i

"y

% POLITECNICO

g

A%

53

\ }ix

9

"t

§ MILANO 1863

p

&

™

rd
s

£ ,lﬁC CC

Mathematical programming models for joint simulation-
optimization applied to closed queueing networks

Alfieri, Arianna; Matta, Andrea; Pedrielli, Giulia

This is a post-peer-review, pre-copyedit version of an article published in ANNALS OF
OPERATIONS RESEARCH. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10479-013-1480-7

This content is provided under CC BY-NC-ND 4.0 license

(0 OOG

= MG MDD

DIPARTIMENTO DI MECCANICA m POLITECNICO DI MILANO

via G. La Masa, 1 ® 20156 Milano ®m EMAIL (PEC): pecmecc@cert.polimi.it
http://www.mecc.polimi.it

Rev. 0

mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
http://dx.doi.org/10.1007/s10479-013-1480-7
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Mathematical programming models for joint
simulation—optimization applied to closed queueing
networks

Arianna Alfieri - Andrea Matta - Giulia Pedrielli

Published online: 11 October 2013

1 Introduction

Simulation—optimization of Discrete Event Systems (DESs) is typically carried out by using
two different and separate modules: a simulation module for the evaluation of the system
performance and an optimization module for the generation of the candidate solutions.
Several methods can be used for optimization (Fu et al. 2005; Healy and Schruben 1991;
Chick et al. 2003), as, for example, Response Surface Methodology (RSM) (Myers et al.
2009; Montgomery 2005), stochastic approximation (Kushner and Yin 1997), ranking and
selection (Boesel et al. 2003), meta-heuristics (Hong and Nelson 2006) and mathematical
programming (Robinson 1996). The output of the optimization module is a system config-
uration that is then given as input to the simulation module in order to evaluate its quality

A. Alfieri
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

A. Matta - G. Pedrielli (<)
Politecnico di Milano, via Giuseppe La Masa 1, 20156 Milano, Italy
e-mail: giulia.pedrielli@mail.polimi.it

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-013-1480-7&domain=pdf
mailto:giulia.pedrielli@mail.polimi.it

in terms of feasibility and related system performance. The simulation module is usually a
discrete event simulator taking as input the outcome of the optimization module and gener-
ating the performance of the system as output (Law 2007). The system performance is the
input for the next iteration of the optimization module. This iterative procedure continues
until the optimal solution is found or a predefined stopping condition is met (Kleijnen 2008;
Spall 2003).

This loop usually requires a large number of iterations to reach a good solution and this
behaviour can be partially ascribed to the lack of system dynamics modelling within the
optimization module, justifying the presence of an external performance evaluator.

An alternative way to simulate a DES is to use mathematical programming (Schruben
2000). The system behaviour is described by a set of equations (constraints) and the solution
of the resulting mathematical model represents a single simulation run (Chan and Schruben
2008a).

The use of mathematical programming to simulate DESs naturally leads towards a
deeper integration between simulation and optimization. Indeed, if the system dynamics
can be de-scribed by means of constraints, these can be embedded within the optimization
model. Under this perspective, the simulation module is used in sequence (and not in loop)
with the optimizer to provide the evaluation of the system performance given the optimal
configura-tion. As a result, a single simulation-optimization iteration is needed to obtain the
optimal solution.

However, if optimization is considered, mathematical models are no longer Linear Pro-
gramming (LP) models (as they usually are for simulation) and Integer Programming (IP)
models have to be considered with the related computational burden (Garey and Johnson
1979; Brodsky et al. 2003; Ming-Guang et al. 2002).

Approximate LP models to simulate and optimize DESs have been proposed to
overcome this difficulty (Matta 2008). In Alfieri and Matta (2012), an approximate
representation of a class of multi-stage production systems with finite buffer capacities is
presented. The pro-posed approximation consists in modelling queues as Time Buffers (TB),
i.e., temporal lags between two events, instead of using the traditional Space Buffers. This
approximation pre-serves the linearity of the mathematical model even when used for
optimization purposes. In addition, an analysis of the structural properties and relationship
of the approximate models with the corresponding exact formulations is proposed.

This paper extends the approximation developed in Alfieri and Matta
(2012) to the simu-lation and optimization of closed queueing networks, which have been
deeply studied in the literature (Matta and Chefson 2005; Chan and Schruben 2008b;
Dallery and Liberopoulos 2000; Maggio et al. 2009a; Gershwin and Werner 2007).

Specifically, approximate LP formulations are proposed to evaluate the performance of
closed queueing networks and to find the optimal configuration in terms of the number of
customers populating the line at any given time (constant in loop systems), i.e., the
minimum number of customers that allows to satisfy a predefined level of throughput. We
refer to this optimization problem as Pallet Allocation Problem (PAP). Although the PAP is
not combinatorial, as the Buffer Allocation Problem is (Dolgui et al. 2010), the
stochasticity affecting the arrivals and service times, the high correlation between the
events that occur in the stages of the line, and the non monotonicity of the throughput curve
with respect to the number of pallets (Maggio et al. 2009b; Gershwin and Werner 2007)
make the modelling of loop systems a difficult task.

In addition, the solution of the single loop PAP that we propose represents a first step
towards the solution of the multiple—loop case (Zhang 2006).

The rest of the paper is organized as follows: Sect. 2 describes the problem, the notation
and the main assumptions. Section 3 deals with the different types of blocking that can occur

in closed networks. In Sects. 4 and 5 optimization and simulation models are presented,
respectively. Section 6 focuses on the algorithms designed to solve the proposed models.
The numerical results out of experiments from random generated problem instances are
commented in Sect. 7. Section 8 concludes the paper.

2 Assumptions and notations

A closed queueing network is a system in which the number p of customers (the loop popu-
lation) is kept constant. This type of system appears frequently in factories. Manufacturing
processes which utilize pallets or fixtures can be viewed as loops since the number of pal-
lets/fixtures circulating in the system remains constant. Similarly, control policies such as
CONWIP and kanban create conceptual loops by limiting the number of parts in the
system. Several contributions to the analysis and optimization of closed queueing networks
can be found in the literature, proving the relevance of this special class of discrete event
systems (Dallery and Frein 1989; Matta and Chefson 2005; Chan and Schruben 2008b;
Bouhchouch et al. 1993; Maggio et al. 2009a; Gershwin and Werner 2007).

The class of closed queueing networks analysed in this work considers J machines de-
coupled by J buffers with finite capacity (c;) and a single customer type. Each machine j,
exception made for the first stage, j = 1, has an upstream finite capacity buffer, j — 1. The
buffer J closes the network and it is the upstream queue of the first stage and the
downstream queue of the last server.

We will refer to customer and part interchangeably assuming that each customer requires
exactly one part.

Each customer i (i = 1,...,n) arrives at the system at time @; and can be processed by
the first machine only in case part i — p has been released from the last machine (being p
the number of pallets). As a result, the release time of part i in the loop system is the
maximum between its arrival time @; and the time when part i — p leaves the system. After
having been processed by the first machine, parts go to the second machine and so forth
until the last operation is performed on the last machine J . Once a part has completed the
last operation, it is stored in the buffer J and it is released only when a new customer is
available to be processed. We assume that no scheduling decision has to be considered, thus
part i + 1 is processed after part i.

Customer i has to wait in queue j — 1 if the machine in stage j is busy in serving
another customer k (with k < 7).

Machines are modelled as perfectly reliable. The service times {#;;} of each customer i at
each server j are known in advance from a random sampling or from a specific sample
path, whereas transportation times are considered negligible or already included in service
times.

3 Blocking phenomena in closed queueing networks

The closed queueing networks described in Sect. 2 can be affected by blocking phenomena
due to:

— Buffers with finite capacity;
— Constant number of pallets allowed.

These two factors lead to three types of blocking phenomena: (1) deadlock, (2) server
blocked because the downstream buffer is full (server blocking), (3) part blocked from being
released from the system because of constant pallets (customer blocking). In the following
each of these phenomena is separately described.

Deadlock 1In case the number of pallets circulating in the system is equal to the total ca-
pacity of the buffers, we incur in the deadlock phenomenon. If this condition occurs, then
all servers are blocked. In order to avoid this situation, the maximum number of pallets P
that can circulate in the system is bounded by the following quantity:

J
P=Y c;—1. (1
j=1

Then at least a free position within the closed network has to be free in order to avoid this
blocking.

Server blocking Each customer will be allowed to enter and being processed on the j -th
machine only if the number of parts in the downstream stage is strictly less than the
capacity c; of the j -th queue. The capacity c;is discrete and it includes the customer in
service at stage j + 1. In this paper the Server Blocking is modelled assuming blocking
before service (BBS) control rule. This type of blocking was already considered in Alfieri
and Matta (2012) when modelling open queueing networks with finite buffer capacities and
stochastic processing times.

Customer blocking Parts to be released from the network can be blocked, i.e., forced to
wait in the last queue to keep the number of parts constant. This happens when no new
part is ready to enter the system when a part is completed. To model this particular type of
blocking, an additional virtual server, J + 1, was added to the J stages in the loop.

This server has processing time equal to O for each part and it is directly followed by the
first machine (without decoupling buffer). This machine is blocked only in case it holds a
customer and the first server is busy, i.e., Blocking After Service (BAS) rule is assumed for
the virtual server.

A physical interpretation of the virtual machine is that it synchronizes a part entering the
first stage with a corresponding customer leaving stage J , thus modelling blocking phe-
nomena due to the constant number of customers in the line. Under a modelling
perspective, i.e., in the scope of developing the mathematical models for simulation—
optimization, the virtual machine enables the separation between the constraints modelling
blocking due to the finite buffer capacity and the constraints modelling the blocking
ascribed to the constant number of customers populating the system. This separation is
fundamental to obtain the linear approximation of the simulation—optimization models.

Figure 1 represents the “real” system, i.e., the network with J stages, and the “modelled”
system, i.e., the system with the additional virtual server. The two systems are “equivalent”
in the sense established by Definition 1.

Definition 1 Equivalent Systems The modelled system is equivalent to the real system if,
under the same sequences {q; } and {f;;}, they produce exactly the same sample path.

Property 1 establishes the relationship between modelled and real system.

By Bj1 5B; By By

Arrivals @ . . Departures

Pallets

(a) Real closed queuing network

Virtual
B, Bj B; By B; Machine

Azzivals @ @ Departures
_— .ee e — —

[

Pallets
(b) Modelled closed queuing network

Fig. 1 Equivalent loop representations

Property 1 Let ¢, and ¢; be the capacity for the last stage in the modelled and in the real
loop system, respectively.
The modelled and the real systems are equivalent iff ¢; =¢; — 1.

Proof The last server in the modelled system, j = J + 1, has no downstream queue, then it is
blocked only if the first machine is busy. Since, by definition of virtual server, #; ;41 =0, Vi,
the customer entering the virtual machine is not forced to wait a predefined amount of time.
As a result, the virtual server can be interpreted as the last buffer slot of the network and
Vi.s+1 1s the time when part i leaves buffer J in the real system. Since the last buffer slot is,
with the virtual machine, considered separately, the total buffer slots downstream server J
are ¢; + 1. Hence, the modelled and real system are equivalent only when ¢; +1=¢;. U

4 Optimization models

In this section, approximate LP formulations are proposed to find the optimal number of
pallets populating the line, i.e., the minimum number of customers that can circulate into
the system honouring a predefined target mean throughput 9 that we estimate as:

n—d

f=—
Yn,J4+1 = Yd,J+1

(@)

where y, ; 41 is the finishing time of the last part at the virtual machine J +1 in the
simulated sample path and corresponds to the time when the last customer leaves the
system. The parameter d represents the end of the system warm-up (Law 2007).

4.1 Exact optimization model

The pallet allocation problem can be formulated as the following IP model:

P
min Zek -k 3)
k=1

S.t.

yn=za+t Vi 4)
yi+1,j_yij2ti+l,j Vj,l=1,,n—1 (5)
Vijj+1 = Yij = tij Vi, j=1,...,J (6)
yi+C‘,'.j_yi,j+12ti+c‘j<,j j:l,...,J,i:l,...,n—cj (7)
Vitkd — Yid41 = 2k tivk1 — (L —z))M Vk,i=1,...,n—k ®)
Vigsr — Yisk—1a = —(1—z0)M Vk,i=1,....,n—k)
f= Yn,J+1 — Yd.J+1 <u* (10)
n—d

P
Yu=1 (1)

k=1
The decision variables {y;;} represent the finishing times of parts i = 1,...,n at servers j
=1,...,J + 1(J+ 1 being the virtual server). The binary decision variable z; is equal to
1 if a number of pallets equal to k (k =1, ..., P) is assigned to the line. The objective is to

minimize the total cost obtained multiplying k for the cost e, to have k pallets in the line. In
the following, without loss of generality, we will assume e, = 1, Vk.

Constraints (4) do not allow the service of customer i at the first machine to finish before
its arrival time @; plus its service time. A machine cannot serve two consecutive customers
at the same time (5) and a customer cannot be processed by two different servers at once
(6). Constraints (7) prevent a customer to leave a machine if the immediate downstream
buffer is full.

Constraints (8) and (9) keep the number of parts in the system at a value k equal to
the number of pallets assigned to the line. These constraints are made redundant when z;
= 0, by subtracting the big—M from the right hand side. Constraints (7) are separated
from (8) and (9) thanks to the virtual machine as outlined in Sect. 3.

Constraint (10) bounds the performance measure to the limit p*. Finishing times can
assume only positive values in the real domain because the arrival times are non negative
parameters.

Finally, only one value k can be chosen, as stated by Eq. (11).
4.2 Approximate optimization model

In order to approximate the IP optimization model described in Sect. 4.1, the time buffer
concept presented in Alfieri and Matta (2012) needs to be adapted to be applied to closed
queueing networks.

4.2.1 Time buffer for closed queueing networks

If p customers circulate in the line, two events are directly influenced by the value of p: the
start event of part i 4+ p (y in Fig. 2), and the finish event of part i + p — 1 (8 in Fig. 2)
occurring at stage j = 1 at times x;, ; and y;; ,—, respectively.

As a result, two different time buffer types, s and b, need to be introduced. The time
buffer s can anticipate x;;, ; and b plays the same role with respect to y;y,_1 1. The arrow
from node B to node i in Fig. 2 represents the influence between the departure time of

@ Springer

Departures

Arrivals ﬂ @— - ;\-{J .. *—»

Pallets

Fig. 2 Closed loop system behaviour

Fig. 3 Time buffer s; with . TimeBuffer s___ Starvation
k=y—«a p . >

x;f.1>y11,.{+1 _Syr—a

customer i from the system (y; ;+1) and the finishing time of customer i + p — 1 at the first
server (yi4+p—1,1)- The arrow from node i to node y represents the influence of y; ;4 over
Xi4p,1. Formally, given two customers, o and y, to be served in the sequence o — y, a time
length of s forces the starting time of customer y at the first stage (denoted as x,, ;) and the
finishing time of customer « at the last stage (denoted as y,, ;+1) in the following way:

Sy —a = Vo, J+1 — Xy,1-

Indeed, customer y can start s time units before customer « leaves the system (Fig. 3).
When s = 0, customer y is forced to wait customer « to leave the system before entering,
i.e., no more than y — « parts can circulate in the loop.

Given two customers « and g, with @ < 8 < y, a time length of b forces the departure
time of customer « from the system (denoted as y, ;) and the finishing time of customer
B at the first stage (denoted as yg ;) in the following way:

b>ypg1— Yais1-

Customer « can exit b time units before customer S finishes its process in the first stage
(Fig. 4). When b = 0, customer « cannot be released until customer g leaves the first station,
i.e., at least 8 — « customers circulate in the loop.

It is worth mentioning that the time buffer concept is different from that adopted in man-
ual assembly lines, mainly related to dimensioning the speed of the conveyor between two
adjacent machines. It also differs from the slack time in PERT graphs, which can be defined
as the time available between the estimated completion time of the job and its due date.

4.2.2 Time buffer model
In the approximate optimization model, the decision variable z; is replaced by variables s

and b;. Consequently, we need to consider whether the minimization of s; or the minimiza-
tion of b; has to be taken into account.

Fig. 4 Time buffer by with . TimeBuffer b,_,
k=y—-8 ; :

-
'
I
'
'
I
'
i

VoraZ Vpan— byfﬁ

'
'
'
|
1
{
[|
|
|
1

Yeas Yo I3

In the case we minimize s;, the approximate optimization objective function results as
follows:

P
minZsk. (12)
k=1

The larger the decision variable s is, the higher the importance of having a number of pallets
k in the system will be.

In case by is the decision variable to be optimized, the following objective function must
be used:

P
miank. (13)
k=1

As for sy, if by is large the importance of having a number of pallets k in the system will
be high.

The approximate optimization model constraints can be easily devised from those defined for
the exact formulation (4)—(11) by removing constraint (11) and replacing (8)and (9) by:

Vitk = Yig+1 Stk — Sk k=1,...,P,i=1,...,n—k (14)
Vig+l = Viek—11— b i=1,...,n—k+1, k=1,...,P (15)

4.2.3 Stochastic time buffer model

When mathematical programming models are adopted for the simulation—optimization of
multi-stage open queueing networks (Alfieri and Matta 2012), a sample path based frame-
work can be used to solve the approximate optimization model (Robinson 1996; Pedrielli
2013).

The approximate models presented in the previous sections have been solved running
multiple independent replications, obtaining a set of optimal solutions in terms of time buffer
s (or b, depending on the objective function adopted).

However, the interpretation of the results coming from the different replications repre-
sents an issue difficult to tackle (Healy and Schruben 1991).

As an example, we might perform the sample path optimization for R = 5 replicates,
obtaining R optimal solutions {Z7, ..., %* }. In case the variables are integer, the average
solution, Z, might be infeasible, i.e., not integer. Moreover, even if the average solution

is integer, it might be such that 1, (Z) > u*, where u*is the target performance, hence
resulting infeasible. The same considerations hold for the approximate optimization model.
We propose the application of stochastic programming (Birge and Louveaux 1997; Higle
and Sen 1996) to solve the PAP problem, tackling the described interpretation issue.

Two-stage stochastic programming approaches are based on the separation of the set of
decisions variables in first-stage decisions, to be taken before the observation of any of the
uncertain elements, and second-stage decisions, to be taken after the occurrence of uncertain
events.

In our case, the first stage decisions correspond to the time buffers s; or by, according
to the adopted objective function (i.e., mins or minb). The second stage decisions are rep-
resented by the finishing times {y;;} and the time buffer which is not minimized at the first
stage.

Let §2 be the set of all the considered scenarios. Each scenario w € §2 is completely
defined by the realizations of the stochastic parameters {a;(w)} and {t;; (w)}.

The variable yi, (We call it late since it represents the delay with respect to the finishing
time needed to reach the target performance) was introduced to link the first and second
stage decisions:

Yiae (@) = (yu (@) — ya(@)) — p(n — d), (16)
where p = 1/9. The expected value of the variable yj,.(w) is:
1
E[ue(@)] = 7 D [(n(@) = ya(@) — pin —a)]. (17)
weR

This equation represents the difference between the expected target finishing time (u(n —
d)), given as input, and the finishing time obtained from the optimization of the {y;;(w)} in
the second stage (v, (@) — yi(w)).

The first stage problem, minimizing) s, can be written as follows:

min
,
D s+ E[ae(@)] (18)
k=1
S.t.
s >0 Vk (19)

The term o - E[yi4e (w)] avoids solutions in which the target finishing time constraint is not
satisfied (i.e., yjae (@) > 0). The coefficient « is an input parameter representing the weight
of the stochastic part.

The second stage problem(s), one for each scenario, can be written as follows:

Yiate (@) = min(y, (@) — ya(w)) — n(n —d)
S.t.
yir(w) = a;(@) + t;1 (@) Vi
Yigt,j(@) = yij(@) > tip1j(@) Vji=1,...,n—1
Vijr1(@) = yij(@) > t; jpi(w) Vi, j=1,...,J
Vitej,j(@) = Vi j1r1(@) = fiye; (@) j=1,....J,i=1,...n—¢;
Viek 1 (@) — yijr1(@) = tigg (@) —s i=1,...,n—k,Vk

Vigr1(@) = Yigr—1,1(@) = =b(w) i=1,...,n—k+1,Vk

All constraints are exactly the same as those presented in Sect. 4.2. The only difference is
that each variable and parameter depends on the scenario w.
If we minimize the function) _ by, the first and second stage models change as follows.

First stage problem

min
,
D bt e E[yue(@)] (20)
k=1
S.t.
by, >0 Vk 21

Second stage problem The second stage problem differs from the one previously presented
only in the constraints involving the time buffers that become:

Yirk,1(@) = yigri(w) > ti +k, l(w) —si(w)i=1,...,n —k, Vk
Vis+1(@) — yigp—11(@) > =bpi=1,....,n —k+1,Vk

The solution of the stochastic approximate optimization model is a unique time buffer [here
and now solution (Birge and Louveaux 1997)].

4.3 Optimization models properties

The structural properties of the optimization models presented in the previous section are
discussed in the following.

Proposition 1 There always exists an optimal solution in which {sy }y<pis a non-increasing
sequence and {by };<pis a non-decreasing sequence of non negative real values.

Proof Consider constraints (14); customer i and customer i + k are related through:
Yitk,1 = ligk,1 = Yi,J+1 — Sk- (22)
On the other hand y; ;;; must also satisfy:
Vit 1,0 = litht 1,1 2 YioJ+1 = Skt 1- (23)

Because of customer sequence constraints (5), the following condition must hold:

Vitkd = litk,1 < Vikk+1,1 — litk+1,1- (24)

If s; < s¢11, it would allow customer i + k + 1 to start service, at stage 1, before customer i
+ k. However, customer i + k must precede customer i + k + 1 (Eq. (24)); hence, the
additional time s34 — s; can never be used by customer i + k + 1 to start. As a result, there
always exists an optimal solution in which s; > s34 1.

The proof does not change in the case we minimize the function) by, therefore it is not
reported.

Proposition 2 The solution obtained minimizing y_, s, corresponds, in the space domain,
to the one with the minimum number of pallets.

The solution obtained minimizing Y, by corresponds, in the space domain, to the one
with the maximum number of pallets.

Proof Consider the following inequalities obtained manipulating constraints (14) and (15):
—bry1 < Yig+1 — Xizx1 < sg- (25)

If)", s, is minimized, the interval defined in (25) is bounded from above. In other words,
given a target performance u, the solution p we obtain minimizing the sum of sy is the

one with the lowest turnaround time, defined as the interval between the time x;; when the
customer i enters the loop and the time y; ; +; when it exits. Since the turnaround time is
monotonic with respect to the number of pallets in the system (Proposition 3, Sect. 5.3), the
solution with the lower turnaround time corresponds to the one with the lower number of
pallets.

If >, by is minimized, the opposite situation happens leading to the solution with the
higher turnaround time.

5 Simulation models

The models for optimization presented in Sect. 4 only provide an estimate of the average
throughput lower bound (Alfieri and Matta 2012). Indeed, the values {y;;} obtained once
the models are solved are feasible but there is no guarantee that they are the optimal (i.e.,
minimized) since they do not appear explicitly in the objective function. As a result, if we
refer to Eq. (2), the value of ¢ is overestimated. In case the performance need to be
precisely assessed, simulation models have to be developed (Schruben 2000). In this
section, the exact and approximate models to simulate loop systems are presented together
with their structural properties.

Simulation models receive, as input, data characterizing the arrival process of customers
into the system {g; }, the service time of each customer on each machine of the closed net-
work {#;;} and the number of pallets populating the system (in terms of the integer value p
or time buffers). Specifically, pallets or time buffer values are assumed to be the results of
the solution of the optimization models (exact or approximate, respectively).

The output of the model are the finishing times {y;;} of the customers on every machine
of the line, which are used to estimate the throughput of the system ¢ (using Eq. (2)).

5.1 Exact simulation model

A closed queueing network with J stages can be simulated by the following LP model (Chan
and Schruben 2008b).

min

n J
YD v (26)

i=1 j=1

S.t.

@)=

Yidpd = Yig+1 Ztigp1 i=1,...,n—p 27
Yig+1 = Yigp—11=0 i=1,....n—p+1 (28)
yij=01i, j

Constraints (27) limit the maximum number of parts in the system to p, while constraints
(28) impose that there must at least p parts in the system: the i-th part is forced to wait for
the (i + p — 1)-th part to exit the first machine before leaving the system.

5.2 Approximate simulation model

The approximate mathematical model for simulation differs from the exact one only in con-
straints (27) and (28) that are replaced by (14) and (15), respectively. However, in case
of simulation, both {s; } and {b; } are known in advance (as the result of the optimization
model) and the only decision variables are the finishing times {y;;}.

5.3 Simulation models properties

It is possible to univocally describe a sample path resulting from the solution of the sim-
ulation model by the tuple Q = (P, &), where P and & represent the closed—loop system
configuration and the customer characteristics. Specifically, P represents the number of pal-
lets in the system. In the case we refer to the approximate model P = {S, B}, where S is
the vector s containing time buffer capacities {s; } and B is the vector b containing time
buffer capacities {b; }. The quantity £ is an n x (J + 1) matrix that contains the arrival
times {a; } and the service times {t;;}.

The number of pallets p populating the system is strongly related to the customer
turnaround time defined as the time elapsing between the moment the customer enters the
network (x;;) until its departure (y; ;+1). This relationship is defined in Proposition 3.

Proposition 3 The turnaround time f; of customer i is a monotonic function of the number
of pallets p.

Proof Let the function f;be defined as follows:
Ji=Yigm —xi. (29

Let p be the fixed number of customers circulating in the loop and assume that the capacity
of each buffer satisfies ¢; > n, Vj, i.e., each buffer could host all the parts visiting the closed
system during the simulation run. In other words, we assume no deadlock or server blocking
can happen.

We can derive x;; from the time x;.;; when customer i 4 1 enters the system in the
following way:

Xi1 = max{x;+11 — i1, 4} (30)
Assuming a; = 0 Vi, the following holds:

Xi1 = Xi+1,1 — b1 3D

Considering together equations (29) and (31), we can write:

k=p—1
fi=Yii— (Xi+p,1 - Z fi+k,1>- (32)

k=1
From constraints (27) and (28), y; j+1 = Xi1p,1; hence, Eq. (32) becomes:

k=p—1

fi=)t Vi (33)
k=1

As p increases, the function f; increases as well; hence, it is a monotonic function in the
number of pallets.

Since the throughput is an increasing and then decreasing function of the number of
pallets (Gershwin and Werner 2007), it follows from Proposition 3 that the throughput is
non monotonic with respect to the turnaround time. As a result, the same throughput ¢ can
be reached with different values of f;.

If the approximate model is considered, the time buffers {s;} and {b;} are characterized
in Remark 1.

Remark 1 Let Q = (S, B, £) be an approximate formulation of a closed queueing network
sample path. The objective function value x obtained solving the approximate simulation
model is a monotonic function in the time buffers s; and b .

The time buffers can also be exploited to derive a configuration in terms of the (near)
op-timal number of pallets that populate the system. We will refer to this approximate
solution as p.

To compute p, we consider that, if s, (by) is positive, at least k pallets are needed in
the system. In addition, when approximate simulation is run, sy (b;) directly influence the
values taken by the decision variables {y;;}, which are used to compute p. Specifically, for
every part i, the condition y; y 11 < yi44,1 18 verified and the maximum value of k for which
the condition holds is collected as k; . Indeed, if this condition holds, at least k pallets need
to be allocated to the system. The approximate solution is then computed as:

D = maxk; (34)

One of the most relevant differences between the exact and approximate models is that the
approximate models do not keep the number of parts in the system constant. The solution
p will then be, in general, different from the solution we would obtain solving the exact
optimization model.

6 Algorithm

The procedure of single run simulation—optimization can be described as follows:

1. Initialization
(a) Set the parameters describing the system: number of buffers and machines (J), buffer
capacities (c;);

(b) Set the simulation length as the number of parts to simulate (n);
(c) Set the warm—up length (d);
(d) Set the target throughput value ¥
(e) Generate the sample path, i.e., parameters #; and a;, from a predefined probability
distribution;
2. Approximate Optimization
Feed the mathematical model defined by equations (12)or (13), (4)—(7), (14)-
(15)and (10) with the input parameters from initialization. Solve the LP approximate
optimization model and store the arrays s and b.
3. Approximate Simulation
Feed the approximate simulation model with the following data:

— initialization data except for the target throughput (the same data used for the approx-
imate optimization);
— optimal arrays s and b.

(a) Solve the approximate simulation model defined by equations (4)—(7) and (14)—
(15). Store the values of y; (vector containing the finishing time of each part i at the
first machine) and yj, 1 (vector containing the finishing time of each part i at the last
machine).

(b) Compute the approximate integer solution using Eq. (34).

In the case stochastic programming approach is adopted, the procedure presented has to be
modified as follows:

— Initialization: define the number of scenarios |£2| (the probability of each scenario will
be equal to 1/£2) and generate the sample path, i.e., parameters f;; (w) and a; (), from a
predefined probability distribution for each scenario.

— Approximate optimization: feed the two-stage mathematical model. Solve the LP approx-
imate optimization model and store the optimal vectors s and b.

7 Numerical results

Numerical experiments on random generated instances have been carried out on three test
cases. The simulation—optimization methodology is applied under both multiple replication
and stochastic programming approach. The same generated instances were also used to feed
standard simulation models developed in Arena®. The results obtained from standard sim-
ulation are the same as those obtained from the mathematical programming models, thus
validating the correctness of the mathematical formulations.

7.1 Experimental settings

The multiple replication optimization has been performed over sample paths characterized
by n =5000, d = 2000 and different values of target throughput (¢*). For each target ©*, 10
independent replications were run using minb and mins as objective function, alternatively.
For each replication, the exact optimization model was run to compute the optimal sample
path solution.

The stochastic programming approach was characterized by |£2| = 20 independent sce-
narios (for each value of the target throughput ©*); each scenario was characterized by a
probability o« = 0.05 and a number of parts equal to n = 3000, d = 1000.

The customers are assumed to arrive at time a; = 0, Vi, i.e., all customers are available
to be processed at time 0.

Table 4 contains the results of the approximate optimization with stochastic program-
ming for all the experiment sets. In particular, column ¢ is the target throughput given as
input to the approximate optimization model, p;p represents the optimal solution obtained
solving the IP model. Columns p; and p; contain the approximate solutions obtained solv-
ing the stochastic programming models when the function), s, or), b is minimized,
respectively.

Columns 9 and ¥, are the throughput obtained solving the approximate simulation
model, provided the optimal solution s* and b* (corresponding to the minimization of > _ s

and Y by), respectively. More,sgeciﬁcally, ¥, and ¥, have been computed solving the ap-
proximate simulation model with a sample path size n = 31500, d = 5000.

For all the experiments, the CPU time has been about 2 minutes for a single run of
5000 parts in the multiple replicate case, and 5 minutes for the solution of the stochastic
problem.

7.2 Experiment set #1

The first experiment set is characterized by a number of machines J = 4. The buffer capac-
ities are identical and equal to ¢; =5, j =1, ..., 4. The processing times for each machine
were generated from an exponential distribution with parameters v = 6 (representing the
mean), for stages j = 1,2,4, and T =7 for stage j = 3.

Exact simulation results The system has been studied solving the exact simulation model
for every pallet configuration, p = 1,..., P with P = 19. Numerical results are presented
in Fig. 5(a), showing the mean throughput ¢ (dotted line), together with the quadratic fit
(plain line), from the 10 independent replications. The half width related to the 95 %
confidence interval for the average throughput was estimated to be less than 0.0354. The
maximum throughput is achieved when the number of pallets allocated to the system is
around 11 (based on the 10 sample paths).

Simulation—optimization results Three target throughput levels were tested: ¥* = (0.063,
0.106,0.114).

Figure 5(b) represents the results obtained from the 10 replications of simulation—
optimization. The value of throughput ¢ (y axis) and the corresponding approximate number
of pallets computed from the optimization models (x axis) are reported. Both the minimiza-
tion of s and b are considered. The red dots represent the throughputs obtained simulating
the optimal time buffer configuration when s is minimized (corresponding to the x value

Ds), whereas the green dots have the same meaning but refer to the minimization of b (cor-
responding to the x value p,). The minimization of b, given the target throughput ©*, leads
to a solution that is symmetric to the one obtained by minimizing s. More specifically, the
solution obtained minimizing b, for the same throughput, has the largest number of pal-lets.
This result confirms Proposition 2. In addition, as the target throughput increases, ap-
proaching the maximum throughput, this difference almost vanishes. When ¢ = ¢"** and
the throughput curve has no flatness, there is only one configuration returning the required
value of the throughput. Hence, we expect that, for values of throughput approaching the
maximum, there is no difference between minimizing s or b.
Table 1 reports the exact integer solution obtained running the IP model (p;p) for each of
the 10 replications and the approximate solutions obtained running the LP models for

Fig. 5 Results of ES#1
(exponential distribution) 012 /‘m.\
0.10 ,/ \<
/0/ / \®
0.08 Yy, \ o
/ \
D 0.06 v \
0.04
0.02
0.00{ e .
0 s 10 15 20
p

(a) Average throughput vs number of pallets

- 0.1139
- —e-— - 0.106
0.104 / \

0.08

0.063

d*

0.06 X
0.04

0.02| / \

0.00

0 5 10 15 20
Number of Pallets: approximate solution

(b) Approximate solutions obtained

optimization (p, being the result of the minimization of), s;, while p;, refers to the mini-
mization of), by). The target throughput and the throughput obtained from the simulation
are reported as well (8%, #° and ©#°, respectively). The approximate solution obtained min-
imizing s is always extremely close to the exact one. Moreover, as the required throughput
approaches the maximum, the approximate solutions coming from the minimization of b
are remarkably close to the exact optimum as well.

Table 4 reports the results obtained applying the stochastic programming approach (refer
to the set of rows ES#1). Also in this case, the solution is close to the exact one, showing
the robustness of the approach.

For the case v* = 0.063, the value of ¥, (the throughput obtained from the simulation
model when solved using the optimal time buffer solution b*) is lower than ¥*, i.e., it does
not satisfy the throughput constraint. This cannot happen in the case simulation and opti-
mization work on the same sample path. However, in the case of stochastic programming,
the optimization model (returning b*) and the simulation model (returning ¥,) work on
different samples and this explains the obtained result.

7.3 Experiment set #2

The second experiment set, as the first one, was designed with J = 4 machines. The buffers
capacities were set to ¢; = 15, ¢, =5 and ¢3 = ¢4 = 10. The processing times were gener-

Table 1 Approximate

optimization results with multiple ~ RUn v prp Ps Vs Pb O
replication—experiment set ES#1
1 0.063 2 2 0.063 17 0.063
2 0.063 2 2 0.063 17 0.063
3 0.063 2 2 0.063 17 0.063
4 0.063 2 2 0.063 17 0.063
5 0.063 2 2 0.063 17 0.063
6 0.063 2 2 0.063 17 0.063
7 0.063 2 2 0.063 17 0.063
8 0.063 2 2 0.063 17 0.063
9 0.063 2 2 0.063 17 0.063
10 0.063 2 2 0.063 17 0.063
1 0.106 7 7 0.107 12 0.106
2 0.106 6 6 0.106 11 0.106
3 0.106 6 6 0.106 13 0.106
4 0.106 7 7 0.106 12 0.106
5 0.106 7 7 0.106 12 0.106
6 0.106 6 7 0.107 13 0.106
7 0.106 7 7 0.106 13 0.106
8 0.106 6 7 0.106 12 0.106
9 0.106 6 6 0.107 12 0.106
10 0.106 7 8 0.107 12 0.106
1 0.114 9 10 0.114 9 0.114
2 0.114 8 8 0.114 10 0.114
3 0.114 8 9 0.114 10 0.114
4 0.114 9 10 0.114 10 0.114
5 0.114 9 9 0.114 10 0.114
6 0.114 9 9 0.114 11 0.114
7 0.114 9 9 0.114 11 0.114
8 0.114 8 9 0.114 10 0.114
9 0.114 8 8 0.114 10 0.114
10 0.114 9 9 0.114 8 0.114

ated from a uniform distribution for every machine (7; = 0.5, 7, = 1.5, being t; the mean

and 1, the coefficient of variation).

Exact simulation results The system was studied solving the exact simulation model for
each pallet configuration. Figure 6(a) shows the mean throughput together with the
quadratic fit. The half width related to the 95 % confidence interval for the average
throughput was estimated to be less than 0.0157. The throughput curve, in this case, is flat

and multiple equivalent solutions (characterized by the same throughput) are present. In
particular, solu-tions with p = (19, 20, 21, 22) pallets give the same average throughput.

Fig. 6 Results of ES#2 (uniform 0.4
distribution) AN
..../.0/00000'0000000‘0.....
«* \ ®e
0.3 o / X
L .
N\
. / \, *
D 0.2 // \
S X
/ %
0.1 . .
0.0 . °
0 10 20 30 40
p

(a) Average throughput vs number of pallets

0.40 P
nd ’ ™ N
035 —annnnnn e —————— 0.358
/ !
' \
0.30 / !
/ N
& ; S 0.268
0.25 / .
L A\
/ \
0.20 / 3
/ k
0.15 = A—— 0.148
/ .
0 10 20 30 40

Number of Pallets: approximate solution

(b) Approximate solutions obtained

Simulation—optimization results Three target throughput levels were tested: ¥* = (0.148,
0.268, 0.358). Figure 6(b) reports the results obtained applying the multiple replication ap-
proach.

Also in this case p, and p;, are symmetric and this result confirms Proposition 2.

Table 2 reports the exact integer solution obtained running the IP model for each of
the 10 replications and those obtained from the LP models. As in ES#1, the approximate
solution obtained minimizing s is always extremely close to the exact one. Moreover, as the
required throughput approaches the maximum, the approximate solutions coming from the
minimization of b are closer to the exact optimum as well. However, because of the curve
flatness, the phenomenon is less evident than in ES#1.

Table 4 (block ES#2) details the results from the stochastic programming approach. It is
worth to comment the results obtained for #* = 0.358. In the third row, the solution p; =25
is “far” from the p;p = 16. This is justified by the fact that this test case was characterized
by a throughput curve particularly flat. In cases the throughput has this behaviour, the time
approximation is always less effective.

7.4 Experiment set #3

The third test case is identical to the first experiment set, but the processing times were
generated from a uniform distribution (1y = 6,7, =0.175for j =1,2,4and 1, =7, 1, =

Table 2 Approximate N
optimization results with multiple ~ Ru 4 pIp Ds Vs Pb Up
replication—experiment set ES#2

1 0.148 2 1 0.148 38 0.148
2 0.148 2 1 0.148 38 0.148
3 0.148 2 1 0.149 38 0.148
4 0.148 2 1 0.148 38 0.148
5 0.148 2 1 0.148 38 0.148
6 0.148 2 1 0.148 38 0.148
7 0.148 2 1 0.148 38 0.148
8 0.148 2 1 0.148 38 0.148
9 0.148 2 1 0.148 38 0.148
10 0.148 2 1 0.148 38 0.148
1 0.268 4 3 0.268 37 0.268
2 0.268 4 3 0.269 37 0.268
3 0.268 4 3 0.269 37 0.268
4 0.268 4 3 0.268 37 0.268
5 0.268 4 3 0.268 37 0.268
6 0.268 4 3 0.269 37 0.268
7 0.268 4 3 0.268 37 0.268
8 0.268 4 3 0.268 37 0.268
9 0.268 4 3 0.268 37 0.268
10 0.268 4 3 0.268 37 0.268
1 0.358 15 15 0.358 22 0.358
2 0.358 15 19 0.359 22 0.358
3 0.358 14 16 0.359 26 0.358
4 0.358 16 17 0.358 31 0.358
5 0.358 13 13 0.358 31 0.358
6 0.358 13 14 0.360 30 0.358
7 0.358 18 18 0.358 29 0.358
8 0.358 13 16 0.359 30 0.358
9 0.358 13 13 0.359 28 0.358
10 0.358 14 15 0.360 29 0.358

0.175 for j = 3, being 7, is the mean and 7, the coefficient of variation). Notice that the
means of the processing times are exactly equal to those in ES#1.

Exact simulation results The system was studied solving the exact simulation model for
each pallet configuration. Numerical results are presented in Fig. 7(a), showing the mean
throughput and the quadratic fit. The half width related to the 95 % confidence interval for
the average throughput was estimated to be less than 0.01. Also in this case, as in the second
experiment set, the curve is flat. High throughputs are obtained in the range p = (6, ..., 15).

Fig. 7 Results of ES#1 (uniform 018
distribution) 0.16 o
-~ N
0.14 . EEREEREEEENE
L] \\ .
012 R N,
0.10 e A \\ .
Y \
0.08 \
0.06 \
0.04 .)
\\
0.02
0.00 . 3
0 5 10 15 20
P

0.18

0.16 e

0.1435

0.14 = " S

0.12 s N
= 0.1139

L’*

0.10 : % 0.0949

0.08 / “\
0.06 / \‘

0.04 b .

5 10 15 20
Number of Pallets: approximate solution

(b) Approximate solutions obtained

Simulation—optimization results Three target throughput levels were tested: v* = (0.095,
0.114, 0.143). Results of the multiple replication are reported in Fig. 7(b). The approximate
solutions confirm the considerations already made for the other experimental settings.

Table 3 reports the exact integer solution obtained running the IP model for each of
the 10 replications together with the approximate solutions obtained from the LP models.
The approximate and the exact solutions are again very close when the approximate model
minimizes Y, s. In case of minimization of), by, instead, a (near) maximum throughput
is required to have such closeness between approximate and exact solution.

Also in this case, Table 4 (block ES#3) shows that the solution obtained minimizing s is
close to the exact one.

8 Conclusion

In this paper we extended the simulation—optimization approach based on mathematical pro-
gramming to closed queueing networks. The fundamental difference from previous works is
that two sets of continuous decision variables are needed to represent the customer blocking
behaviour.

With respect to the newly introduced decision variables, the models were analysed and
different possible objective functions were considered. The effects of the different objective
functions on the optimal continuous and integer solutions were studied.

Table 3 Approximate N
optimization results with multiple ~ KU 4 prp Ps Vs Pb b
replication—experiment set ES#3

1 0.095 2 2 0.095 17 0.095
2 0.095 2 2 0.095 17 0.095
3 0.095 2 2 0.095 17 0.095
4 0.095 2 2 0.095 17 0.095
5 0.095 2 2 0.095 17 0.095
6 0.095 2 2 0.095 17 0.095
7 0.095 2 2 0.095 17 0.095
8 0.095 2 2 0.095 17 0.095
9 0.095 2 2 0.095 17 0.095
10 0.095 2 2 0.095 17 0.095
1 0.114 3 2 0.114 17 0.114
2 0.114 3 2 0.114 16 0.114
3 0.114 3 4 0.114 16 0.114
4 0.114 3 2 0.114 17 0.114
5 0.114 3 2 0.114 17 0.114
6 0.114 3 2 0.114 17 0.114
7 0.114 3 2 0.114 16 0.114
8 0.114 3 2 0.114 17 0.114
9 0.114 3 2 0.114 16 0.114
10 0.114 3 2 0.114 17 0.114
1 0.143 5 5 0.143 15 0.144
2 0.143 9 10 0.143 13 0.167
3 0.143 9 10 0.143 14 0.143
4 0.143 10 10 0.143 13 0.143
5 0.143 10 9 0.143 10 0.143
6 0.143 10 9 0.143 15 0.143
7 0.143 10 9 0.143 14 0.143
8 0.143 10 10 0.143 13 0.143
9 0.143 10 10 0.143 14 0.143
10 0.143 10 10 0.143 14 0.143

The main drawbacks related to the multiple replications optimization approach were
highlighted and modifications to the developed models were proposed leading to a two-
stage stochastic programming approach. In both cases (multiple replication and stochastic
programming), the models for optimization and for simulation were integrated to define the
algorithm of simulation—optimization for loop systems.

Future research will be devoted to investigate the formal relationships between the ap-
proximate and the exact solutions and to develop different decomposition techniques to re-
duce the computational effort needed to solve the LP models, thus enhancing the possibility
to efficiently tackle larger instances. Moreover, the solution of the single loop PAP that we
propose represents a first step towards the solution of the multiple—loop case.

Table 4 Approximate

optimization results with Experiment Set ~ 9* pip Ds Vs Pb Up
stochastic programming
ES#1 0.063 2 2 0.065 17 0.056
0.106 7 7 0.109 11 0.11
0.114 11 10 0.132 11 0.114
ES#2 0.148 2 1 0.151 37 0.148
0.268 4 3 0.268 35 0.270

0.358 16 25 0.360 28 0.359

ES#3 0.094 2 1 0.095 17 0.094
0.114 3 2 0.114 17 0.114
0.143 10 9 0.143 14 0.143

References

Alfieri, A., & Matta, A. (2012). Mathematical programming formulations for approximate simulation of

multistage production systems. European Journal of Operational Research. doi:10.1016/j.ejor.2011.12.044.

Birge, J., & Louveaux, F. (1997). Introduction to stochastic programming. Springer series in operations
research and financial engineering series. Berlin: Springer.

Boesel, J. N., Barry, L., & Kim, S. (2003). Using ranking and selection to “clean up” after simulation opti-
mization. Operations Research, 51, 814-825. doi:10.1287/opre.51.5.814.16751.

Bouhchouch, A, Frein, Y., & Dallery, Y. (1993). Analysis of a closed-loop manufacturing system with finite

buffers. Applied Stochastic Models and Data Analysis, 9(2), 111-125. doi:10.1002/asm.3150090205

Brodsky, A., Pedersen, J., & Wagner, A. (2003). On the complexity of buffer allocation in message

passing systems. Journal of Parallel and Distributed Computing, 65(6), 692-713.

Chan, W., & Schruben, L. (2008a). Optimization models of discrete—event system dynamics. Operations
Research, 56(5), 1218-1237.

Chan, W. K., & Schruben, L. W. (2008b). Mathematical programming models of closed tandem
queueing networks. ACM Transactions on Modeling and Computer Simulation, 19(1).
doi:10.1016/j.jpdc.2004.10.009.

Chick, S., Schmeiser, B., Sanchez, P. J., Ferrin, D., Morrice, D. J., & Jin, J. (2003). Simulation-based retro-
spective optimization of stochastic systems: a family of algorithms. In Proceedings of the 2003 winter:
Vol. 1. Simulation conference, 2003 (pp. 543-547).

Dallery, Y., & Frein, Y. (1989). A decomposition method for approximate analysis of closed queueing net-
works with blocking. In Queueing networks with blocking (pp. 193-216).

Dallery, Y., & Liberopoulos, G. (2000). Extended kanban control system: combining kanban and base stock.
IIE Transactions, 32, 369-386.

Dolgui, A., Eremeev, A., & Sygaev, V. (2010). A problem of buffer allocation in production lines: com-
plexity analysis and algorithms. In 3rd international conference on metaheuristics and nature inspired
computing, Djerba, Tunisia.

Fu, M., Glover, F,, & April, J. (2005). In Simulation optimization: a review, new developments, and applica-
tions (pp. 83-95).

Garey, M., & Johnson, D. (1979). Computers and intractability: a guide to the theory of NP-completeness.
New York: Freeman

Gershwin, S. B., & Werner, L. (2007). An approximate analytical method for evaluating the performance of
closed-loop flow systems with unreliable machines and finite buffers. International Journal of Produc-
tion Research, 45, 3085-3111.

Healy, K., & Schruben, L. W. (1991). Retrospective simulation response optimization. In Proceedings of the
23rd conference on winter simulation, WSC *91 (pp. 901-906). Washington: IEEE Computer Society.

Higle, J., & Sen, S. (1996). Stochastic decomposition: a statistical method for large scale stochastic linear
programming. Nonconvex optimization and its applications. Norwell: Kluwer Academic.

Hong, L. J., & Nelson, B. L. (2006). Discrete optimization via simulation using compass. Operations Re-
search, 54(1), 115-129.

Kleijnen, J. P. C. (2008). Design and analysis of simulation experiments. International series in operations
research & management science: Vol. 111. Berlin: Springer.

Kushner, H., & Yin, G. (1997). Stochastic approximation algorithms and applications. Berlin: Springer.

http://dx.doi.org/10.1016/j.ejor.2011.12.044
http://dx.doi.org/10.1287/opre.51.5.814.16751
http://dx.doi.org/10.1002/asm.3150090205
http://dx.doi.org/10.1016/j.jpdc.2004.10.009
http://dx.doi.org/10.1016/j.jpdc.2004.10.009

Law, A. (2007). Simulation modeling and analysis (4th ed.). New York: McGraw-Hill.

Maggio, N., Matta, A., Gershwin, S., & Tolio, T. (2009a). A decomposition approximation for three-machine
closed-loop production systems with unreliable machines, finite buffers and a fixed populatio. I/E Trans-
actions, 41(6), 562-574.

Maggio, N., Matta, A., Gershwin, S. B., & Tolio, T. (2009b). A decomposition approximation for three-
machine closed-loop production systems with unreliable machines, finite buffers and a fixed population.
IIE Transactions, 41(6), 562-574.

Matta, A. (2008). Simulation optimization with mathematical programming representation of discrete event
systems. In S. J. Mason, R. R. Hill, L. Monch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceed-
ings of the 2008 winter simulation conference Piscataway (pp. 1393—-1400). New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Matta, A., & Chefson, R. (2005). Formal properties of closed flow lines with limited buffer capacities and
random processing times. In Proceedings of the European simulation and modelling conference, Porto,
Portugal (pp. 190-194).

Ming-Guang, H., Pao-Long, C., & Ying-Chyi, C. (2002). Buffer allocation in flow-shop-type production
systems with general arrival and service patterns. Computers & Operations Research, 29(2), 103—121.

Montgomery, D. (2005). Progettazione e analisi degli esperimenti. Istruzione scientifica. New York:
McGraw-Hill.

Myers, R., Montgomery, D., & Anderson-Cook, C. (2009). Response surface methodology: process and
product optimization using designed experiments. Wiley series in probability and statistics. New York:
Wiley.

Pedrielli, G. (2013). Discrete event systems simulation—optimization: time buffer framework. PhD thesis,
Mechanical Engineering Department, Politecnico di Milano, Italy.

Robinson, S. (1996). Analysis of sample—path optimization. Mathematics of Operations Research, 21, 513—
528.

Schruben, L. W. (2000). Mathematical programming models of discrete event system dynamics. In J. A.
Joines, R. R. Bartona, K. Kang, & P. A. Fishwick (Eds.), Proceedings of the 2000 winter simulation
conference Piscataway (pp. 381-385). New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Spall, J. C. (2003). Introduction to stochastic search and optimization. New York: Wiley.

Zhang, Z. (2006). Analysis and design of manufacturing systems with multiple-loop structures. PhD thesis,
Mechanical Engineering Department, Massachussetts Institute of Technology, Berkeley.

	Mathematical programming models for joint simulation-optimization applied to closed queueing networks
	Abstract
	Introduction
	Assumptions and notations
	Blocking phenomena in closed queueing networks
	Deadlock
	Server blocking
	Customer blocking

	Optimization models
	Exact optimization model
	Approximate optimization model
	Time buffer for closed queueing networks
	Time buffer model
	Stochastic time buffer model
	First stage problem
	Second stage problem

	Optimization models properties

	Simulation models
	Exact simulation model
	Approximate simulation model
	Simulation models properties

	Algorithm
	Numerical results
	Experimental settings
	Experiment set #1
	Exact simulation results
	Simulation-optimization results

	Experiment set #2
	Exact simulation results
	Simulation-optimization results

	Experiment set #3
	Exact simulation results
	Simulation-optimization results

	Conclusion
	References

