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Abstract

We consider the problem of creatingfair course timetables in the setting of a university.
Our motivation is to improve the overall satisfaction of individuals concerned (students, teach-
ers, etc.) by providing a fair timetable to them. The centralidea is that undesirable arrange-
ments in the course timetable, i. e., violations of soft constraints, should be distributed in a
fair way among the individuals. We propose two formulationsfor the fair course timetabling
problem that are based on max-min fairness and Jain’s fairness index, respectively. Further-
more, we present and experimentally evaluate an optimization algorithm based on simulated
annealing for solving max-min fair course timetabling problems. The new contribution is con-
cerned with measuring the energy difference between two timetables, i. e., how much worse
a timetable is compared to another timetable with respect tomax-min fairness. We introduce
three different energy difference measures and evaluate their impact on the overall algorithm
performance. The second proposed problem formulation focuses on the tradeoff between fair-
ness and the total amount of soft constraint violations. Ourexperimental evaluation shows that
the known best solutions to the ITC2007 curriculum-based course timetabling instances are
quite fair with respect to Jain’s fairness index. However, the experiments also show that the
fairness can be improved further for only a rather small increase in the total amount of soft
constraint violations.

1 Introduction

The university course timetabling problem (UCTP) capturesthe task of assigning courses to a
limited number of resources (rooms and timeslots) in the setting of a unversity. In this work, we
consider the problem of creating fair course timetables in the context of a particular variant of the
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UCTP, the curriculum-based course timetabling (CB-CTT) problem proposed in [DGMS07]. The
CB-CTT formulation features various hard and soft constraints which model typical real-world re-
quirements. The hard constraints are basic requirements, for example, no two lectures may be held
in the same room at the same time. The feasible solutions to a CB-CTT instance are the timetables
satisfying all hard constraints. Soft constraints characterize properties of a course schedule which
are undesirable for the stakeholders. The quality of a feasible timetable is determined by the extent
to which the soft constraints are violated. A soft constraint violation results in a penalty, and the
task is to find a feasible timetable such that the total penalty is minimal. Situations may arise how-
ever, in which a large part of penalty hits only a small group of the stakeholders, who would thus
receive a poor timetable in comparison to others. In other words, a timetable may be unfair due
to an unequal distribution of penalty. In this work, we applyfairness criteria to the CB-CTT prob-
lem. Our goal is to achieve a balance of interests between thestakeholders by imposing fairness
conditions on the distribution of penalty and thus, to improve the overall stakeholder satisfaction.

In general, fairness is of interest whenever scarce resources are allocated to stakeholders with
demands. In economics for example, the distribution of wealth and income and how to measure
inequality of resource distributions is of major concern, see for example [FS06] and [SF97]. In
computer science, fairness is a central theme in design and analysis of communication protocols
(see for instance [BFCYZ02, BG92, BFT11, JCH84, KMT98, KRT01, OW04, SB08]). In opera-
tions research, fairness criteria have been applied for example to the aircraft landing problem by
[SK08]. In the literature, there is a wealth of different definitions of how to determine the fairness
of a given resource distribution. For instance, we may consider the total amount of allocated re-
sources, the outcome for the worst-off stakeholder, the deviation from the mean allocation, and so
forth. We propose two fair variants of the CB-CTT problem, which differ with respect to the under-
lying notion of fairness. Our first problem forumation, MMF-CB-CTT, is based on lexicographic
max-min fairness, to which we will refer to as max-min fairness for brevity. This fairness notion
often appears in the context of network bandwidth allocation (see for example [BG92, SB08]).
Max-min fairness is a purely qualitative measure of fairness, i. e., given two allocations, max-min
fairness tells us which of the two is better, but not by how much. Our second problem formula-
tion, JFI-CB-CTT, is based on Jain’s fairness index proposed by [JCH84]. This fairness measure
is used in the famous AIMD algorithm by [CJ89] used in TCP Congestion Avoidance. In contrast
to max-min fairness, it conveniently represents the inequality of a resource allocation as a number
between zero and one.

In order to solve the MMF-CB-CTT problem we propose MAX M INFAIR SA, an optimization
algorithm based on simulated annealing (SA). Due to the mildrequirements of SA on the problem
structure, the proposed algorithm can easily be tailored toother max-min fair optimisation prob-
lems. A delicate part of the algorithm is the energy difference function, which quantifies how much
worse one solution is compared to another solution – a piece of information we do not get directly
from max-min fairness. We propose three different energy difference functions and evaluate their
impact on the performance of MAX M INFAIR SA on the 21 standard instances from track three
of the ITC2007 competition ([DGS12]). Our experiments indicate, that the known best solutions
with respect to the CB-CTT model are quite fair in the max-minsense, but further improvements
are possible for 15 out of 21 instances and often a considerable improvement of the worst-off
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stakeholder is achieved.
The fairness conditions imposed by max-min fairness are rather strict in the sense that there

is no tradeoff between fairness and the total amount of penalty. In practice however, it may be
desirable to pick a timetable from a number of solutions withvarying tradeoffs between fairness
and total penalty. Our proposed JFI-CB-CTT problem is a bi-criteria optimisation problem, which
offers this option. We investigate the tradeoffs between fairness and total penalty for the six stan-
dard instances from [DGS12] whose known best solutions havethe highest total penalty compared
to the other instances. Our motivation for this choice of instances is simply that if the total penalty
of a timetable is very small, then there is not much gain for anyone in distributing the penalty in
a fair way. Our conclusion regarding this approach is that, although the known best solutions for
the six instances are already quite fair, we can improve the fairness further at the cost of only a
small increase in total penalty. For a theoretical treatment of the price of fairness on so-called
convex utility sets with respect to proportional fairness and max-min fairness, see the recent work
by [BFT11].

The remainder of this work is organized as follows. In Section 2, we will provide a brief
review of the curriculum-based course timetabling (CB-CTT) problem model as well as max-min
fairness and Jain’s fairness index. In Section 3 we will propose MMF-CB-CTT and JFI-CB-CTT,
two fair variants of the CB-CTT problem formulation, and in Section 4, we will introduce the SA-
based optimisation algorithm MAX M INFAIR SA for solving max-min fair allocation problems.
Section 5 is dedicated to our experimental evaluation of thefairness of the known best solutions
to 21 standard instances from the website by [DGS12] with respect to max-min fairness and Jain’s
fairness index, and the performance of the MAX M INFAIR SA algorithm.

2 Preliminaries

In this section, we provide a brief review of the curriculum-based course timetabling problem
formulation as well as relevant definitions concerning max-min fairness and Jain’s fairness index.

2.1 Curriculum-based Course Timetabling Problems

Curriculum-based Course Timetabling (CB-CTT) is a particular variant of the UCTP. It has been
proposed in the course of the second international timetabling competition in 2007 (see [MSP+10]),
and has since then emerged as one of the de-facto standard problem formulations in the timetabling
community. The central entities in the CB-CTT formulation are thecurricula, which are sets of
lectures that must not be taught simultaneously. Both problem formulations proposed in the next
section are based on the CB-CTT model.

CB-CTT problems are NP-hard and a lot of effort has been devoted to the development of
exact and heuristic methods which provide high quality solutions within reasonable time. A wide
range of techniques has been employed for solving CB-CTT instances including but not limited
to approaches based on Max-SAT ([AAN10]), mathematical programming ([LL10, BMPR11]),
local search ([DS06, LH10]), evolutionary computation ([ABM07]) as well as hybrid approaches
([BDS12, Mül09]). There has been a lot of progress in terms of the achieved solution quality in the
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recent years. Interestingly, there seems to be no approach which is superior to the other approaches
on most ITC2007 instances (see the website [DGS12] for current results).

A CB-CTT instance consists of a set of rooms, a set of courses,a set of curricula, a set of
teachers and a set of days. Each day is divided into a fixed number of timeslots, a pair composed
of a day and a timeslot is called aperiod. A period in conjunction with a room is called aresource.
Each course consists of a number of lectures, i. e. a number events to be scheduled, is taught by
some teacher and has a number of students attending it. Eachcurriculum is a set of courses. For
each room, we are provided with the maximum number of students it can accommodate and for
each course we are given a list of periods in which it cannot betaught. A solution to a CB-CTT
instance is atimetable, i. e. an assignment of courses to resources. The quality of atimetable is
determined according to four hard and four soft constraints(see [DGMS07]).

The hard constraints are the following:

H1 All lectures need to be scheduled and no two lectures of thesame course may be assigned to
the same period.

H2 No two lectures may be assigned to the same resource.

H3 Two courses in the same curriculum or taught by the same teacher must be assigned to
different periods.

H4 A lecture can only be scheduled in a period that is not marked unavailable for the corre-
sponding course.

A timetable that satisfies all hard constraints is calledfeasible.
The CB-CTT formulation features the following soft constraints:

S1 RoomCapacity: Each lecture should be assigned to a room of sufficient size.

S2 MinWorkingDays: The lectures of each course should be distributed over a certain minimum
number of days.

S3 IsolatedLectures: For each curriculum, all lectures associated to the curriculum should be
scheduled in adjacent timeslots.

S4 RoomStability: The lectures of each course should be assigned to the same room.

Each violation of one of the soft constraints results in a “penalty” for the timetable. The CT-
CTT objective function aggregates individual penalties bytaking their weighted sum. Detailed
descriptions of how hard and soft constraints are evaluatedand how much penalty is applied for
a particular soft constraint violation can be found in the report by [DGMS07]. Given a CB-CTT
instanceI , the task is to find a feasible timetable such the aggregated penalty is minimal.
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2.2 Fairness in Resource Allocation

Fairness issues typically arise when scarce resources are allocated to a number of stakeholders with
demands. Fair resource allocation has received much attention in economic theory (see for example
[FS06]), but also occurs in a wide range of applications in computer science including bandwidth
allocation in networks ([BG92]) and task scheduling ([RDK05]). In many optimization problems
related to resource allocation, the goal is to maximize the total amount of resources allocated to the
stakeholders. Fairness in this context means that the distribution of resources over the stakeholders
is important and that certain resource distributions are preferred over others.

Consider a resource allocation problem withn stakeholders resources. Each resource allocation
(admissible solution) induces an allocation vectorX = (x1, . . . ,xn), where each itemxi ,1≤ i ≤ n,
corresponds to the amount of resources allocated to stakeholder i. Typically, a preference for
certain resource distributions is implicitly or explicitly contained in the objective function. For
example, the task can be to find allocations maximizing the sum of the individual allocations, the
mean allocation, the root mean square (RMS), the smallest allocation, and so forth (see [Ogr10,
SK08]). When the fairness of an allocation is important we may be interested in improving the
outcome for the worst-off stakeholders or generally try to allocate resources equally among the
stakeholders. Max-min fairness is a notion of fairness thatfavours better outcomes for the worst-
off stakeholders. It has received attention in the area of network engineering, in particular in the
context of flow control [BFCYZ02, KRT01, SB08, ZLCJ12]. Various inequality measures have
been proposed such as the Gini index proposed by [Gin21] and Jain’s fairness index proposed by
[JCH84]. Generally, a highly unequal distribution of resources is considered unfair. Our evaluation
of fairness in academic course timetabling focuses on max-min fairness and Jain’s fairness index.

Our evaluation of fairness in academic course timetabling focuses on the two fairness criteria
max-min fairness and Jain’s fairness index.

Max-min Fairness. Max-min fairness can be stated as iterated application of Rawls’s Second
Principle of Justice by [Raw99]:

“Social and economic inequalities are to be arranged so thatthey are to be of greatest
benefit to the least-advantaged members of society.” (the Difference Principle)

Once the status of the least-advantaged members has been determined according to the difference
principle, it can be applied again to everyone except the least-advantaged group in order to maxi-
mize the utility (in the economic sense) for the second least-advantaged members, and so on. The
resulting utility assignment is called max-min fair. A max-min fair utility assignment implies that
each stakeholder can maximize his/her utility as long as it is not at the expense of another stake-
holder who is worse off. Thus, a max-min fair allocation enforces an efficient resource usage to
some extent. A max-min fair resource allocation is Pareto-optimal.

In order to define max-min fairness more formally, we introduce some notation. LetX be an
allocation vector. We generally assume that each entrie ofX is a nonnegative real number. By~X
we denote the vector containing the entries ofX arranged in nondecreasing order. Similarly, let
~X be a vector containing the entries ofX in nonincreasing order. For allocation vectorsX andY

we writeX �mmY if X is at least as good asY in the max-min sense. For maximization problems
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such as bandwidth allocation this is the case iff~Y �lex ~X, where�lex is the usual lexicographic
comparison. For minimization problems such as the fair course timetabling problems proposed in
Section 3,X �mmY iff ~X �lex ~Y. Let s be a solution to an instanceI of an optimization problem
andX be the allocation vector induced bys. Thens is called max-min fair, if for any other solution
s′ to I we haveX �mmY, whereY is the allocation vector induced bys′. Since the allocations
are sorted, max-min fairness does not discriminate betweenstakeholders, but only between the
amounts of resources assigned to them.

A weaker version of max-min fairness results if Rawl’s Second Principle of Justice is not
applied iteratively, but just once. This means that we are concerned with chosing the best possible
outcome for the worst-off stakeholder. In the literature, related optimization problems are referred
to as bottleneck optimization problems ([EF70, PZ11]). Note, that in contrast to max-min fairness,
an optimal solution to a bottleneck optimisation problem isnot necessarily Pareto-optimal. In the
context of practical academic timetabling, the use of bottleneck optimization is hard to justify:
each stakeholder is guaranteed to be at least as well off as the worst-off stakeholder, but no further
improvement is considered.

Jain’s Fairness Index. Jain’s fairness index is an inequality measure proposed by Jain in [JCH84].
It is the crucial fairness measure that is used in the famous AIMD algorithm by [CJ89] used in TCP
Congestion Avoidance. The fairness indexJ(X) of an allocation vectorX is defined as follows:

J(X) =

(

∑
1≤i≤n

xi

)2

n · ∑
1≤i≤n

x2
i

. (1)

It has several useful properties like population size independence, scale and metric independence,
it is bounded between 0 and 1, and it has an intuitive interpretation. In particularJ(X) = 1 means
thatX is a completely fair allocation, i. e., the allocation is fair for every stakeholder, and ifJ(X) =
1/n then all resources are occupied by a single stakeholder. Furthermore, ifJ(X) = x% then the
allocationX is fair for x percent of the stakeholders.

3 Fairness in Academic Course Timetabling

Course timetabling problems fit quite well in the framework of fair resource allocation problems
described in the previous section: A timetable is an allocation of resources (rooms, timeslots) to
lectures. In this section, we will define two fair versions ofthe CB-CTT problem formulation
proposed by [MSP+10]. The first one, MMF-CB-CTT, is based on max-min fairness.Since max-
min fairness enforces fairness as well as efficiency (maximum utility) at least to some extent, it is
not a suitable concept for exploring the tradeoff between fairness and efficiency. Thus, we propose
a second fair variant of CB-CTT called JFI-CB-CTT that is based on Jain’s fairness index.

In order to use the fairness measures mentioned in the previous section, we need determine
an allocation vector from a timetable. The central entitiesin the CB-CTT problem formulation
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are the curricula. Therefore, in this work, we are interested in a fair distribution of penalty over
the curricula. Depending on the application, a different set of stakeholders can be picked, but
conceptually this does not change much. LetI be a CB-CTT instance with curriculac1,c2, . . . ,ck

and let fc be the CB-CTT objective function proposed by [DGMS07], which evaluates (S1)-(S4)
restricted to curriculumc. This meansfc determines soft constraint violations only for the courses
in curriculumc. For a timetableτ the corresponding allocation vector is given by the allocation
function

A(τ) = ( fc1(τ), fc2(τ), . . . , fck(τ)) . (2)

Definition 1 (MMF-CB-CTT). Given a CB-CTT instance I, the task is to find a feasible timetable
τ such that A(τ) is max-min fair.

If a feasible timetable has max-min fair allocation vector,then any curriculumc could receive
less penalty only at the expense of other curricula which receive more penalty thanc. This is due
to the Pareto-optimality of a max-min fair allocation.

In order to explore the tradeoff between efficient and fair resource allocation in the context of
the CB-CTT model, we propose another fair variant called JFI-CB-CTT that is based on Jain’s
fairness index proposed by [JCH84]. In order to get meaningful results from the fairness index
however, we need a different allocation function. Consideran allocationX that allocates all penalty
to a single curriculum while the remainingk−1 curricula receive no penalty. ThenJ(X) = 1/k,
which means that only one curriculum is happy with the allocation (see [JCH84]). In our situation
however, the opposite is the case:k−1 curricula are happy since they receive no penalty at all. The
following allocation function shifts the penalty values such that the corresponding fairness index
in the situation described above becomes(k−1)/k, which is in much better agreement with our
intuition:

A′(τ) = ( fmax− fc1(τ), fmax− fc2(τ), . . . , fmax− fck(τ)) , (3)

with
fmax= max

1≤i≤k
{ fci (τ)} .

Definition 2 (JFI-CB-CTT). Given a CB-CTT instance I, the task is to find the set of feasible
solutions which are Pareto-optimal with respect to the two objectives of the objective function

F(τ) = ( f (τ),1−J(A′(τ))) , (4)

where f is the CB-CTT objective function from [DGMS07] and J is defined in Eq.(1).

By a similar procedure, other classes of timetabling problem such as post-enrollment course
timetabling, exam timetabling and nurse rostering can be turned into fair optimization problems.
For example, for post-enrollment course timetabling, the central entities of interest are the individ-
ual students. Therefore, the goal were to achieve a fair distribution of penalty over all students.
Once an appropriate allocation function has been defined, weimmediately get the corresponding
fair optimization problems.

Our proposed problem formulations are concerned with balancing the interests between stake-
holders, who are in our case the students. In practice however, there are often several groups of
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stakeholders with possibly conflicting interest, for example students, lecturers and administration.
possibilities for extending the problem formulations above to include multiple stakeholders. For
example, a multi-objective optimization approach may be considered, where each objective cap-
tures the fairness with respect to a particular stakeholder. When using inequality measures like
Jain’s fairness index for different groups of stakeholders, the inequality values can be aggregated,
for instance using a weighted-sum or ordered weighted averaging [Yag88] approach. Furthermore,
max-min fairness or a suitable inequality measure can be applied to the different objectives to
balance the interests of the different groups of stakeholders.

4 Simulated Annealing for Max-Min Fair Course Timetabling

Simulated Annealing (SA) is a popular local search method proposed by [KGV83], which works
surprisingly well on many problem domains. SA has been applied successfully to timetabling prob-
lems by [Kos04] and [TD96]. Some of the currently known best solutions to CB-CTT instances
from the ITC2007 competition were discovered by simulated annealing-based methods according
to the website by [DGS12]. Our SA for max-min fair optimization problems shown in Algorithm 1
below (algorithm MAX M INFAIR SA) is conceptually very similar to the original algorithm.The
SA algorithm generates a new candidate solution according to some neighborhood exploration
method, and replaces the current solution with a certain probability depending on i) the quality
difference between the two solutions and ii) the current temperature. Since max-min fairness only
tells us which of two given solutions is better, but not how much better, the main challenge in tai-
loring SA to max-min fair optimization problems is to find a suitable energy difference function,
which quantifies the difference in quality between two candidate solutions. In the following, we
propose three different energy difference measures for max-min fair optimization and provide de-
tails on the acceptance criterion, the cooling schedule, and the neighborhood exploration method
chosen for the experimental evaluation of MAX M INFAIR SA in the next section.

Algorithm 1: MAX M INFAIR SA
input : scur: feasible timetable,ϑmax: initial temperature,ϑmin: final temperature, timeout
output: sbest: Best feasible timetable found so far

sbest← scur

ϑ ← ϑmax

while timeout not hitdo
snext← neighbor(scur)

if Paccept≥ random() then scur← snext

if A(scur)�mmA(sbest) then sbest← scur

ϑ ← next temperature(ϑ)

end
return sbest
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Acceptance Criterion. Similar to the original SA algorithm proposed by [KGV83], algorithm MAX M IN-
FAIR SA accepts an improved or equally good solution snext with probability 1. If snext is worse
than scur then the acceptance probability depends on the current temperature levelϑ and the energy
difference∆E. The energy difference measures the difference in quality of the allocation induced
by snext compared to the allocation induced by the current solution scur. The acceptance probability
Pacceptis defined as:

Paccept=







1 if snext�mmscur

exp
(

−
∆E(X,Y)

ϑ
)

otherwise,

whereX = A(scur) andY = A(snext). In order to fit max-min fairness into the SA algorithm,
we propose three energy difference measures:∆Elex, ∆Ecw, and∆Eps. ∆Elex derives the energy
difference from a lexicographic comparison,∆Ecw from the component-wise ratios of the sorted
allocation vectors and∆Eps from the ratios of the partial sums of the sorted allocation vectors. Our
experiments presented in the next section indicate that thechoice of the energy difference measure
has a clear impact on the performane of MAX M INFAIR SA and is thus a critical design choice.

For an allocation vectorX, let ~Xi denote theith entry after sorting the entries ofX in nonin-
creasing order. The energy difference∆Elex of two allocation vectorsX andY of lengthn is defined
as follows:

∆Elex(X,Y) = 1−
1
n
·

(

min
1≤i≤n

{

i | ~Yi > ~Xi

}

−1

)

. (5)

∆Elex determines the energy difference betweenX andY from the smallest index that determines
X �mmY. Thus, sorted allocation vectors which differ at the most significant indices have a higher
energy difference than those differing at later indices. Inparticular,∆Elex has evaluates to 1 if the
minimum is 1, and it evaluates to 1/n if the minimum isn.

The energy difference measure∆Elex considers the earliest index at which two sorted allocation
vectors differ but not how much the entries differ. We additionally propose the two energy differ-
ence measures∆Ecs and∆Eps which take this information into account. These energy difference
measures are derived from the definitions of approximation ratios for max-min fair allocation prob-
lems given by [KRT01]. An approximation ratio is a measure for how much worse the quality of a
solution is relative to a possibly unknown optimal solution. In our case, we are interested in how
much worse one given allocation is relative to another givenallocation. We need to introduce some
modifications of the definitions by [KRT01] since we are dealing with a minimization problem.

Note that due to (2), an allocation vector does not contain any positive entries. LetµX,Y be the
smallest value of the two allocation vectorsX andY offset by a parameterδ > 0, i. e.,

µX,Y = max{ ~X1, ~Y1}+δ . (6)

The offsetδ is introduced in order to avoid divisions by zero when takingratios of penalty values.
The component-wise energy difference∆Ecw of allocation vectorsX andY is defined as fol-

lows:

∆Ecw(X,Y) = max
1≤i≤n

{

µX,Y− ~Yi

µX,Y− ~Xi

}

−1 (7)
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Since all entries are subtracted fromµX,Y, the ratios of the most significant entries with respect to
�mm tend to dominate the value of∆Ecw. Consider for example the situation thatY is much less
fair thanX, say, max{~X1,~Y1} occurs more often inX than inY. Then for a small offsetδ the energy
difference∆Ecw(X,Y) becomes large. On the other hand, ifX is nearly as fair asY then the ratios
are all close to one and thus∆Ecw(X,Y) is close to zero.

The third proposed energy difference measure∆Eps is based on the ratios of the partial sums
σi(X) of the sorted allocation vectors.

σi(X) = ∑
1≤ j≤i

~X j .

The intention of using partial sums of the sorted allocations is to give the stakeholders receiving
the most penalty more influence on the resulting energy difference compared to∆Ecw. The energy
difference∆Eps is defined as:

∆Eps(X,Y) = max
1≤i≤n

{

i ·µX,Y−σi(~Y)

i ·µX,Y−σi(~X)

}

−1 . (8)

Cooling Schedule. In algorithm MAX M INFAIR SA, the functionnext temperature updates
the current temperature levelϑ according to the cooling schedule. We use a standard geometric
cooling schedule

ϑ = αt ·ϑmax ,

whereα is the cooling rate andt is the elapsed time. Geometric cooling schedules decrease the
temperature level exponentially over time. It is a popular class of cooling schedules which is widely
used in practice and works well in many problem domains including timetabling problems [LA87,
KAJ94, TD98]. Geometric cooling was chosen due to its simplicity, since the main focus of our
evaluation in Section 5 is the performance impact of the different energy difference functions. We
have made a slight adjustment to the specification of the geometric cooling schedule in order to
make the behavior more consistent for different timeouts. Instead of specifying the cooling rateα,
we determineα from ϑmax, the desired minimum temperatureϑmin and the timeout according to:

α =

(

ϑmin

ϑmax

)
1

timeout

. (9)

Thus, at the beginning (t = 0) the temperature level isϑmax and when the timeout is reached
(t = timeout), the temperature level becomesϑmin. We chose to set a timeout rather than a maxi-
mum number of iterations since this setting is compliant with the ITC2007 competition conditions,
which are a widely accepted standard for comparing results.

Neighborhood. In our max-min fair SA implementation, the functionneighbor picks at random
a neighbor in the Kempe-neighborhood of scur. The Kempe-neighborhood is the set of all timeta-
bles which can be reached by performing a single Kempe-move such that the number of lectures per
period do not exceed the number of available rooms. The Kempe-move is a well-known and widely

10



Table 1: Fairness of the known best timetables from [DGS12] for the ITC2007 CB-CTT instances.

Instance Curricula f (sbest) J(A′(sbest)) ~A(sbest)

comp01 14 5 0.8571 52,012

comp02 70 24 0.9515 4,210,059

comp03 68 66 0.9114 13,103,9,72,64,513,4,26,037

comp04 57 35 0.8964 7,63,54,42,2,046

comp05 139 291 0.8277 412,367,355,325,316,309,28,277,262,2514, . . . ,2,03

comp06 70 27 0.9657 12,72,54,23,060

comp07 77 6 0.9870 6,076

comp08 61 37 0.9020 7,63,54,42,22,049

comp09 75 96 0.8047 105,9,710,66,510,4,2,041

comp10 67 4 0.9701 22,065

comp11 13 0 − 013

comp12 150 300 0.9128 45,3014,28,272,265,2519,224,216,208,19, . . . ,22,03

comp13 66 59 0.8830 8,7,65,57,42,23,047

comp14 60 51 0.9023 84,7,52,26,047

comp15 68 66 0.8495 103,93,7,64,513,4,27,036

comp16 71 18 0.9176 72,57,4,061

comp17 70 56 0.9248 102,63,59,24,052

comp18 52 62 0.9009 17,15,14,13,11,10,92,519,22,023

comp19 66 57 0.9612 13,7,64,52,4,27,050

comp20 78 4 0.9744 22,076

comp21 78 76 0.8838 12,11,104,9,74,64,512,4,23,12,045

used operation for swapping events in a timetable [BEM+10, LH10, MBHS02, TD98, TBM07].
A prominent feature of the Kempe-neighborhood is that it contains only moves that preserve the
feasibility of a timetable. Since the algorithm MAX M INFAIR SA only uses moves from this neigh-
borhood the output is guaranteed to be a feasible timetable.In the future, more advanced neighbor-
hood exploration methods similar to the approaches in [DS06, LH10] could be used, which may
well lead to an improved overall performance of MAX M INFAIR SA.

5 Evaluation

In this section, we will first address the question how fair orunfair the known best timetables for
the ITC2007 CB-CTT instances are with respect to Jain’s fairness index and max-min fairness.
Table 1 shows our measurements for all instancescomp01, comp02, . . . ,comp21 from the ITC2007
competition (see [DGS12] for instance data). Please note that the known best timetables were not
created with fairness in mind, but the objective was to create timetables with minimal total penalty.
In Table 1,sbestrefers to the known best solution for each instance.A andA′ refer to the allocation
functions given in (2) and (3), respectively. The data indicates that the timetables with a low total
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Table 2: The performance of MAX M INFAIR SA with ∆E = ∆Ecw for different values ofδ .

δ 100 10−2 10−3 10−6

100 – 02 02,05 02

10−2 10,19,20 – 09 19

10−3 01,10,19,20 – – 03,19

10−6 01,10,20 – – –

penalty are also rather fair. This can be explained by the fact that these timetables do not have a
large amount of penalty to distribute over the curricula. Thus, most curricula receive little or no
penalty and consequently, the distribution is fair for mostcurricula. We will show in Section 5.2
however, that for timetables with a comparatively large total penalty there is still some room for
improvement concerning fairness.

The rightmost column of Table 1 contains the sorted allocation vectors of the best solutions.
For a more convenient presentation, all entries of the sorted allocation vectors are multiplied by -1.
The exponents denote how often a certain number occurs. For example, the sorted allocation vector
(−5,−5,0,0,0) would be represented as 52,03. The sum of the values of an allocation vector is
generally much larger than the total penalty shown in the second column. The reason for this is
that the penalty assigned to a course is counted for each curriculum the course belongs to. With a
few exceptions the general theme seems to be that the penaltyis assigned to only a few curricula
while a majority of curricula receives no penalty. In the next section we will show that the situation
for the curricula which receive the most penalty can be improved with max-min fair optimization
for 15 out of 21 instances.

5.1 Max-Min Fair Optimization

In Section 4, we presented algorithm MAX M INFAIR SA for solving max-min fair minimization
problems. A crucial part of this algorithm is the energy difference measure which determines how
much worse a given solution is compared to another solution,i.e. the energy difference of the
solutions. We evaluate the impact of the three energy difference measures (5), (7) and (8) on the
performance of MAX M INFAIR SA.

Our test setup was the following: For each energy differencefunction we independently per-
formed 50 runs with MAX M INFAIR SA. The temperature levels were determined experimentally,
we setϑmax= 5 andϑmin= 0.01; the cooling rateα was set according to (9). In order to establish
consistent experimental conditions for fair optimization, we used a timeout, which was determined
according to the publicly available ITC2007 benchmark executable. On our machines (i7 CPUs
running at 3.4GHz, 8GB RAM), the timeout was set to 192 seconds. The MAX M INFAIR SA
algorithm was executed on a single core. We generated feasible initial timetables for MAX M IN-
FAIR SA as a preprocess using sequential heuristics proposed by [BMM+07]. The soft constraint
violations were not considered at this stage. Since the preprocess was performed only once per
instance (not per run), it is not counted in the timeout. However, the time it took was negligible
compared to the timeout (less than 1 second per instance).
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Table 3: The performance of MAX M INFAIR SA with energy difference measures∆Elex, ∆Eps and
∆Ecw.

∆E ∆Elex ∆Eps ∆Ecw

∆Elex – – –
∆Eps all except01,06,08,11,17 – 18

∆Ecw all except11 06,07,08,17,21 –

Table 2 shows the impact of the parameterδ on the performance of MAX M INFAIR SA with
energy difference measure∆Ecw. For each pair of values we performed the one-sided Wilcoxon
Rank-Sum test with a significance level of 0.01. The data indicates that for best performance,δ
should be small, but not too small. Forδ = 1, MAX M INFAIR SA beats the other shown configu-
rations on instancecomp02 but performs worse than the other configurations on instancescomp10
andcomp20. Forδ = 10−6 the overall performance is better than forδ = 1, but worse than for the
other configurations. Withδ = 10−2 andδ = 10−3, MAX M INFAIR SA shows the best relative
performance. Thus, for our further evaluation we setδ = 10−3.

Table 3 shows the relative performance of Algorithm MAX M INFAIR SA for the proposed en-
ergy difference measures (5), (7) and (8). The table shows for any choice of two energy difference
measuresi and j, for which instances MAX M INFAIR SA with measurei performs significantly
better than MAX M INFAIR SA using measurej. Again, we used the Wilcoxon Rank-Sum test with
a significance level of 1 percent. The data shows that∆Ecw is the best choice among the three alter-
natives, since it is a better choice than∆Elex on all instances exceptcomp11 and a better choice than
∆Eps on five out of 21 instances. However, although∆Ecw shows significantly better performance
than the other energy difference measures, it did not necessarily produce the best timetables on all
instances. For the instancescomp03, comp15, comp05 andcomp12 for example, the best solution
found with∆E = ∆Eps was better than with∆E = ∆Ecw.

The data in Table 4 shows a comparison of the sorted allocation vectors of the known best
solutions from the CB-CTT website by [DGS12] with the best solutions found by the 50 runs of
MAX M INFAIR SA with ∆E = ∆Ecw. First of all, for instancescomp01 andcomp11, the allocation
vectors of the best existing solutions and the best solutionfound by MAX M INFAIR SA are iden-
tical. This means that MAX M INFAIR SA finds reasonably good solutions despite the certainly
more complex fitness landscape due to max-min fair optimization. We can also observe that the
maximum penalty any curriculum receives is significantly less for most instances and the penalty
is more evenly distributed across the curricula. This meansthat although max-min fair timetables
may have a higher total penalty, they might be more attractive from the students’ perspective, since
in the first place each student notices an unfortunate arrangement of his/her timetable, which is tied
to the curriculum. Furthermore, we can observe that if the total penalty of a known best solution is
rather low, then it is also good with respect to max-min fairness. For several instances in this cate-
gory, (comp01, comp04, comp07, comp10 andcomp20), the solution found by MAX M INFAIR SA
is not as good as the known best solution with respect to max-min fairness. We can conclude that
if there is not much penalty to distribute between the stakeholders, it is not necessary to enforce a
fair distribution of penalty.
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Table 4: Comparison of the sorted allocation vectors of the known best solutions from the website
by [DGS12] with the allocation vectors found by MAX M INFAIR SA with respect to max-min
fairness.

Instance Known best solution MAX M INFAIR SA (∆E = ∆Ecw)
comp01 52,012 52,012

comp02 4,210,059 42,231,17,030

comp03 13,103,9,72,64,513,4,26,037 64,411,222,13,028

comp04 7,63,54,42,2,046 64,42,24,1,046

comp05 412,367,355,325,316,309,28, . . . ,2,03 192,183,173,165,152,1415,135, . . . ,48,33,2
comp06 12,72,54,23,060 12,42,230,113,024

comp07 6,076 6,223,124,029

comp08 7,63,54,42,22,049 64,42,27,15,043

comp09 105,9,710,66,510,4,2,041 69,414,217,035

comp10 22,065 219,16,042

comp11 013 013

comp12 45,3014,28,272,265,2519,224, . . . ,22,03 103,96,831,77,643,52,436,32,216,1,03

comp13 8,7,65,57,42,23,047 66,44,213,16,037

comp14 84,7,52,26,047 84,42,3,218,035

comp15 103,93,7,64,513,4,27,036 64,411,223,12,028

comp16 72,57,4,061 45,216,14,046

comp17 102,63,59,24,052 102,62,47,3,225,17,026

comp18 17,15,14,13,11,10,92,519,22,023 420,211,15,016

comp19 13,7,64,52,4,27,050 64,46,215,114,027

comp20 22,076 45,33,231,17,032

comp21 12,11,104,9,74,64,512,4,23,12,045 10,64,5,415,3,236,13,017
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5.2 The Tradeoff Between Fairness and Efficiency

We proposed the JFI-CB-CTT problem formulation in Section 3, which allows us to investigate
the tradeoff between fairness and efficiency which arises incourse timetabling. We can observe
in column 4 of Table 1 that for all of the best solutions from [DGS12] the fairness index (1)
is greater than 0.8, i. e., the known best solutions are also fair for more than 80 percent of the
curricula. In order to solve the corresponding JFI-CB-CTT instances, we use the multi-objective
optimization algorithm AMOSA proposed by [BSMD08] that is based on simulated annealing like
Algorithm MAX M INFAIR SA. Since we do not expect from a general multi-objective optimization
algorithm to produce solutions as good as the best CB-CTT solvers, we will consider the following
scenario to explore the tradeoffs between fairness and efficiency: starting from the known best
solution we examine how much increase in total penalty we have to tolerate in order to increase
the fairness further. We will take as examples the six instances with the highest total amount of
penalty,comp03, comp05, comp09, comp12, comp15 andcomp21.

The temperature levels for the AMOSA algorithm were set toϑmax= 20 andϑmin = 0.01; α
was set according to (9) with a timeout determined by the official ITC2007 benchmark. The plots
in Figure 1 show the (Pareto-) non-dominated solutions found by AMOSA. The arrows point to the
starting point, i.e. the best available solutions to the corresponding instances. For instancescomp05

andcomp21 solutions with a lower total cost than the the previously known best solutions were
discovered by this approach. The plots show that the price for increasing the fairness is generally
not very high – up to a certain level, which depends on the instance. In fact, forcomp09 and
comp21, the fairness index can be increased by 3.5 percent and 1.4 percent, respectively, without
increasing the total penalty at all.

In Figure 1, the straight lines that go through the initial solutions show a possible tradeoff
between fairness and efficiency: the slopes were determinedsuch that a 1 percent increase in
fairness yields a 1 percent increase in penalty. For the instances shown in Figure 1, the solutions
remain close to the tradeoff lines up to a fairness of 94 to 97 percent, while a further increase
in fairness demands a significant increase in total cost. Forthe instancescomp05, comp09 and
comp15, there are several solutions below the tradeoff lines. Picking any of the solutions below
these lines would result in an increased fairness without anequally large increase in the amount
of penalty. This means picking a fairer solution might well be an attractive option in a real-world
academic timetabling context. Forcomp05 for example, the fairness of the formerly best known
solution with a total penalty of 291 can be increased by 5.4 percent at 302 total penalty, which is a
3.8 percent increase.

In summary, improving the fairness of an efficient timetableas a post-processing step seems
like a viable approach for practical decision making. Usinga very efficient solution as a starting
point means that we can benefit from the existing very good approaches to creating timetables
with minimal total cost and provide improved fairness depending on the actual, instance-dependent
tradeoff.
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Figure 1: Non-dominated solutions found by the AMOSA algorithm for the JFI-CB-CTT versions
of instancescomp03, comp05, comp09, comp12, comp15 andcomp21. All graphs show the fairness
index on the horizontal axis and the amount of penalty on the vertical axis.
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6 Conclusion

In this paper we introduced two new problem formulations foracademic course timetabling based
on the CB-CTT problem model from track three of the ITC2007, MMF-CB-CTT and JFI-CB-
CTT. Both problem formulations are aimed at creating fair course timetables in the setting of a
university but include different notions of fairness. Fairness in our setting means that the penalty
assigned to a timetable is distributed in a fair way among thedifferent curricula. The MMF-
CB-CTT formulation aims at creating max-min fair course timetables while JFI-CB-CTT is a bi-
objective problem formulation based on Jain’s fairness index. The motivation for the JFI-CB-CTT
formulation is to explore the tradeoff between a fair penalty distribution and a low total penalty.

Furthermore, we proposed an optimization algorithm based on simulated annealing for solving
MMF-CB-CTT problems. A critical part of the algorithm is concerned with measuring the en-
ergy difference between two timetables, i.e., how much worse a timetable is compared to another
timetable with respect to max-min fairness. We evaluated the performance of the proposed algo-
rithm for three different energy difference measures on the21 CB-CTT benchmark instances. Our
results show clearly that the algorithm performs best with∆Ecw as energy difference measure.

Additionally, we investigated the fairness of the known best solutions of the 21 CB-CTT in-
stances with respect to max-min fairness and Jain’s fairness index. These solutions were not created
with fairness in mind, but our results show that all of the solutions have a fairness index greater
than 0.8. This means they can be considered quite fair. Nevertheless, our results show that some
improvements are possible with respect to both max-min fairness and Jain’s fairness index. The
timetables produced by our proposed MAX M INFAIR SA algorithms are better than the known
best ones with respect to max-min fairness for 15 out of 21 instances. Our investigation of the
tradeoff between fairness and the total amount of penalty using the JFI-CB-CTT problem formula-
tion shows that the fairness of the known best timetables canbe increased further with only a small
increase of the total penalty.
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[LH10] Zhipeng Lü and Jin-Kao Hao. Adaptive tabu search forcourse timetabling.
European Journal of Operational Research, 200(1):235–244, 2010.
doi:10.1016/j.ejor.2008.12.007.
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