphere in Rr
+) such that

Z = U · V.

Let g(·) : Rr
+ → R be a homogeneous and convex function such that the input set

becomes,
L = {z ∈ Rr

+ | g(z) ≥ 1},
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and g represents the isoquant (or production frontier). Let Shephard's distance
function (Shephard, 1970) EZ of Z relative to the isoquant g be de�ned as,

EZ = sup{e ∈ R+ | g(
Z

e
) ≥ 1} = g(Z).

Since, Z = U · V and EZ = g(U · V ) = g(U) · V, then Z can be decomposed as

Z = U · EZ
g(U)

. (1)

Note that EZ ≥ 1 and that E−1Z ∈ [0, 1] corresponds to Farrell's index of technical
input e�ciency, see e.g., Farrell (1957). An illustration of the concepts is provided
in section 4 below.

We consider a data generating process, DGP, where �rms �rst choose an input mix
(or direction) U and then, given U , choose an e�ciency score EZ , in line with Simar
and Wilson (1998, 2000a). Given this GDP, the joint density f(EZ ,U)(·, ·), is naturally
decomposed into the conditional density given U and the marginal density for U :

f(EZ ,U)(e, u) = f(EZ |U)(e|u)fU(u).

It is a fundamental (though often implicit) assumption when comparing e�ciency
scores between �rms that the density distribution of EZ is independent of the input
mix U ,

Mix Independence: f(EZ |U)(e|u) = fEZ
(e).

In the following we suggest a statistical method for testing this assumption namely
independence between EZ and U , EZ⊥⊥U . We consider a method building on the
proposed DGP for Z on L.

3 Testing mix independence

Assume that the frontier g is known and denote by zi n independent observations
of Z from i = 1, . . . , n production plans. Let ((U1, E1), · · · , (Un, En)) be stochastic
variables denoting directions and e�ciencies for the n production plans, and (ui, ei),
i = 1, . . . , n be the corresponding observed directions and e�ciencies. According to
(1), zi can be decomposed as zi = uivi = uieig(ui)

−1 for i = 1, . . . , n. The hypoth-
esis E⊥⊥U , can be evaluated by use of a conditional test. Given mix independence
and given the directions, the (in)e�ciency scores are identically distributed. The
proposed test statistic is based on the observed directions ui and e�ciencies ei.
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INSERT FIGURE 1 ABOUT HERE

Figure 1. Illustration of the notation and various elements.

A (conditional) test for mix independence based on the (in)e�ciencies can be cal-
culated as an ordinary non-parametric rank test comparing distributions between
di�erent direction-based cones of the input set, see Figure 1 below.

The �gure shows, for a given point Zi, the corresponding direction represented by
the point Ui on the unit sphere and the length Vi. It also illustrates a partitioning
of the production space into three disjoint cones (I,II,III) based on the input mix.

3.1 Kruskal -Wallis test

Let the input set L be partitioned into k cones corresponding to a partitioning of the
unit sphere in Rr

+. Let nj be the number of observations in the j'th cone j = 1, . . . , k
(n1 + · · ·+nk = n) and let the (in)e�ciency measures within that cone be numbered
en1+···+nj−1+1, . . . , en1+···+nj−1+nj

and have density fj. For notational convenience,
the set of indices {n1 + · · ·+ nj−1 + 1, . . . , n1 + · · ·+ nj−1 + nj} is denoted sj.

Let R1, . . . , Rn be the ranks based on ei in the total sample. Ranks are well-de�ned
as long as the probability of coincidence is zero. Assuming that the ranks are well-
de�ned, the k-sample Kruskal-Wallis (KW) test for comparison of k densities (Hájek
and Šidák 1965, Lehmann, 1974) is

Q =
12

n(n+ 1)

k∑
j=1

1

nj
(
∑
l∈sj

Rl)
2 − 3(n+ 1).

Under the assumption of equal densities (H0: fj = f, ∀j ) the KW test statistic is
asymptotically χ2-distributed with k−1 degrees of freedom when min(n1, . . . , nk)→
∞. Ties are (as usual) handled by assigning the average rank to a group of tied

values. A correction for ties can be made by dividing Q by 1−
∑h

m=1(τ
3
m−τm)

n3−n , where
h is the number of groupings of di�erent tied ranks, and τ1, . . . , τh are sizes of ties.
Unless there are a large number of ties the correction usually makes little di�erence.

However, in practice the production function g is unknown and when using an
estimated production frontier the assumptions required for the asymptotic properties
of the KW test statistics are violated. Therefore, the p-values shown above are not
necessarily reliable. By using simulation studies we aim to investigate the impact on
the distribution of the KW test statistic of using a DEA (CCR) estimated production
technology ĝ instead of the (unknown) "true" production function g.
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3.2 Simulation of the distribution of the test statistic

1. Let (u1, . . . , un) be the observed directions. Let ai be the number of observa-
tions in direction i (typically ai will be equal to 1). Fix this set of observed
directions.

2. Assume a "true" technology g, by specifying parameters in some functional
form, for example a classical Cobb-Douglas or, more general, CES production
function.

3. Given the assumed "true" technology g, for each observed direction ui sim-
ulate ai data points z̃i by drawing an ine�ciency score ẽ−1i from a suitable
distribution f on [0, 1], i.e. z̃i = uiẽig(ui)

−1.

4. Use the simulated data points z̃i to make a CCR estimate ĝ of the production
function and determine the e�ciency score êi for each point relative to ĝ.

5. Based on a partitioning of the input space into k cones calculate the associated
Kruskal-Wallis test statistic.

6. For �xed f and k repeat this procedure (step 3, 4 and 5) a number of times
(N=10000 say).

In order to get a consistent estimate of the production frontier g, f has to be chosen
such that there is a positive probability for observing production plans arbitrarily
close to the boundary as n gets large, c.f. e.g. Kneip et al. (1998). That is, f has to
satisfy the following condition:

For all directions u there exists constants ε1 > 0 and ε2 > 0 such that for all
e ∈ [g(u), g(u) + ε2] we have f(e|u) ≥ ε1.

4 Empirical illustration

To illustrate our approach we use a data set from a large demolition company. The
data set consists of 169 di�erent demolition projects undertaken by the company
within one year. Each project uses a combination of labor costs, machine costs and
other variable costs, which constitute the inputs in the e�ciency assessment. The
single output considered is the revenue generated by the projects. While this repre-
sents a cost function rather than a production function as such, the interpretation
of the e�ciencies is similar to those from the standard production model above.
Projects with a zero cost on any of the inputs have been excluded. Note also that
the total costs in some cases are higher than the revenue. Descriptive statistics of
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the variables are given in Table 1 below.

Mean Std.dev Min Max
Revenue 1737710 2509220 27396 13247406
Machine costs 241483 484542 250 3559392
Labor costs 330887 741288 235 6054610
Other costs 907937 1359713 2229 9469283
E�ciency 0.563 0.200 0.161 1

Table 1. Descriptive statistics for output and input variables as well as for e�ciency

scores.

To assess the e�ciencies of the individual projects, an input-oriented DEA model
with constant returns to scale (the CCR model) was used to estimate the production
function and corresponding input e�ciency scores (c.f. Charnes et al., 1978). The
descriptive statistics of these e�ciency scores are provided in the last row in Table
1 above.

Often analysts as well as practitioners are interested in ranking the observed units
on the basis of their e�ciency scores. A related issue is whether it is appropriate to
directly compare two e�ciency scores from di�erent parts of the production space.
When analyzing the demolition projects the question arose whether labor intensive
projects are more or less e�cient than machine intensive projects. Answering this
question requires a comparison of e�ciency scores between projects with very dif-
ferent characteristics, for instance removing asbestos panels in a working hospital,
which is very labor intensive, and the complete demolition of a multi story car park,
which is very machine intensive. Therefore we here propose an approach for testing
whether such comparisons are, in fact, appropriate.

4.1 Partitioning and initial test results

For the actual test for mix independence the data set must be partitioned into a num-
ber of distinct subgroups based on their input mixes (i.e., directions in production
space). In general, the partitioning into groups has to be economically meaningful
in the sense that directions corresponds to production activities and de�ning rele-
vant groups for comparison depends on the characteristics of the speci�c data set
at hand. An obvious partitioning in the current case would come from considering
the largest cost component for each project, where the groups then directly indicate
whether the projects are mainly labor-, machine- or 'other cost'-intensive. In the
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current data set this would, however, result in most of the projects being catego-
rized as 'other cost' intensive, since that variable is generally on a larger scale than
the other two input variables, c.f. also Table 1. In the following we have consid-
ered two di�erent partitionings of the current data set into three disjoint cones in
the production space. In both partitionings the groups re�ect labor-, machine and
other-cost intensive projects respectively and with a reasonable number of projects
in each group:

Partitioning A: The output scaled input variables Z are each divided by the maxi-
mum value on the given variable such that they are in the same order of magnitude.
For each observation, the group is determined by the largest of these transformed
variables values, resulting in 1) 103 observations with largest values on other costs,
2) 40 observations with largest machine costs and 3) 26 observations with largest
labor costs.

Partitioning B: To ensure a more even number of observations in all groups than
above, the second partitioning is: 1) Other costs/revenue above the 66.7% quantile
(56 projects), 2) If not in group 1 and machine cost/revenue larger than salary/revenue
(46 projects), and 3) If not in group 1 and machine cost/revenue smaller than
salary/revenue (67 projects).

Calculating the KW test statistic for the two partitionings suggested above gives
the results shown in Table 2 below. The immediate interpretation of the results in
Table 2 implies that there is not mix independence amongst the demolition projects,
i.e., it is not appropriate to rank the projects based on their e�ciency scores, nor is
it possible to directly compare any two e�ciency scores (from projects with di�erent
input mixes).

Partitioning KW Df p-value
A 8.185 2 0.0167
B 23.66 2 ≤ 0.0001

Table 2. KW test statistics and corresponding p-values originating from the

χ2(2)-distribution.

4.2 Simulation results

We have chosen to consider four di�erent shapes of Cobb-Douglas production func-
tions 1 with constant returns to scale (zα1

1 zα2
2 zα3

3 , α1 + α2 + α3 = 1) where z1 is the

1Choosing a Cobb-Douglas function is in line with previous work, e.g. Simar and Zelenyuk
(2006)
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revenue scaled machine costs, z2 is the revenue scaled labor costs and z3 the rev-
enue scaled other costs. The α parameters considered are (α1, α2, α3) = [(1

3
, 1
3
, 1
3
),

( 1
10
, 1
10
, 8
10

), ( 8
10
, 1
10
, 1
10

), (0.2, 0.15, 0.65)] where the latter is chosen near the ordinary
least square (OLS) estimated parameters restricted to summing to one. For each
Cobb-Douglas speci�cation we consider di�erent e�ciency distributions all with rel-
atively high probability mass in the neighborhood of 1, speci�cally we use various
Beta distributions, Beta(1,1), Beta(3,1), Beta(2, 0.8) and Beta(5, 1.5), and one
truncated normal distribution (TNF) N(1, (0.2)2).

For each combination of Cobb-Douglas parameters, e�ciency distribution and parti-
tioning we have performed 10000 simulations of e�ciency scores with one simulated
observation in each observed direction, the results of which are shown in Table
3 below. The �rst column shows the signi�cance probabilities in the actual χ2-
distribution. Each value in the interior of the table represents, for the signi�cance
probability in the given row, the corresponding signi�cance probability from the sim-
ulated distribution. The rows named "Observed" give the signi�cance probabilities
based on the simulations for the obtained KW test statistics.

Considering �rst the bottom section of Table 3 where the OLS estimated Cobb-
Douglas parameters are used, we notice that the simulated upper tail distributions
for the KW test statistic are generally very similar to those from the χ2-distribution.
This is the case for all the e�ciency distributions considered, but for partitioning B
the results are generally closer to the χ2-distribution than those from partitioning
A. This is likely due to the fact that partitioning A has a fairly uneven split of
observations between the groups, and the parts of the estimated frontier determined
by the observations in the smaller groups will tend to vary more, resulting in less
stable ranks. In partitioning B, however, the observations are much more evenly split
between the groups such that there are more observations in the smallest group.
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Partitioning A Partitioning B

(α1, α2, α3) = (1
3 ,

1
3 ,

1
3 ) (α1, α2, α3) = ( 1

3 ,
1
3 ,

1
3 )

χ2(2)
signi�cance Beta(λ1,λ2) TNF Beta(λ1,λ2) TNF
probability (1,1) (3,1) (2,0.8) (5.1.5) (1,(0.2)2) (1,1) (3,1) (2,0.8) (5.1.5) (1,(0.2)2)

0.100 .0956 .1391 .1154 .1695 .1872 .0687 .0778 .0722 .0937 .0962
0.050 .0438 .0709 .0551 .0855 .0955 .0301 .0342 .0308 .0417 .0415
0.025 .0211 .0367 .0261 .0423 .0478 .0140 .0138 .0129 .0188 .0167
0.010 .0070 .0137 .0095 .0147 .0178 .0057 .0045 .0037 .0060 .0057
0.001 .0006 .0012 .0003 .0016 .0011 .0002 .0001 .0004 .0002 .0001

Observed .0145 .0243 .0163 .0272 .0306 0 0 0 0 0

(α1, α2, α3) = ( 1
10 ,

1
10 ,

8
10 ) (α1, α2, α3) = ( 1

10 ,
1
10 ,

8
10 )

χ2(2)
signi�cance Beta(λ1,λ2) TNF Beta(λ1,λ2) TNF
probability (1,1) (3,1) (2,0.8) (5.1.5) (1,(0.2)2) (1,1) (3,1) (2,0.8) (5.1.5) (1,(0.2)2)

0.100 .0725 .0646 .0688 .0715 .0837 .1339 .1377 .1231 .1492 .1343
0.050 .0327 .0279 .0280 .0297 .0406 .0666 .0691 .0590 .0780 .0678
0.025 .0143 .0121 .0129 .0123 .0166 .0323 .0368 .0284 .0381 .0328
0.010 .0049 .0037 .0037 .0033 .0047 .0128 .0142 .0099 .0154 .0107
0.001 .0003 .0004 .0000 .0002 .0002 .0011 .0013 .0009 .0007 .0008

Observed .0090 .0076 .0080 .0075 .0099 0 0 0 0 0

(α1, α2, α3) = ( 8
10 ,

1
10 ,

1
10 ) (α1, α2, α3) = ( 8

10 ,
1
10 ,

1
10 )

χ2(2)
signi�cance Beta(λ1,λ2) TNF Beta(λ1,λ2) TNF
probability (1,1) (3,1) (2,0.8) (5.1.5) (1,(0.2)2) (1,1) (3,1) (2,0.8) (5.1.5) (1,(0.2)2)

0.100 .1206 .1410 .1191 .1742 .1785 .0910 .0763 .0773 .0862 .0787
0.050 .0595 .0741 .0626 .0908 .0959 .0441 .0333 .0337 .0387 .0353
0.025 .0300 .0368 .0289 .0462 .0472 .0205 .0151 .0143 .0184 .0159
0.010 .0117 .0151 .0109 .0217 .0183 .0066 .0041 .0049 .0064 .0051
0.001 .0012 .0008 .0008 .0021 .0018 .0005 .0003 .0008 .0006 .0002

Observed .0196 0252 .0188 .0325 .0302 0 0 0 0 0

(α1, α2, α3) = (0.20, 0.15, 0.65) (α1, α2, α3) = (0.20, 0.15, 0.65)
χ2(2)
signi�cance Beta(λ1,λ2) TNF Beta(λ1,λ2) TNF
probability (1,1) (3,1) (2,0.8) (5.1.5) (1,(0.2)2) (1,1) (3,1) (2,0.8) (5.1.5) (1,(0.2)2)

0.100 .0744 .0819 .0781 .0958 .1138 .1094 .1110 .1048 .1324 .1228
0.050 .0321 .0362 .0329 .0455 .0551 .0592 .0500 .0500 .0592 .0602
0.025 .0145 .0139 .0140 .0198 .0251 .0305 .0247 .0238 .0305 .0302
0.010 .0039 .0038 .0045 .0039 .0078 .0118 .0103 .0071 .0118 .0111
0.001 .0001 .0003 .0001 .0001 .0003 .0008 .0005 .0003 .0008 .0009

Observed .0089 .0077 .0075 .0089 .0157 0 0 0 0 0

Table 3. Simulation results (10000 simulations for each column in each subtable).
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Furthermore it appears that the more the shape of the frontier di�ers from that
determined by the actual data points, the larger the simulated probabilities deviate
from those from the χ2-distribution. However, no matter what, the probability dis-
tributions are still very similar, and with the results from partitioning B generally
slightly closer to the χ2-distribution than those from partitioning A. Considering
�nally the last row in each section of the table, we can conclude that for all com-
binations of partitioning, Cobb-Douglas parameters and e�ciency distribution, the
signi�cance probability for the hypothesis of mix independence for the demolition
data set is less than around 3 percent, which leads to the hypothesis being re-
jected in all cases. Additionally, in this empirical case, the simulated results are
not substantially di�erent from those from the χ2-distribution (see Table 2) and
lead to the same conclusion about the (lack of) mix independence. Therefore, the
χ2-distribution could actually have been used directly in this case, though we would
not have known so without the information from the simulation study.

5 Discussion

In this paper we have proposed a method to investigate the hypothesis of mix in-
dependence, that is, whether the distributions of e�ciency scores are the same for
di�erent input mixes. This is important whenever, for instance, a ranking of ob-
servations based on e�ciency scores is desired. Where the test of Li (1996, 1999),
adapted to the DEA context by Simar and Zelenyuk (2006), compares two pre-
existing groups in the data set, our test is based on partitioning the production
space into any number of non-overlapping cones de�ned from the input and out-
put mixes (directions). Thus, the two tests are fundamentally di�erent and address
di�erent research questions.

Our method is particularly relevant whenever one suspects that the e�ciencies de-
pend on the input mix, in the demolition case for example that labor intensive
projects might be less e�cient than machine intensive projects, or when there are
no exogenously de�ned groupings of the data set.

The test for mix independence utilizes a standard Kruskal-Wallis test, available in
most statistical software packages. The KW test is a rank test which does not
rely on questionable distributional assumptions and is generally robust (Wei, 1981).
The asymptotic properties of the KW test are well-known, with the test statistic
being asymptotically χ2-distributed. But it has not been investigated how the KW
test statistic behaves when calculated from e�ciency scores based on an empirical
estimation of the production function in place of the true but unknown function.
Therefore simulation studies, like the one presented here, should be used in prac-
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tice to estimate the empirical distribution of the test statistic and corresponding
signi�cance probabilities.

In our empirical case with 169 observations, the simulation results show that the
distribution of the test statistic is, in fact, reasonably close to a χ2-distribution.
Therefore, for practical purposes, the standard asymptotic results could have been
used and would here have led to the same conclusion: there is not mix independence
in the demolition data set. Consequently, it is not appropriate to rank the projects
nor possible to determine whether labor intensive projects are less e�cient than
machine intensive projects or in other ways directly compare e�ciency scores for
projects with di�erent input mixes (unless, of course, there is a direct dominance
relation between the projects in question).

In our simulation study we utilize di�erent partitionings of the data set, di�erent
shapes of the production function as well as di�erent distributional assumptions
for the ine�ciencies often considered in the literature. The results indicate that
the empirical distribution is closest to the χ2-distribution if the observations are
fairly evenly split between the cones and if the shape of the production function
used resembles that of the observed data points. This will mainly be an issue for
small samples. Where the most even partitioning of observations resulted in the
best approximation, neither of the two partitionings used here yielded substantial
deviations of the simulated distributions from the χ2-distribution even in the present
small sample study. However, further simulations with extremely uneven splits of
observations between groups (11,18,140 respectively) resulted in an empirical distri-
bution very far from the expected χ2-distribution. So if the interest is in comparing
groups that happen to be of very di�erent sizes, especially in small samples where
there subsequently will be very few observations in the smallest group, simulation
studies are de�nitely required. Otherwise, we suggest to consider fairly evenly sized
groups. Similarly, even if none of the shapes of the production function investigated
resulted in large deviations, the best results were obtained when using the shape
closest to the observed data, which is what we would recommend for future studies.

It can also be noted that in order to investigate the large-sample properties of
the test statistic, we performed simulations with �ve observations in each observed
direction. As expected, since the estimated production function for large data sets
closely resembles the true production function, the results were basically identical to
the χ2-distribution, wherefore the standard KW test can be used directly. Even in
moderately sized data set, conclusions can still be drawn without simulation studies,
if the signi�cance probabilities are either very small or very large.

We close with a few remarks on the possibility of generalizing our test from the mul-
tiple input - one output constant returns to scale version presented here. First, we
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could consider extending to multiple outputs. Second, we could extend to variable
returns to scale. In case of the latter it seems that the test developed in the present
paper, in theory, easily generalizes to isoquants for each output level. In practice
however, most data sets will not contain enough observations at each output level
to perform such a test. The obvious solution would be to combine individual output
levels into groups but this procedure still requires a substantial number of observa-
tions and relies on the existence of natural cut-o� points for the output groups. In
case of the former it seems less obvious how to generalize the model above from a
theoretical point of view. This will remain a topic for further research. However, in
many empirical applications multiple outputs may be aggregated into, for instance,
total revenue like in the present case.
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