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Abstract

In this paper, we study the role of capacity on the efficiency of a two-tier supply chain

with two suppliers (leaders, first tier) and one retailer (follower, second tier). The suppliers

compete via pricing (Bertrand competition) and, as one would expect in practice, are faced with

production capacity. We consider a model with differentiated substitutable products where the

suppliers are symmetric differing only by their production capacity. We characterize the prices,

production amounts and profits in three cases: 1) the suppliers compete in a decentralized Nash

equilibrium game, 2) the suppliers “cooperate” to optimize the total suppliers’ profit, and 3)

the two tiers of the supply chain are centrally coordinated. We show that in a decentralized

setting, the supplier with a lower capacity may benefit from restricting her capacity even when

additional capacity is available at no cost. We also show that the loss of total profit due to

decentralization cannot exceed 25% of the centralized chain profits. Nevertheless, the loss of

total profit is not a monotonic function of the “degree of asymmetry” of the suppliers’ capacities.

Furthermore, we provide an upper bound on the supplier profit loss at equilibrium (compared

with the cooperation setting) that depends on the “market power” of the suppliers as well as

their market size. We show that there is less supplier profit loss as the asymmetry (in terms

of their capacities) increases between the two suppliers. The worst case arises when the two

suppliers are completely symmetric.

1 Introduction

1.1 Motivation

As many manufacturing systems, the automotive industry is subject to tight capacity constraints

in practice. Quantities produced are limited by existing workforce, facilities, and/or raw material

availability. The production capacity is often reached and effectively limits the possible output
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quantities. For instance, in April 2010, “the upgraded Sonata sedan and Tucson SUV led Hyundai’s

growth, bringing its U.S. plant in Alabama to run nearly at full capacity” (Reuters [39]). In addition,

these two car models can be found at the same “retailers” (i.e., Hyundai car dealerships) and may be

considered as imperfect substitutes as they compete for similar customer segments. In a cooperative

management regime, the car manufacturer Hyundai would make decisions to maximize its overall

profits from selling both car models (“brands”) through a given external retailer; however, under

a decentralized management regime, the two independent brand managers can make quantity and

pricing decisions “for each brand separately to maximize profit of their own brand” ([23]) (this can

be due to meeting individual targets). A centrally coordinated setting where the car manufacturer

has its own internal cardealership and makes all decisions can be used as a performance benchmark.

This brings up the question of the role played by the competition among these two products and

the potential benefit for the parent company Hyundai should they cooperate to make decisions

jointly so as to maximize the car manufacturer’s overall profit.

Our aim is to fill a gap in the literature by studying a model of competition in supply chains

that capture two important features: the existence of production capacity and competition among

suppliers that sell through a common retailer. Production capacity constraints are often ignored

in existing research on supply chain management. Federgruen and Zipkin also mention that the

“assumption of limitless capacity, while a reasonable approximation in some situations, is a poor

one in others”[17]; they note that “finite capacity results in complications, the degree of which

depends on the details of the problem”. Our model features supplier competition. Competition

among manufacturers supplying items to a single retailer has been considered in the literature

[12, 29, 8]. Similarly to Choi [12], in our model, a single retailer interacts with two competing

suppliers. In a review paper on supply chain management in the presence of multiple suppliers,

Minner [31] observes that “the allocation of quantities among several suppliers depends on the

respective capacity constraints”, hence the relative values of the production capacity has an impact

on the nature of the competition among suppliers. Capacity is often the outcome of prior investment

or infrastructure decisions, thus by the time prices and production quantities need to be determined,

the capacity is already fixed. As a result, there is a need to understand the role of capacitated and

competing suppliers in a supply chain.

It is well known that decentralized supply chains, i.e. supply chains where each agent makes

decisions in its own interest, lead to inefficiencies and loss of profits. In a supply chain with one

supplier and one retailer, Spengler [43] observed that when the supplier and the retailer make de-

centralized decisions, the aggregate profits are lower than when a central decision-maker imposes

price and quantity decisions, an effect called double marginalization. This observation has moti-

vated significant research in recent years; see for example, [7]. Of particular interest is measuring

how “inefficient” the decentralized supply chain becomes due to lack of coordination among the

tiers of the supply chain as well as due to competition at each tier. Supply chain efficiency has been
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studied in a variety of settings and with different focuses, including: one supplier and one retailer

[43, 34, 27] two or more suppliers and one retailer [29, 28, 12, 8, 37], one supplier and multiple

retailers [4, 5, 9, 37], multiple suppliers and multiple retailers [1], oligopolistic competition [16],

complementary vs. substitute products [33], bullwhip effect [11]. To the best of our knowledge, the

effect of capacity on supply chain efficiency has not been addressed in the current literature.

Contributions: The overall goal of this research is to provide a better understanding of the

strategic role of capacity and how it affects the overall loss of profit in a supply chain due to lack

of coordination and price competition. In particular, we consider a two-tier supply chain with two

competing suppliers in the first tier and one retailer in the second tier. In our model, the suppliers

are Stackelberg leaders, and the retailer plays the role of a follower. Our model thus involves both

horizontal competition (between the two suppliers) and vertical competition (between the suppliers

and the retailer). We compare the decisions and profits i) when each entity in the supply chain

acts independently (Nash equilibrium), ii) when the suppliers collaborate (cooperative setting) (but

the retailer still acts independently) iii) when the whole supply chain is centrally coordinated (see

Figure 1). Furthermore, we quantify how much is lost in terms of total profit in the supply chain

due to lack of coordination. We ask questions of the following nature: How much do suppliers lose

in terms of profit due to the fact that they are competing and not cooperating? What is the effect

of vertical vs. horizontal competition? How do capacities affect the equilibrium profits? How do

capacities affect the overall supply chain profit loss due to competition and lack of coordination?

Can the maximum profit loss be very large? In order to isolate the capacity effects, we consider

two suppliers A and B who differ only through their production capacities. We refer to the supplier

with lower capacity as supplier B.

We find several novel insights, described next. (1) We show what might at first seem like a

“counter intuitive” result, namely that supplier B’s profit at the equilibrium is not monotonically

increasing with her capacity level, i.e. increasing her capacity level (even at no cost) may yield lower

profits at equilibrium, and hence it may be beneficial for this supplier to lower its capacity. We give

in Section 3 an explanation for this finding. (2) We also show that the total decentralized profit

loss (as compared with the centrally coordinated optimum) can be no greater than 25%. This 25%

bound (which appears often in the literature) is tight when the suppliers are symmetric with a large

enough capacity level and either there is no production cost or the products are perfect substitutes.

The managerial implication of this result is that competing suppliers have the most to gain from

coordination among themselves and the retailer when they are symmetric in terms of their capacity

level, capacity is large, and either production cost is low or products are perfect substitutes. (3)

We find that the total profit loss is in general not monotonic with the degree of asymmetry of the

two capacities. However, we show that (4) the loss of supplier profit decreases with the degree of

asymmetry in the system, and (5) we provide an upper bound on the loss of supplier profit that

depends only on the price sensitivities and the market base (i.e., demand when prices are zero).
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This implies that competing suppliers have the less and less to gain from coordination between

themselves when they become less symmetric in terms of their capacity level. In particular, we find

that the loss of supplier profit is worst when the capacity is sufficiently large and either there is no

production cost or the products are perfect substitutes, which are thus conditions when competing

suppliers have the most to gain from coordination among themselves.

1.2 Relation to the literature

This work is related to the Economics literature on price competition. The books by Vives [46] and

Tirole [44] survey major results on Bertrand competition. A large stream of Economics literature

on price competition in the presence of capacity constraints assumes that firms are competing to

supply a non-differentiated product, and hence the consumers select the firm with the lowest price.

This type of demand allocation implies that products are not differentiated. Kreps and Scheinkman

[25] consider a two-stage duopoly setting where the two agents make quantity pre-commitments,

then compete on prices: demand is allocated in priority to the supplier with a lower price, the other

supplier is allocated any unmet demand, in the limit of their pre-committed quantities. They show

that under certain assumptions this type of Bertrand competition with quantity pre-commitment

yields the same unique equilibrium as a Cournot game. Our paper differs from these models

in a variety of ways: production is introduced, production capacity is exogenous, products are

differentiated, and the demand depends on the prices of both players and does not go in priority

to the lowest-priced firm.

Our paper is also related to the literature on capacitated production management. Van Mieghem

[45] provides a literature review on strategic capacity management and Kapuscinski and Tayur

[22] review the literature on capacitated supply chains. Carr, Duenyas and Lovejoy [10] consider

price competition in a capacitated setting under demand and capacity uncertainty. They show

that improvements in firms’ production processes, such as reduction of production variability, may

actually lead to reduced profits for the firm. Nevertheless, to the best of our knowledge, quantifying

the effect of capacity on the loss of profit in a supply chain with two suppliers and one retailer has

not been studied.

Our work also complements the “price of anarchy” literature first introduced by Papadimitriou

and Koutsoupias [24]. This stream of literature introduced in recent years has been trying to

quantify the inefficiency of equilibria in non-cooperative games, compared with a centrally managed

setting. The book by Roughgarden [40] provides an extensive coverage of results on the price of

anarchy literature. The term price of anarchy refers to the worst-case ratio between the value of

the system objective (in our setting, overall supplier profits or total supply chain profits) under

user optimum (when competing agents act unilaterally in a Nash game, i.e. decentralized setting)

versus that of the system optimum (when a single central decision-maker optimizes the entire

system, or centralized coordination setting). Chen et al. [11] quantify the inefficiency that occurs
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in competitive supply chains due to the variance of orders versus the variance of demand. Perakis

and Roels [37] analyze different supply chain configurations and compute the price of anarchy

between the integrated supply chain and the decentralized supply chain for price-only contracts.

Authors found in a variety of contexts and models that the loss of efficiency due to competition

cannot exceed 25%, including Mart́ınez-de-Albéniz and Simchi-Levi [29] in a procurement game

with option contracts, Farahat and Perakis [16, 15] in multi-product oligopolistic price competition,

Roughgarden and Tardos [41] in traffic routing with congestion, and Johari and Tsitsiklis [21] in a

network resource allocation model with congestion.

This paper contributes to the supply chain efficiency literature. In the model introduced by

Netessine and Zhang [33], the retail price is exogenous and retailers face a stochastic demand that

depends on the order quantities of all retailers. They compare the double marginalization effect in

the case of substitute products as well as complement products. Mart́ınez-de-Albéniz and Simchi-

Levi [29] consider competition between multiple suppliers that offer option contracts to one buyer

facing a stochastic demand. They find that the loss of profit due to competition cannot exceed 25%.

Mart́ınez-de-Albéniz and Roels [28] consider a supply chain with multiple competing suppliers and

a single retailer, where suppliers compete both in price and shelf space. They show that the loss

of efficiency due to suboptimal shelf space allocations is small, but the loss of efficiency due to

suboptimal retail pricing may be as large as 27%. Two papers consider a setting similar to ours.

Choi [12] studies a supply chain with two manufacturers and one retailer under both linear and

nonlinear demand. Nevertheless, our paper differs from this model due to the presence of capacity

constraints, as well as in terms of focus. We are concerned with the loss of profit due to lack of

coordination in the supply chain with and without supplier collusion while Choi [12] investigates the

effect of power structure, cost asymmetry, and product differentiation on the equilibrium. Cachon

and Kök [8] also consider two manufacturers that compete for a single retailer’s business. Their

objective is to understand which kind of contracts (wholesale-price contract, quantity-discount

contract, and two-part tariff) aimed at coordinating the supply chain would be preferable from

the point of view of respectively the retailer and the manufacturers. While we also consider two

suppliers and one retailer, we are not concerned with the impact of different contractual forms but

with the effect of capacity constraints on the loss of profits due to the lack of coordination.

Outline: The paper is structured as follows. In Section 2 we describe three supply chain

settings. In particular, in Subsection 2.2, we consider a two-tier supply chain where the suppliers

act in a decentralized manner, we present the suppliers’ problem formulation in the decentralized

setting and provide the Nash equilibrium solution. In Subsection 2.3, we consider a two-tier supply

chain where in the first tier the two suppliers cooperate, that is, the suppliers’ decisions are made

jointly to optimize their overall profits. In Subsection 2.4, we formulate and solve the centrally

coordinated problem that considers the total profits of the retailer and the two suppliers. In

Section 3, we investigate the effect of capacity asymmetry on the suppliers’ profits at equilibrium.

5



In Section 4, we provide a bound on the total supply chain profit loss due to lack of coordination.

We consider symmetric and asymmetric suppliers in terms of their capacities. In Section 5, we focus

on the supplier profit loss due to competition and give two bounds. We show that it decreases with

the degree of asymmetry (in terms of the capacities of the two suppliers).

2 Three Two-Tier Supply Chain Settings

In this section we lay the foundations (notations, formulations and optimal policies) for the three

supply chain settings we consider in this paper. That is, we formulate and analyze three two-tier

supply chain settings: (a) when suppliers act in a decentralized manner, (b) when suppliers belong

to the same company and hence they are cooperating (horizontal integration), (c) when the two

tiers of the supply chain are centrally coordinated (see Figure 1).
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Figure 1: Three settings considered: (a) Nash equilibrium (decentralized setting) (b) Cooperative
setting (c) Centralized coordination. The circled entities jointly make decisions in each setting.

In what follows we describe the assumptions we impose throughout this paper. Furthermore,

we refer the reader to Appendix A for the notation we will use throughout this paper.

We consider a single-period, single-product problem. The suppliers, acting as leaders and

competing among each other via Nash competition, decide the wholesale price for their respective

product. The two products are gross substitutes. The retailer is the follower: for given wholesale

price decisions of the suppliers, the retailer decides the quantity of each product to order. The

retailer’s prices are set to clear the retail market.

First tier: suppliers. In the decentralized setting two suppliers k = A,B compete by ad-

justing their respective wholesale prices pk, k = A,B in order to maximize their profit. Without

loss of generality, we assume that KB ≤ KA, where Kk denotes supplier k’s capacity level. To

study the effect of capacity, it is sufficient with no loss of generality to fix one capacity level (here,

KA) and vary the other (KB). The products they are selling to the retailer are differentiated and

substitutable. The wholesale price vector p is denoted by (pA, pB). Since the model is single period,

deterministic and the suppliers have no initial inventory, the production quantities are determined

to exactly match the quantity ordered by the retailer, so that there will be no remaining inventory.

Our goal is to focus on the effect of production capacity, therefore, we consider a problem where

the suppliers are completely symmetric in terms of cost and demand parameters; they differ only
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by their production capacities KA and KB . We assume in this paper that the production cost is

quadratic: γu2, where u is the production quantity (equal to the quantity ordered by the retailer).

This type of cost has been used often in the literature on production and inventory control (see

[3, 14, 20, 38, 42, 2] for example). As noted by Ha et al. [19], this cost function means that

production has a diseconomy of scale, that is, increasingly more expensive production capacity.

Empirical evidence supports this assumption in several industries, such as petroleum refining [18]

and auto-making [32].

Second tier: retailer. The relationship between the retail prices and demand of the two

products at the retailer is modeled using a linear inverse demand model:

p̄(D) = ā − B̄D,

where D = (dA, dB) is the vector of quantities of the two products sold by the retailer, p̄(D) =

(p̄A(D), p̄B(D)) is the vector of retail prices, ā = (ᾱ, ᾱ) is a constant vector corresponding to the

prices should the quantities be equal to zero, and B̄ is the matrix of inverse retail price–demand

sensitivities. We assume that B̄ is given by:

B̄ =

(

β̄ β̄′

β̄′ β̄

)

so that

p̄A(D) = ᾱ − β̄dA − β̄′dB , p̄B(D) = ᾱ − β̄dB − β̄′dA.

The assumption of a linear inverse demand function of prices is common in the revenue management

and pricing literature (see for example [10, 16, 26, 30, 35, 47, 48]). In this model, β̄ denotes the

retail price sensitivity of a product with respect to its own demand and β̄′ denotes the retail price

sensitivity of a product with respect to its competitor’s product’s demand.

Assumption 1.

1. β̄ > 0. A product’s retail price is a strictly decreasing function of its own demand.

2. β̄′ ≥ 0. A product’s retail price is a decreasing function of its competitor’s product’s demand

(that is, the products that the two suppliers offer are gross substitutes).

3. β̄′ < β̄. This suggests that the price of a product is more sensitive to that product’s demand

rather than to the competitor’s product’s demand.

This assumption is standard in price–demand models (see Vives [46]). Note that under As-

sumption 1, matrix B̄ is invertible.
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2.1 The retailer’s problem

The retailer is a follower and reacts to the wholesale price decision p = (pA, pB) made by the

suppliers. Proceeding by backward induction, we consider the optimization problem faced by the

retailer for a given vector of wholesale prices.

The retailer must select the quantity vector D = (dA, dB) of the two products to order from

the suppliers (since the model is deterministic, there is no mismatch between the quantity ordered

by the retailer and the quantity sold to the consumer) in order to maximize her net profits.

max
D

JR = p̄(D)T D − pTD = (ā − B̄D)T D − pTD.

Note that the retailer’s order quantity is not subject to an upper limit as the supplier adjusts its

wholesale price in order to be able to fulfill the retailer’s order in its entirety. It is easy to show

that maximizing the retailer profit JR for a fixed price vector p over quantity vectors D leads to

optimal order quantities D(p) = 1
2B̄−1(ā − p). We denote

β ≡
1

2

β̄

β̄2 − β̄′2
, β′ ≡

1

2

β̄′

β̄2 − β̄′2
, B ≡

1

2
B̄−1 =

(

β −β′

−β′ β

)

, α ≡ ᾱ(β−β′), a ≡
1

2
B̄−1ā = (α,α)

The retailer’s optimal order quantity decisions can be written as D(p) = a − Bp, i.e. the quantity

of each product is a linear function of the corresponding supplier’s wholesale price and of the

competitor’s wholesale price. In particular, we can rewrite it as:

dA(p) = α − βpA + β′pB, dB(p) = α − βpB + β′pA.

Notice, β denotes the demand sensitivity of a supplier with respect to her own price and β′ denotes

the demand sensitivity of a supplier with respect to her competitor’s price.

Corollary 1. It follows from Assumption 1 that 1. β > 0: a supplier’s demand is a strictly

decreasing function of her own wholesale price.

2. β′ ≥ 0: a supplier’s demand is an increasing function of her competitor’s wholesale price

(consistent with the assumption that the products that the two suppliers offer are gross substitutes).

3. β′ < β: the demand observed by a given supplier is more sensitive to that supplier’s wholesale

price rather than to her competitor’s wholesale price of the product.

This result can be rephrased in the following way: Supplier A’s demand (order quantity he/she

receives) increases when her own price decreases, or when supplier B’s price increases. Furthermore,

if we consider a price change of one unit for each supplier, supplier A’s demand (order quantity

he/she receives) increases more when her own price has changed rather than when supplier B’s price

has. In other words, if both prices increase by the same amount simultaneously, both demands

decrease. Moreover, if the price applied by supplier B increases, then the demand observed by
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supplier B decreases more than the demand observed by supplier A increases. Therefore, the price

chosen by a given supplier affects her own demand more than it affects her competitor’s demand,

which is consistent with standard economics models (see Vives [46]).

Note that properties 1, 2 and 3 of Corollary 1 imply Assumption 1.

For ease of notation in the remainder of the paper, we use α, β, β′, a and B rather than ᾱ, β̄, β̄′, ā

and B̄ to be more succinct and we define the following quantities: b ≡ 2β(1 + γβ) − β′(1 + 2γβ),

d ≡
√

2β2(1 + γβ) − β′2(1 + 2γβ). Notice that

b(β + β′) = d2 + ββ′. (1)

2.2 Decentralized Suppliers

In the decentralized supplier setting, the two suppliers compete on prices, anticipating the reaction

of the retailer to their decisions, and are subject to production capacity. Such a setting arises for

example, in the car industry when different manufacturers (say Toyota and Honda) produce cars

targeting the same market segment (say Camry and Accord) and face capacity constraints (see [6]).

In the supplier decentralized setting, supplier k = A,B determines her wholesale price, given

a wholesale pricing policy p̃−k for supplier −k = B,A, by solving the following best response,

optimization problem:

Jk = max
uk,pk

pkdk(pk, p̃−k) − γ(uk)2

such that uk = dk(pk, p̃−k)

0 ≤ uk ≤ Kk

pk ≥ 0.

The following result establishes the existence and uniqueness of an equilibrium in this setting.

All the proofs of the results in this paper can be found in Appendix G. (The proof of Theorem 1

follows directly from Proposition 6 in Appendix C and is thus omitted.)

Theorem 1. Under Assumption 1, there exists a unique Nash equilibrium solution.

The equilibrium production quantities, prices and profits are derived in Appendix C.

Our goal is to understand the effect of production capacity. Therefore, in order to isolate that

effect, we will focus on letting capacity level of supplier B (denoted KB) vary between zero and KA

while keeping other input parameters constant. This leads us to the following observation. Three

regimes are possible at equilibrium, which can be viewed as follows1:

1Note that it is possible to have αβ(β+β′)−d2KA

ββ′
> αβ

b
, but, as shown in the Appendix, the case αβ(β+β′)−d2KA

ββ′
>

KB > αβ

b
may not occur, and so the results remain correct as stated.
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• (Regime a) If KB > αβ
b

, both suppliers produce at an intermediate level (i.e. not at full

capacity). Because the capacity is not tight, the suppliers are in effect totally symmetric and

therefore the production and price decisions at the equilibrium are equal among suppliers and

independent of the production capacities.

• (Regime b) If αβ(β+β′)−d2KA

ββ′ < KB < αβ
b

, supplier B produces at full capacity and supplier

A at an intermediate level (between zero and KA), while still producing at least as much

as supplier B. Since supplier B has a lower production capacity, it is natural to obtain that

there is a situation where supplier B produces at full capacity but not supplier A. Note that

the lower bound on KB depends on KA. Indeed, supplier A needs to produce more once

supplier B has reached full capacity, so supplier B’s capacity cannot be too low for supplier

A’s production level to be intermediate.

• (Regime c) If KB < αβ(β+β′)−d2KA

ββ′ , both suppliers produce at full capacity.

Let us consider, for comparison purposes, a monopoly setting. The derivation of the monopoly

solution can be found in Appendix B. Production level K1 = α
2(1+γβ) maximizes the profit in

the absence of capacity constraint. Therefore, two cases are possible: if K > K1, the optimal

production level is K1 and is thus intermediate (between 0 and K); if K ≤ K1, then it is optimal to

produce at full capacity K. Our results in the duopoly setting extend this result to three possible

regimes.

To reduce notation we define la ≡ αβ
b

, lb(K
A) ≡ αβ(β+β′)−d2KA

ββ′ . In the decentralized duopoly

setting, regime a corresponds to la < KB < KA, regime b to lb(K
A) < KB < la, and regime c to

0 < KB < lb(K
A). We observe that prices are either constant or decrease linearly with KB (the

latter in regimes b and c, where supplier B is at full capacity). In other words, if capacity is tight

for supplier B, customers are charged lower prices when capacity KB increases, until regime a is

reached.

2.3 Supplier Cooperation

In this subsection, we study horizontal integration: we assume that the two suppliers make decisions

jointly in order to maximize their total profit. Horizontal competition among the two suppliers is

thus eliminated, but the effect of vertical competition with the retailer remains. This setting can be

considered simply as a benchmark to understand the value gained/lost due to competition among

suppliers. This setting could however arise in practice if for example, the suppliers are two branches

of the same company. Consider for instance a corporation like Procter and Gamble, owning the

brands of detergent Gain and Tide which are substitute products. While each brand is managed

by its own brand manager, upper management could make the two brands cooperate to achieve

optimal joint performance.
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In what follows we formulate the optimization problem under supplier cooperation and analyze

the optimal policy.

J = JA + JB = max
uk,pk, k=A,B

∑

k=A,B

pkdk(p) − γ(uk)2

such that uk = dk(p), k = A,B

0 ≤ uk ≤ Kk, k = A,B

pk ≥ 0, k = A,B.

This problem has a unique optimal solution that is derived in closed form in Appendix D.

We note in particular that unless none of the suppliers produce at full capacity, the prices are

different for the two suppliers, even though the decisions are made jointly and only the overall profit

is maximized. Indeed, when both suppliers produce at an intermediate level, the actual value of

the capacity becomes irrelevant and as a result the suppliers are fully symmetric and thus prices

and quantities are symmetric as well. We observe that if A and B are at full capacity, the solution

is identical to the decentralized setting equilibrium where both suppliers are also at full capacity –

but the condition for this case to hold is different. This follows from the fact that, for both settings,

when it is in the suppliers’ best interest to be at full capacity, then Kk = α−βpk+β′p−k, k = A,B.

This yields teh same system of two linearly independent equations on pA, pB in both the coordinated

and decentralized settings
{

βpA − β′pB = α − KA

βpB − β′pA = α − KB

Therefore, at full capacity, the prices are the same in the cooperative and the decentralized set-

ting. As a result, we observe that for low enough capacities, supplier collusion does not make any

difference in the outcome.

Three regimes are possible at the optimum, which we can view as follows:

• (Regime a′) If
α
2

1+γ(β−β′) < KB < KA, then both suppliers produce at an intermediate level

(i.e. not at full capacity) and the production and price decisions at the optimal level are thus

equal for the two suppliers and independent of the production capacity.

• (Regime b′) If 1
β′

(

(β + β′)α
2 − KA(β + γ(β2 − β

′2))
)

< KB <
α
2

1+γ(β−β′) , then supplier B

produces at full capacity, but supplier A produces at an intermediate level.

• (Regime c′) If KB < 1
β′

(

(β + β′)α
2 − KA(β + γ(β2 − β

′2))
)

, then both suppliers produce at

full capacity, and price (and produce) as they would in a decentralized setting.
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These three regimes have the same interpretation as in the decentralized setting, but the condi-

tions are different. We show below some examples of the cooperative optimal solution and compare

it with the decentralized equilibrium solution. Figure 2 illustrates the three regimes described

above. Figures 8(a) and (b) in Appendix F also show the solutions in other examples. We natu-

rally notice that the overall profits are higher under supplier cooperation than in the decentralized

system.
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Figure 2: Example: cooperative optimal solution and decentralized equilibrium when B’s capacity
varies from zero to KA. The system is in one of 3 possible regimes, depending on whether zero,
one or two suppliers produce at full capacity.

Let us now compare the cooperative optimal solution and the decentralized equilibrium solution.

Let l′a ≡
α
2

1+γ(β−β′) , l′b(K
A) ≡ 1

β′

(

(β + β′)α
2 − KA(β + γ(β2 − β

′2))
)

the threshold capacity values

between regimes so that regime a′ corresponds to l′a < KB < KA, regime b′ to l′b(K
A) < KB < l′a,

and regime c′ to 0 < KB < l′b(K
A). It is easy to show that la > l′a, i.e. the threshold value

12



for KB when supplier B’s production quantity reaches full capacity is higher in the decentralized

setting than in the cooperative setting. In other words, if supplier B is not at full capacity in the

decentralized setting, then she is not at full capacity in the cooperative setting either (i.e. if regime

a holds, then regime a′ holds). This means that the presence of competition triggers supplier B

to produce at full capacity when she might not, should the decisions be taken jointly. In addition,

decentralized quantities are higher than centralized quantities.

Lemma 1. (i) If the inputs are such that regime c′ holds under supplier cooperation, then regime

c holds at the decentralized equilibrium. (ii) Production quantities under competition are identical

or higher than under cooperation for each supplier.

This result implies that the previous observation for supplier B is valid for supplier A: under

competition, for decreasing values of KB, both suppliers tend to switch “too quickly” (i.e. for too

high value of KB) from intermediate to full production capacity when comparing with a cooperative

setting.

2.4 The Centrally Coordinated Supply Chain

In this subsection, we take the point of view of a supply chain central planner who optimizes the

overall retailer and suppliers’ profit. This allows us to compare the decentralized and cooperative

performance with the performance in a fully integrated supply chain where the suppliers and the

retailer make joint decisions to optimize the entire system. This comparison also enables us to

determine the value of coordinating contracts between the different parties of the supply chain.

The supply chain total profit Π is equal to the sum of the retailer’s and the suppliers’ profits:

Π = JR + JA + JB. Notice that ā = 2B̄a and B̄ = 1
2B−1. Therefore, we obtain

Π = p̄(D)T D − γDTD = (B−1a)TD −
1

2
DT B−1D − γDTD.

To view this problem from a pricing perspective, we use D(p) = a − Bp as found in Section 2.1

and we obtain after simplification

JR =
1

2
pT Bp − pTa +

1

2
aT B−1a

Π = −
1

2
pT (B + 2γB2)p + 2γaT Bp +

1

2
aT B−1a − γaTa.

The central planner’s goal is to maximize the total supply chain profits Π. The central planner’s

13



optimization problem can thus be formulated as a linearly-constrained quadratic problem:

max
p

−
1

2
pT (B + 2γB2)p + 2γaT Bp +

1

2
aT B−1a − γaTa

s.t. 0 ≤ a − Bp ≤ K̄

p ≥ 0

where K̄ = (KA,KB).

The centrally coordinated optimal solution to the central planner’s optimization problem is

provided in Appendix E.

We observe that similarly to the decentralized equilibrium and to the cooperative supplier

solution, the centrally coordinated optimum solution can be in one of three possible regimes. In

the first regime (KB large), neither of the two suppliers use all of their available capacity, hence

the price and production amounts are the same for the two suppliers. In the second regime (KB

intermediate), B is at full capacity, and A is not. In the third regime, both suppliers are at

full capacity. The thresholds between these regimes are different than in the decentralized and

cooperative settings studied in previous sections. We note that the threshold on KB between the

first and second regimes is larger than for the decentralized setting, and the threshold between the

second and third regimes is larger than for the cooperative setting.

3 Effect of Capacity on the Equilibrium Profits

3.1 Effect on Individual Profits

We first establish that in the decentralized setting, supplier A is better off when her competitor’s

production capacity decreases.

Proposition 1. Supplier A’s profit at the Nash equilibrium is non increasing with KB.

We next show that supplier B’s profit at the equilibrium as a function of her capacity is not

monotonic, and may in fact have up to two local maxima (see Figure 4). This implies that under

some conditions there exists a critical capacity level beyond which supplier B has no incentive to

increase her capacity (at no cost2), as an increase would lead her equilibrium profit to decrease

(this is illustrated in Figure 3).

2For example, increasing capacity would not incur costs when supplier B has the possibility to reallocate existing
resources. Note that there would be even less of an incentive to increase capacity if increasing capacity incurred extra
costs.
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Figure 3: Example: equilibrium solution when supplier B’s capacity varies from zero to KA with
inputs as in Figure 8(a). The profit JB

d reaches a maximum at K0 ∈ (0,KA) in regime b, which
implies that there exists a capacity level for supplier B beyond which B’s profit at the equilibrium
decreases as the capacity increases.

Proposition 2. Due to Corollary 1, if αβ(β+β′)−K0ββ′−d2KA < 0, where K0 ≡ α(2β(1+γβ)+β′(1+2γβ))

2(2β(1+γβ)2−γβ
′2(1+2γβ))

,

then KB = K0 ∈ [0,KA]3 is a local maximum. Moreover, if

α(β + β′)

2β + β′ + 2γ(β2 − β′2)
≤ KA ≤

α(β + β′)

β′
(2)

αβ(β + β′) − K̄0ββ′ − d2KA > 0, (3)

3Since 1 + γβ > γβ′, and 2(1+γβ)
1+2γβ

> 1, therefore β(1 + γβ) 2(1+γβ)
1+2γβ

> γβ
′2 and the denominator is positive.
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where K̄0 ≡ α(β+β′)−β′KA

2β+2γ(β2−β
′2)

, then K̄0 ∈ [0,KA] is a local maximum. There are no other possible local

maxima.

In particular, this proposition proves that profit JB viewed as a function of KB is not monotonic

and may have at most two local maxima. We observe that if β′ = 0 (i.e. if there is no competition

as the two products offered are fully differentiated), then K0 equals K1 (that is, equals the capacity

level that maximizes the profit in a monopoly setting, see Appendix B).
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Figure 4: Example with inputs as in Figure 8(b): (a) equilibrium solution and corresponding profits
when B’s capacity varies from zero to KA. The profit JB reaches one local maximum and one global
maximum. (b) Zoom of the profits plot.

We have shown what might at first seem as a “counter intuitive” result that, in a supplier

duopoly setting, under some assumptions on the inputs, an increase of capacity for supplier B

may decrease her profit at the equilibrium. In contrast, in a monopoly setting, an increase of

capacity of a supplier who is operating at full capacity in the optimal strategy would increase her

profit (or leave it unchanged, if the added capacity is unused). In a duopoly setting however, the

same intuition is not valid at the equilibrium because competition affects the optimal strategy. If

supplier B’s capacity level is at a local maximum of profits JB, then an increase of the capacity

level results in decreased profits. In order to understand this effect, it is key to keep in mind that

the decision making is decentralized and that this solution is an equilibrium. The local maxima

occur in the interior of regimes b and c, i.e. when supplier B’s production capacity constraint is
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tight at the equilibrium. If supplier B’s capacity increases slightly, we remain in the same regime,

thus at the new equilibrium supplier B produces at full capacity (that is his best response to

supplier A’s strategy), hence he increases production, and therefore the price decreases (to increase

demand). Price pB is input in supplier A’s optimization problem through the demand, so a decrease

in supplier B’s price incurs a decreased demand for supplier A. A new equilibrium is thus reached

where supplier A decreases production and price. At the new equilibrium, both suppliers have lower

profits. The customers thus gain from the added available capacity as it drives down the prices at

equilibrium. Notice that supplier B cannot simply “ignore” the newly available capacity and not

increase production to avoid lowering her profits, because this would not be a Nash equilibrium, in

the sense that, assuming that supplier A keeps all decisions constant, supplier B is not at his best

response and thus has an incentive to deviate. This paradox is analogous to the prisoner’s dilemma

paradox, where the Nash equilibrium is not Pareto optimum.

3.2 Effect on the Total Supplier Profit

The following result shows that, while supplier A always prefers that supplier B chooses the lowest

possible capacity KB , and supplier B prefers a capacity level that may vary within [0,KA], the

overall system prefers a capacity level KB that is lower than the one that supplier B prefers when

acting selfishly; in other words, the overall system prefers a compromise between the two suppliers’

interests: lower capacity than supplier B would want, but possibly higher than what supplier A

would want.

Proposition 3. Let K∗ ∈ [0,KA] the value of KB that maximizes the system profit (JA + JB).

Then K∗ is less than or equal to the value of KB that maximizes JB.

This proposition can lead to a potential useful agreement between the two suppliers. Such an

agreement is practically relevant for example if the two suppliers represent two different branches

of a same firm, that make decisions independently but that could have some level of cooperation

to benefit the firm. Consider for instance a firm like Procter and Gamble, owning the brands of

detergent Gain and Tide which are substitute products. While each brand is managed by its own

brand manager whose goal is to maximize the performance of their product line, upper management

could encourage a strategy of cooperation in order to achieve optimal overall corporate performance.

When supplier B decides her production capacity level “selfishly”, she will do so in order to

maximize her own profits, knowing that price and production for both suppliers will then be

determined by the Nash equilibrium solution. As a result, B will select the capacity level KB

that maximizes her equilibrium profits JB . However, supplier A may find it profitable to provide

financial incentives so supplier B selects the capacity level that maximizes the total system profits.

Theorem 2. An agreement such that supplier A pays supplier B a positive fee and supplier B must

select a certain capacity level would benefit both suppliers.
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4 Loss of Supply Chain Profit

While the total supply chain profit under central coordination is by definition optimized, in practice

a central planner in many situations cannot impose his/her decisions. Nevertheless, the centrally

coordinated chain profit can be viewed as a benchmark to compare the actual decisions with those

that would lead to the maximum total profits.

By definition, the total supply chain profit at the centrally coordinated optimum is at least as

large as the total supply chain profits at the suppliers’ cooperative solution and at least as large

as the total profits at the Nash equilibrium. This suggests that both price competition within

the Nash game and price collusion under supplier cooperation lead to a supply chain total profit

that is lower than the supply chain total profit at the centrally coordinated optimum. A natural

question is to measure this gap and determine in particular the worst case total profit at the Nash

equilibrium, since the equilibrium is expected to occur when firms compete. Measuring this gap can

help quantify the value of efforts to coordinate the supply chain (for example via the implementation

of certain types of contracts), by calculating the amount of profits that could potentially be gained.

In what follows we denote by Πcc the total supply chain profit when the supply chain is centrally

coordinated, we denote by Πd (resp. JR
d , Jk

d ) the total supply chain profit (resp. the retailer’s profit,

supplier k’s profit) when the supply chain is decentralized (i.e. when there is horizontal and vertical

competition) and finally, we denote by Πc (resp. JR
c , Jk

c ) the total supply chain profit (resp. the

retailer’s profit, supplier k’s profit) when the two suppliers are coordinated but the two tiers of

the supply chain are not coordinated. We therefore define the supply chain loss of total profit as

1 − Πd

Πcc
∈ [0, 1]. When the loss of total profit is high (close to 1), the Nash equilibrium leads to

a low total profit, as compared with the centrally coordinated optimum. When the loss of total

profit is low (close to 0), the Nash equilibrium is efficient as the total profit at the equilibrium is

close to the maximum possible total profit.

4.1 Symmetric Suppliers

We now consider the symmetric supplier case and compare the retailer’s profit as well as the total

profit in the two-tier supply chain when the supply chain operates (a) under Nash equilibrium, (b)

under supplier cooperation, and finally, (c) when the supply chain is at the centralized optimum.

Note that the effect of a lack of coordination on the suppliers’ profit is investigated in Section 5.

Theorem 3. If KA = KB ≡ K, then

1. JR
d ≥ JR

c ,

2. Πd ≥ Πc, and

3.

Πcc ≥ Πd ≥ Πc ≥ Πcc

(

1 −
1

4(1 + γ(β − β′))2

)

≥
3

4
Πcc. (4)
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The first result confirms that the retailer, as a follower, is better off when the symmetric

suppliers compete horizontally than when the decisions for the two suppliers are made jointly. The

second result determines that the entire supply chain is better off when the two symmetric suppliers

compete, rather than when they make joint decisions. This second result may be viewed as non

trivial since, while it is intuitive that the retailer should benefit from competition among the leaders,

the suppliers’ profit is by definition higher in the cooperative setting, so it is not obvious whether

the system as a whole would benefit or be hurt by horizontal competition among the suppliers.

This result can be interpreted as follows. Clearly, the retailer’s profit increases and the suppliers’

profits decrease when suppliers compete instead of cooperating. Therefore the supply chain profit

is affected in two opposite directions by supplier competition. Our result means that the effect

on the retailer’s profit is stronger than the combined effects on the suppliers’ profits, i.e. vertical

competition dominates, in a sense, horizontal competition. The third result provides bounds on the

worst total profit in both the cooperative and decentralized setting. The bound 1 − 1
4(1+γ(β−β′))2

is depicted in Figure 5. In particular, it can be seen from the proof in Appendix G.2 that the

bounds are tight: Πc

Πcc
= 1− 1

4(1+γ(β−β′))2 for K large enough, and Πc

Πcc
= 3

4 if K is large enough and

γ(β − β′) = 0 (no production cost or non-differentiated suppliers – γ = 0 or r = 1).

We have thus obtained that in the case of symmetric suppliers, the loss of total profit satisfies:

0 ≤ 1 −
Πd

Πcc
≤

1

4(1 + γ(β − β′))2
≤

1

4
,

in other words the supply chain loss of total profit cannot exceed 25%, and may be much lower

especially as the production cost rises or the products offered by the firms become more differenti-

ated. The value of this bound has implications to supply chain managers who need to determine the

gains that could be obtained from designing and implementing contracts to coordinate the supply

chain. Clearly, putting these contracts into practice incurs costs, and these costs could potentially

outweigh the benefits that they provide. Hence, it is important to know the potential gains before

deciding if implementing such coordinating mechanisms will be worth it.

4.2 Asymmetric Suppliers

We now consider asymmetric suppliers, i.e. KB < KA. Clearly, decreasing KB from the value of

KA can only decrease the optimum centrally coordinated total profit as it allows less flexibility with

the capacity constraint; however it is not clear how decreasing KB may affect the total profit at

the equilibrium and thus the loss of total profit. In fact, it is interesting to observe that the supply

chain loss of total profit is not in general a monotonic function of KB (see Figure 9 in Appendix F

for some examples). This implies that decreasing the capacity available at supplier B may help in

some cases lower the loss of total profit and thus make the total profit at the equilibrium become

closer to the centrally coordinated optimum, and thus in a way make the system more efficient. This
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insight is somewhat counter-intuitive as one may have conjectured that decreasing the capacity of

one supplier, hence reducing her feasible space and flexibility, could only increase any measure of

inefficiency; however this is not the case in terms of the loss of total profit. We further investigate

in the following sections of the paper how changing KB affects another measure of inefficiency (the

loss of supplier profit of the Nash equilibrium compared with the cooperative solution) and the

profits at equilibrium.

Numerical experiments indicate that the inequalities (4) and part 1 of Theorem 3, that were

proved for symmetric suppliers, also hold in the non symmetric case (see Figure 10 in Appendix F

for some examples).

5 Loss of Supplier Profit

The cooperative setting corresponds to a situation without horizontal competition, where a single

decision-maker optimizes the sum of the two suppliers’ profits. This situation may arise for ex-

ample, when the two suppliers represent two branches of a common company, and the company

management has the option to impose decisions to the two branches instead of letting them op-

erate individually (in a competitive, decentralized way). Hence it is relevant to determine how

much overall profit is lost due to the competition of the decentralized setting, as compared with

the cooperative decisions, to quantify what would be gained from centralizing the decision making

of the two suppliers.

Clearly, the suppliers’ total profit in the decentralized setting cannot exceed the suppliers’ total

profit in the cooperative setting. However, it is possible that one supplier’s profit be higher in the

decentralized setting than in the cooperative setting, as long as the other supplier suffers more from

decentralization that the first gains from it. For example, in Figure 2, in regime b′, supplier A’s

profit is higher in the decentralized setting, and supplier B’s profit lower; the sum of the profits is
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lower because by having the suppliers make joint decisions, supplier A’s profit decreases less than

supplier B’s profit increases. The following result shows that supplier B benefits from cooperation

(or is indifferent). As supplier B is the supplier who is more constrained in terms of production

capacity, cooperation enables supplier B to use some of supplier A’s resources when necessary and

thus to compensate for her handicap. Note that supplier A may earn more or less in the cooperative

setting compared to the equilibrium solution depending on the input parameters.

Proposition 4. Supplier B’s profits under competition are no greater than those incurred under

cooperation.

Figure 11 in Appendix F depicts the profit ratios ρ ≡
JA

d +JB
d

JA
c +JB

c
, ρA ≡

JA
d

JA
c

, and ρB ≡
JB

d

JB
c

of the

profit in a decentralized setting over the profit in a cooperative setting, for each supplier and for

both, using data from previous examples. Analogously to the system loss of total profit, we call

1 − ρ ∈ [0, 1] the loss of supplier profit, which quantifies the decrease in supplier profit due to the

presence of competition among them. When the loss of supplier profit is high (close to 1), the

supplier profit at the Nash equilibrium is low compared with the supplier profit in the cooperative

system. When the loss of supplier profit is low (close to 0), the Nash equilibrium is efficient in the

sense that the supplier profit at the Nash equilibrium is close to its maximum possible value. As

noted above, ρ and ρB can be no greater than 1, but this is not necessarily true for ρA. The term

price of anarchy has been traditionally used in the recent literature (see [13, 36, 37, 40, 41]) and

corresponds to the inverse of the profit ratio.

As illustrated in Figure 11(d), the loss of supplier profit may be quite large (i.e. the profit ratio

can be quite low): up to 65% in this example, which raises the question of whether the loss of

supplier profit can be bounded. We first start by analyzing the case of symmetric suppliers, and

then we generalize to asymmetric suppliers.

5.1 Symmetric Suppliers

Consider the symmetric capacity case: KA = KB ≡ K. We denote r = β′

β
∈ [0, 1] the price

sensitivity ratio. When r is close to 1, β′ is close to β and the products offered by the two suppliers

are less differentiated. In other words, if a supplier increases her price by a small amount, the

total demand in the market decreases “very little”. Conversely, when r is close to 0, β′ is very

small compared with β and the products offered by the two suppliers are more differentiated; in

other words, if a supplier increases her price by a small amount, the total demand in the market

decreases “a lot”. Coefficient r can thus be viewed as a measure of the substitutability of the

products offered by the two suppliers, and hence of the degree of competitiveness of the market.

Farahat and Perakis [16], refer to this ratio as market power, that is, by how much the total demand

in the market is affected when one supplier increases her price. The following proposition provides

closed-form solutions for the suppliers profit ratio.
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Proposition 5. In the symmetric supplier setting, the profit ratio is given by

• ρ = 1 if K ≤ α
2(1+γ(β−β′)) (regimes (c, c′)),

• ρ = 1 −
(

2K
α

(1 + γ(β − β′)) − 1
)2

if α
2−r+2γ(β−β′) ≥ K ≥ α

2(1+γ(β−β′)) (regimes (c, a′)),

• ρ = 1 − r2β2

b2
if K ≥ α

2−r+2γ(β−β′) (regimes (a, a′)).

Proposition 5 implies that the loss of supplier profit 1 − ρ is: (i) zero when the common

capacity level is sufficiently low (so that suppliers are at full capacity in both the decentralized

and cooperative settings), (ii) is independent of the capacity level K when the common capacity is

sufficiently large (so that suppliers are not at full capacity in both the decentralized and cooperative

settings), and (iii) increases quadratically with the capacity level K for intermediate values (so that

suppliers are at full capacity in the decentralized setting but not in the cooperative setting).

It follows from Proposition 5 that in the special case when γ = 0 (no production cost) or r = 1

(β = β′, i.e. products are perfect substitutes), the profit ratio simplifies to:

ρ =











1 if α
K

≥ 2

4K
α

(

1 − K
α

)

if 1 ≤ α
K

≤ 2

0 if α
K

≤ 1

implying that the loss of supplier profit is worst when the capacity is sufficiently large (greater than

or equal to α) and either there is no production cost or the products are perfect substitutes. Note

that ρ = 0 in the last case above does not mean that the suppliers combined profit at equilibrium

is zero. It means that it is infinitely smaller than at the coordinated optimal solution because the

optimal coordinated combined profit (for the symmetric case) approaches infinity in this case, while

at equilibrium the combined profit remains finite.

The reason why an increase in capacity leads to a decrease in efficiency is related to the source

of inefficiency in this problem. Inefficiency comes from the misalignment of decisions at the decen-

tralized equilibrium and cooperative optimal solution, and more specifically, from the difference in

quantity decisions: say, one a supplier produces a full capacity at equilibrium but at an intermediate

level at the cooperative optimal. Therefore, the higher the capacity level, the bigger the room for

a gaps between the quantity decisions of the two suppliers. Indeed, if capacity is very low, then in

most cases all available capacity will be used both at equilibrium and at the cooperative optimal.

As capacity increases, it becomes more and more likely that the decisions in the two settings differ.

Next, we provide an upper bound on the profit loss 1 − ρ.

Theorem 4. If KA = KB = K, then the loss of supplier profit 1−ρ cannot exceed min{ r2

(2−r)2
, r2 K2

α2 },

where r = β′

β
.

Clearly, the best bound is r2

(2−r)2
if α/K < 2 − r, and r2 K2

α2 otherwise. In other words, when

the capacity is large with respect to α (maximum quantity ordered at each supplier), the upper
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bound is independent of the capacity, but when the capacity is below a certain threshold, then

the upper bound increases quadratically in K. We plot this bound in Figure 6. We observe that

the loss of supplier profit bound r2

(2−r)2
is small as long as the suppliers have some non-negligible

“market power”4 (for example when r < 0.6, the loss of profit cannot exceed 20%; see Figure 6(a)).

Indeed, it is easy to observe that the upper bound on the loss of supplier profit increases with r.

Straightforward calculations lead to noticing that in the extreme case γ = 0, the bound is tight in

regimes (a, a′), and in regimes (c, a′) for α
K

at the extreme 2 − r of its valid range.

Clearly, the bound on the loss of supplier profit r2 K2

α2 is low for larger values of α
K

and lower

values of r. Note that by definition the loss of supplier profit is at most one, so this bound is

relevant as long as it does not exceed one, i.e. for α
K

> r.
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Figure 6: Symmetric suppliers case. Upper bound on the loss of supplier profit (a) r2

(2−r)2
as a

function of r; (b) r2 K2

α2 as a function of r and α
K

.

To illustrate the tightness of the bound r2 K2

α2 , we compute the gap between the actual loss of

supplier profit and the bound for a range of values of r and α
K

in Table 1. To obtain the results in

this table, we used as inputs γ = 1, β = 1. We would like to note that changing these inputs leads

to similar observations. The bound appears to be very close to the actual loss of supplier profit for

α/K ≥ 2 (or 3 if r > 0.7). This range of inputs corresponds to a value of the profit ratio close to

1 (i.e. loss of supplier profit close to zero) (see Table 2). The bound is much less tight for smaller

values of α/K, (and may even be irrelevant when it takes values higher than 1 for α
K

< r), when the

loss of supplier profit becomes higher. This is due to the fact that smaller values of α/K correspond

to values of α/K in regimes (a, a′) and far below the threshold value with regimes (c, a′). It is clear

from the proof of Theorem 4 that the bound is tight when α/K is at the threshold value. When

α/K takes values below this threshold, the actual loss of supplier profit is constant (equal to the

4Note that, as we already mentioned above, high market power (i.e. r close to zero) means that an individual
supplier can influence significantly the total demand in the market when she increases her price while the other
supplier keeps the same price.
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α/K

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1 0.0393 0.0093 0.0037 0.0018 0.0009 0.0004 0.0001 0.0006 0.0005 0.0004
0.2 0.1565 0.0365 0.0143 0.0065 0.0029 0.0010 0.0024 0.0025 0.0020 0.0016
0.3 0.3506 0.0806 0.0306 0.0131 0.0050 0.0006 0.0073 0.0056 0.0044 0.0036
0.4 0.6196 0.1396 0.0507 0.0196 0.0052 0.0133 0.0131 0.0100 0.0079 0.0064

r 0.5 0.9600 0.2100 0.0711 0.0225 0.0000 0.0278 0.0204 0.0156 0.0123 0.0100
0.6 1.3656 0.2856 0.0856 0.0156 0.0432 0.0400 0.0294 0.0225 0.0178 0.0144
0.7 1.8243 0.3543 0.0820 0.0325 0.0768 0.0544 0.0400 0.0306 0.0242 0.0196
0.8 2.3100 0.3900 0.0344 0.1200 0.1024 0.0711 0.0522 0.0400 0.0316 0.0256
0.9 2.7607 0.3307 0.1422 0.1925 0.1296 0.0900 0.0661 0.0506 0.0400 0.0324
0.95 2.9276 0.2201 0.2411 0.2231 0.1444 0.1003 0.0737 0.0564 0.0446 0.0361

Table 1: Difference between the loss of supplier profit and the upper bound r2 K2

α2 for γ = 1, β = 1

value it took at the threshold). This can be seen in Table 2, where on any given row, the values of

the profit ratio are equal in the leftmost columns. However, as α/K decreases, the upper bound

increases sharply (quadratic increase; see Figure 7 and Table 3). Therefore, in regimes (a, a′), (i.e.

for small α/K), the upper bound r2

(2−r)2
is tighter than the upper bound r2 K2

α2 .

α/K

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 1.0000 1.0000 1.0000
0.2 0.9965 0.9965 0.9965 0.9965 0.9965 0.9965 0.9992 1.0000 1.0000 1.0000
0.3 0.9906 0.9906 0.9906 0.9906 0.9906 0.9906 1.0000 1.0000 1.0000 1.0000
0.4 0.9796 0.9796 0.9796 0.9796 0.9796 0.9956 1.0000 1.0000 1.0000 1.0000

r 0.5 0.9600 0.9600 0.9600 0.9600 0.9600 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 0.9256 0.9256 0.9256 0.9256 0.9856 1.0000 1.0000 1.0000 1.0000 1.0000
0.7 0.8643 0.8643 0.8643 0.9100 0.9984 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 0.7500 0.7500 0.7500 0.9600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.9 0.5207 0.5207 0.7822 0.9900 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.95 0.3176 0.3176 0.8400 0.9975 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2: Profit ratio ρ for γ = 1, β = 1

5.2 Asymmetric Suppliers

We now focus on the loss of supplier profit in the more general case of asymmetric suppliers.

Theorem 5. The loss of supplier profit 1 − ρ is a non decreasing function of KB.

This result implies in particular that the upper bound on the loss of supplier profit we obtained

for symmetric suppliers (highest possible value of KB) also holds as an upper bound when suppliers

are asymmetric in terms of their capacities. This is stated in the following corollary.
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Figure 7: Loss of supplier profit and its upper bounds as a function α
K

for the symmetric suppliers
case for γ = 1, β = 1.

r 2 − r + 2γ(β − β′) 2 + 2γ(β − β′)

0.95 1.15 2.1
0.9 1.3 2.2
0.5 2.5 3

Table 3: Threshold values of α
K

between regimes (a, a′) and (c, a′), and regimes (c, a′) and (c, c′),
for γ = 1, β = 1
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Corollary 2. The loss of supplier profit 1−ρ cannot exceed min{r2 (KA)2

α2 , r2

(2−r)2
} for any KB ≤ KA,

where r = β′

β
.

Moreover, the more symmetric the setting is (in terms of capacity), the least “efficient” the

system becomes. That is, the loss of supplier profit for symmetric suppliers is the worst case (an

upper bound) on the loss of supplier profit for asymmetric suppliers. This means that collusion is

most useful when the two competitors have the same capacity level. As KB approaches KA and

the setting becomes more and more symmetric, supplier B becomes more and more competitive

with respect to supplier A. Furthermore, supplier A has less and less of an advantage over supplier

B, and as a result the equilibrium becomes less efficient compared to the cooperative solution.

Conclusions

This paper studies the role of capacity on the profits and efficiency of a two-tier supply chain with

one retailer and two suppliers that compete through prices of differentiated substitutable products.

As is generally the case in a variety of supply chain settings, the decentralization of decisions leads

to inefficiencies in terms of profits: The profits of agents that unilaterally make decisions in their

own interest, is lower than if decisions were centralized and optimized for the entire system. This

is true both for the two suppliers, where inefficiencies result from horizontal price competition, as

well as for the overall supply chain, where inefficiencies are caused by vertical competition. Our

results provide a measure of these inefficiencies, by providing a bound on the maximum supply chain

profit loss. This bound could provide some guidance to supply chain managers as they consider

the possibility of implementing sophisticated, and thus more costly, coordination contracts. These

contracts are worthwhile as long as implementation costs do not exceed potential gains. We also

analyze the effect of the degree of capacity asymmetry between the suppliers on the profit loss,

which may shed light on how to best make long term capacity investment decisions. Finally, our

analysis of the effect of capacities on the suppliers profit at equilibrium and the existence of non

monotonicities provide an interesting insight on the potential value of reducing capacity for the

supplier with lower capacity.

Our results extend to a setting with a non zero initial inventory level. Such a setting would

occur if a firm sold a seasonal product and might have inventory remaining from the previous season

for example, or if this approach was used only in the last stage of the selling horizon. The major

difference that arises with the presence of an initial inventory is that it is possible for a firm to idle

and consume existing inventory to satisfy part of the demand. Moreover, our insights also hold in

the case of linear production costs.

This paper illustrates the important role that capacity limits and capacity asymmetry play in

supply chain management. Future direction of research include further study of the effect of capacity

in a variety of supply chain structures, such as multi-tier supply chains, supply chain with multiple

retailers and/or suppliers, or retailer-led supply chains. Other interesting related questions to study

could address the use of contracts for coordinating the supply chain when capacity is limited.
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A Notation

• wholesale price of supplier k: pk (subscript c for cooperative optimum, d for Nash equilibrium,

cc for centrally coordinated)

• price of retailer for product of supplier k: p̄k

• production level of supplier k: uk (same subscripts)

• profit of supplier k: Jk (same subscripts)

• profit of retailer: JR (same subscripts)

• overall supplier profit: J = JA + JB (same subscripts)

• overall supply chain profit: Π = JA + JB + JR (same subscripts)

• demand level of supplier k: dk(p) = α − βpk + β′p−k

• retail price for product of supplier k: p̄k(D) = ᾱ − β̄dk − β̄′d−k

• term of the supplier’s demand that is independent of prices: α

• price elasticity of the demand of a supplier with respect to her own price: β

• price elasticity of the demand of a supplier with respect to her competitor’s price: β′

• r = β′

β

• production capacity of supplier k: Kk

• coefficient of quadratic supplier production cost: γ

• t = γβ

• b = 2β(1 + γβ) − β′(1 + 2γβ)

• d =
√

2β2(1 + γβ) − β′2(1 + 2γβ)

• capacity threshold in a monopoly setting: K1 = α
2(1+γβ)

• capacity threshold between regimes a and b (decentralized case): la = αβ
b

• capacity threshold between regimes b and c (decentralized case): lb(K
A) = αβ(β+β′)−d2KA

ββ′

• local maximum of JB as a function of KB in regime b: K0 = α(2β(1+γβ)+β′(1+2γβ))

2(2β(1+γβ)2−γβ
′2(1+2γβ))

• local maximum of JB as a function of KB in regime c: K̄0 = α(β+β′)−βKA

(β+β′)(1+2γ(β−β′))
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• K∗ = ArgmaxKB(JA
d + JB

d )(KB)

• K̄1 = Arg maxKB JB
d (KB)

• K̄ = βKB+β′KA

β+β′

• capacity threshold between regimes a′ and b′ (cooperative case): l′a =
α
2

1+γ(β−β′)

• capacity threshold between regimes b′ and c′ (cooperative case): l′b(K
A) =

(β+β′)α
2
)−KA(β+γ(β2−β

′2
))

β′

• profit ratio: ρ =
JA

d +JB
d

JA
c +JB

c

• profit ratio for supplier k: ρk =
Jk

d

Jk
c

• d1 = 4β(1 + γβ)2 − 2γβ
′2
(1 + 2γβ)

• A = β(β + β′)d1 − ββ′(2β(1 + γβ) + β′(1 + 2γβ))

• B = d1(2β
2(1 + γβ) − β

′2(1 + 2γβ))

B Optimal solution in a monopoly setting

J(K) = max
u,p

p(α − βp) − γu2

such that u = α − βp

0 ≤ p ≤
α

β
0 ≤ u ≤ K

We obtain the optimal solution:

• if α
2 − K(1 + γβ) ≤ 0, then u = α

2(1+γβ) , p = α
2β

+ α

2(β+ 1
γ
)

= 1
1+γβ

(

α
2β

(1 + 2γβ)
)

.

• if 0 < α
2 − K(1 + γβ), then u = K, p = α−K

β
.

J(K) =

{

α2

4β
− γα2

4(1+γβ) = α2

4β(1+γβ) ,
α
2 − K(1 + γβ) ≤ 0

K
β

(α − K) − γK2, 0 < α
2 − K(1 + γβ)

In particular, J(K) depends on K only when the demand is high enough so that the production

is at full capacity, i.e. when 0 < α
2 − K(1 + γβ), i.e. K < K1, where K1 ≡ α

2(1+γβ) .

We observe that on the domain 0 < K < K1, J(K) is quadratic and increasing. It reaches a

maximum at K = K1, while for K > K1, J(K) is independent of K, i.e. remains at the maximum

value J(K1). In other words, beyond K1, the supplier does not produce at full capacity and
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therefore any change of capacity above that value has no impact on the optimal strategy and thus

the profits.

C Equilibrium solution derivation

Proposition 6. Due to Corollary 1, the equilibrium point and equilibrium profits are as follows:

• if αβ − bKB ≤ 0,

uA = uB =
αβ

b
, pA = pB =

α(1 + 2γβ)

b

JA(KA,KB) = JB(KA,KB) =
β(1 + γβ)α2

b2

• if αβ − bKB > 0 and αβ(β + β′) − KBββ′ − d2KA < 0,

pA = (1 + 2γβ)
α(β + β′) − KBβ′

d2
,

pB =
α(2β(1 + γβ) + β′(1 + 2γβ)) − 2KBβ(1 + γβ)

d2

uA =
αβ(β + β′) − ββ′KB

d2
, uB = KB

JA(KA,KB) = β(1 + γβ)
(α(β + β′) − β′KB

d2

)2

JB(KA,KB) = KB
(α(2β(1 + γβ) + β′(1 + 2γβ)) − 2KBβ(1 + γβ)

2β2(1 + γβ) − β′2(1 + 2γβ)

)

− γ(KB)2

• if αβ(β + β′) − KBββ′ − d2KA ≥ 0 (which implies αβ − bKB > 0),

uA = KA, uB = KB , pA =
α − βKA+β′KB

β+β′

β − β′
, pB =

α − βKB+β′KA

β+β′

β − β′

JA(KA,KB) =
KA

β − β′

(

α −
βKA + β′KB

β + β′

)

− γ(KA)2

JB(KA,KB) =
KB

β − β′

(

α −
βKB + β′KA

β + β′

)

− γ(KB)2

Proof. The best response solution can be derived using Lagrangian duality or using results from

the monopoly case (Appendix B):

• case 1
α + β′p−k

2
− Kk(1 + γβ) ≤ 0 ⇒
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uk =
α + β′p−k

2(1 + γβ)
, pk =

α + β′p−k

2β
+

γ(α + β′p−k)

2(1 + γβ)
=

(α + β′p−k)(1 + 2γβ)

2β(1 + γβ)
.

• case 2

0 <
α + β′p−k

2
− Kk(1 + γβ) ⇒ uk = Kk, pk =

α + β′p−k − Kk

β
.

To determine the equilibrium, we must consider 3 possibilities.

A and B in case 1:

We observe that, only the production capacity differentiates the suppliers, and therefore the problem

is symmetric if none of them produces at full capacity. By symmetry, uk = u−k = u, pk = p−k = p

and u = α+β′p
2(1+γβ) , p = (α+β′p)(1+2γβ)

2β(1+γβ) .

p = (α + β′p)
1 + 2γβ

2β(1 + γβ)

p(1 − β′ 1 + 2γβ

2β(1 + γβ)
) = α

1 + 2γβ

2β(1 + γβ)

p =
α + 2γβα

2β(1 + γβ) − β′(1 + 2γβ)

and thus

u =
αβ

2β(1 + γβ) − β′(1 + 2γβ)
.

For this case to hold, we must verify

0 ≤ α + β′p ≤ 2Kk(1 + γβ)

⇔ 0 ≤ α + β′ α(1 + 2γβ)

2β(1 + γβ) − β′(1 + 2γβ)
≤ 2Kk(1 + γβ)

⇔ (α − 2Kk(1 + γβ))(2β(1 + γβ) − β′(1 + 2γβ)) + β′α(1 + 2γβ) ≤ 0

⇔ αβ − Kk(2β(1 + γβ) − β′(1 + 2γβ)) ≤ 0, k = A, B

⇔ αβ − bKk ≤ 0, k = A, B

Since KB ≤ KA, this case holds if

αβ − bKB ≤ 0.

A and B in case 2:
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uk = Kk, pA = α+β′pB−KA

β
, pB = α+β′pA−KB

β
, therefore

pA =
α − KA

β
+

β′

β

α + β′pA − KB

β

pA(1 −
β

′2

β2
) =

βα − βKA + β′(α − KB)

β2

pA =
α − βKA+β′KB

β+β′

β − β′

and by symmetry

pB =
α − βKB+β′KA

β+β′

β − β′
.

For this case to hold, we must verify

0 <
α

2
− Kk(1 + γβ) +

β′

2

α − βK−k+β′Kk

β+β′

β − β′
, k = A, B

0 < αβ − 2Kk(β − β′)(1 + γβ) − β′ βK−k + β′Kk

β + β′
, k = A, B

⇔ 0 < αβ(β + β′) − ββ′K−k − Kk(2β2(1 + γβ) − β
′2(1 + 2γβ)), k = A, B

⇔ 0 < αβ(β + β′) − ββ′K−k − d2Kk, k = A, B

Lemma 2. 0 < αβ(β + β′) − ββ′KB − d2KA implies 0 < αβ(β + β′) − ββ′KA − d2KB

Proof. To prove the lemma, it is sufficient to show that ββ′KB + d2KA ≥ ββ′KA + d2KB .

ββ′KB + d2KA − ββ′KA − d2KB = (KA − KB)(d2 − ββ′)

= (KA − KB)(−ββ′ + 2β2(1 + γβ) − β
′2(1 + 2γβ)

= (KA − KB)((2β + β′)(β − β′) + 2γβ(β2 − β
′2))

= (KA − KB)(β − β′)(2β + β′ + 2γβ(β + β′)) ≥ 0

Therefore, this case holds for

0 < αβ(β + β′) − ββ′KB − d2KA

Remark: The inequality above implies αβ−bKB > 0. Indeed, since KA ≥ KB , this inequality
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implies

0 < αβ(β + β′) − ββ′KB − d2KA ≤ αβ(β + β′) − (ββ′ + d2)KB = (αβ − bKB)(β + β′).

A in case 1, B in case 2:

uA =
α + β′pB

2(1 + γβ)
, uB = KB, pA =

(α + β′pB)(1 + 2γβ)

2β(1 + γβ)
, pB =

α + β′pA − KB

β

thus

pA =
α(1 + 2γβ)

2β(1 + γβ)
+

β′(1 + 2γβ)

2β(1 + γβ)

α + β′pA − KB

β

pA =
α(1 + 2γβ)(β + β′) − KBβ′(1 + 2γβ))

2β2(1 + γβ) − β′2(1 + 2γβ)

pB =
α − KB

β
+

β′

β
(
α(1 + 2γβ)(β + β′) − KBβ′(1 + 2γβ)

2β2(1 + γβ) − β′2(1 + 2γβ)
)

=
αβ(2β(1 + γβ) + β′(1 + 2γβ)) − 2KBβ2(1 + γβ)

β(2β2(1 + γβ) − β′2(1 + 2γβ))

For this case to hold, we must verify

0 ≥
α + β′pB

2
− KA(1 + γβ)

= β
α(β + β′)(1 + γβ) − KBβ′(1 + γβ)

2β2(1 + γβ) − β′2(1 + 2γβ)
− KA(1 + γβ)

⇔ 0 ≥ αβ(β + β′) − KBββ′ − KA(2β2(1 + γβ) − β
′2(1 + 2γβ))

⇔ 0 ≥ αβ(β + β′) − KBββ′ − d2KA

and

0 ≤
α + β′pA

2
− KB(1 + γβ)

=
αβ(2β(1 + γβ) + β′(1 + 2γβ)) − KBβ

′2(1 + 2γβ)

4β2(1 + γβ) − 2β′2(1 + 2γβ)
− KB(1 + γβ)

=
αβ(2β(1 + γβ) + β′(1 + 2γβ)) − KB(4β2(1 + γβ)2 − β

′2(1 + 2γβ)2)

4β2(1 + γβ) − 2β′2(1 + 2γβ)

⇔ 0 ≤ αβ(2β(1 + γβ) + β′(1 + 2γβ)) − KB(4β2(1 + γβ)2 − β
′2(1 + 2γβ)2)

= αβ − KB(2β(1 + γβ) − β′(1 + 2γβ))

= αβ − bKB

Remark: it is impossible to have A in case 2 and B in case 1. Indeed, for this case to hold, we
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would need 0 ≥ αβ(β+β′)−KAββ′−d2KB and 0 < αβ−bKA, but 0 ≥ αβ(β+β′)−KAββ′−d2KB

implies

0 ≥ αβ(β + β′) − KAββ′ − d2KA = (β + β′)(αβ − KAb).

D Optimal solution under supplier cooperation

While the capacity constraint is not tight for either supplier, by symmetry, the solutions are identical

for each supplier, and they are a solution to the monopoly problem with price sensitivity β − β′,

i.e.:

• if α
2 − KB(1 + γ(β − β′)) ≤ 0, then

uA = uB =
α

2(1 + γ(β − β′))
, pA = pB =

α(1 + 2γ(β − β′))

2(β − β′)(1 + γ(β − β′))
.

JA = JB =
α2

4(β − β′)(1 + γ(β − β′))

Note that we can show

α

2
−KA(1+γ(β−β′))+

β′

β + β′
(KA−KB) =

α

2
−γKA(β−β′)−

βKA + β′KB

β + β′
<

α

2
−KB(1+γ(β−β′)).

Some calculations involving minimizing the Lagrangian similarly to Appendix C lead to the addi-

tional cases:

• if α
2 − KA(1 + γ(β − β′)) + β′(KA−KB)

β+β′ < 0 < α
2 − KB(1 + γ(β − β′)), then

uA =
α
2 (β + β′) − β′KB

β + γ(β2 − β′2)
, uB = KB ,

pA =
α

2(β − β′)
+

α
2 γ(β + β′) − γβ′KB

β + γ(β2 − β′2)
,

pB =
α

2(β − β′)
+

α
2 (1 + γ(β + β′)) − KB(1 + γβ)

β + γ(β2 − β′2)

JA =
α
(

α
2 (β + β′) − β′KB

)

2(β − β′)(β + γ(β2 − β′2))
,

JB = −γ(KB)2 + KB
( α

2(β − β′)
+

α
2 (1 + γ(β + β′)) − KB(1 + γβ)

β + γ(β2 − β′2)

)
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• if 0 ≤ α
2 − KA(1 + γ(β − β′)) + β′(KA−KB)

β+β′ , then

uB = KB, uA = KA,

pA =
1

β − β′

(

α −
βKA + β′KB

β + β′

)

, pB =
1

β − β′

(

α −
βKB + β′KA

β + β′

)

JA = −γ(KA)2 +
KA

β − β′

(

α−
βKA + β′KB

β + β′

)

, JB = −γ(KB)2 +
KB

β − β′

(

α−
βKB + β′KA

β + β′

)

E The centrally coordinated optimal solution

Proposition 7. The centrally coordinated optimal solution to the central planner’s optimization

problem is:

• if KB ≥ α
1+2γ(β−β′) , then

uA = uB =
α

1 + 2γ(β − β′)
≡ u0, pA = pB =

2γα

1 + 2γ(β − β′)
≡ p0

Πcc =
α2

(β − β′)(1 + 2γ(β − β′))

• if α(β+β′)−KA(β+2γ(β2−β
′2))

β′ ≤ KB < α
1+2γ(β−β′) then

uA = u0 +
β′(u0 − KB)

β + 2γ(β2 − β
′2)

=
α(β + β′) − β′KB

β + 2γ(β2 − β
′2)

, uB = KB ,

pA = p0 +
2γβ′(u0 − KB)

β + 2γ(β2 − β′2)
, pB = p0 +

(1 + 2γβ)(u0 − KB)

β + 2γ(β2 − β′2)

• if KB < α(β+β′)−KA(β+2γ(β2−β′2))
β′ , then

uB = KB, uA = KA,

pA =
α(β + β′) − βKA − β′KB

β2 − β
′2

, pB =
α(β + β′) − β′KA − βKB

β2 − β
′2

The proof uses Lagrangian duality and is straightforward; it is thus omitted.

F Figures
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G Proofs

G.1 Proof of Lemma 1

(i) We can show that

lb(K
A) − l′b(K

A) =
β + β′

ββ′

(α

2
β − (β − β′)KA(1 + γβ)

)

Regime c′ implies l′b(K
A) > 0, that is

KA(β(1 + γβ) − γβ
′2) < (β + β′)

α

2
.

Moreover, we can show that

β + β′

β(1 + γβ) − γβ′2
<

1

1 + γβ

β

β − β′

as follows:

β + β′

β(1 + γβ) − γβ′2
<

1

1 + γβ

β

β − β′

⇔ (1 + γβ)(β2 − β
′2) < β(β(1 + γβ) − γβ

′2)

⇔ −β
′2(1 + γβ) < −γββ

′2

which clearly holds.

Therefore, l′b(K
A) > 0 implies

KA <
(β + β′)α

2

β(1 + γβ) − γβ′2
<

1

1 + γβ

α

2

β

β − β′
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which in turn implies lb(K
A)− l′b(K

A) > 0. Finally, if regime c′ holds, then KB < l′b(K
A) < lb(K

A)

and therefore, in a decentralized setting, regime c holds.

(ii) In this proof, the subscript d (resp. c) refers to the decentralized (resp. cooperative)

solution.

As seen in Section 2.3, regime a implies regime a’ and regime c’ implies regime c. Therefore,

the inputs may correspond to one of 7 possible situations: regimes a and a’, b and a’, b and b’, c

and a’, c and b’, c and c’, for respectively the decentralized and centralized settings.

• regimes (a,a’): Since the optimal and equilibrium (resp.) production quantities are given by

uA
c = uB

c = α
2(1+γβ)−2γβ′ and uA

d = uB
d = α

2(1+γβ)− β′

β
−2γβ′

, it is clear that uA
c = uB

c < uA
d = uB

d .

• regimes (b,a’): The equilibrium production quantity for B is uB
d = KB, so by feasibil-

ity it follows that uB
c ≤ uB

d . Moreover, for supplier A, uA
d = αβ(β+β′)−ββ′KB

2β2(1+γβ)−β
′2(1+2γβ)

, uA
c =

α
2(1+γ(β−β′)) . Some calculations lead to

uA
d ≥ uA

c ⇔
(

αβ(β + β′) − ββ′KB
)(

2(1 + γ(β − β′))
)

< α
(

2β2(1 + γβ) − β
′2(1 + 2γβ)

)

⇔ α(2β + β′) ≥ 2βKB(1 + γ(β − β′))

Under regime b, we have αβ ≥ KB(2β(1 + γβ) − β
′
(1 + 2γβ)), and therefore

α(2β + β′) ≥
2β + β′

β

(

KB(2β(1 + γβ) − β
′

(1 + 2γβ))
)

.

As a result, to show uA
d ≥ uA

c , it is sufficient to show that the right hand side in the inequality

above is greater than or equal to 2βKB(1 + γ(β − β′)). We observe that

2β + β′

β

(

KB(2β(1 + γβ) − β
′

(1 + 2γβ))
)

−2βKB(1 + γ(β − β′)) = KB(
2β2 − β

′2

β
+ 2γ(β2 − β

′2)) > 0

and the result follows.

• regimes (b,b’): The optimal and equilibrium (resp.) production quantities are given by

uA
d = α(β+β′)−β′KB

2β(1+γβ)− β
′2

β
−2γβ

′2
, uA

c = α(β+β′)−2β′KB

2β(1+γβ)−2γβ
′2 , uB

d = uB
c = KB, thus it is clear that

uA
d > uA

c .

• regimes (c,a’), (c,b’) and (c,c’): The equilibrium production quantities are given by

uA
d = KA, uB

d = KB so by feasibility uA
c ≤ uA

d and uB
c ≤ uB

d and the result follows.

�
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G.2 Proof of Theorem 3

Part 1.

It is straightforward to derive that if KA = KB ≡ K, then

JR
d =

{

α2β2

b2(β−β′)
if αβ − bK ≤ 0

K2

β−β′ else

JR
c =

{

α2

4(β−β′)(1+γ(β−β′))2 if 1
2α − K(1 + γ(β − β′)) ≤ 0

K2

β−β′ else

In particular,

JR
d

JR
c

=















4β2(1+γ(β−β′))2

b2
if K ≥ αβ/b

4K2(1+γ(β−β′))2

α2 if α
2(1+γ(β−β′)) ≤ K < αβ/b

1 else

We have b2 = (2β − β′ + 2γβ(β − β′))2 < (2β + 2γβ(β − β′))2 = 4β2(1 + γ(β − β′))2. Moreover,

if α
2(1+γ(β−β′)) ≤ K, then it is clear that 4K2(1 + γ(β − β′))2 ≥ α2. As a result, it follows that

JR
d /JR

c ≥ 1.

Part 2.

It is straightforward to derive that if KA = KB ≡ K, then

Πd =

{

α2β(3β−2β′+2γβ(β−β′))
b2(β−β′)

if αβ − bK ≤ 0
K(2α−K(1+2γ(β−β′)))

β−β′ else

Πc =

{

α2(3+2γ(β−β′))
4(β−β′)(1+γ(β−β′))2

if 1
2α − K(1 + γ(β − β′)) ≤ 0

K(2α−K(1+2γ(β−β′)))
β−β′ else

Πcc =

{

α2

(β−β′)(1+2γ(β−β′)) if K ≥ α
1+2γ(β−β′)

K(2α−K(1+2γ(β−β′)))
β−β′ else

In particular,

Πd

Πc
=















4β(3β−2β′+2γβ(β−β′))(1+γ(β−β′))2

b2(3+2γ(β−β′))
if K ≥ αβ/b

4K(2α−K(1+2γ(β−β′)))(1+γ(β−β′))2

α2(3+2γ(β−β′)) if α
2(1+γ(β−β′)) ≤ K < αβ/b

1 else

We obtain after simplification:

4β(3β−2β′+2γβ(β−β′))(1+γ(β−β′))2−b2(3+2γ(β−β′)) = β′(4β−3β′)+γβ′(β−β′)(4β−2β′) > 0
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Moreover, we find that

4K(2α − K(1 + 2γ(β − β′)))(1 + γ(β − β′))2 − α2(3 + 2γ(β − β′))

= −4(1 + 2γ(β − β′))(1 + γ(β − β′))2
(

K −
α

2(1 + γ(β − β′))

)(

K −
α(3 + 2γ(β − β′))

2(1 + 2γ(β − β′))(1 + γ(β − β′))

)

Clearly, for α
2(1+γ(β−β′)) ≤ K we have −4(1 + 2γ(β − β′))(1 + γ(β − β′))2

(

K − α
2(1+γ(β−β′))

)

≤ 0.

In addition, it is easy to obtain that

β

b
≤

3 + 2γ(β − β′)

2(1 + 2γ(β − β′))(1 + γ(β − β′))
,

therefore, for K < αβ/b, K − α(3+2γ(β−β′))
2(1+2γ(β−β′))(1+γ(β−β′)) < 0. It follows that

4K(2α − K(1 + 2γ(β − β′)))(1 + γ(β − β′))2 − α2(3 + 2γ(β − β′)) < 0

for α
2(1+γ(β−β′)) ≤ K < αβ/b, and hence Πd ≤ Πc.

Part 3.

Similarly,

Πc

Πcc
=















(3+2γ(β−β′))(1+2γ(β−β′))
4(1+γ(β−β′))2

if K ≥ α
1+2γ(β−β′)

α2(3+2γ(β−β′))
4K(2α−K(1+2γ(β−β′)))(1+γ(β−β′))2

if α
2(1+γ(β−β′)) ≤ K < α

1+2γ(β−β′)

1 else

We notice that
(3 + 2γ(β − β′))(1 + 2γ(β − β′))

4(1 + γ(β − β′))2
= 1 −

1

4(1 + γ(β − β′))2

Moreover, in the second expression, the denominator is clearly a increasing function of K for

K < α
1+2γ(β−β′) so the ratio is decreasing with K. For the largest possible value of K in the range,

the ratio (at its minimum value) equals the ratio of the first case, which we showed above cannot

go below 1 − 1
4(1+γ(β−β′))2 . Therefore,

Πc

Πcc
≥ 1 −

1

4(1 + γ(β − β′))2
≥

3

4

where the first inequality is tight for large capacity level and the second inequality is tight in the

case of no production cost (γ = 0) or non differentiated suppliers (β = β′).

�

G.3 Proof of Proposition 4

We consider the 7 possible combinations of regimes in the decentralized and cooperative settings.
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• regimes (a, a′): Let’s first note that

b2 − 4β(β − β′)(1 + γ(β − β′))(1 + γβ) = β
′2.

Some calculations then lead to

JB
c − JB

d =

α2

4(β−β′)

1 + γ(β − β′)
−

β(1 + γβ)α2

b2
=

β
′2α2

4b2(β − β′)(1 + γ(β − β′))
≥ 0.

• regimes (b, a′): Some calculations then lead to

JB
c − JB

d =

α2

4(β−β′)

1 + γ(β − β′)
+ γ(KB)2 − KB

(α(2β(1 + γβ) + β′(1 + 2γβ)) − 2KBβ(1 + γβ)

d2

)

=
−αKB(2β(1 + γβ) + β′(1 + 2γβ)) + (KB)2(2β(1 + γβ)2 − γβ

′2(1 + 2γβ))

d2

+
α2

4(β − β′)(1 + γ(β − β′))

We observe that this is a polynomial of degree 2 in α with concavity turned up. Straightfor-

ward calculations enable to find that this polynomial reaches a minimum at

2(β − β′)(1 + γ(β − β′))KB(2β(1 + γβ) + β′(1 + 2γβ))

d2

and thus the minimum value of the polynomial is

(KB)2

d4

(

− (β − β′)(1 + γ(β − β′))(2β(1 + γβ) + β′(1 + 2γβ))2 + d2(2β(1 + γβ)2 − γβ
′2(1 + 2γβ))

)

=
(KB)2

d4

(

β
′3(1 + 2γβ)3 + ββ

′2(1 + γβ)(1 + 2γβ)2 − γβ2β
′2(1 + γβ)2 − 4γββ

′3(1 + γβ)(1 + 2γβ)
)

=
(KB)2

d4

(

β
′3(1 + 2γβ) + ββ

′2(1 + γβ)(1 + 3γβ + 3γ2β2)
)

> 0

• regimes (b, b′):

JB
c − JB

d = KB
( α

2(β − β′)
+

α
2 (1 + γ(β + β′)) − KB(1 + γβ)

β + γ(β2 − β′2)

−
α(2β(1 + γβ) + β′(1 + 2γβ)) − 2KBβ(1 + γβ)

d2

)
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thus JB
c ≥ JB

d iff

α

2(β − β′)
+

α
2 (1 + γ(β + β′)) − KB(1 + γβ)

β + γ(β2 − β′2)
−

α(2β(1 + γβ) + β′(1 + 2γβ)) − 2KBβ(1 + γβ)

d2
> 0

⇔ α
( 2β − β′ + 2γ(β2 − β

′2)

2(β − β′)(β + γ(β2 − β′2))
−

2β(1 + γβ) + β′(1 + 2γβ)

d2

)

+
KBβ

′2(1 + γβ)

d2(β + γ(β2 − β′2))
> 0

It is sufficient to show that the slope of α above is positive. Since we observe that (2β(1 +

γβ) + β′(1 + 2γβ))(β − β′) = d2 − ββ′, the slope of α is positive iff

d2(2(β + γ(β2 − β
′2)) − β′) − 2(β + γ(β2 − β

′2))(d2 − ββ′) > 0

which simplifies to β
′3 > 0. Therefore, JB

c ≥ JB
d .

• regimes (c, a′):

JB
c − JB

d =

α2

4(β−β′)

1 + γ(β − β′)
−

KB

β − β′

(

α − K̄
)

+ γ(KB)2

=
α2

4(β − β′)(1 + γ(β − β′))
−

αKB

β − β′
+

KBK̄

β − β′
+ γ(KB)2

where K̄ = βKB+β′KA

β+β′ > KB. We observe that JB
c − JB

d is quadratic in α with the concavity

turned up. Therefore, it if necessary and sufficient to check the sign of JB
c − JB

d at the point

where the polynomial reaches its minimum: 2KB(1 + γ(β − β′)), where the polynomial takes

value
KBK̄

β − β′
+ γ(KB)2 −

(KB)2(1 + γ(β − β′))

β − β′
=

KB(K̄ − KB

β − β′
> 0

Therefore, JB
c ≥ JB

d .

• regimes (c, b′):

JB
c − JB

d = KB
(

−
α

2(β − β′)
+

α
2 (1 + γ(β + β′)) − KB(1 + γβ)

β + γ(β2 − β′2)
+

βKB + β′KA

β2 − β′2

)

= KB
( −αβ′

2(β − β′)(β + γ(β2 − β′2))

+
−KB(1 + γβ)(β2 − β

′2) + (βKB + β′KA)(β + γ(β2 − β
′2))

(β + γ(β2 − β′2))(β2 − β′2)

)

= KBβ′
( −α

2(β − β′)(β + γ(β2 − β′2))
+

KBβ
′
+ KA(β + γ(β2 − β

′2))

(β + γ(β2 − β′2))(β2 − β′2)

)
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Since in regime b′, α
2 < KA(1 + γ(β − β′)) − β′(KA−KB)

β+β′ , we have

JB
c − JB

d > KBβ′ −KA(β + β′ + γ(β2 − β
′2)) + β′(KA − KB) + KBβ

′
+ KA(β + γ(β2 − β

′2))

(β + γ(β2 − β′2))(β2 − β′2)

= 0

which proves that on the valid domain JB
c ≥ JB

d .

• regimes (c, c′): JB
c = JB

d = KB

β−β′

(

α − βKB+β′KA

β+β′

)

(the cooperative solution and the decen-

tralized equilibrium coincide).

�

G.4 Proof of Proposition 5 and Theorem 4

Three regimes are possible: (a, a′), (c, a′) and (c, c′).

• regimes (c, c′): In this regime, the optimal solution under cooperation is identical to the

equilibrium, therefore ρ = 1.

The condition to be in this regime is 0 ≤ α
2 − K(1 + γ(β − β′)).

• regimes (a, a′): This regime holds if αβ − bK ≤ 0, i.e. α − K(2 − r + 2γ(β − β′)) ≤ 0.

Since b2 − 4β(β − β′)(1 + γ(β − β′))(1 + γβ) = β
′2,

ρ =
4β(β − β′)(1 + γβ)(1 + γ(β − β′))

b2
=

b2 − r2β2

b2
= 1 −

r2β2

b2

Moreover, b
β

= 2 − r + 2γ(β − β′) > 2 − r so r2β2

b2
< r2

(2−r)2
. Therefore,

ρ > 1 −
r2

(2 − r)2
.

• regimes (c, a′): This regime holds if α−K(2−r+2γ(β−β′)) ≥ 0 and 0 ≥ α
2 −K(1+γ(β−β′)),

i.e.
1

2(1 + γ(β − β′))
≤

K

α
≤

1

2 − r + 2γ(β − β′)
.

ρ = 4(1 + γ(β − β′))
K(α − K) − γ(β − β′)K2

α2

= 4(1 + γ(β − β′))
K

α

(

1 −
K

α
(1 + γ(β − β′))

)

Denoting X = (1+γ(β −β′))K
α

, we have ρ = 4X(1−X), where 1
2 ≤ X ≤ X0 ≡ 1+γ(β−β′)

2−r+2γ(β−β′) .
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On this domain, ρ reaches its minimum at X0, i.e.

ρ ≥ 4X0(1 − X0)

=
4(1 + γ(β − β′))(1 + γ(β − β′) − r)

(2 + 2γ(β − β′) − r)2

= 1 −
r2

(2 + 2γ(β − β′) − r)2

≥ 1 −
r2

(2 − r)2

It follows that 1 − ρ ≤ r2

(2−r)2
. We now show that 1 − ρ ≤ r2 K2

α2 .

In regimes (c, c′), ρ = 1 so the bound clearly holds.

In regimes (a, a′), b
β

= 2 − r + 2γ(β − β′) ≥ α
K

and thus ρ = 1 − r2β2

b2
≥ 1 − r2 K2

α2 .

In regimes (c, a′), for brevity let us denote u ≡ 1 + γ(β − β′). We have (as seen in Appendix G.4)

ρ = 1 − (1 − 2uK
α

)2 and the valid domain in this regime is 2u − r ≤ α
K

≤ 2u. Therefore, we have

in particular K
α

(2u − r) ≤ 1, which implies 0 ≤ 2uK
α

− 1 ≤ rK
α

. Therefore,
(

2uK
α

− 1
)2

≤ r2 K2

α2 , so

we have ρ = 1 − (2uK
α

− 1)2 ≥ 1 − r2 K2

α2 . �

G.5 Proof of Theorem 5

The derivative of ρ with respect to KB is

∂ρ

∂KB
=

∂

∂KB

(JA
d + JB

d

JA
c + JB

c

)

therefore ρ is non increasing with KB iff

(JA
d + JB

d )
∂(JA

c + JB
c )

∂KB
− (JA

c + JB
c )

∂(JA
d + JB

d )

∂KB
≥ 0 (5)

• regimes (c, c′): ρ = 1 is independent of KB .

• regimes (a, a′): JA
d , JB

d , JA
c and JB

c are independent of KB, so ρ is independent of KB.

• regimes (c, a′): We have ∂(JA
c +JB

c )
∂KB = 0 and JA

c +JB
c ≥ 0, therefore (5) holds iff

∂(JA
d +JB

d )

∂KB ≤ 0.

We have

∂(JA
d + JB

d )

∂KB
= −

β′

β + β′

KA

β − β′
− 2γKB +

α

β − β′
−

βKB + β′KA

β2 − β′2
−

β

β + β′

KB

β − β′

=
α

β − β′
− 2γKB − 2

βKB + β′KA

β2 − β′2

≤
α − 2γKB(β − β′) − 2KB

β − β′
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where the last inequality follows from the observation that βKB+β′KA

β+β
′ ≥ KB for KA ≥ KB .

In regime a′, α − 2KB(1 + γ(β − β′) < 0, so the result follows.

• regimes (b, a′): We have ∂(JA
c +JB

c )
∂KB = 0 and JA

c + JB
c ≥ 0, therefore (5) holds iff

∂(JA
d + JB

d )

∂KB
≤ 0 (6)

We observe that
∂JA

d

∂KB and
∂JB

d

∂KB are linear in KB, with a slope respectively equal to 2ββ
′2(1+γβ)

d4 >

0 and −2γ − 4β(1+γβ)
d2 < 0. Therefore,

∂(JA
d +JB

d )

∂KB is linear in KB with slope

2

d4

(

ββ
′2(1 + γβ) − γd4 − 2β(1 + γβ)d2

)

< 0

since d2 ≥ 2β2 − β
′2 implies β

′2 − 2d2 ≤ −4β2 + β
′2 < 0. Therefore, (6) holds iff

∂(JA
d +JB

d )

∂KB is

non positive at the lowest value allowed for KB in regimes (b, a′), i.e.

max{
αβ(β + β′) − d2KA

ββ′
,

α
2

1 + γ(β − β′)
}.

We will prove the sufficient condition that
∂(JA

d +JB
d )

∂KB is non positive for KB =
α
2

1+γ(β−β′) .

∂(JA
d +JB

d )

∂KB is linear decreasing in KB , and some calculations lead to showing that it takes value

0 for

KB =
α

2

d2(2β(1 + γβ) + β′(1 + 2γβ)) − 2ββ′(1 + γβ)(β + β′)

−ββ′2(1 + γβ) + γd4 + 2β(1 + γβ)d2
.

Therefore
∂(JA

d +JB
d )

∂KB is non positive for KB =
α
2

1+γ(β−β′) iff

d2(2β(1 + γβ) + β′(1 + 2γβ)) − 2ββ′(1 + γβ)(β + β′)

−ββ
′2(1 + γβ) + γd4 + 2β(1 + γβ)d2

≤ 1,

or equivalently,

γd4 − d2β′(1 + 2γβ) + ββ′(1 + γβ)(2β + β′) ≥ 0.

Denoting r = β′

β
∈ [0, 1] and t = γβ > 0, we have d2

β2 = (2 − r2) + 2t(1 − r2), so we observe

that the inequality above is equivalent to

t
(

(2 − r2) + 2t(1 − r2)
)2

−
(

(2 − r2) + 2t(1 − r2)
)

r(1 + 2t) + r(1 + t)(2 + r) ≥ 0

which, as illustrated in Figure 13, holds for any r in [0, 1] and t > 0. This ends the proof.

Lemma 3. Consider two polynomials of degree 2: P1(X) = aX2 + bX + c and P2(X) =

a′X2 + b′X + c′. Then P1(X)P ′
2(X) − P ′

1(X)P2(X) is a polynomial of degree 2 given by
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Figure 13: Plot of t
(

(2 − r2) + 2t(1 − r2)
)2

−
(

(2 − r2) + 2t(1 − r2)
)

r(1 + 2t) + r(1 + t)(2 + r) as a

function of r and t, where r = β′

β
and t = γβ.

(a′b − ab′)X2 + 2(a′c − ac′)X + (cb′ − c′b).

• regimes (c, b′): JA
c + JB

c and JA
d + JB

d are quadratic in KB, so, using the Lemma above,

inequality (5) is a quadratic expression in KB , which we will denote polynomial P (KB) =

sKB2
+ t0K

B + v. The coefficient of KB2
is, after calculations, equal to

s =
(1 + γ(β + β′))α

β2 − β′2
−

α − 2KA β′

β+β′

β − β′

(

γ +
1 + γβ

β + γ(β2 − β′2)

)

=
β′(1 + γ(β + β′))

(β2 − β′2)(β + γ(β2 − β′2))
(−α + 2KA(1 + γ(β − β′)))

This coefficient is positive iff

α < 2KA(1 + γ(β − β′))

Regime b′ implies (β + β′)α − 2KA(β + γ(β2 − β
′2)) < 2β′KB . Since KB ≤ KA, we have in

this regime

(β + β′)α < 2KA(β + β′ + γ(β2 − β
′2)),

i.e. α < 2KA(1 + γ(β − β′)).

This proves that (JA
d + JB

d )∂(JA
c +JB

c )
∂KB − (JA

c + JB
c )

∂(JA
d +JB

d )

∂KB is quadratic in KB with a co-

efficient of (KB)2 that is positive. To show that polynomial P (KB) is non negative on
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the valid domain for KB in regimes (c, b′), we will show that at the minimum allowed

value in this regime max(0,KB
1 ), P (KB) and its first derivative are non negative, where

l′b(K
A) =

(β+β′)α
2

−KA(β+γ(β2−β
′2))

β′ .

First, it is clear that JA
c , JB

c , JA
d and JB

d are continuous in KB. Furthermore, we observe that
∂(JA

c +JB
c )

∂KB is continuous in KB at the threshold l′b(K
A) between regimes b′ and c′. Indeed,

after calculations, to the left (regime b′), it is equal to

α(1 + γ(β + β′))

β + γ(β2 − β′2)
− 2l′b(K

A)
(1 + γ(β + β′))(1 + γ(β − β′))

β + γ(β2 − β′2)

while to the right (regime c′), it is equal to

α − 2 β′

β+β′ KA

β − β′
− 2l′b(K

A)
β + γ(β2 − β

′2)

β2 − β′2

Straightforward simplifications show that these two quantities are equal. Since l′b(K
A) is not

a threshold between two regimes for Jd,
∂(JA

d +JB
d )

∂KB is continuous in KB at l′b(K
A). Therefore,

the first derivative of ρ with respect to KB is continuous at l′b(K
A). To the left of l′b(K

A),

regimes (c, b′) become regimes (c, c′) where ρ = 1 and in particular its first derivative is equal

to zero. Therefore, by continuity, polynomial P (KB) takes value zero at l′b(K
A).

If l′b(K
A) is the larger root (i.e. l′b(K

A) > − t0
2s

), then in regime (c, b′), KB > max(0, l′b(K
A)) ≥

l′b(K
A) and thus P (KB) is non negative and the result is shown. Assume l′b(K

A) is the smaller

root (i.e. l′b(K
A) < − t0

2s
); we need to show that t0 the derivative of polynomial P (KB) at

zero is non negative. It will then follow that l′b(K
A) < 0 (because we showed s > 0), hence

the result.

The coefficient of the linear term in P (KB) is:

t0 = −
2

β − β′
(1 + γ(β + β′))(1 + γ(β − β′))

( KAα

β + γ(β2 − β′2)
−

(KA)2

(β + β′)

)

+
2

β − β′

( α2

4(β − β′)

)

=
2

β − β′

( α2

4(β − β′)
− (1 + γ(β + β′))(1 + γ(β − β′))

( KAα

β + γ(β2 − β′2)
−

(KA)2

β + β′

))

It is easy to check (using for example the Excel solver) that t0 above is minimized for β′ = 0

and then equals 2
β2

(

(α
2 − KA)2 + γ(KA)2

)

≥ 0. Therefore t0 ≥ 0, which ends the proof.

• regimes (b, b′): JA
c + JB

c and JA
d + JB

d are quadratic in KB, so, using the Lemma above,

inequality (5) is a quadratic expression in KB: P1(K
B) = s1(K

B)2 + t1K
B + v1. First, let’s

show that the coefficient s1 of (KB)2 is positive. This coefficient is equal to

s1 = −
(1 + γ(β + β′))(1 + γ(β − β′))

β + γ(β2 − β′2)

(

−
2ββ′(1 + γβ)

d4
(α(β+β′))+

α(2β(1 + γβ) + β′(1 + 2γβ))

d2

)
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−
(

(

− γ +
ββ

′2(1 + γβ)

d4
−

2β(1 + γβ)

d2

)α − (1 + γ(β + β′))

β + γ(β2 − β′2)

)

It is easy to check (using for example the Excel solver) that this expression is minimized for

β′ = 0, in which case it equals

α

β

1 + γβ

β
+ (γ +

1

β
)
α

β
= 0.

Therefore s1 is non negative. If polynomial P1(K
B) had less than 2 roots, then it would

always be non negative and the result follows. Let’s assume that it has 2 roots.

Moreover, we have that the coefficient of the linear term in P1(K
B) is given by

t1 = −2
(1 + γ(β + β′))(1 + γ(β − β′))

β + γ(β2 − β′2)

(β(1 + γβ)

d4

(

α(β + β′))
)2
)

−
(

− γ +
ββ

′2(1 + γβ)

d4
−

2β(1 + γβ)

d2

) α2

2 (β + β′)

(β − β′)(β + γ(β2 − β′2))

It is easy to check (using for example the Excel solver) that t1 above is minimized for β′ = 0

and then equals

−
2

β
(1 + γβ)

( α2

4β(1 + γβ)

)

+
α2

2β2
=

−α)2

2 + α2

2

β2
= 0

Therefore t1 ≥ 0. In other words, polynomial P1(K
B) has a derivative at 0 that is non

negative. Finally, we have to show that P1(0) ≥ 0 to conclude that both roots are negative,

and as a result on the valid domain for KB, we have P1(K
B) ≥ 0. We have

v1 =
α(1 + γ(β + β′))

β + γ(β2 − β′2)

(β(1 + γβ)

d4

(

α(β+β′))
)2
)

−
α2

2 (β + β′)

2(β − β′)(β + γ(β2 − β′2))

(

−
2ββ′(1 + γβ)

d4
(α(β+β′))

+
α(2β(1 + γβ) + β′(1 + 2γβ))

d2

)

It is easy to check (using for example the Excel solver) that v1 above is minimized for β′ = 0

and then equals

α − 2I0

β

(

− γI2
0 +

(α + 2γβI0)
2

4β(1 + γβ)
+

I0(α − I0)

β

)

−
α2

4 + I0(α − I0)(1 + 2γβ)

β(1 + γβ)

α − 2I0

β
= 0

Therefore v1 ≥ 0.

�
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G.6 Proof of Proposition 1

In regime a, ∂JA

∂KB (KA,KB) = 0.

In regime c,
∂JA

∂KB
(KA,KB) = −

β′KA

β2 − β′2
< 0.

In regime b,
∂JA

∂KB
(KA,KB) = −

2ββ′(1 + γβ)

d4
(α(β + β′) − β′KB)

and in that regime,

β′KB < α
ββ′

b
= α(β + β′) − α

d2

b

therefore α(β + β′) − β′KB > αββ′

b
> 0 and thus ∂JA

∂KB (KA,KB) < 0. �

G.7 Proof of Proposition 2

We first show that αβ − bK0 > 0 and that if αβ(β + β′) − K0ββ′ − d2KA < 0, then K0 ≤ KA, and

thus KB = K0 corresponds to regime b.

Let d1 ≡ 4β(1 + γβ)2 − 2γβ
′2(1 + 2γβ) so that K0 = α(2β(1+γβ)+β′(1+2γβ))

d1
.

αβ − bK0 > 0 ⇔ βd1 − b(2β(1 + γβ) + β′(1 + 2γβ)) > 0

⇔ β
′2(1 + 2γβ) > 0

which holds.

αβ(β + β′) − K0ββ′ − d2KA < 0 ⇒ αβ(β + β′)d1 − ββ′α(2β(1 + γβ) + β′(1 + 2γβ))

− KAd1(2β
2(1 + γβ) − β

′2(1 + 2γβ)) < 0

Let

A = β(β + β′)d1 − ββ′(2β(1 + γβ) + β′(1 + 2γβ))

B = d1(2β
2(1 + γβ) − β

′2(1 + 2γβ)) > 0

so that the inequality above is: Aα − BKA < 0. We can show that A > 0: since

d1 > 2β′(2(1 + 2γβ + γ2β2) − γβ
′

(1 + 2γβ) > 2β′(2 + 3γβ)
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we have

A = β2(d1 − 2β′(1 + γβ)) + β′β(d1 − β′(1 + 2γβ)) > 0

K0 ≤ KA iff

α(2β(1 + γβ) + β′(1 + 2γβ)) − d1K
A ≤ 0.

In order to show that K0 ≤ KA, it is sufficient to show

B

A
<

d1

2β(1 + γβ) + β′(1 + 2γβ)
.

After calculations,

B(2β(1 + γβ) + β′(1 + 2γβ)) − Ad1 = −d1β
′2(β + β′)(1 + 2γβ) < 0.

This proves that if αβ(β + β′) − K0ββ′ − d2KA < 0, then K0 ∈ [0,KA] and KB = K0 is in regime

b. Therefore, a simple calculation of derivatives (using the expression found in Proposition 6 leads

to ∂JB

∂KB







KB=K0

= 0, which means that K0 is a local maximum of JB . (It is not a local minimum

or a point of inflexion because we proved that the profit was quadratic concave in regime b. )

Similarly, it is easy to show that under conditions (2) and (3), if K̄0 ∈ [0,KA], regime c holds

for KB = K̄0 and ∂JB

∂KB







KB=K̄0

= 0.

�

G.8 Proof of Proposition 3

JA + JB is independent of KB in regime a. Therefore if K∗ is in regime a, then la = αβ
b

the

threshold between regime a and b is also a maximum for JA + JB, and K∗ ≥ la.

Assume that K̄1 the value of KB that maximizes JB(KB) satisfies K̄1 < la. Then K̄1 is in regime b

or c, and JB(K̄1) ≥ JB(la). Since JA is decreasing with KB in regimes b and c, JA(K̄1) > JA(la),

and therefore (JA +JB)(K̄1) > (JA +JB)(la), which contradicts that la is a maximum for JA +JB .

Now consider the case when K∗ corresponds to either regime b or c. Thus we have

∂(JA + JB)(KA,KB)

∂KB







KB=K∗
= 0.

As we proved above, JA is non decreasing with KB, and in particular ∂JA

∂KB (KA,KB)






KB=K∗
< 0.

Therefore, ∂JB

∂KB (KA,KB)






KB=K∗
> 0.

Moreover, in regimes b and c respectively, ∂JB

∂KB (KA,KB) is linear decreasing with KB , possibly

crossing the horizontal axis at respectively K0 and K̄0. First suppose that JB ’s global maximum

is K0 (regime b). Then for KB ≥ K0 (regime a and rest of regime b), ∂JB

∂KB (KA,KB) ≤ 0 and thus
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K∗ < K0. Now suppose the global maximum is K̄0 (regime c). Then for KB > K̄0 and in regime

c, ∂JB

∂KB (KA,KB) < 0, so if K∗ is in regime c, K∗ < K̄0. To end the proof, we only need to show

that if JB ’s global maximum is K̄0, then K∗ is in regime c (not b).

Assume that JB’s global maximum is K̄0 and K∗ is not in regime c (and as a result, K̄0 < K∗).

Then JB(K̄0) > JB(K∗). Moreover, JA is continuous with KB and non increasing, therefore

JA(K̄0) ≥ JA(K∗), which implies (JA + JB)(K̄0) > (JA + JB)(K∗) and is a contradiction. �

G.9 Proof of Theorem 2

It is in supplier B’s best interests to choose her capacity level at K0 or K̄0, whichever value

maximizes her equilibrium profit (depending on which of the local maxima is a global maximum).

Denote K̄1 the value that supplier B would select, i.e., argmaxKBJB(KB). From Proposition 3,

it follows that K̄1 ≥ K∗. At that level K̄1, the system total profits are not maximized. In other

words, by decreasing supplier B’s capacity level from K̄1 to K∗, supplier B’s profits decrease less

than supplier A’s profits increase (see Figure 12). Supplier A would benefit from paying supplier

B a fee of JB(K̄1) − JB(K∗) + ǫ to change her capacity level from K̄1 to K∗. This would leave

supplier B better off, and incurs for supplier A a profit of

(JA + JB)(K∗) − JB(K̄1) − ǫ ≥ (JA + JB)(K̄1) − JB(K̄1) − ǫ = JA(K̄1) − ǫ.

Thus, such a fee together with a change from supplier B capacity level from K̄1 to K∗ incurs a

benefit of ǫ for supplier B and of −ǫ + (JA + JB)(K∗) − (JA + JB)(K̄1) for supplier A (supplier

A benefits as long as the premium ǫ is no greater than (JA + JB)(K∗) − (JA + JB)(K̄1)). Notice

that the setting is still decentralized, in the sense that both suppliers make decisions “selfishly” in

order to optimize their own profits, not the system profits. �
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