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Abstract In the present paper, we derive a closed-form solution of the multi-
period portfolio choice problem for a quadratic utility function with and without
a riskless asset. All results are derived under weak conditions on the asset returns.
No assumption on the correlation structure between different time points is needed
and no assumption on the distribution is imposed. All expressions are presented
in terms of the conditional mean vectors and the conditional covariance matrices.

If the multivariate process of the asset returns is independent it is shown that in
the case without a riskless asset the solution is presented as a sequence of optimal
portfolio weights obtained by solving the single-period Markowitz optimization
problem. The process dynamics are included only in the shape parameter of the
utility function. If a riskless asset is present then the multi-period optimal portfolio
weights are proportional to the single-period solutions multiplied by time-varying
constants which are depending on the process dynamics. Remarkably, in the case of
a portfolio selection with the tangency portfolio the multi-period solution coincides
with the sequence of the simple-period solutions. Finally, we compare the suggested
strategies with existing multi-period portfolio allocation methods for real data.
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1 Introduction

Nowadays, the portfolio selection problem plays an important role in financial
research. A number of papers are devoted to questions like, e.g., how an opti-
mal portfolio can be constructed, monitored, and/or estimated by using historical
data (see, e.g., Alexander and Baptista (2004) , Golosnoy and Schmid (2007),
Bodnar (2009)), what is the influence of parameter uncertainty on the portfolio
performance (cf., Okhrin and Schmid (2006) , Bodnar and Schmid (2008)), how do
the asset returns influence the portfolio choice (see, e.g., Jondeau and Rockinger
(2006), Menćıa and Sentana (2009), Adcock (2009), Harvey et al. (2010), Amen-
guala and Sentana (2010)), how is it possible to estimate the characteristics of
the distribution of the asset returns (see, e.g., Jorion (1986), Wang (2005), Frahm
and Memmel (2010)), how can the structure of optimal portfolio be statistically
justified (Gibbons et al. (1989), Britten-Jones (1999), Bodnar and Schmid (2009)).

In a seminal paper from 1952, H. Markowitz presented the idea of an optimal
portfolio selection by taking into account the trade-off between the portfolio ex-
pected return and its risk which is measured by the portfolio variance. The idea
of Markowitz’s approach is to minimize the portfolio variance for a given level of
the expected return. This method is equivalent to the so-called mean-variance util-
ity maximization problem. Although the suggested methodology is quite simple, it
provides us the most commonly used solution of the single-period (static) portfolio
choice problem that remains very popular today (see, e.g. Brandt (2010)).

Although the case of a long-term investment horizon is of greater importance
in practice much less has been done in that area. The first formulation of the multi-
period portfolio selection problem has already been given in the book of Markowitz
(1959) followed by the papers of Mossin (1968), Samuelson (1969), Merton and
Samuelson (1974). Although it is heavily discussed in recent literature (see, e.g.,
Konno et al. (1993), Li and Ng (2000), Steinbach (2001), Leippold, Trojani and
Vanini (2004), Brandt and Santa Clara (2006), Edirisinghe and Patterson, (2006),
Çelikyurt and Özekici (2007), Çanakoğlu and Özekici, (2009), Kilianová and Pflug
(2009), Skaf and Boyd (2009)), to the best of our knowledge, a closed-form solu-
tion is not available in the general case up to now. Only under the assumption of
independence closed-form solutions are presented by Li and Ng (2000) and Leip-
pold et al. (2004). For more general models, the solution is frequently determined
by a numerical procedure (see, e.g. Dantzig and Infanger (1993), van Binsbergen
and Brandt (2007), Mansini et al. (2007), Köksalan and Şakar (2014)). Brandt
and Santa Clara (2006) suggested a solution of the multi-period portfolio selection
problem assuming that the portfolio weights can be presented as a linear function
of certain state variables. This assumption leads to a simplification of the opti-
mization problem. Note that the solution is only a local maximum which could
differ from the global one. Finally, the solution of the multi-period portfolio se-
lection problem in continuous time is given by Duffie and Richardson (1991), Yan
and Li (2008), Aı̈t-Sahalia et al. (2009), Basak and Chabakauri (2010), Marzban
et al. (2013) among others.

We contribute to the existing literature by deriving the closed-form solution
of the dynamic portfolio choice problem with and without a riskless asset under
rather weak assumptions. The only conditions imposed on the distributions of
the asset returns are the existence of the conditional mean vectors and of the
conditional covariance matrices. No assumptions about the correlation structure
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between different time points or about the distribution of the asset returns, like
normality, are needed. The suggested method can be applied for both stationary
and non-stationary stochastic models. The results are obtained assuming that the
investor makes his decision on the basis of the quadratic utility function. This
is one of the most commonly used procedures since the paper of Tobin (1958)
where it is shown that the Bernoulli principle is satisfied for the mean-variance
solution only if one of the following two conditions is valid: the asset returns
are normally distributed, which is rarely the case in application, or the utility
function is quadratic. On the other hand, the quadratic utility function is usually
considered as a good approximation of the other utility functions (cf. Brandt et al.
(2006)). Moreover, under the additional assumption of independence we show that
at each time point the optimal multi-period portfolio weights can be presented in
a similar way as the optimal single-period portfolio weights. Both representations
differ in the coefficient of risk aversion. Finally, if the asset allocation is based
on the tangency portfolio we prove that the solution of the multi-period portfolio
selection problem is the same as that obtained by solving the single-period problem
at each time point.

In an empirical study we apply the obtained results to real data by comparing
the performance of the suggested strategies with existing multi-period portfolio
allocation methods. It is shown that the multi-period portfolio strategies based on
the approximative solutions perform very well for different values of the coefficient
of risk aversion and different investment periods.

The rest of the paper is organized as follows. In Section 2, we introduce the
multi-period portfolio choice problem for a quadratic utility function without a
riskless asset. The main results of this section are given in Theorem 1 (Section 2)
where a closed-form solution of the optimal portfolio weights is given. In Corol-
lary 1 we present the results of Theorem 1 in terms of the classical one-period
Markowitz’s solution for independent observations. In Section 3, the solution of
the multi-period portfolio selection problem for a quadratic utility function with
a riskless asset is presented (see Theorem 2). As in the case without a riskless
asset the solution for independent returns is proportional to the solution of the
corresponding single-period problem at each time point. The process dynamics
exclusively influence the proportionality constant (Corollary 2). A very interesting
result is obtained for the tangency portfolio. In Theorem 3 we prove for indepen-
dent returns that the multi-period portfolio selection problem for the tangency
portfolio is equivalent to a sequence of the single-period problems. The same solu-
tion is obtained in both cases. Because the tangency portfolio is, usually, considered
as a market portfolio (see, e.g. Britten-Jones (1999)) in capital asset pricing theory
the obtained result is of great importance for practitioners. The findings of the
empirical studies are presented in Section 4. The paper concludes in Section 5. All
proofs are given in the appendix (Section 6).

2 Multi-Period Portfolio Choice Problem for a Quadratic Utility
Function: Without Riskless Asset

In this section we derive a closed-form solution of the multi-period portfolio
choice problem with k risky assets for the case of a quadratic utility function.
Let Xt = (Xt,1, Xt,2, . . . , Xt,k)′ denote the vector of the returns of k risky assets
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and let E(Xt|Ft−1) = µt and V ar(Xt|Ft−1) = Σt. Ft denotes the information
set available at time t. Σt is assumed to be a positive definite matrix. Note that for
deriving the closed-form solution of the multi-period portfolio selection problem
in the present case we need neither any assumption on the correlation structure
between different time points nor any distributional assumption. It is only de-
manded that the conditional covariance matrix of the asset returns exists. The
solution exclusively depends on the conditional mean vector and the conditional
covariance matrix. These quantities can be calculated depending on the underly-
ing model of the asset return process. For instance, if the investor assumes that
the asset returns follow a vector ARMA-GARCH process then the expressions for
the conditional mean vector and the conditional covariance matrix can be directly
obtained by applying the well-developed theory of the multivariate autoregressive
processes and the multivariate conditionally heteroscedastic autoregressive pro-
cesses (see, e.g., Brockwell and Davis (1991), Engle (1982, 2002), Bollerslev et al.
(1988), Bauwens et al. (2006)).

Let wt = (wt,1, wt,2, . . . , wt,k)′ denote the vector of portfolio weights in period
t. Note that w′t1 = 1 where the vector 1 denotes a k-dimensional vector whose
components are all equal to 1. Then the wealth of the investor at time t is given
by

Wt = Wt−1(1 + w′t−1Xt) = Wt−1w′t−1X̃t , (1)

where X̃t = 1 + Xt. Then E(X̃t|Ft−1) = µ̃t = 1 + µt and V ar(Xt|Ft−1) = Σt.
Later on, we make use of X̃t instead of Xt for simplifying the presentation of
the obtained results. In this section, we deal with an investor who invests his
money exclusively into k risky assets and whose investment strategy is based on
the quadratic utility function given by

U(Wt) = Wt −
α

2
W 2
t , (2)

where α > 0 is the slope parameter of the quadratic utility function. The corre-
sponding relative risk aversion coefficient (RRA) is given by

γt =
αWt

1− αWt
, (3)

which specifies the attitude of the investor toward risk. Brandt and Santa Clara
(2006) considered γt as a constant obtained by substituting Wt = 1 in (3). We
follow this procedure in the empirical part of the paper by choosing the value of α
in the definition of the utility function (2) in such a way that γ ∈ {5, 10, 15, 20}.

The portfolio is allocated at time point 0 and thereafter reconstructed at time
1, . . . , T−1. The planning horizon contains T periods. The investor gets his reward
after the final period at time T . The aim of the investor is to maximize his final
utility of wealth at time point T , i.e.

V (0,W0,F0) = max
{ws:w′s1=1}T−1

s=0

E0[U(WT )] . (4)

Here Et(·) stands for the expectation given the information set Ft available at
time t. We assume that short-selling is allowed, i.e. wi could be negative. This
problem can be solved recursively.



Closed-Form Solution of Multi-Period Portfolio Choice for Quadratic Utility 5

Let
V (t,Wt,Ft) = max

{ws:w′s1=1}T−1
s=t

Et[U(WT )] (5)

and let w∗T−t+1 denote the optimal portfolio weights at time point T − t + 1
which is in general a function of optimal weights of the next periods, i.e. of
w∗T−t+2, w∗T−t+3, ..., w∗T−1. Following Brandt and Santa-Clara (2006) and Pen-
nacchi (2008) the optimization problem (4) can be solved by applying the following
Bellman equation at time point T − t

V (T − t,WT−t,FT−t)

= max
wT−t:w

′
T−t1=1

ET−t
[

max
{ws:w′s1=1}T−1

s=T−t+1

ET−t+1[U(WT )]
]

= max
wT−t:w

′
T−t1=1

ET−t
[
V (T − t+ 1,WT−tw

∗ ′
T−tX̃T−t+1,FT−t+1)

]
(6)

for t = 1, . . . , T . Note that

V (T,WT ,FT ) = U(WT ) . (7)

First, we derive the closed-form solution for the weights at period T−1 and then
formulate the general solution in Theorem 1. At time point T − 1 the application
of the terminal condition (7) leads to

V (T,WT ,FT ) = U(WT ) = WT −
α

2
W 2
T (8)

and, hence,

V (T − 1,WT−1,FT−1) = max
{wT−1:w′T−11=1}

ET−1

[
ET [WT −

α

2
W 2
T ]
]

= max
{wT−1:w′T−11=1}

ET−1

[
WT−1w′T−1X̃T −

α

2

(
WT−1w′T−1X̃T

)2 ]
= max
{wT−1:w′T−11=1}

[
WT−1w′T−1µ̃T −

α

2
ET−1

(
WT−1w′T−1X̃T

)2 ]
= max
{wT−1:w′T−11=1}

[
WT−1w′T−1µ̃T −

α

2
W 2
T−1w′T−1ATwT−1

]
, (9)

where AT = ΣT + µ̃T µ̃
′
T .

The first order conditions for the period T − 1 are

WT−1µ̃T − αW
2
T−1ATwT−1 + λ1 = 0 and 1′wT−1 = 1 , (10)

where λ is a Lagrange multiplier. Solving (10) with respect to λ and wT−1 leads
to the portfolio weights for period T − 1 given by

w∗T−1 =
A−1
T 1

1′A−1
T 1

+
1

αWT−1
Q̃T µ̃T with Q̃T = A−1

T −
A−1
T 11′A−1

T

1′A−1
T 1

. (11)

In Theorem 1, the expressions of the optimal portfolio weights w∗T−t at periods
0 to T − 1 are presented.
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Theorem 1 Let Xτ = (Xτ,1, Xτ,2, . . . , Xτ,k)′, τ = 0, . . . , T , be a random return
vector of k risky assets and let E(Xτ |Fτ−1) = µτ and V ar(Xτ |Fτ−1) = Στ where
Στ is positive definite. Then for all t = 1, . . . , T the optimal multi-period portfolio
weights for the period T − t are given by

w∗T−t =
A−1
T−t+11

1′A−1
T−t+11

+
1

αWT−t
Q̃T−t+1µ̃

∗
T−t+1 , (12)

with

Q̃T−t+1 = A−1
T−t+1 −

A−1
T−t+111′A−1

T−t+1

1′A−1
T−t+11

, (13)

AT−t+1 =

{
ΣT + µ̃T µ̃

′
T for t = 1

ET−t[VT−t+2X̃T−t+1X̃′T−t+1] for t = 2, . . . , T ,
, (14)

µ̃∗T−t+1 =

{
µ̃T for t = 1

ET−t[RT−t+2X̃T−t+1] for t = 2, . . . , T
(15)

and

RT−t+2 =
1′A−1

T−t+2µ̃
∗
T−t+2

1′A−1
T−t+21

, VT−t+2 =
1

1′A−1
T−t+21

for t = 2, . . . , T . (16)

The proof of the theorem is given in the appendix. Theorem 1 shows that the
structure of the optimal portfolio weights remains the same during the investment
period. In practice, the calculation of the optimal multi-period portfolio weights
should be performed by starting with t = T and then proceeding to t = 1.

It is important to note that if the terminal condition (7) is replaced by

V (T,WT ,FT ) = U(WT ) = WT −
α

2
(WT − ET−1(WT ))2

then its solution is the same as in Theorem 1 except the expression at time point
T − 1. Here, we get

w∗T−1 =
Σ−1
T 1

1′Σ−1
T 1

+
1

αWT−1
QT µ̃T with Q̃T = Σ−1

T −
Σ−1
T 11′Σ−1

T

1′Σ−1
T 1

.

An important property of the optimal weights is shown in Corollary 1 that
is proved in the appendix as well. Here, it is shown that under the assumption
of independence the optimal weights have the same structure as the ones that
are obtained by solving the single-period portfolio selection problem at each time
point with the common quadratic utility function given by

max µ′tw −
α

2
w′Σtw subject to w′1 = 1 . (17)

In the following we use the notations

RGMV,i =
1′Σ−1

i µi
1′Σ−1

i 1
, VGMV,i =

1

1′Σ−1
i 1

, and si = µ′iQiµi.
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Corollary 1 Let Xτ = (Xτ,1, Xτ,2, . . . , Xτ,k)′, τ = 0, . . . , T , be a sequence of
the independently distributed vectors of k risky assets and let E(Xτ ) = µτ and
V ar(Xτ ) = Στ where Στ is positive definite. Then for all t = 1, . . . , T the optimal
multi-period portfolio weights for the period T − t are given by

w∗T−t =
Σ−1
T−t+11

1′Σ−1
T−t+11

+ α−1
T−t+1QT−t+1µT−t+1 , (18)

with

QT−t+1 = Σ−1
T−t+1 −

Σ−1
T−t+111′Σ−1

T−t+1

1′Σ−1
T−t+11

(19)

and

α−1
T−t+1 =

1
αWT−t

(
T∏

i=T−t+2
ai

)
− 1−RGMV,T−t+1

1 + sT−t+1
with (20)

ai =
1 +RGMV,i

(1 +RGMV,i)2 + (1 + si)VGMV,i
.

The results of Corollary 1 are similar to those of Li and Ng (2000) who solved
the multi-period portfolio-selection problem assuming that the asset returns are
independent. Corollary 1 states that for solving the multi-period portfolio selection
problem with the quadratic utility function (2) it is enough to solve the single-
period problem given in (17) at each time point t ∈ {0, 1, ..., T − 1} and then
to make an adjustment in the expression for the coefficient of the investor’s risk
aversion α. It is very remarkable that the optimal weights at time T − t only
depend on the mean vector and the covariance matrix at time T − t + 1 and the
risk aversion αT−t+1. The mean vectors and the covariance matrices at time points
τ > T − t + 1 have an influence on the optimal weights only over the quantity
αT−t+1.

Because in the case of the single-period portfolio selection problem the solution
of (17) lies on the efficient frontier where α specifies the location of the optimal
portfolio within the efficient frontier, the same behavior can be observed in the
case of the multi-period portfolio allocation problem. The only difference is that
the efficient frontier is time-varying since the mean vectors µτ and the covariance
matricesΣτ are used for its construction. Then the optimal portfolio is obtained by
choosing ατ as specified in Corollary 1. In the special case when the process {Xτ}
consists of independent observations with time-invariant mean vector and time-
invariant covariance matrix the efficient frontier remains the same during the whole
investment period. Nevertheless, the optimal portfolio obtained by solving the
multi-period portfolio selection problem is time-varying because ατ is a function
of future wealths and it is not constant.

Hence, in the case of investing exclusively into risky assets, the solution of the
multi-period portfolio selection problem for the quadratic utility function is not
equivalent to the solution of the corresponding T single-period allocation problems.
Even if we assume that {Xt} consists of independent observations and the mean
vector and the covariance matrix are constant during the investment period, the
risk aversion is time-varying.
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The results of Corollary 1 possess another important application. Using the
relationship between the mean-variance utility optimization problem (17) and the
Markowitz optimization problem we get the formulation of the later in the multi-
period case. At time point T − t it is given by

min w′ΣT−t+1w subject to (21)

µ′T−t+1w = RGMV,T−t+1 +

(
1

αWT−t

(
T∏

i=T−t+2
ai

)
− 1−RGMV,T−t+1

)
sT−t+1

1 + sT−t+1
,

w′1 = 1

for t = 1, ..., T .

3 Multi-Period Portfolio Choice Problem for a Quadratic Utility
Function: With Riskless Asset

In this section we present a closed-form solution of the multi-period portfolio
selection problem with k risky assets and one riskless asset. Let Xt be the random
return vector containing k risky assets as defined in Section 2 and let rf,t be the
return of the riskless asset at time t. Let wt = (wt,1, wt,2, . . . , wt,k)′ denote the
vector of portfolio weights in period t invested into the k risky assets. Then the
evolution of the investor’s wealth is expressed as

Wt = Wt−1

(
1 + rf,t + w′t−1(Xt − rf,t1)

)
= Wt−1

(
Rf,t + w′t−1X̆t

)
, (22)

where Rf,t = 1 + rf,t and X̆t = Xt − rf,t1. The conditional mean vector of X̆t

is µ̆t = µt − rf,t1 and its conditional covariance matrix is given by Σt. In this
section we consider an investor who invests into k risky assets and one riskless
asset with the investment strategy based on the quadratic utility function given
in (2). The optimization problem is given by

V (0,W0,F0) = max
{ws}T−1

s=0

Et[U(WT )] . (23)

Let

V (t,Wt,Ft) = max
{ws}T−1

s=t

Et[U(WT )] . (24)

The problem (23) is solved recursively by applying the following Bellman equa-
tion at time point T − t

V (T − t,WT−t,FT−t)

= max
wT−t

ET−t
[

max
{ws}T−1

s=T−t+1

ET−t+1[U(WT )]
]

(25)

= max
wT−t

ET−t
[
V (T − t+ 1,WT−t

(
rf,T−t + w∗ ′T−t+1X̆T−t+1

)
,FT−t+1)

]
for t = 1, . . . , T . Note that for t = 0 the equality (7) holds.
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As in Section 2, we first derive the closed-form solution for the weights at
period T − 1. After that the general solution is derived (see Theorem 2). At time
point T − 1 the application of (7) leads to

V (T,WT ,FT ) = U(WT ) = WT −
α

2
W 2
T . (26)

Let ĂT = ΣT + µ̆T µ̆
′
T . Because

ET−1

(
WT−1(Rf,T + w′T−1X̆T )

)2
= VarT−1

(
WT−1(rf,T + w′T−1X̆T )

)
+
(
ET−1

(
WT−1(Rf,T + w′T−1X̆T )

))2
= W 2

T−1

[
w′T−1ATwT−1 +R2

f,T + 2Rf,Tw′T−1µ̆T

]
we get

V (T − 1,WT−1,FT−1) = max
{wT−1}

ET−1

[
ET [WT −

α

2
W 2
T

]
= max

wT−1
ET−1

[
WT−1

(
Rf,T + w′T−1X̆T

)
−
α

2

(
WT−1(Rf,T + w′T−1X̆T

)2 ]
= max

wT−1

[
WT−1

(
Rf,T + w′T−1µ̆T

)
−
α

2
ET−1

(
WT−1(Rf,T + w′T−1X̆T )

)2 ]
= max

wT−1

[
WT−1

(
Rf,T + w′T−1µ̆T

)
−
α

2
W 2
T−1

(
w′T−1ATwT−1 +R2

f,T + 2Rf,Tw′T−1µ̆T

) ]
.

The first order condition for the period T − 1 is

WT−1µ̆T − αW
2
T−1

(
ĂTwT−1 +Rf,T µ̆T

)
= 0 . (27)

This leads to the following expression of the portfolio weights for the period T − 1

w∗T−1 =

(
1

αWT−1
−Rf,T

)
Ă
−1
T µ̆T . (28)

In Theorem 2, the optimal multi-period portfolio weights are presented. The
proof of the theorem is given in the appendix.

Theorem 2 Let Xτ = (Xτ,1, Xτ,2, . . . , Xτ,k)′, τ = 0, . . . , T , be a random re-
turn vector of k risky assets, let rf,τ be the return of the riskless asset, and let
E(Xτ |Fτ−1) = µτ and V ar(Xτ |Fτ−1) = Στ where Στ is positive definite. Then
for all t = 1, . . . , T the optimal multi-period portfolio weights for period T − t are
given by

w∗T−t =
[ 1

αWT−t

 T∏
i=T−t+2

Rf,i

−1

−Rf,T−t+1

]
Ă
−1
T−t+1µ̆

∗
T−t+1 (29)

with

ĂT−t+1 =

{
ΣT + µ̆T µ̆

′
T for t = 1

ET−t[(1− s̃T−t+2)X̆T−t+1X̆′T−t+1] for t = 2, . . . , T
, (30)

µ̆∗T−t+1 =

{
µ̆T for t = 1

ET−t
(

(1− s̃T−t+2)X̆T−t+1

)
for t = 2, . . . , T

(31)

and
s̃T−t+2 = µ̆∗ ′T−t+2Ă

−1
T−t+2µ̆

∗
T−t+2 for t = 2, . . . , T . (32)
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As in the case without a riskless asset the expression of the optimal portfolio
weights for each period T − t looks like the solution of the single-period portfolio
selection problem at time point T − t. In Corollary 2, a stronger result under
the assumption of independence is proved, namely that the obtained weights are
proportional to the weights obtained by solving

max µ′tw −
α

2
w′Σtw . (33)

Corollary 2 Let Xτ = (Xτ,1, Xτ,2, . . . , Xτ,k)′, τ = 0, . . . , T , be a sequence of
the independently distributed vectors of k risky assets, let rf,τ be the return of
the riskless asset, and let E(Xτ ) = µτ and V ar(Xτ ) = Στ where Στ is positive
definite. Then for all t = 1, . . . , T the optimal multi-period portfolio weights for
period T − t are given by

w∗T−t = α−1
T−t+1Σ

−1
T−t+1µ̆T−t+1 , (34)

where

αT−t+1 =

[
1

αWT−t

(
T∏

i=T−t+2
Rf,i

)−1

−Rf,T−t+1

]
1 + µ̆′T−t+1Σ

−1
T−t+1µ̆T−t+1

. (35)

Corollary 2 shows that the solution of (23) at each time point T − t is similar
to the solution of the common single-period optimization problem given in (33).
The only difference is that the coefficient αT−t is time varying. It depends on
the future returns of the riskless asset. Leippold et al. (2004) suggested a similar
solution to one presented in Corollary 2 by using the geometric approach in the
case of independent asset returns.

It appears that the expressions presented in Theorem 2 are quite complicate
and cannot be evaluated for an arbitrary model of the asset returns. For this reason
we suggest a reasonable approximation for the weights and evaluate its accuracy.

First, the moments presented in (30) and (31) are approximated. Let ξ be
a random variable with support [0, 1]. The application of the Sherman-Morrison
formula to 1− s̃T−t+2 leads to

1− ξs̃T−t+2 =
1 + (1− ξ)µ̆′T−t+1Σ

−1
T−t+1µ̆T−t+1

1 + µ̆′T−t+1Σ
−1
T−t+1µ̆T−t+1

=
1 + (1− ξ)s̆T−t+2

1 + s̆T−t+2
, (36)

where s̆T−t+2 = µ̆′T−t+2Σ
−1
T−t+2µ̆T−t+2. Let ηT−t+2 =

1 + (1− ξ)s̆T−t+2

1 + s̆T−t+2
whose

support is [0, 1] as well. Then, it holds for the i-th component of µ̆∗T−t+1 that

ET−t
(

(1− ξs̃T−t+2)X̆T−t+1,i

)
= ET−t

(
1 + (1− ξ)s̆T−t+2

1 + s̆T−t+2
X̆T−t+1,i

)
= ET−t

(
ηT−t+2X̆T−t+1,i

)
= ET−t

(
ηT−t+2

(
X̆T−t+1,i − µ̆T−t+1,i + µ̆T−t+1,i

))
= ET−t

(
ηT−t+2µ̆T−t+1,i

)
+ ET−t

(
ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)

)
= ET−t (ηT−t+2) µ̆T−t+1,i + ET−t

(
ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)

)
.
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Because ηT−t+2 ≤ 1 it holds∣∣∣ET−t (ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)
)∣∣∣ ≤ ET−t

(∣∣∣X̆T−t+1,i − µ̆T−t+1,i

∣∣∣) ≤
≤
√
MSET−t+1,i ,

where MSET−t+1,i = ET−t
(

(X̆T−t+1,i − µ̆T−t+1,i)
2
)

is the conditional mean

square prediction error calculated for µ̆T−t+1,i. If MSET−t+1,i is small, what
should be expected if a good forecast of the process future values is performed,
then the quantity µ̆∗T−t+1,i is well approximated by

µ̆∗T−t+1,i ≈ ET−t (ηT−t+2) µ̆T−t+1,i . (37)

Similar results are obtained for (30). Here, it holds that

ET−t
(

(1− s̃T−t+2)X̆T−t+1,iX̆T−t+1,j

)
= ET−t

(
ηT−t+2X̆T−t+1,iX̆T−t+1,j

)
= ET−t

(
ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i + µ̆T−t+1,i)(X̆T−t+1,j − µ̆T−t+1,j + µ̆T−t+1,j)

)
= ET−t

(
ηT−t+2µ̆T−t+1,iµ̆T−t+1,j

)
+ ET−t

(
ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)(X̆T−t+1,j − µ̆T−t+1,j)

)
+ µ̆T−t+1,iET−t

(
ηT−t+2(X̆T−t+1,j − µ̆T−t+1,j)

)
+ µ̆T−t+1,jET−t

(
ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)

)
= (bT−t+1,ij − σT−t+1,ij)ET−t (ηT−t+2)

+ ET−t
(
ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)(X̆T−t+1,j − µ̆T−t+1,j)

)
+ µ̆T−t+1,iET−t

(
ηT−t+2(X̆T−t+1,j − µ̆T−t+1,j)

)
+ µ̆T−t+1,jET−t

(
ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)

)
,

where BT−t+1 = ET−t(X̆T−t+1X̆′T−t+1) = (bT−t+1,ij)i,j=1,...k and ΣT−t+1 = (σT−t+1,ij)i,j=1,...k.

Because 0 ≤ ηT−t+2 ≤ 1 we get that∣∣∣ET−t (ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)(X̆T−t+1,j − µ̆T−t+1,j)
)

− σT−t+1,ijET−t (ηT−t+2) + µ̆T−t+1,iET−t
(
ηT−t+2(X̆T−t+1,j − µ̆T−t+1,j)

)
+ µ̆T−t+1,jET−t

(
ηT−t+2(X̆T−t+1,i − µ̆T−t+1,i)

)∣∣∣
≤ ET−t

(
|X̆T−t+1,i − µ̆T−t+1,i||X̆T−t+1,j − µ̆T−t+1,j |

)
+
∣∣σT−t+1,ij

∣∣
+ |µ̆T−t+1,i|ET−t

(
|X̆T−t+1,j − µ̆T−t+1,j |

)
+ |µ̆T−t+1,j |ET−t

(
|X̆T−t+1,i − µ̆T−t+1,i|

)
≤
√
MSET−t+1,i

√
MSET−t+1,j +

∣∣σT−t+1,ij

∣∣
+ |µ̆T−t+1,i|

√
MSET−t+1,j + |µ̆T−t+1,j |

√
MSET−t+1,i .

Furthermore, we point out that

|σT−t+1,ij | ≤
√
σT−t+1,ii

√
σT−t+1,jj ≤

√
MSET−t+1,i

√
MSET−t+1,j .

Hence, ifMSET−t+1,i are relatively small for all i = 1, ..., k we get the following
approximation

ĂT−t+1,i ≈ ET−t (ηT−t+2)ET−t(X̆T−t+1X̆′T−t+1)

= ET−t (ηT−t+2)
(
ΣT−t+1 + µ̆T−t+1µ̆

′
T−t+1

)
. (38)
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Finally, we note that ηT = 1 and ηT−t+1 =
1 + (1− ET−t(ηT−t+2))s̆T−t+1

1 + s̆T−t+1
for

t ≥ 2.
Putting (37) and (38) together we obtain the following approximation for the

weights

w∗T−t =
[ 1

αWT−t

 T∏
i=T−t+2

Rf,i

−1

−Rf,T−t+1

] (
ΣT−t+1 + µ̆T−t+1µ̆

′
T−t+1

)−1
µ̆T−t+1 .

(39)

The approximation (39) can be used for arbitrary models of the asset returns for
which MSET−t+1,i, i = 1, ..., k is relatively small. This is closely related to the
problem that the considered stochastic model for the asset returns provides a good
fit to real data. As a result, we conclude that if an appropriate stochastic model is
chosen the suggested approximation for the multi-period optimal portfolio weights
works well. Moreover, this approximation becomes an exact one if the asset returns
are independently distributed as it is shown in Corollary 2.

Very interesting results can be obtained for the tangency portfolio as well (see,
e.g. Ingersoll (1987, p. 89), Britten-Jones (1999)). The weights of the tangency
portfolio are derived at each time point T − t from (34) by assuming that the
whole wealth is invested only into the risky assets, i.e. under the assumption
w′T−t1 = 1. The results for the multi-period portfolio allocation problem with the
tangency portfolio under the assumption of independence are given in Theorem 3.

Theorem 3 Let Xτ = (Xτ,1, Xτ,2, . . . , Xτ,k)′, τ = 0, . . . , T , be a sequence of the
independently distributed vectors of k risky assets, let rf,τ be the return of the
riskless asset, and let E(Xτ ) = µτ and V ar(Xτ ) = Στ where Στ is positive
definite. Then for all t = 1, . . . , T the tangency portfolio weights for period T − t
are given by

w∗TP,T−t =
Ă
−1
T−t+1µ̆T−t+1

1′Ă
−1
T−t+1µ̆T−t+1

=
Σ−1
T−t+1µ̆T−t+1

1′Σ−1
T−t+1µ̆T−t+1

. (40)

Theorem 3 shows that for the tangency portfolio the multi-period portfolio
selection problem is equivalent to the single-period allocation problem solved at
each time point T − t. Because the tangency portfolio is, usually, considered as a
market portfolio in the single-period allocation problem (see, e.g., Britten-Jones
(1999)), it can also be treated as a benchmark portfolio in the multi-period case,
provided that the asset returns are independent.

4 Empirical Illustration

In this part of the paper we apply the results of Section 3 to real data. In the
first example we deal with the multi-period portfolio selection under return pre-
dictability. In this subsection a model presented by Brandt and Santa-Clara (2006)
is applied and approximative expressions to those presented in Theorem 1 are an-
alyzed. In the second empirical illustration we consider an investor who attends
to invest into the international portfolio consisting of five developed stock mar-
kets, namely Belgium, Germany, Japan, the UK, and the USA. The approximative
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solutions of multi-period portfolio selection problem are obtained in this case as
well.

The investment strategy based on equation (39) will be called as the invest-
ment strategy based on the predictive loss approximation with a riskless asset and
it is briefly denoted as the LAMPS strategy. It is noted that the LAMPS strat-
egy coincides with the expressions given in Corollary 2 that are derived for the
multi-period portfolio selection problem with riskless asset under the assumption
that the asset returns are independent. Similar results are obtained in the case of
the multi-period tangency portfolio (MTP). The application of the predictive loss
approximation leads to the formulas presented in Theorem 2.

As a first benchmark strategy of the multi-period portfolio selection we consider
an investor who chooses the global minimum variance (GMV) portfolio which in
the present situation is calculated by the time-invariant weights expressed as

wGMV,t =
Σ−11

1′Σ−11
for t = 1, ..., T . (41)

Because the same proportions of the wealth are invested into each stock at each
time point we consider this portfolio as a myopic strategy.

We also compare the results obtained by using the predictive loss approxi-
mation to the expression of the weights presented in Theorem 2 with two other
benchmark strategies in the case with a riskless asset. The first strategy is known
as a partial myopic strategy, i.e. the whole wealth is invested into the riskless asset.
This strategy was suggested by Mossin (1968) who derived conditions under the
utility function under which this strategy is optimal in the case of the portfolio
consisting of one stock and the riskless asset. A further considered benchmark
method is one suggested by Brandt and Santa Clara (2006) that is based on the
assumption that

wt = θzt , (42)

where zt is the vector of predictable variables taken at time point t. We refer to
this portfolio strategy as the BSC strategy. In the empirical illustration, Brandt
and Santa Clara (2006) argued that the solution of the multi-period portfolio
selection problem based of this approach is very close to the one obtained from the
simulation approach applied to the dynamic portfolio choice problem as suggested
by Brandt et al. (2005) and van Binsbergen and Brandt (2007).

4.1 Multi-Period Portfolio Selection under Return Predictability

In this section we deal with the multi-period portfolio selection problem assuming
that the asset returns are predictable. This is one of the most commonly used ap-
proach applied for modeling the time series properties of the asset returns (see, e.g.
Campbell and Viceira (2002), Brandt and Santa Clara (2006)). Here, we consider a
special case of a model suggested by Brandt and Santa Clara (2006). They applied
it to monthly returns from January 1945 to December 2000 of one stock (rst ) and
one bond (rbt ). The term spread is used as a predictable variable zt. Brandt and
Santa Clara (2006, p.2200) obtain the model ln(1 + rst+1)

ln(1 + rbt+1)
zt+1

 =

 0.0059
0.0007
−0.0028

+

 0.0060
0.0035
0.9597

× zt +

 εst+1

εbt+1

εzt+1

 (43)
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with  εst+1

εbt+1

εzt+1

 ∼MVN

 0 ,

 0.0018 0.0002 −0.0005
0.0002 0.0006 0.0007
−0.0005 0.0007 0.0802

 . (44)

Note that the model (43) can be presented as a vector autoregressive process
of order 1. Let Yt = (ln(1 + rst+1), ln(1 + rbt+1), zt)

′ then (43) becomes

Yt = ν̃ + Φ̃Yt−1 + ε̃εεt (45)

with ε̃εεt ∼ N (0, Σ̃). Thus, for Xt we get an autoregressive representation with

Xt = Lν̃ + LΦ̃Yt−1 + Lε̃εεt = ν + ΦYt−1 + εεεt with L = [I 0] , (46)

where I is a 2× 2 indentity matrix and 0 is a 2× 1 vector of zeros. Consequently,
Xt|Ft−1 ∼ N (µt,Σ). We are interested in the conditional mean vector and in the
conditional covariance matrix of Xt given Ft−1. Note that

µt = E(Xt|Ft−1) = ν + ΦYt−1, Σ = Var(Xt|Ft−1) = LΣ̃L′ , (47)

Inserting (47) in (39) leads to the weights of the LAMPS strategy. In similar way
the weights of the other multi-period portfolio strategies are calculated.

We compare the performance of the above derived strategies with each other via
an extensive simulation study based on 105 independent repetitions. Multi-period
portfolio strategies are constructed for T ∈ {6, 12, 18, 24} and α ∈ {0.833, 0.909,
0.937, 0.952}. The values of α correspond to γ ∈ {5, 10, 15, 20} which are also used
in Brandt and Santa Clara (2006).

PPPPT
γ

5 10 15 20 Method

6

0.5904 (0.0061) 0.5474 (0.0016) 0.5324 (0.0008) 0.5245 (0.0004) LAMPS
0.5847 (0.0065) 0.5461 (0.0031) 0.5317 (0.0017) 0.5239 (0.0012) GMV

0.5837 0.5456 0.5316 0.5241 Part.Myopic
0.5834 (0.0157) 0.5459 (0.0039) 0.5317 (0.0017) 0.5242 (0.0010) BSC

12

0.5949 (0.0046) 0.5487 (0.0012) 0.5330 (0.0006) 0.5249 (0.0003) LAMPS
0.5858 (0.0092) 0.5460 (0.0035) 0.5310 (0.0024) 0.5229 (0.0021) GMV

0.5839 0.5457 0.5316 0.5241 Part.Myopic
0.5822 (0.0172) 0.5455 (0.0043) 0.5316 (0.0019) 0.5241 (0.0011) BSC

18

0.5975 (0.0027) 0.5493 (0.0007) 0.5333 (0.0003) 0.5250 (0.0002) LAMPS
0.5867 (0.0106) 0.5452 (0.0044) 0.5298 (0.0035) 0.5218 (0.0032) GMV

0.5841 0.5458 0.5317 0.5242 Part.Myopic
0.5801 (0.0195) 0.5450 (0.0049) 0.5313 (0.0022) 0.5239 (0.0012) BSC

24

0.5989 (0.0014) 0.5497 (0.0004) 0.5335 (0.0002) 0.5251 (8.5 · 10−5) LAMPS
0.5869 (0.0113) 0.5441 (0.0054) 0.5285 (0.0047) 0.5204 (0.0044) GMV

0.5843 0.5459 0.5318 0.5242 Part.Myopic
0.5757 (0.0240) 0.5441 (0.0058) 0.5309 (0.0027) 0.5237 (0.0015) BSC

Table 1 Medians and median absolute deviations (MAD, in parentheses) of the expected
quadratic utility for the LAMPS, the multi-period GMV, the partial myopic, and the BSC
strategies in the case of data from the example of Brandt and Santa Clara (2006).

In Table 1 we present the median of the expected utility functions for the con-
sidered values of γ and the investment horizon T . In each block the strategies order
is the LAMPS, multi-period GMV, partial myopic, and BSC. In the parentheses
the median absolute deviation (MAD) is given that is calculated as the median of
the absolute deviation of the sample values from the median. The monthly data
from January, 1945 to December, 2000 from the example of Brandt and Santa
Clara (2006) are used that consist of one stock and one bond return at each time
point the portfolio, while the term structure is used as a predictable variable for
modeling time series properties of the return process.
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We observe a very good performance of the LAMPS strategy which is the best
strategy for all T and γ. On the other hand it is not possible to provide a clear
ranking between the GMV, partial myopic, and BSC strategies. While the GMV
strategy is on the second place for smaller values of γ and each T , the opposite
results are observed for larger values of γ where the partial myopic and the BSC
strategies are ranked on the second and third places. Moreover, we obtained very
small values of the MAD for the LAMPS strategy, while the largest values are
attained for the GMV approach.

In Figures 1-4 we study the problem in more details. Here, we present the em-
pirical distribution functions of the expected quadratic utility functions obtained
via the simulation study. If we compare several strategies based on the performance
of their empirical distribution functions we should choose the strategy whose dis-
tribution function lies below the others. It follows from the fact that in this case
for a fixed value of W the probability to obtain stochastically larger value is the
largest one, i.e. with the higher probability larger values of the expected utility are
attained. Because the partial myopic strategy is based on investing into a riskless
asset it is a deterministic strategy and it’s distribution function is a step function.
The position of the given index is used for comparing the dynamic portfolio strate-
gies. This criterion is based on the maximum probability of exceeding the utility
of the partial myopic portfolio.

In Figure 1 we observe a very good performance of the LAMPS and BSC strate-
gies, especially for smaller values of γ and T . If γ increases then the probability
of overperforming the partial myopic strategy decreases. It is always small for the
GMV approach. For this method it is less than 40% for larger values of γ and T ,
while it is very large for the LAMPS strategy (about 80%).

In Figure 5 we analyse how quickly the resulting quadratic utility of the
LAMPS strategy converges to its maximum value as the investment horizon T
increases. Here, we plot the median as well as 5% and 95% quantiles of the cal-
culated expected quadratic utility for T = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40} and
γ ∈ {5, 10, 15, 20}. Note that the median quickly converges to the corresponding
95% quantile and that already for moderate values of T ≥ 25 a good approxima-
tion is obtained. The 5% quantile also becomes considerably large as T increases.
Consequently, the results presented in the figure lead to the conclusion that the ex-
pected quadratic utility converges to its maximum value as the investment horizon
becomes larger, although the convergence rate is not large, especially for smaller
values of γ.

4.2 Multi-Period International Optimal Portfolio

We consider an investor who invests into an international portfolio consisting of the
capital markets indices of five developed stock market, namely Belgium, Germany,
Japan, the UK, and the USA. The weekly data of the MSCI (Morgan Stanley
Capital International) indices for the equity markets returns are considered from
the 4th of January, 2002 to the 4th of December, 2009 and the return series for each
index are calculated. To the return series we fit the VAR(1)-CCC-GARCH(1,1)
process defined by

Xt = ν + ΦYt−1 +Σ
1/2
t εεεt with εεεt ∼ iiN (0, I) (48)



Closed-Form Solution of Multi-Period Portfolio Choice for Quadratic Utility 21

and Σt = diag{ht}1/2 R diag{ht}1/2 with

ht = a0 + Aξt−1 + Bht−1 , (49)

where ξt = (εεε2
t,1, ..., εεε

2
t,k)′; A and B are diagonal matrices.

We obtain

ν =


4. 83e-04
1. 20e-03
6. 74e-04
5. 54e-04
2. 79e-05

 ,Φ =


0.2011 -0. 1592 0.01892 -0. 196 0.455
0.3139 -0. 1231 -0. 00191 -0. 511 0.434
0.0487 0.0888 -0. 12131 -0. 224 0.343
0.1829 -0. 0889 0.00988 -0. 441 0.382
0.0766 -0. 0643 -0. 03049 -0. 114 0.133

 , and (50)

a0 = [1. 48e-05, 2. 51e-05, 2. 39e-04, 2. 17e-05, 1. 50e-05] ,

A = diag [0.0966, 0.0896, 0.0555, 0.1174, 0.1034] ,

B = diag [0.8946, 0.8936, 0.6405, 0.8637, 0.8729]

with the correlation matrix given by

R =


1 0.7978 0.4406 0.8036 0.6629

0.7978 1 0.5411 0.8524 0.7998
0.4406 0.5411 1 0.5147 0.4780
0.8036 0.8524 0.5147 1 0.7556
0.6629 0.7998 0.4780 0.7556 1

 .

It is noted that the last column of the matrix Φ has the largest values. It shows
that the influence of the US market on the return indices is larger than those of
the domestic ones.

Next, calculate the weights of the three multi-period portfolio strategies (LAMPS,
GMV, and partial myopic) as already described in Section 4.1. We exclude the
approach of Brandt and Santa Clara in this study since there is no predictable
variable within the model (50). We choose γ ∈ {5, 10, 15, 20} and T ∈ {4, 8, 12, 16}.

PPPPT
γ

5 10 15 20 Method

4

0.5992 (0.0009) 0.5498 (0.0002) 0.5335 (9.4 · 10−5) 0.5251 (5 · 10−5) LAMPS
0.5834 (0.0057) 0.5454 (0.003) 0.5314 (0.0018) 0.5237 (0.0012) GMV

0.5836 0.5456 0.5316 0.5240 Part.Myopic

8

0.6002 (2.6 · 10−5) 0.5500 (6.5 · 10−6) 0.5336 (3.5 · 10−6) 0.5252 (2.4 · 10−6) LAMPS
0.5833 (0.0083) 0.5452 (0.0039) 0.5309 (0.0023) 0.5232 (0.0018) GMV

0.5838 0.5456 0.5316 0.5241 Part.Myopic

12

0.6002 (2.9 · 10−6) 0.5500 (1.8 · 10−6) 0.5336 (1.4 · 10−6) 0.5252 (1.2 · 10−6) LAMPS
0.5830 (0.0102) 0.5448 (0.0045) 0.5303 (0.0029) 0.5225 (0.0024) GMV

0.5839 0.5457 0.5316 0.5241 Part.Myopic

16

0.6002 (1.6 · 10−6) 0.5501 (1.2 · 10−6) 0.5336 (1.12 · 10−6) 0.5252 (10−6) LAMPS
0.5831 (0.0115) 0.5443 (0.0050) 0.5296 (0.0035) 0.5218 (0.0031) GMV

0.5840 0.5458 0.5317 0.5241 Part.Myopic

Table 2 Medians and median absolute deviations (MAD, in parentheses) of the expected
quadratic utility for the LAMPS, the multi-period GMV, and the partial myopic strategies in
case of weekly MSCI data for the period from the 4th of January, 2002 to the 4th of December,
2009.
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In Table 2 we present the medians and the mean absolute deviations for the
expected utilities obtained via a simulation study with 105 independent repetitions
of the process (48) with parameters (50). The results are similar to those of Section
4.1. We observe a very good performance of the LAMPS strategy which turns out
to be the best one. On the second place the partial myopic strategy is ranked
followed by the multi-period GMV portfolio.

More pronounced results are presented in Figure 6. Here, we observe a very
good performance for the LAMPS strategy for all γ in the case of T = 12 weeks.
Both strategies overperform the partial myopic strategy with probability of almost
equal to one if γ = 5. For larger values of γ a similar behavior is present for the
LAMPS approach. The multi-period GMV portfolio performs much worse. For
γ = 5 and γ = 10 the probability of getting higher values of the expected utility
is about 50%, while it is less than 40% for γ = 5 and γ = 10.

Finally, in Figure 7, we plot the median and the corresponding 5% and 95%
quantiles calculated for the expected quadratic utility in the case of the LAMPS
strategy. In contrast to the example of Section 4.1 we observe that the expected
quadratic utility converges faster to its maximum value. A good approximation
is already obtained for T = 10. These results are also in-line with the values
presented in Table 2, where the medians of the expected quadratic utility attain
their maxima for T = 8. Furthermore, we observe that the 5% quantile tends to
the maximum value for T ≥ 15 independently of γ.

Next we want to present a further example. Now the return of the US market
index is used as a predictable variable and an investment into four other capital
market indexes is considered. This example is motivated by economic theory -
the influence of the US market may be larger than of the domestic one, and it
is justified in the structure of the matrix Φ (cf. (50)). In this example all of the
above described strategies are analyzed.

In Table 3 we present the medians and the MADs of the expected utilities. A
very good performance of the LAMPS multi-period portfolio strategy is observed.
This approach is ranked on the first place. A much worse performance can be
observed for the partial myopic strategy, for the multi-period GMV portfolio, and
for the BSC method which can be ranked on the second, third, and fourth places.

PPPPT
γ

5 10 15 20 Method

4

0.6000 (0.0002) 0.5499 (7.5 · 10−5) 0.5335 (7.5 · 10−5) 0.5251 (9.1 · 10−5) LAMPS
0.5835 (0.0078) 0.5453 (0.0037) 0.5310 (0.0022) 0.5233 (0.0017) GMV

0.5836 0.5456 0.5316 0.5240 Part.Myopic
0.4633 (0.1274) 0.5228 (0.0255) 0.5236 (0.0094) 0.5204 (0.0045) BSC

8

0.6001 (0.0001) 0.5499 (0.0001) 0.5335 (0.0001) 0.5251 (0.0001) LAMPS
0.5835 (0.0109) 0.5445 (0.0048) 0.5300 (0.0033) 0.5221 (0.0028) GMV

0.5838 0.5456 0.5316 0.5241 Part.Myopic
0.5295 (0.0656) 0.5320 (0.0168) 0.5226 (0.0099) 0.5150 (0.0080) BSC

12

0.6001 (0.0001) 0.5499 (0.0001) 0.5335 (0.0001) 0.5251 (0.0001) LAMPS
0.5831 (0.0129) 0.5435 (0.0058) 0.5286 (0.0045) 0.5207 (0.0040) GMV

0.5839 0.5457 0.5316 0.5241 Part.Myopic
0.5276 (0.0678) 0.5205 (0.0271) 0.5055 (0.0216) 0.4963 (0.0155) BSC

16

0.6002 (7.4 · 10−5) 0.5500 (6.8 · 10−5) 0.5336 (6.7 · 10−5) 0.5251 (6.6 · 10−5) LAMPS
0.5823 (0.0144) 0.5422 (0.0071) 0.5272 (0.0058) 0.5193 (0.0053) GMV

0.5840 0.5458 0.5317 0.5241 Part.Myopic
0.5101 (0.0845) 0.4906 (0.0517) 0.4730 (0.0372) 0.4640 (0.0250) BSC

Table 3 Medians and median absolute deviations (MAD, in parentheses) of the expected
quadratic utility for the LAMPS, the multi-period GMV, the partial myopic, and the BSC
strategies in the case of weekly MSCI data for the period from the 4th of January, 2002 to
the 4th of December, 2009. The investment into the four countries (Belgium, Germany, Japan,
and the UK) are considered, while the returns of the USA market are used as a predictable
variable.
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The same ranking is also observed in Figure 8 where T = 12 is used. It has to
be emphasized that the LAMPS strategy overperforms the partial myopic strategy
with probability almost 1 for all of the considered values of γ, while the multi-
period GMV portfolio and the BSC method are really bad. Figure 9 shows that the
expected quadratic utility converges to its maximum value fast, since the median
coincides with the 95% quantile and the maximum values already for small values
of T ≤ 8.

The results of our empirical studies lead to the following conclusive remarks:

– The proposed method (LAMPS) shows superior performance for both VAR(1)
and VAR(1)-CCC-GARCH(1,1) processes estimated from the data. It can be
applied in the cases with and without predictable variables. Furthermore, a
considerable improvement in terms of the expected utility is obtained if the
time horizon and/or the re-balancing frequency of the portfolio weights in-
crease.

– The LAMPS strategy achieves the maximum utility gain when the time horizon
T increases. Indeed, the quadratic utility function (2) attains its maximum1 at
the point Wt = 1/α, which leads to the maximum utility gain equal to 1/(2α) ∈
{0.6002, 0.5501, 0.5336, 0.5252} if α ∈ {0.833, 0.909, 0.937, 0.952}, respectively.
Tables 2 and 3 show that even for T at around 8 this level is achieved with a
small deviation.

– The inclusion of the predictable variable into the model leads to interesting
results. On one side, the median converges faster to the maximum value in
case of small γ. On the other side, a number of outliers is present which move
the 5% quantile away from the maximum value.

– It has to be mentioned that the influence of the re-balancing frequency of the
portfolio weights on the performance of the LAMPS strategy is remarkable.
In general we observe a better performance for weekly data. For monthly data
LAMPS has a little bit more uncertainty in the expected utility gains. This fact
shows that the increase of the re-balancing frequency improves the proposed
method.

The above mentioned observations indicate that the suggested LAMPS multi-
period portfolio strategy is highly recommended for long time horizons and/or high
re-balancing frequencies which is exactly the case when the approximate method
of Brandt and Santa Clara (2006) deviates from the exact one significantly.

5 Summary

Although in 1959 Markowitz has already formulated the multi-period asset alloca-
tion problem, no closed-form solution is available in literature up to now. Brandt
and Santa Clara (2006) provided an analytical solution by imposing some con-
straints on the structure of the portfolio weights and, thus, by transforming the
multi-period portfolio selection problem with time-dependent weights into a more
simpler one where the matrix of time-independent constants has to be calculated

1 It can be easily shown that taking the derivative of Wt −
α

2
W 2
t with respect to Wt and

setting it equal to zero leads to the maximum attainable wealth level at time point t which is
equal to 1/α.
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at the beginning of the investment horizon. Moreover, note that the approach may
lead to a local maximum and not a global one.

In the present paper, we derive a closed-form solution of the multi-period
portfolio selection problem with and without a riskless asset which is obtained
under weak conditions on the process of the asset returns. The expressions of
the optimal portfolio weights are based only on the conditional mean vectors and
the conditional covariance matrices. Moreover, under the additional assumption
of independence they are similar to the solutions of the single-period optimization
problems that are performed at each time point. We prove that only the coefficient
of the shape parameter depends on the dynamics of the asset returns in the case
without a riskless asset. In the presence of a riskless asset the solutions of the multi-
period problem and of the sequence of simple-period problems are proportional
where only the coefficients of proportionality depend on the process dynamics. A
very remarkable result is obtained for the portfolio selection problem based on the
tangency portfolio. Assuming independent returns it is proved that the solution of
the multi-period problem and the solutions of the simple-period problems are the
same.

The derived multi-period portfolio choice strategies are compared with the
existing methods proposed in literature for two real data sets. The first data are
taken from the paper of Brandt and Santa Clara (2006), while the returns of five
developed stock market indices are used in the second example. We observe a very
good performance of the predictive loss approximation of the multi-period strategy
in case with a riskless asset which is always ranked on the first place.

The obtained results can be further extended by allowing the intermediate
consumptions. This can be done without any large effort by slightly modifying
the weights of Theorems 1, 2 and 3. Another possibility to extend the obtained
results is to impose some constraints on the structure of the portfolio weights. It is
remarkable that if the considered short constraints are based on linear restrictions
imposed on the portfolio weights then the multi-period portfolio selection problem
can be treated in the same way. This leads to an interesting extension of the
results obtained in our paper. The inequality constraint would require to develop
additional theoretical results which will be treated in a separate paper.

6 Appendix

In this section the proofs of the theorems are given.

Proof of Theorem 1:
First, we note that the expression of the optimal weights at period T − 1 is given
in (11). The rest of the proof is done by using the mathematical induction on the
expressions of the portfolio weights and the value function. Let

Ai = Ei−1[Vi+1X̃iX̃
′
i] for i = 1, . . . , T − 1 and AT = ΣT + µ̃T µ̃

′
T . (51)

Moreover, let

µ̃∗i =

{
µ̃T for i = T

Ei−1[Ri+1X̃i] for i = 1, . . . , T − 1 ,
(52)
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Ri =
1′A−1

i µ̃
∗
i

1′A−1

i 1
, Vi = 1

1′A−1

i 1
and s̃i = µ̃∗ ′i Q̃iµ̃

∗
i with

Q̃i = A−1
i −

A−1
i 11′A−1

i

1′A−1
i 1

for i = 1, ..., T − 1 .

Note, that

1′Q̃i = 0′, Q̃i1 = 0, Q̃iAiQ̃i = Q̃i .

Let w∗ ′T−1 be the optimal portfolio weights calculated for period T − 1 given
in (11). First, we calculate the value function for period T − 2. It holds that

V (T − 2,WT−2,FT−2)

= max
wT−2:w′

T−2
1=1

ET−2

[
max

wT−1:w′
T−1

1=1

(
WT−1w′T−1µ̃T −

α

2
W 2
T−1w′T−1ATwT−1

) ]
= max

wT−2:w′
T−2

1=1
ET−2

[
WT−1w∗ ′T−1µ̃T −

α

2
W 2
T−1w∗ ′T−1ATw∗T−1

]

= max
wT−2:w′

T−2
1=1

ET−2

[
WT−1

(
A−1
T 1

1′A−1
T 1

+
1

αWT−1
Q̃T µ̃T

)′
µ̃T

−
α

2
W 2
T−1

(
A−1
T 1

1′A−1
T 1

+
1

αWT−1
Q̃T µ̃T

)′
AT

(
A−1
T 1

1′A−1
T 1

+
1

αWT−1
Q̃T µ̃T

)]

= max
wT−2:w′

T−2
1=1

ET−2

[
WT−1

1′A−1
T µ̃T

1′A−1
T 1

−
1

2

µ̃′T Q̃TATA
−1
T 1

1′A−1
T 1︸ ︷︷ ︸

=0

−
1

2

1′A−1
T AT Q̃T µ̃T

1′A−1
T 1︸ ︷︷ ︸

=0


+

1

2α
µ̃′T Q̃T µ̃T −

α

2

W 2
T−1

1′A−1
T 1

]
,

Using the definitions of Ri, Vi and s̃i we obtain

V (T − 2,WT−2,FT−2)

= max
wT−2:w′T−21=1

ET−2

[
WT−1RT +

1

2α
s̃T −

α

2
W 2
T−1VT

]
= max

wT−2:w′T−21=1
ET−2

[
WT−2w′T−2RT X̃T−1 +

1

2α
s̃T −

α

2
W 2
T−2VT (w′T−2X̃T−1)2

]
= max

wT−2:w′T−21=1

[
WT−2w′T−2µ̃

∗
T−1 + F (s̃T )− α

2
W 2
T−2

(
w′T−2AT−1wT−2

) ]
,

where

F (s̃T ) =
1

2α
ET−2[s̃T ] . (53)

F (s̃T ) does not depend on wT−2.
The last expression is similar to the value function at period T − 1 (cf. (9)).

Hence, the optimal weights w∗T−2 are given by

w∗T−2 =
A−1
T−11

1′A−1
T−11

+
1

αWT−2
Q̃T−1µ̃

∗
T−1 with Q̃T−1 = A−1

T−1−
A−1
T−111′A−1

T−1

1′A−1
T−11

.

(54)
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As a result, the following expressions are the basis of the induction

V (T − 2,WT−2,FT−2) = max
wT−2:w′T−21=1

[
WT−2w′T−2µ̃

∗
T−1 + F (s̃T )

− α

2
W 2
T−2w′T−2AT−1wT−2

]
w∗T−2 =

A−1
T−11

1′A−1
T−11

+
1

αWT−2
QT−1µ̃

∗
T−1

with F (s̃T ) as defined in (53).
In the induction hypothesis we assume that the statement holds for t = n, i.e.,

V (T − n,WT−n,FT−n) = max
wT−n:w′T−n1=1

[
WT−nw′T−nµ̃

∗
T−n+1

+F (s̃T , s̃T−1, . . . , s̃T−n+2)− α

2
W 2
T−nw′T−nAT−n+1wT−n

]
w∗T−n =

A−1
T−n+11

1′A−1
T−n+11

+
1

αWT−n
Q̃T−n+1µ̃

∗
T−n+1 ,

where

F (s̃T , s̃T−1, . . . , s̃T−n+2) =
1

2α

ET−2[s̃T ] +
T−1∑

m=T−n+2

Em−2[s̃m]

 .

Note that the last quantity does not depend on wT−n.
In the inductive step we prove that the last identities also hold for t = n+ 1.

It is sufficient to derive the value function for period T − (n+ 1) which is given by

V (T − (n+ 1),WT−(n+1),FT−(n+1))

= max
w′
T−(n+1)

1=1
ET−(n+1)

(
WT−nw

∗ ′
T−nµ̃

∗
T−n+1 + F (s̃T , s̃T−1, . . . , s̃T−n+2)

−
α

2
W

2
T−nw

∗ ′
T−nAT−n+1w

∗
T−n

)

= max
w′
T−(n+1)

1=1
ET−(n+1)

[
WT−n


1′A−1

T−n+1µ̃
∗
T−n+1

1′A−1
T−n+11︸ ︷︷ ︸

=RT−n+1

−
1

2

µ̃∗ ′T−n+1Q̃T−n+11

1′A−1
T−n+11︸ ︷︷ ︸
=0

−
1

2

1′Q̃T−n+1µ̃
∗
T−n+1

1′A−1
T−n+11︸ ︷︷ ︸
=0


+ F (s̃T , s̃T−1, . . . , s̃T−n+2) +

1

2α
µ̃
∗ ′
T−n+1Q̃T−n+1µ̃

∗
T−n+1︸ ︷︷ ︸

=s̃T−n+1

−
α

2

1

1′A−1
T−n+11︸ ︷︷ ︸

=VT−n+1

W
2
T−n

]
.

Hence, we obtain

V (T − (n+ 1),WT−(n+1),FT−(n+1))

= max
w′
T−(n+1)

1=1
ET−(n+1)

[
WT−(n+1)w

′
T−(n+1)X̃T−nRT−n+1

+ F (s̃T , s̃T−1, . . . , s̃T−n+1)− α

2
W 2
T−(n+1)VT−n+1(w′T−n+1X̃T−n)2

]
= max

w′
T−(n+1)

1=1

(
WT−(n+1)w

′
T−(n+1)µ̃

∗
T−n + F (s̃T , s̃T−1, . . . , s̃T−n+1)

− α

2
W 2
T−(n+1)w

′
T−(n+1)AT−nwT−(n+1)

)
,
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where

F (s̃T , s̃T−1, . . . , s̃T−n+1) = F (sT , s̃T−1, . . . , s̃T−n+2) +
1

2α
ET−(n+1)[s̃T−n+1] .

It is the desired form of the value function at period T − (n+ 1). Because this
expression is similar to the value function at period T − n, we get the following
formula for the weights at period T − (n+ 1)

w∗T−(n+1) =
A−1
T−n1

1′A−1
T−n1

+
1

αWT−(n+1)
Q̃T−nµ̃

∗
T−n .

The theorem is proved.

For proving Corollary 1 we use the result of Proposition 6.1.

Proposition 1 Let X be a random vector with mean µ and positive definite co-
variance matrix Σ. Let A = Σ + µ̃µ̃′ with µ̃ = µ+ 1. If

w =
A−11

1′A−11
+ α̃−1Q̃µ̃ with Q̃ = A−1 − A

−111′A−1

1′A−11
(55)

then

w =
Σ−11

1′Σ−11
+ α−1Qµ̃ with Q = Σ−1 − Σ

−111′Σ−1

1′Σ−11
(56)

and

α−1 =
α̃−1(1′Σ−11)− 1′Σ−1µ̃

(1 + µ̃′Σ−1µ̃)1′Σ−11− (1′Σ−1µ̃)2
=
α̃−1 − 1−RGMV

1 + s
, (57)

where RGMV =
1′Σ−1µ
1′Σ−1

1
, s = µ̃′Qµ̃ = µ′Qµ.

Proof of Proposition 1:
From (56) we obtain

w =

(
1

1′Σ−11
− α−1 1′Σ−1µ̃

1′Σ−11

)
Σ−11+α−1Σ−1µ̃ = C1Σ

−11+C2Σ
−1µ̃ , (58)

where

C1 =
1

1′Σ−11
− C2

1′Σ−1µ̃

1′Σ−11
and C2 = α−1 . (59)

In order to prove the proposition we need to show that (55) can be expressed in
the same way. The application of the Sherman-Morrison formula (Harville (1997,
Theorem 18.2.8)), i.e.,

A−1 = (Σ + µ̃µ̃′)−1 = Σ−1 − Σ
−1µ̃µ̃′Σ−1

1 + µ̃′Σ−1µ̃

leads to

w = (1−Kα̃−1)
1 + µ̃′Σ−1µ̃

(1 + µ̃′Σ−1µ̃)1′Σ−11− (1′Σ−1µ̃)2
Σ−11 (60)

+

(
− µ̃′Σ−11(1−Kα̃−1)

(1 + µ̃′Σ−1µ̃)1′Σ−11− (1′Σ−1µ̃)2
+

α̃−1

1 + µ̃′Σ−1µ̃

)
Σ−1µ̃ ,
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where

K = 1′A−1µ̃ =
1′Σ−1µ̃

1 + µ̃′Σ−1µ̃
. (61)

From the structure of (58) and (60) we get

α−1 = C2 =

(
− µ̃′Σ−11(1−Kα̃−1)

(1 + µ̃′Σ−1µ̃)1′Σ−11− (1′Σ−1µ̃)2

)
+

α̃−1

1 + µ̃′Σ−1µ̃

=
α̃−1(1′Σ−11)− 1′Σ−1µ̃

(1 + µ̃′Σ−1µ̃)1′Σ−11− (1′Σ−1µ̃)2
=
α̃−1 − 1−RGMV

1 + s
.

For proving the proposition we only need to show the equality of the coefficients
in front of Σ−11 in (58) and (60). It holds that

C1 =
1

1′Σ−11
− C2

1′Σ−1µ̃

1′Σ−11
=

1

1′Σ−11

−
(

α̃−1

1 + µ̃′Σ−1µ̃
−

µ̃′Σ−11(1−Kα̃−1)

(1 + µ̃′Σ−1µ̃)1′Σ−11− (1′Σ−1µ̃)2

)
1′Σ−1µ̃

1′Σ−11

=
(1−Kα̃−1)

1′Σ−11
+

(1′Σ−1µ̃)2(1−Kα̃−1)

1′Σ−11
(
(1 + µ̃′Σ−1µ̃)1′Σ−11− (1′Σ−1µ̃)2

)
=

(1−Kα̃−1)

1′Σ−11

(
(1 + µ̃′Σ−1µ̃)1′Σ−11

(1 + µ̃′Σ−1µ̃)1′Σ−11− (1′Σ−1µ̃)2

)
.

The last identity completes the proof.

Proof of Corollary 1:
Under the assumption of independence it holds that

AT−t+1 =

{
ΣT + µ̃T µ̃

′
T for t = 1

VT−t+2(ΣT−t+1 + µ̃T−t+1µ̃
′
T−t+1) for t = 2, . . . , T ,

(62)

and

µ̃∗T−t+1 =

{
µ̃T for t = 1
RT−t+2µ̃T−t+1 for t = 2, . . . , T

. (63)

Let RT+1 = VT+1 = 1. Then,

w∗T−t =
(VT−t+2(ΣT−t+1 + µ̃T−t+1µ̃

′))−11

1′(VT−t+2(ΣT−t+1 + µ̃T−t+1µ̃
′
T−t+1))−11

+
1

αWT−t
Q̃T−t+1(RT−t+2µ̃T−t+1)

=
(ΣT−t+1 + µ̃T−t+1µ̃

′
T−t+1)−11

1′(ΣT−t+1 + µ̃T−t+1µ̃
′
T−t+1)−11

+
RT−t+2

αWT−tVT−t+2

˜̃QT−t+1µ̃T−t+1

with

˜̃QT−t+1 = (ΣT−t+1 + µ̃T−t+1µ̃
′
T−t+1)−1

−
(ΣT−t+1 + µ̃T−t+1µ̃

′
T−t+1)−111′(ΣT−t+1 + µ̃T−t+1µ̃

′
T−t+1)−1

1′(ΣT−t+1 + µ̃T−t+1µ̃
′
T−t+1)−11

and

RT−t+2

VT−t+2
=

T∏
i=T−t+2

1′(Σi+µ̃iµ̃
′
i)
−1µ̃i

1′(Σi+µ̃iµ̃
′
i)
−11

1

1′(Σi+µ̃iµ̃
′
i)
−11

=
T∏

i=T−t+2

1′(Σi + µ̃iµ̃
′
i)
−1µ̃i ,
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where the last identity follows from the definition of RT−t+2 and VT−t+2 given in
(16).

The rest of the proof follows from Proposition 1 if Σ is replaced by ΣT−t+1,
µ̃ by µ̃T−t+1 and

α̃−1 =
1

αWT−t

RT−t+2

VT−t+2
=

1

αWT−t

 T∏
i=T−t+2

1′(Σi + µ̃iµ̃
′
i)
−1µ̃i

 =
1

αWT−t

 T∏
i=T−t+2

ai

 ,

where

ai = 1′(Σi + µ̃iµ̃
′
i)
−1µ̃i =

1 +RGMV,i

(1 +RGMV,i)2 + (1 + si)VGMV,i
.

The last expression is obtained by applying the Sherman-Morrison formula. At
last, we recall QT−t+11 = 0 and get (18). Thus the corollary is proved.

Proof of Theorem 2:
The expression of the optimal weights at period T − 1 is given in (28). The rest
of the theorem’s statement is proved by using the mathematical induction on
the expressions of the portfolio weights and the value function. We use similar
notations as in the proof of Theorem 1. Let Ăi = Ei−1[(1 − s̃i+1)X̆iX̆

′
i] for i =

1, . . . , T − 1 and ĂT = ΣT − µ̆T µ̆′T ,

µ̆∗i =

{
µ̆T for i = T

Ei−1[(1− s̃i+1)X̃i] for i = 1, . . . , T − 1 ,
(64)

and s̆i = µ̆∗ ′i Ă
−1
i µ̆∗i for i = 2, ..., T .

Let w∗ ′T−1 be the optimal portfolio weight calculated at period T − 1 in the
case of a riskless asset as expressed in (28). First, we calculate the value function
at period T − 2. It holds that

V (T − 2,WT−2,FT−2)

= max
wT−2

ET−2

[
WT−1

(
Rf,T + w

∗ ′
T−1µ̆T

)
−
α

2
W

2
T−1

(
w
∗ ′
T−1ĂTw

∗
T−1 + R

2
f,T + 2Rf,Tw

∗ ′
T−1µ̆T

) ]
= max

wT−2
ET−2

[
WT−1

(
Rf,T +

(
1

αWT−1

− Rf,T
)
µ̆
′
T Ă
−1
T µ̆T

)
−
α

2
W

2
T−1

((
1

αWT−1

− Rf,T
)
µ̆
′
T Ă
−1
T ĂT

(
1

αWT−1

− Rf,T
)
Ă
−1
T µ̆T + R

2
f,T

+ 2Rf,T

(
1

αWT−1

− Rf,T
)
µ̆
′
T Ă
−1
T µ̆T

)]
.

Using the definition of s̆T we obtain

V (T − 2,WT−2,FT−2) = max
wT−2

ET−2

[
WT−1Rf,T (1− s̆T ) +

s̆T

α

−
α

2
W 2
T−1

((
1

αWT−1
−Rf,T

)2

s̆T +R2
f,T + 2Rf,T

(
1

αWT−1
−Rf,T

)
s̆T

)

= max
wT−2

ET−2

[
WT−1Rf,T (1− s̆T ) +

s̆T

2α
−
α

2
W 2
T−1R

2
f,T (1− s̆T )

]
= max

wT−2

[
WT−2Rf,T

(
ET−2[1− s̆T ]Rf,T−1 + w′T−2µ̆

∗
T−1

)
−
α

2
W 2
T−2R

2
f,T

(
w′T−2AT−1wT−2 + ET−2[1− s̆T ]R2

f,T−1 + 2Rf,T−1w′T−2µ̆
∗
T−1

)
+
ET−2[s̆T ]

2α

]
.
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The last expression is similar to the value function at the period T − 1. Hence,
it is maximized on the weights w∗T−2 expressed as

w∗T−2 =

(
1

αWT−2
(Rf,T )−1 −Rf,T−1

)
Ă
−1
T−1µ̆

∗
T−1 . (65)

Hence, the basis of induction are the following expressions

V (T − 2,WT−2,FT−2) = max
{wT−2}

[
WT−2Rf,T

(
bTRf,T−1 + w′T−2µ̆

∗
T−1

)
− α

2
W 2
T−1R

2
f,T

(
w′T−2AT−1wT−2 + bTR

2
f,T−1 + 2Rf,T−1w′T−2µ̆

∗
T−1

)
+ F (s̆T )

]
w∗T−2 =

(
Rf,T−1 −

1

αWT−2
(Rf,T )−1

)
Ă
−1
T−1µ̆

∗
T−1

with F (s̆T ) =
ET−2[s̆T ]

2α and bT = ET−2[1− s̆T ].
In the induction hypothesis we assume that the statement holds for t = n, i.e.,

V (T − n,WT−n,FT−n) = max
{wT−n}

[
WT−n

 T∏
i=T−n+2

Rf,i

(bT−n+2Rf,T−n+1 + w
′
T−nµ̆

∗
T−n+1

)

−
α

2
W

2
T−n

 T∏
i=T−n+2

R
2
f,i

(w′T−nAT−n+1wT−n + bT−n+2R
2
f,T−n+1 + 2Rf,T−n+1w

′
T−nµ̆

∗
T−n+1

)
+ F (s̆T , . . . , s̆T−n+2)

]
,

w
∗
T−n =

 1

αWT−n

 T∏
i=T−n+2

Rf,i

−1

− Rf,T−n+1

 Ă−1
T−n+1µ̆

∗
T−n+1 .

with F (s̆T , . . . , s̆T−n+2) = 1
2α

(
ET−2[s̆T ] +

T−1∑
m=T−n+2

T−1∏
i=m

biEm−2[s̆m]

)
and bi =

Ei−2[1− s̆i].
In the inductive step we prove that the last identities also hold for t = n+ 1.

It is sufficient to derive the value function for period T − (n+ 1) which is given by

V (T − (n + 1),WT−(n+1),FT−(n+1))

= max
wT−(n+1)

ET−(n+1)

[
WT−n

 T∏
i=T−n+2

Rf,i

(bT−n+2Rf,T−n+1 + w
∗ ′
T−nµ̆

∗
T−n+1

)

−
α

2
W

2
T−n

 T∏
i=T−n+2

R
2
f,i

(w∗ ′T−nAT−n+1w
∗
T−n + bT−n+2R

2
f,T−n+1 + 2Rf,T−n+1w

∗ ′
T−nµ̆

∗
T−n+1

)

− F (s̆T , . . . , s̆T−n+2)
]

= max
wT−(n+1)

ET−(n+1)

[
WT−n

T∏
i=T−n+2

Rf,i

bT−n+2Rf,T−n+1 +

 1

αWT−n

 T∏
i=T−n+2

Rf,i

−1

− Rf,T−n+1


× µ̆

∗ ′
T−n+1Ă

−1
T−n+1

µ̆
∗
T−n+1

)

−
α

2
W

2
T−n

T∏
i=T−n+2

R
2
f,i

 1

αWT−n

 T∏
i=T−n+2

Rf,i

−1

− Rf,T−n+1

 µ̆∗ ′T−n+1Ă
−1
T−n+1

AT−n+1

×

 1

αWT−n

 T∏
i=T−n+2

Rf,i

−1

− Rf,T−n+1

 Ă−1
T−n+1

µ̆
∗
T−n+1 + bT−n+2R

2
f,T−n+1+

+ 2Rf,T−n+1

 1

αWT−n

 T∏
i=T−n+2

Rf,i

−1

− Rf,T−n+1

 µ̆∗ ′T−n+1Ă
−1
T−n+1

µ̆
∗
T−n+1

 + F (s̆T , . . . , s̆T−n+2)
]
.
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Using the definition of s̆i and denoting ξ =
T∏

i=T−n+2
Rf,i we receive

V (T − (n+ 1),WT−(n+1),FT−(n+1))

= max
{wT−(n+1)}

ET−(n+1)

[
WT−nRf,T−n+1ξbT−n+2(1− s̆T−n+1) +

bT−n+2

α
s̆T−n+1

+ F (s̆T , . . . , s̆T−n+2)−
α

2
W

2
T−nbT−n+2ξ

2

((
ξ−1

αWT−n
− Rf,T−n+1

)2

s̆T−n+1 + R
2
f,T−n+1

+ 2Rf,T−n+1

(
ξ−1

αWT−(n+1)

− Rf,T−n+1

)
s̆T−n+1

)]
= max
{wT−(n+1)}

ET−(n+1)

[
WT−nξRf,T−n+1bT−n+2(1− s̃T−n+1)

+

(
s̆T−n+1

2α
bT−n+2 + F (s̆T , . . . , s̆T−n+2)

)
−
α

2
W

2
T−n(ξRf,T−n+1)

2
bT−n+2(1− s̃T−n+1)

]
= max
{wT−(n+1)}

[
WT−(n+1)ξRf,T−n+1bT−n+2

(
ET−(n+1)(1− s̃T−n+1)Rf,T−n + w

′
T−(n+1)µ̆

∗
T−n

)
−
α

2
W

2
T−(n+1)(ξRf,T−n+1)

2
bT−n+2

(
w
′
T−(n+1)AT−nwT−(n+1) + ET−(n+1)(1− s̃T−n+1)R

2
f,T−n

+ 2Rf,T−nw
′
T−(n+1)µ̆

∗
T−n + F (s̆T , . . . , s̆T−n+1)

)
.

where F (s̆T , . . . , s̆T−n+1) = F (s̆T , . . . , s̆T−n+2) + 1
2

ET−(n+1)[s̆T−n+1]

α bT−n+2.

It is a desired form of the value function at period T − (n + 1). Because this
expression is similar to the value function at period T − n, we get the following
formula for the weights at period T − (n+ 1)

w∗T−(n+1) =

(
(ξRf,T−n+1)−1

αWT−n
−Rf,T−n

)
Ă
−1
T−nµ̆

∗
T−n ,

Substituting ξ =
T∏

i=T−n+2
Rf,i leads to the expression given in the statement

of Theorem 2. The theorem is proved.

Proposition 2 Let X be a random vector with mean µ and positive definite co-
variance matrix Σ. Let Ă = Σ + µ̆µ̆′ and µ̆ = µ− rf1. If

w = γ̃−1Ă
−1
µ̆ (66)

then

w = γ−1Σ−1µ̆ with γ−1 =
γ̃−1

1 + µ̆′Σ−1µ̆
. (67)

Proof of Proposition 2:

The application of the Sherman-Morrison formula, i.e.,

Ă
−1

= (Σ + µ̆µ̆′)−1 = Σ−1 − Σ
−1µ̆µ̆′Σ−1

1 + µ̆′Σ−1µ̆
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leads to

w = γ̃−1Σ−1µ̆− γ̃−1Σ
−1µ̆µ̆′Σ−1

1 + µ̆′Σ−1µ̆
µ̆ =

γ̃−1

1 + µ̆′Σ−1µ̆
Σ−1µ̆ ,

what completes the proof of the proposition.

Proof of Corollary 2:
Under the assumption of independence

ĂT−t+1 =

{
ΣT + µ̆T µ̆

′
T for t = 1

(1− s̃T−t+2)(ΣT−t+1 + µ̆T−t+1µ̆
′
T−t+1) for t = 2, . . . , T

(68)

and

µ̆∗T−t+1 =

{
µ̆T for t = 1
(1− s̃T−t+2)µ̆T−t+1 for t = 2, . . . , T

. (69)

Then the statement of the corollary follows from Proposition 2 if Σ is replaced
by ΣT−t+1 and µ̆ by µ̆T−t+1, and

γ̃−1 =
[ 1

αWT−t

 T∏
i=T−t+2

Rf,i

−1

−Rf,T−t+1

]
.

Proof of Theorem 3:
The results of Theorem 3 follow Theorem 2 and the application of the Sherman-
Morrison formula.
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