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Abstract The Elective Course Student Sectioning (ECSS) problem is an yearly recurrent plan-
ning problem at the Danish high schools. The problem is of assigning students to elective course
classes given their requests such that as many requests are ful�lled and the violation of the soft
constraints is minimized. This paper presents an adaptive large neighborhood search heuristic for
the ESCC. The algorithm is applied to 80 real-life instances from Danish high schools and com-
pared with solutions found by using the state-of-the-art MIP solver Gurobi. The algorithm has
been implemented in the commercial product Lectio, and is thereby available for approximately
200 high schools in Denmark.

Keywords: Education Timetabling; High School Timetabling; Student Sectioning; Elective
Course Planning; Adaptive Large Neighborhood Search; Integer Programming

1 Introduction

The purpose of this article is to describe the Elective Course Student Sectioning (ECSS) problem
and the solution methods used to solve it. ECSS serves as a pre-processing planning problem for the
actual high school timetabling in Denmark and is an important yearly recurrent planning problem.
The problem is concerned with assigning students to elective course classes given their requests,
subject to various soft and hard constraints.

This paper is written in collaboration with the Danish software company MaCom A/S, whose
main product is the cloud-based high school administration system Lectio. Lectio is used by the
majority of all the Danish high schools. Due to the diversity of high schools, it is very important
that the problem is formulated such that it covers all the high schools and such that the solution
approach performs well for problems of di�erent sizes and format.

In Section 2 the ECSS is described in detail with a literature review given in Section 3. In Section
4 the problem is formulated as an Mixed Integer Programming problem and the complexity of the
problem is proven. The solution approach for the problem is explained in Section 5. Parameter
tuning and the performance results are presented in Section 6 and 7, respectively. Finally Section
8 rounds up and concludes.

2 Problem description

It takes three years to complete a high school education in Denmark and every year the high
schools need to create a timetable for the following year, hence they also need to solve the ECSS.
Each year the students request some elective courses which they want to attend along with their
mandatory courses. The problem is then to assign the students to elective course classes given
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their requests and assign these classes to some time slots. The main goal of the ECSS is to ful�l as
many of the students' elective course requests as possible while minimizing the number of classes
created. The problem is of both educational and economical nature. First of all, the students are
planning their high school education such that they have the necessary merits for applying for a
university education afterwards. If a student is not granted his requests he might miss a merit to
get admission to his desired education. Secondly if a student is not granted his request, it might
entail that the student changes high school or drops out, and this impose some economic issues for
the high school. The Danish high schools are self-governing and get a fee from the state based on
the number of students which �nish an education at the high school, i.e. a signi�cant part of the
high schools income is based on the students. It should be noted that the students in Denmark
can freely choose between high schools. Another aspect of the economic issues is the creation of
classes. For each created class there is a cost of approximately e 27.000 p.a., i.e. it is not enough to
grant all the requests it is also very important for the high schools to keep the number of created
classes at a minimum.

A typically weekly schedule for a Danish high school consists of �ve days, each day divided
into a given number of time slots where the teaching is performed. Each time slot then consists of
a number of lectures and a student can of course only attend one course in each time slot. There
exist two types of time slots in the Danish high schools. Time slots for the mandatory courses
and time slots for the elective courses. This is due to that the mandatory courses are often taught
in the common classes. I.e. a student has almost all his mandatory courses with the same fellow
students. The elective courses are however mixed between these common classes, and hence it is
more bene�cial for the administration to have the elective course classes in some separate time
slots. Figure 1 is an example of a typically weekly schedule containing �ve di�erent time slots for
elective courses.

Monday Tuesday Wednesday Thursday Friday

8:15
9:45

10:00
11:30

12:00
13:30

13:45
15:15

Lunch break

Time1

Time2

Time3

Time4 Time5

Fig. 1: An example of a weekly schedule with four time slots each day. Five time slots (gray colored)
are reserved for the elective courses whereas the mandatory courses are placed in remaining time
slots (white colored)

The time slots for elective courses are often chosen to be placed in the beginning or in the end of
a day. This is to minimize the possibility of creating idle slots for students when creating the entire
timetable. Due to the dividing of the time slots into elective and mandatory, the elective course
planning can be seen as an independent part of the weekly schedule and therefore the mandatory
courses and their respective time slots are neglected in the remainder of this article. The problem
of assigning the mandatory courses is known as the classical High School Timetabling. (See e.g.
Sørensen et al. [2012] and Post et al. [2012])

Ideally all the students should be assigned their �rst priority elective course requests. If a
student is not granted his �rst priority requests, it would be preferable if his second priority
request is granted. However it should be a noted that the outcome of the ECSS is an algorithm
used in decision support software. If a student is not granted a �rst priority request, the high school
administration wants to have a dialog with the given student before assigning him to his second
priority. Hence we do only consider the �rst priority requests of the students.
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3 Related work

As mentioned the ECSS serves as a pre-processing planning problem for the High School Time-
tabling (HSTT). The last couple of years more research has been done within HSTT and the third
International Timetabling Competition (ITC2011) treats the HSTT (see e.g. Post et al. [2012] and
Sørensen et al. [2012]). The ECSS is however not a very well researched area. Compared to the
problem of ITC2011, the ECSS is a matter of which students should be in which elective course
class, whereas the high school timetabling is concerned with the construction of a timetable accord-
ing to some prede�ned course classes. Many articles have been made within education timetabling
and within this research area ECSS is most related to Student Sectioning (Carter and Laporte
[1998], Schaerf [1999], Burke and Petrovic [2002], Pillay [2010]).

The literature on Student Sectioning is however mostly concerned the universities. E.g. Erben
and Keppler [1996], Rudova and Murray [2003], Müller and Murray [2010]. In Müller and Murray
[2010] University Course Timetabling and Student Sectioning are combined and is solved using
Iterative Forward Search algorithm. In de Haan et al. [2007] optional subject for the students is
used when constructing the high school timetabling in the Netherlands, and cluster schemes are
created to maintain the students' optional courses. The optional subjects are similar to the elective
courses of this paper. At the high schools in Denmark it is not an option to have the planning of
elective classes incorporated in the general timetabling. The high school, wants to separate planning
tools, they use them as decision support and make changes during each part of the process.

The ECSS for the Danish high schools was �rst described in Kristiansen et al. [2011]. The article
gives a good overview of the problem, and Dantzig-Wolfe decomposition and explicit constraint
branching is used for solving the problem. The approach however was only created to clarify the
performance of an earlier solution approach used in the software Lectio, and was hence never
released and the model misses some of the restriction which is incorporated in this article. It did
however prove that the previous solution method for the ECSS was ine�cient and that it lacked
some restrictions including the fairness distribution which is described in the following section.

4 Integer programming model

In the following the ECSS is formulated as a MIP model which aims at maximizing the number of
granted elective course requests while minimizing the violation of soft constraints and respecting
the hard constraints. For the ECSS the high schools have a set of students S, a set of o�ered
courses E , a set of classes C and a set of time slots T . The parameter Dc,e ∈ {0, 1} denotes whether
course class c is teaching course e and parameter Re,s ∈ {0, 1} indicates whether student s has
requested course e or not. The decision whether student s is assigned course class c in time slot t is
de�ned by the binary variable xs,c,t ∈ {0, 1}, whereas the binary variable yc,t ∈ {0, 1} takes value
1 if course class c is assigned time slot t, zero otherwise. In the following the MIP formulation is
divided into small sections.

4.1 Availabilities

It is not allowed to assign a student to a class of a course he has not requested, and it is obviously
not possible to assign a student to more than one course class in each time slot. Neither is it
possible to assign a course class to more than one time slot. The following constraints make sure
that these restrictions are maintained.∑

c,t

Dc,e · xs,c,t ≤ Re,s ∀ e, s (1)

∑
c

xs,c,t ≤ 1 ∀ t, s (2)∑
t

yc,t ≤ 1 ∀ c (3)



4 Simon Kristiansen, Thomas R. Stidsen

As the elective courses can have duration of more than one year some of the elective courses may
be a continuation from the previous school year. For these course classes the students are locked.
I.e. the students which were assigned the course class the previous year, must be assigned the class
this year also. Let Ac,s ∈ {0, 1} take value 1 if student s is locked to course class c, zero otherwise.
The following constraints are then imposed.

xs,c,t ≤ yc,t ∀ c, t, s, Ac,s = 0 (4)

xs,c,t = yc,t ∀ c, t, s, Ac,s = 1 (5)

The basic objectives for the ECSS are to maximize the number of granted request and to minimize
the number of created elective course classes.∑

c,t,s

αc,s · xs,c,t −
∑
c,t

βc · yc,t (6)

4.2 Resource limitations

There exists some resource limitation when solving the ECSS. Firstly, it is determined by the
Danish educational legislation, that the class size in high schools may not exceed 28 students.
This is to make sure that the students have the best possibly environment. However some course
classes might have an even more restricted upper limit. For classes where the students are locked,
the upper class size is equal to the number of locked students, such that no new students can be
assigned to the given class. Let the parameter Uc ∈ N denote the upper class size for course class
c. ∑

s

xs,c,t ≤ Uc ∀ c, t (7)

Furthermore, as the price for creating an elective course class is approximately e 27.000 p.a., a
high school often has an upper limit on how many classes they can a�ord to create each year. Let
P ∈ N be the maximum number of classes which can be created in total.∑

c,t

yc,t ≤ P (8)

The limitation of classes which can be created of a given course is given by the set of classes C and
the parameter Dc,e.

There also exists some resource limitation on the number of course classes with the same subject
which can be taught in the same time slot. Let F be the set of course subjects of a high school.
Each course is teaching a course subjects, given by Kc,f ∈ {0, 1}. Due to the limited resources on
e.g. rooms and equipment, it is often not possible to assign all class of a course to the same given
time slot. E.g. if a high schools only have x physic class rooms, it is not possible to assign more
than x physic classes to a given time slot. Let Bf,t ∈ N be the maximum number course classes of
subject f which can be taught in time slot t. This imposes the following constraints∑

c

Kc,f · yc,t ≤ Bf,t ∀ f, t, Bf,t > 0 (9)

4.3 Class positions

Some course classes cannot be assigned to the same time slot. E.g. two courses with the same
preassigned teacher are not allowed to share the same time slot. Let the parameter Jc,c′ ∈ {0, 1}
take value 1 if the course classes c and c' cannot be in the same time slot, zero otherwise. The
constraints are given by

yc,t + yc′,t ≤ 1 ∀ c, c′, t, Jc,c′ = 1 (10)

On the contrary some courses are forced to be placed in the same time slot. Let Le,e′ ∈ {0, 1}
denote whether classes of course e should be assigned the same time as classes of course e'. As not
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all course classes are being assigned to a time slot, a new variable is introduced such that only the
assigned classes are considered for this constraint. Let the binary variable he,t ∈ {0, 1}, take value
1 if course e is placed in time slot t. We then get the following constraints.

yc,t ≤ Dc,e · he,t ∀ c, e, t (11)

he,t = he,t′ ∀ e, e′, t, Le,e′ = 1 (12)∑
e

he,t ≤ 1 ∀, e, e′, t, Le,e′ = 1 (13)

4.4 Common classes

When a student is enrolled at a high school he is assigned to a common class. Many of the manda-
tory courses in the Danish high schools are taught in classes exactly equal to a common class. It
has the advantage that the students in a common class are quite familiar with each other, and
it makes it easier to collaborate between mandatory classes of di�erent subject, as the students
attending the two classes are the same. Hence it would also be bene�cial to have as few common
classes representing in each elective course class. As the elective courses can be selected by all
the students it is most unlikely that only students from one common class have requested a given
elective course. Figure 2 gives an example of the handling of common classes.

Physics A (55 requests)
15 from 3A, 15 from 3B
11 from 3C, 12 from 3D

PhyA1(28)
11 from 3A
5 from 3B
8 from 3C
4 from 3D

PhyA2(27)
4 from 3A
10 from 3B
5 from 3C
8 from 3D

(a) Two classes with four common classes
represented in each class. All possible
common classes are represented in both
class

Physics A (55 requests)
15 from 3A, 15 from 3B
11 from 3C, 12 from 3D

PhyA1(28)
15 from 3A
12 from 3D

PhyA2(27)
15 from 3B
11 from 3C

(b) Two classes with only two common
classes represented in each. Neither of the
common classes are represented in more
than one class

Fig. 2: Two examples of representing common classes in classes of same course. 55 students from
four di�erent common classes have requested Physics A as elective course. With an upper class
size of 28, two classes are needed to ful�ll all requests. Figure 2(a) is the worst possible scenario
where all possible common classes is represented in each class, whereas 2(b) is the best solution
where only two common classes is represented in each class. I.e. no common class is represented
more than once.

We want to minimize the number of common classes represented in each created elective course
class. Let Q be the set of common classes for a high school, and let Is,q ∈ {0, 1} denotes whether
student s is part of common class q or not. The decision variable zc,q ∈ {0, 1} indicates whether
common class q is represented in course class c, or not. There is no need to minimize the number of
common classes represented in classes where the students are locked, as these cannot be improved.
Let parameter Ac ∈ {0, 1} denotes whether course class c is locked or not. This gives the following
constraints. ∑

t

Is,q · xs,c,t ≤ zc,q ∀ c, q, s, Ac = 0 (14)
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with a contribution to the objective given by

−γ ·
∑
c,q

zc,q (15)

4.5 Even distribution

When having two classes of same course, it is then highly appreciated to have approximately the
same amount of students attending both classes. This is due to fairness of both the students and
the teachers. See Figure 3 for an illustration of two di�erent distributions of students in two classes
of same course.

Physics A
(40 requests)

PhyA1
(28)

PhyA2
(12)

(a) The worst distribution

Physics A
(40 requests)

PhyA1
(20)

PhyA2
(20)

(b) The best distribution

Fig. 3: Two examples of distribution of students in two classes of same course. 40 students have
requested Physics A as elective course and there is an upper class size of 28. I.e. two classes are
needed to ful�ll all requests. Figure 3(a) is the worst possible scenario on distribution the students
into the classes, whereas 3(b) is the best

We want to minimize the di�erence between the numbers of students in classes of same course.
Only unlocked assigned classes are considered. Let variable wc,c′ ∈ [0, 1] be the ratio of the di�erence
between c and c', and let gc,c′ ∈ [0, 1] be a slack variable helping with determination of the di�erence
ratio. Let ρ(i) denote the ordinal number of i. The following constraints are imposed

∑
t,s

xs,c,t −
∑
t,s

xs,c′,t ≤ gc,c′ · Uc ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′) (16)∑

t,s

xs,c′,t −
∑
t,s

xs,c,t ≤ gc,c′ · Uc ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′) (17)∑

t

(yc,t + yc′,t)− 2 + gc,c′ ≤ wc,c′ ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′) (18)

(19)

The contribution to the objective is then given by

−δ ·
∑
c,c′

Uc · wc,c′ (20)

An entire model of the ECSS is given in (21)

4.6 IP model for ECSS

max
∑
c,t,s

αc,s · xs,c,t −
∑
c,t

βc · yc,t − γ ·
∑
c,q

zc,q − δ ·
∑
c,c′

Uc · wc,c′ (21)
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s.t.
∑
c

xs,c,t ≤ 1 ∀ t, s∑
c,t

Dc,e · xs,c,t ≤ Re,s ∀ e, s∑
t

yc,t ≤ 1 ∀ c∑
s

xs,c,t ≤ Uc ∀ c, t∑
c,t

yc,t ≤ P

xs,c,t ≤ yc,t ∀ c, t, s, Ac,s = 0
xs,c,t = yc,t ∀ c, t, s, Ac,s = 1∑
c

Kc,f · yc,t ≤ Bf,t ∀ f, t, Bf,t > 0

yc,t + yc′,t ≤ 1 ∀ c, c′, t, Jc,c′ = 1
yc,t ≤ Dc,e · he,t ∀ c, e, t
he,t = he,t′ ∀ e, e′, t, Le,e′ = 1∑
e

he,t ≤ 1 ∀, e, e′, t, Le,e′ = 1∑
t

Is,q · xs,c,t ≤ zc,q ∀ c, q, s, Ac = 0∑
t,s

xs,c,t −
∑
t,s

xs,c′,t ≤ gc,c′ · Uc ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′)∑

t,s

xs,c′,t −
∑
t,s

xs,c,t ≤ gc,c′ · Uc ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′)∑

t

(yc,t + yc′,t)− 2 + gc,c′ ≤ wc,c′ ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′)

xs,c,t ∈ {0, 1}
yc,t ∈ {0, 1}
zc,q ∈ {0, 1}
wc,c′ ∈ [0, 1]
gc,c′ ∈ [0, 1]
he,t ∈ {0, 1}

4.7 Complexity

In the following the complexity of ECSS is proven to be NP-hard. This is done by showing that
a well-known NP-hard problem, the Max K-Cut (Karp [1972]), is polynomial reducible to ECSS
([Wolsey, 1998, chap. 6]). The Max K-Cut problem can be formulated as follows:

Given a multigraph G = (V,E), we wish to divide the vertices of the graph into K disjoint cuts,
such that the total number of edges going from one cut to another is maximized. Let v1 . . . v|K| be
the vertices, and let k1 . . . k|K| denote the cuts. The binary variable xk,n takes the value 1 if vertex
v is in cut k and zero otherwise. The Max K-cut is then given by

max
∑

(v,v′)∈E

∑
k,k′:k′>k

xk,v · xk′,v′ (22)

s.t.
∑
k

xk,v = 1 ∀ v (23)

For the ECSS we make the assumption that not more than Uc students have requested a given
course. I.e. only one class is created for each course e. For each vertex v ∈ V in graph G, create a
course e. If vertex v = e and vertex v′ = e′ is adjacent, we create a student s with a request for
both courses of v and v′, i.e. Rs,e = Rs,e′ = 1. We want to �nd an optimal solution with K time
slot. Each cut represents a time slot.
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To answer whether G is solvable using K cuts, solve the ECSS instance and check whether all
meeting requests are assigned a course using K time slots, i.e.

∑
s,c,t xs,c,t = |R|. I.e. a Max K-cut

can be found by solving the corresponding ECSS for K time slots as given by reduction, ECSS is
therefore NP-hard.

5 Solution methods

It has been chosen to use Adaptive Large Neighborhood Search (ALNS) for the ECSS. ALNS
is a hyperheuristic �rst described by Pisinger and Ropke [2005] and is an extension of Large
Neighborhood Search (LNS) [Shaw, 1998]. Where most neighborhood search algorithms explicitly
de�ne the neighborhood, LNS de�nes the neighborhood implicitly by a removal and an insertion
method. ALNS consists of several removal and insertion heuristics. The ALNS framework has the
advantage of having many di�erent neighborhoods, such that the algorithm can explore a large
part of the solution space. A pseudo code for the ALNS algorithm as it is presented in Pisinger
and Ropke [2010] is shown in Algorithm 1.

Algorithm 1: Adaptive Large Neighborhood Search

Input: a feasible solution xs,c,t
solution xbest = x; π = (1, . . . , 1)1

repeat2

select a removal d ∈ Ω− and an insertion heuristic r ∈ Ω+ using π3

x′ = r(d(x))4

if c(x′) > c(xbest) then5

xbest = x′6

if accept(x′, x) then7

x = x′8

update π9

until stop-criterion met10

return xbest11

The set of removal and insertion heuristics are denoted Ω− and Ω+, respectively. The variable
π ∈ R which stores the weight of each removal and insertion heuristic is introduces in line 1. Line 5
checks whether the new solution is better than the best known solution. c(x) denotes the objective
value of solution x.

In line 7 the solution is evaluated using an accept function. Finally, in line 9 the weights are
adjusted based on the performance of each removal and insertion heuristic.

ALNS has been used with success on various problems, especially in Vehicle Routing Problems;
see e.g. Ropke and Pisinger [2006], Laporte et al. [2010], Azi et al. [2010], Ribeiro and Laporte
[2012], Lei et al. [2011]. Other problems such as Lot-Sizing (Muller and Spoorendonk [2010]),
Resource Constraint Project Scheduling (Muller [2009]), Home Health Care Problem (Steeg and
Schröder [2008]) and Consultation Scheduling Problem (Kristiansen et al. [2013]) have also applied
ALNS with success.

5.1 Algorithm setup

In the following we describe the main elements of the ALNS used for the ECSS. The user-controlled
parameters for the ALNS are tuned in Section 6.

Adaptive search strategy: The choice of the removal and insertion heuristic is governed by a scor-
ing scheme where each heuristic is assigned a weight which is updated due to its past behavior.
The search is divided into segments of Nit consecutive iterations. Let πih be the measure of the
performance of heuristic h in segment i. In the �rst segment all heuristics are assigned the same

weight, πi0h = 1. The probability of choosing heuristic h in segment i is given by
πi
h′∑
h π

i
h

. After Nit
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iterations the weights are adjusted according to the score obtained during the segment

πi+1
h = η · π̄

i
h

aih
+ (1− η)πih (24)

where η ∈ [0, 1] is the reaction factor and π̄ih is the number of times heuristic h has been used in
segment i. π̄ih is the observed weight of the heuristic h in segment i and this is updated in each
iteration the heuristic is used. Let x be the current solution and x′ be the new found solution. The
following scaling parameter for updating πih is introduced

π̄ih = π̄ih + 5min(σ·gap,1) (25)

where gap = c(x′)−c(x)
c(x) and σ ∈ R+ is a parameter which needs tuning.

Acceptance criteria: The accept criteria used in this paper is borrowed from Ropke and Pisinger
[2006] and is bases on Simulated Annealing (SA). A solution, x is always accepted if c(x) > c(xbest).
However if c(x) ≤ c(xbest), x is accepted with the probability

exp

(
−c(x

best)− c(x)

T

)
(26)

where the temperature T is updated by T = dSA · T . Having dSA ∈]0, 1[ as the cooling rate. The
initial temperature is selected using a temperature control parameter, wSA ∈]0, 1[, such that the
solution is accepted with probability of 0.5 if the solution is wSA percent worse than the initial
solution x0. Using an acceptance strategy where worse solutions can be accepted with a small
probability makes it easier to expand and change neighborhoods.

Stopping criteria: The selection of removal and insertion heuristics are repeated until one of the
following stopping criteria is met: (1) the running time exceed the maximum running time of 60
seconds; or (2) the number of iterations without any improvements in the objectives reaches 1,000.

5.2 Removal and insertion heuristics

In this section the removal and the insertion heuristics used for the ECSS are described. Let m ∈ N
be the number of classes which should be removed from a solution x and let C̄ ⊆ C be the set of
unassigned classes.

5.2.1 Random removal heuristic

The simple removal heuristic removes m elective course classes with students from the solution.
The classes are selected at random. This heuristic tends not to give better solutions, but it helps
diversify the search. Furthermore a random removal which only removes classes which aren't locked.
I.e. it does not remove classes which are a continuation from previous years.

5.2.2 Shaw removal heuristic

The general idea of Shaw removal heuristic is to remove parts of the solution which are somewhat
related, as it is expected that they then are reasonably easy to reshu�e, and then creating a
new, perhaps better solution (Shaw [1997],Ropke and Pisinger [2006]). Let the relatedness measure
between meeting i and j be de�ned by M(i; j) ∈ [0; 1], where a high level corresponds to much
relatedness between i and j. Algorithm 2 present a pseudo code for the Shaw Removal heuristic
for the ECSS.
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Algorithm 2: Shaw removal

Input: A feasible solution xs,c,t, m ∈ N, pshaw ∈ R+

class: c = a randomly selected class with students from xs,c,t1

set of classes : D = {c}2

while |D| < m do3

ĉ = randomly selected class from D4

L = all classes from xs,c,t not in D, sorted by similarity to ĉ5

choose a random number bpshaw ∈ [0, 1[6

l = element number bpshaw · |L|7

D = D ∪ L[l]8

remove the classes with students in D from xs,c,t9

The Shaw removal heuristic of this paper is based on the how many students which have
requested both course e of c and e' of c'. Let Se indicates the set of students which has requested
course e. The relatedness measure is then the percentage of students which has requested both
courses of the two classes.

M(c, c′) =
|Se ∩ Se′ |

min(|Se|, |Se′ |)
where Dc,e = Dc′,e′ = 1 (27)

A high value of M means that the courses are much related.
Two Shaw heuristics for the ECSS is implemented. One sorted with increasing similarity, (i.e.

removing those most related), and one with decreasing similarity (i.e. of those related, remove
those less related).

5.2.3 Basic greedy insertion heuristic

A basic greedy algorithm is implemented as one of the insertion heuristic for the ALNS. It simple
assigns a class with students to a time slot in order of contribution to the objective. The process
is repeated until no more classes with an improvement of the solution can be assigned.

The initial solution for the ALNS is constructed by means of a Basic Greedy Algorithm.

5.2.4 Regret-k insertion heuristic

The regret heuristic is a greedy algorithm with a look-ahead function incorporated. I.e. it tries to
improve the myopic behavior of the greedy heuristic. As the name indicates, the heuristic aims at
inserting the course class which will be regretted most if not inserted at the given iteration. For
each of the unassigned course classes c̄ ∈ C̄, the regret-2 heuristic calculates a regret value equal
to the di�erence in pro�t between two solutions in which c̄ is assigned to its best time slot and its
second best time slot. The unassigned class with the highest regret value, is the class which will be
regretted most if not inserted in its best time slot, hence this is inserted. Let okc̄ denote the regret
value by inserting class c into the kth best position. The regret value of c̄, rc̄, is given by

rc̄ =

k∑
h2

(o1
c̄ − okc̄ ) (28)

In each iteration the heuristic chooses to insert class c̄ according to maxc̄∈C̄{rc̄} For the ECSS, it
has been chosen to use at Regret-2, -3 and -4 as insertion methods.

5.2.5 Coupled removal and insertion heuristic

In each iteration the ALNS heuristic chooses a removal and an insertion heuristic based on how well
the pair has been performing previously. However some of the removal and the insertion heuristics
might not be a good matching due to the structure of the given heuristics. By pairing some of the
heuristic, we simple declare which given insertion heuristic a removal heuristic should be paired
with. For the ECSS we have created these coupled pairs, all only concerning students. I.e. only
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removing and inserting students, not classes. The other previous mentioned heuristics is concerning
assigning/unassigning classes with students.

Three coupled pairs have been created. Let Ê be the set of courses where more than one class
are created for the given course.

� Remove all students from classes in Ê and insert them using a basic greedy algorithm
� Remove all students from classes in Ê and insert them greedily based on common classes.
� Remove all students from classes in Ê located in the same given time slot t̂ and insert them
greedily.

5.3 Using exact methods within ALNS

The performance of the ALNS algorithm used of ECSS is evaluated by comparing it with solution
found using a state-of-the-art MIP solver (see Section 7). It can also be an advantage to include
some exact methods in the ALNS algorithm using a MIP solver. Heuristics which embedded exact
solution methods are known as matheuristics.

In this paper we will try to embed exact solution methods within the ALNS by introducing some
exact repair methods. We have only focused on the students as we did for the coupled constraints.
I.e. the method removes all assigned students or all students assigned to classes in Ê. All the classes
are �xed. If some students are not removed, they are locked to the respective classes as well. Then
by using a MIP solver we try to optimize the problem.

The performance of the ALNS with the exact method is evaluated in Section 7.3.

6 Parameter tuning

For tuning the free parameters of the heuristic, the F-Race algorithm has been chosen [Birattari,
2005]. A race algorithm sequentially process data instances using a set of all possible parameter
con�gurations. After each iteration, the parameter con�gurations which are proven to be statisti-
cally inferior are eliminated from the set. In F-Race the Friedman Two-way Analysis of Variance by
Ranks is used for determining whether any of the parameter con�gurations are statistically inferior.
F-Race has previously been successfully used for parameter tuning for meta-heuristics. (see. e.g.
Chiarandini et al. [2006], Pellegrini and Birattari [2007], Kristiansen et al. [2013]). The drawbacks
of F-Race are that all possible parameter con�gurations are considered. I.e. if many parameters
with a wide range of values exist, the F-Race becomes ine�cient and impractical. In Balaprakash
et al. [2007] Iterative F-Race (I/F-Race) is introduced. I/F-Race uses a probabilistic model on
the set of parameter con�gurations, such that only a subset of the parameter con�gurations is
generated in each iteration.

In this paper a manually I/F-Race is used for tuning. I.e. after each iteration the new con�gu-
rations are manually created based on the results from the previous iterations.

Table 1 lists the best found parameter con�gurations. Data instances from 50 di�erent Danish
high schools are used. For the SA based acceptance criteria two parameters are tuned. The tem-
perature control, wSA, and the decay parameter, dSA. Nit de�nes the number of iterations between
reset. For the ALNS scoring scheme, the tuned parameters are the reaction factor η and the scale
parameter σ. ξstart and ξend are the destroy percentage in the beginning and the end of the running
time, respectively. Lastly pshaw is the random indicator in the Shaw removal heuristic.

Table 1: Final values of tuned parameters, found by the F-Race algorithm with con�dence level
α = 0.05.

Parameter wSA dSA Nit η σ ξstart ξend pshaw

Value 0.01 0.99 50 0.30 5000 0.30 0.0033 20
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7 Performance

The purpose of this section is to evaluate the performance of the ALNS algorithm by comparing it
with an upper bound found solving the IP model in the state-of-art MIP solver Gurobi 5.01. Both
the ALNS and the Gurobi implementation was coded in C# 4.0 and all tests are performed using
nUnit 2.6 on a machine with an Intel i7-930@2.8GHz CPU and 12GB of RAM under the Windows
operating system. No parallelization has been implemented for improving the performance.

The ALNS algorithm for the ECSS presented in this article was launched for use in Lectio in
mid-January 2012 and is as mentioned available for approximately 200 di�erent high schools in
Denmark. Up to this date over 500 data sets shared among the high schools, are available in the
Lectio database.

7.1 De�ning weights

The objectives of the problem are weighted in respect to each other, and the selection of the weights
in the implementation in Lectio and for this article has been greatly assisted by MaCom A/S.

The pro�t of assigning a student to a course is depending on the educational level of the course.
Let αc,s ∈ N denote the pro�t of assigning student s to class c. Then αc,s is given by

αc,s =


95 If the course level of c is at a basic level

100 If the course level of c is at a intermediate level

105 If the course level of c is at a advanced level

150 IfAc,s = 1

(29)

Notice that if the student is locked to the class the pro�t is quite high. This is to give preferential
treatments to the classes which are a continuation from the previous year.

The cost of creating an elective course class is depending on the minimum number of classes
which is necessary to ful�ll all the request for a given course. Let MINe ∈ Z+ be the minimum
theoretical number of classes needed to ful�ll all requests for course e. The cost of creating elective
course classes is then given by the following

βc =

{
150 ρ(c) > Mine where Dc,e = 1

80 otherwise
(30)

The cost of each represented common classes in an elective course class is given by

γ = 10 (31)

For each student which the two classes di�er from each other is penalized by

δ = 1 (32)

7.2 Performance of ALNS compared with Gurobi

As some of the data sets in the database might be duplicates, it has been chosen to evaluate the
ALNS algorithm on 80 unique data sets. The data sets are selected randomly, and should cover
all possible kinds of setups for the ECSS. The runtime is set to 60 seconds, which is the running
time selected upon conversations between MaCom A/S and the users of Lectio. In order to reduce
the eventual in�uence of stochastic behavior, 10 runs on each instance are performed. The Gurobi
solver is run for 1 hour, as we want to have good upper bounds.

The percentage gap between the solution found using ALNS and the upper bound is calculated
by UB−x̄ALNS

UB .
In Table 2 it is seen that the ALNS in average �nds solutions less than 1% from optimum and

some of the big instances the ALNS outperforms the solutions found using Gurobi. Moreover some
of the instances are solved to optimality using ALNS. This is satisfying results.
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Table 2: ALNS for the ECSS on 80 datasets compared with an upper bound using Gurobi 5.0.1.
For each dataset is listed the number of students "|S|", number of requests "|R|� and number of
courses "|E|�, which indicates the size of the given instance. For Gurobi is listed the �nal objective
value, "x�, the best bound "UB� and the reported gap between these. For the ALNS, the mean
performance of the algorithm over 10 runs, "x̄� and column "σ� is the standard deviation. Finally
column "Gap(%)� is the percentage di�erence between ALNS and Gurobi.

Gurobi 5.01 ALNS

|S| |R| |E| x UB Gap[%] x̄ σ Gap[%]

Aabenraa 20 20 3 1630.0 1630.0 0.0 1630.0 0.0 0.0
Aalborg 212 539 16 79010.0 79010.0 0.0 79010.0 0.0 0.0
Aarhus1 341 471 34 67745.0 67745.0 0.0 67745.0 0.0 0.0
Aarhus2 338 481 28 59134.0 59451.0 0.5 59099.6 4.8 0.6
Aars1 219 365 23 39315.0 39315.0 0.0 39315.0 0.0 0.0
Aars2 220 585 29 65615.0 65615.0 0.0 65615.0 0.0 0.0
Alssund 183 338 17 32827.0 33003.0 0.5 32824.6 3.6 0.5
Bagsvaerd1 49 75 10 10350.0 10350.0 0.0 10350.0 0.0 0.0
Bagsvaerd2 110 152 21 20210.0 20210.0 0.0 20210.0 0.0 0.0
Broenderslev1 312 515 22 49458.0 49943.0 1.0 49292.6 158.6 1.3
Broenderslev2 312 514 22 49357.0 49835.0 1.0 49089.9 149.1 1.5
CPHWEST1 249 426 32 48405.0 48498.0 0.2 48405.0 0.0 0.2
CPHWEST2 251 480 33 56041.0 56057.0 0.0 56041.0 0.0 0.0
DetFrie1 49 49 3 7110.0 7110.0 0.0 7110.0 0.0 0.0
DetFrie2 112 112 3 10839.0 10839.0 0.0 10825.0 0.0 0.1
Dronninglund1 299 522 27 75495.0 75495.0 0.0 75495.0 0.0 0.0
Dronninglund3 297 519 25 75380.0 75380.0 0.0 75380.0 0.0 0.0
Esbjerg 595 789 34 90050.0 90713.0 0.7 90006.6 27.7 0.8
EUCNORD 335 735 45 95080.0 95089.0 0.0 94993.4 78.3 0.1
Falkoner1 421 1080 49 131264.0 131728.0 0.4 130877.7 66.9 0.7
Falkoner3 649 1666 85 241015.0 241015.0 0.0 240641.0 788.5 0.2
Falkoner4 537 1376 57 177440.0 177674.0 0.1 177368.2 25.3 0.2
Falkoner5 431 617 42 64789.0 65210.0 0.7 64763.2 5.3 0.7
Falkoner6 297 456 34 41395.0 41828.0 1.1 41373.4 4.2 1.1
Falkoner7 742 1656 76 215578.0 216076.0 0.2 215446.0 53.0 0.3
Falkoner8 446 1266 56 160169.0 160362.0 0.1 160083.9 63.3 0.2
Falkoner10 335 520 34 50782.0 51428.0 1.3 50756.8 13.3 1.3
Fjerritslev 456 822 71 113706.0 113716.0 0.0 113701.2 2.5 0.0
Frederikssund1 294 475 25 53300.0 53300.0 0.0 53300.0 0.0 0.0
Frederikssund2 193 351 18 51130.0 51130.0 0.0 51130.0 0.0 0.0
Greve1 306 922 31 102351.0 103436.0 1.1 102347.8 89.8 1.1
Greve2 306 892 31 99500.0 100689.0 1.2 98980.8 246.5 1.7
Gribskov1 394 648 33 71895.0 72000.0 0.2 71325.6 129.7 1.0
Gribskov3 220 474 24 46632.0 46747.0 0.3 45968.0 296.2 1.7
GUAasiaat 71 82 12 11820.0 11820.0 0.0 11820.0 0.0 0.0
Haderslev1 447 1034 37 112065.0 113494.0 1.3 110729.1 1160.8 2.5
Haderslev2 470 1063 64 150480.0 150490.0 0.0 150480.0 0.0 0.0
Hasseris1 400 508 21 54019.0 54074.0 0.1 53846.0 92.2 0.4
Hasseris2 400 508 21 50859.0 51035.0 0.4 50384.8 92.8 1.3
HoejeTaastrup1 241 416 19 41010.0 41014.0 0.0 40909.4 80.9 0.3
HoejeTaastrup3 233 380 17 55330.0 55330.0 0.0 55330.0 0.0 0.0
Holstebro1 93 202 9 29420.0 29420.0 0.0 29420.0 0.0 0.0
Holstebro2 626 912 35 111064.0 111577.0 0.5 111021.0 6.7 0.5
Holstebro3 93 202 9 29420.0 29420.0 0.0 29420.0 0.0 0.0
Horsens 380 662 33 96660.0 96660.0 0.0 96660.0 0.0 0.0
Koebenhavns 289 816 31 100920.0 100930.0 0.0 100842.2 39.9 0.1
KoebenhavnsTek 166 169 7 24790.0 24790.0 0.0 24790.0 0.0 0.0
Koege 369 546 31 79360.0 79360.0 0.0 79360.0 0.0 0.0
Kongsholm1 383 760 46 109570.0 109570.0 0.0 107661.0 1655.6 1.8
Kongsholm2 365 974 40 126975.0 128862.0 1.5 126381.3 717.6 2.0
Langkaer 503 795 51 113540.0 113540.0 0.0 113540.0 0.0 0.0
Mariagerfjord1 365 521 24 75670.0 75670.0 0.0 75670.0 0.0 0.0
Mariagerfjord2 382 611 29 88170.0 88170.0 0.0 88170.0 0.0 0.0
Middelfart 390 1332 61 170243.0 170558.0 0.2 169663.3 232.0 0.5
Munkensdam 482 6456 231 349400.0 349400.0 0.0 349400.0 0.0 0.0
Noerresundby 563 1456 55 180916.0 181614.0 0.4 180807.5 50.1 0.5
NZahles 189 271 20 31955.0 31958.0 0.0 31955.0 0.0 0.0
Oeregaard1 239 489 13 71510.0 71510.0 0.0 71510.0 0.0 0.0
Oeregaard2 547 826 27 96376.0 97212.0 0.9 96425.0 11.6 0.8
Risskov1 539 784 38 91856.0 92529.0 0.7 91941.6 2.8 0.6
Risskov2 258 480 20 48993.0 49733.0 1.5 49038.8 3.8 1.4
Roedovre 350 868 34 100907.0 101414.0 0.5 100871.6 13.4 0.5
RoskildeKatedral 383 1145 40 119565.0 128359.0 7.4 126507.0 185.8 1.5
RoskildeTek1 358 529 21 77670.0 77670.0 0.0 77670.0 0.0 0.0
RoskildeTek2 358 688 30 91518.0 91520.0 0.0 91500.0 0.0 0.0
Rybners1 238 313 15 32454.0 32457.0 0.0 32336.6 130.0 0.4
Rybners2 352 443 11 40462.0 41245.0 1.9 40423.2 5.1 2.0
RybnersGym 192 384 20 55600.0 55600.0 0.0 55600.0 0.0 0.0
Rysensteen 285 570 19 56198.0 56429.0 0.4 55803.4 141.5 1.1
Skanderborg 245 439 18 41782.0 42246.0 1.1 41787.6 10.3 1.1

Continued on next page
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Table 2 � continued from previous page

Gurobi 5.01 ALNS

|S| |R| |E| x UB Gap[%] x̄ σ Gap[%]

Slagelse1 974 1660 54 158025.0 180308.0 14.1 177314.5 129.9 1.7
Slagelse2 751 1345 45 127620.0 150895.0 18.2 148045.5 277.4 1.9
Slagelse3 1272 2221 57 131200.0 234645.0 78.9 229250.5 308.0 2.4
Slagelse6 1261 2289 113 329730.0 329730.0 0.0 329730.0 0.0 0.0
Slagelse7 329 508 23 63830.0 63836.0 0.0 63824.8 6.4 0.0
Struer 534 805 42 103161.0 103170.0 0.0 103140.2 5.4 0.0
Taarnby 298 760 29 110490.0 110490.0 0.0 110490.0 0.0 0.0
Varde2 230 677 30 98680.0 98680.0 0.0 98680.0 0.0 0.0
Vejlefjord 100 226 35 29985.0 29985.0 0.0 29985.0 0.0 0.0
Viby 232 472 18 47438.0 47798.0 0.8 47451.0 1.7 0.7

Average 359.5 756.6 34.4 - - 1.7 - - 0.5
Max 1272.0 6456.0 231.0 - - 79.1 - - 2.3

7.3 Performance using ALNS with exact methods

The exact methods are implemented as a repair method and as a hill climber, and both are tested
using a running time of 2 and 5 seconds. For the hill climber this means that the running time for
the ALNS is shortened by the running time of the hill climber such that the total running time
still is 60 seconds.

The performance of the ALNS with some exact solution methods embedded are shown in Table
3. For the exact methods Gurobi 5.0.1 is used.

Table 3: Average performance using Gurobi and ALNS with di�erent exact solution methods
incorporated. The average is taken over 80 di�erent dataset. The second column is the performance
using Gurobi 5.01 and the third column is ALNS without any exact methods. Column 4 and 5 are
average performance of the ALNS with a exact repair method. And Column 6 and 7 are the average
performance using ALNS with a Hill Climber attached. Both tested with running time of 2 and 5
seconds

w. exact rep. w. exact rep w. exact HC w. exact HC w. exact rep
Gurobi 5.01 ALNS (2 sec) (5 sec) (2 sec) (5 sec) & HC (2 sec)

Average 1.77 0.52 0.61 0.66 0.52 0.50 0.64
Max 78.90 2.50 2.70 4.07 2.72 2.20 3.45

As it is seen all the di�erent ALNS algorithms outperform Gurobi on the average performance.
This is due to the bad performance of Gurobi on the large instances. Furthermore, it is seen that
the pure performs better than many of the ALNS with exact methods. This is mainly due to the
running time and the scoring scheme. The running time has an important in�uence on the solution
results. As the running time for the algorithm is 60 seconds, the running time of the exact repair
methods cannot be too long. If it's more than 2-5 seconds it makes a signi�cant decrease in the
number of iterations we are able to perform. Yet, when having a low running time for the exact
repair method it may results in poor performance of large instances and the solutions might not
ful�ll the acceptance criteria.

However, we can conclude that by embed some exact methods we might be able to improve the
ALNS algorithm. For the ECSS using an exact hill-climber of 5 seconds at the end, improves the
average performance a little.

8 Final remarks and outlook

In this paper the Elective Course Student Sectioning has been described in details and formulated as
an MIP model. ALNS has proven to be a successful method to establish solutions to the problem.
The ALNS algorithm has been implemented in the Cloud-based software system Lectio and is
hence available for more than 200 Danish high schools. For testing the performance of the ALNS
algorithm, 80 real life instances from di�erent high schools have been used. In average ALNS �nds
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solutions within 1% of the optimum and for large instances the algorithm outperforms Gurobi,
which is very satisfying results.

It was shown that for some of the instances it could be an advantage to embed some exact
methods in the ALNS. However more testing is needed with open source MIP solvers, as Gurobi
is not a possibility as all the clients need a license.

Of future research within student sectioning at high schools it could be interesting to expand
the model such that it contains the creation of the common classes.
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