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Abstract
The main contribution of this paper is to present a new seffictondition for the subex-
ponential asymptotics of the stationary distribution ofl&3%1-type Markov chain with-
out jumps from level “infinity” to level zero. For simplicityve call such Markov chains
Gl/Gl/1-type Markov chains without disastelbgcause they are often used to analyze
semi-Markovian queues without “disasters”, which are tiegaustomers who remove
all the customers in the system (including themselves) em #rrivals. In this paper, we
demonstrate the application of our main result to the statipqueue length distribution
in the standard BMAP/GI/1 queue. Thus we obtain new asynepfimtmulas and prove
the existing formulas under weaker conditions than thoglerliterature. In addition,
applying our main result to a single-server queue with Meido arrivals and théa, b)-
bulk-service rule (i.e., MARZI(*?)/1 queue), we obatin a subexponential asymptotic
formula for the stationary queue length distribution.
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1 Introduction

This paper studies the subexponential asymptotics of #tesary distribution of a GI/GI/1-
type Markov chain (see, e.qg., IHe 2014) without jumps froneléinfinity” to level zero. For
simplicity, we call such Markov chainsl/Gl/1-type Markov chains without disastdyecause
they are often used to analyze semi-Markovian queues witlligasters”, which are negative
customers who remove all the customers in the system (imgutlemselves) on their arrivals.
It should be noted that every M/G/1-type Markov chain is a3HlL-type Markov chain without
disasters (see, e.qg., He 2014).

Several researchers have studied the subexponential astjoaf the stationary distri-
butions of GI/GI/1-type Markov chains (including M/G/1gy ones).. _Asmussen and Mgller
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(1999) derive subexponential asymptotic formulas for tiadi@nary distribution of a M/GI1/1-
type Markov chain with subexponential level incrementsahd Zhaol(2005) study a GI/GI/1-
type Markov chain with subexponential level incrementsytih some of their asymptotic for-
mulas are incorrect (for details, see Masuyama 2011). €g[2004) presents a subexponential
asymptotic formula for M/GI/1-type Markov chains, undee thssumption that the integrated
tail distribution of level increments is subexponentiakHould be noted that Takine (2004)’s as-
sumption does not necessarily imply the subexponentiaditgvel increments themselves (see,
e.g., Remark 3.5 in Sigman 1999). Focusing on the periodeof-tmatrix, Masuyama (2011)
establishes sufficient conditions for the subexponensgirgototics for M/GI/1-type Markov
chains, which are weaker than those presented in the litergfsmussen and Mgller 1999;
Li and Zhao 2005; Taking 2004), except for being limited te M/G/1-type Markov chain.
Masuyama|(2011) also points out that Takine (2004)’s deduaof the asymptotic formula
implicitly assumes the aperiodicity of tiié-matrix. |Kim and Kim (2012) weaken Masuyama
(2011)’s sufficient condition in the case where thematrix is periodic.| Kimura et all (2013)
present a comprehensive study on the subexponential asiospof Gl/Gl/1-type Markov
chains. They study thecally subexponential asymptotics (Asmussen et al. 2003) as wiea
(ordinarily) subexponential asymptotics. The sufficieohditions presented in Kimura et al.
(2013) are weaker than those reported in the literatureioreed above.

The main result of this paper is to present a new sufficienditimm for the subexponen-
tial asymptotics of the stationary distribution of a Gl/Gtype Markov chain without disas-
ters. This sufficient condition is weaker than the corresiougmone presented in Kimura et al.
(2013).

In this paper, we demonstrate the application of the mainltrés the stationary queue
length distribution in the (standard) BMAP/GI/1 queue (s&¢g., Lucantoni 1991). According
tolTakine (2000), the stationary queue length distribuitiche BMAP/GI/1 queue is equivalent
to the stationary distribution of a certain M/G/1-type Mawlchain. Combining this fact and the
main result of this paper, we derive four subexponentiatrgggtic formulas for the stationary
gueue length distribution. Two of the four formulas are gabunder weaker conditions than the
two corresponding ones presented in Masuyamal et al. |(2@@€)the other two formulas are
shown for a BMAP/GI/1 queue with consistently varying seeviimes, which is not considered
in[Masuyama et all (2009).

We also apply the main result of this paper to a single-saqueue with Markovian arrivals
and the(a, b)-bulk-service rule, denoted by MABI“Y)/1 queue (see, e.q., Singh et al. 2013).
For the MAPGI*Y /1 queue, we construct a Gl/Gl/1-type Markov chain withaststers by
observing the queue length process at departure points Uging the main result, we obtain
a subexponential asymptotic formula for the stationaryuguength distribution at departure
points. Combining the obtained formula with the relatiapsbetween the stationary queue
length distribution at departure points and that at an @lyittime point, we have a subex-
ponential asymptotic formula for the stationary queue flerdistribution at an arbitrary time
point.

The rest of this paper is divided into four sections. SedHqprovides basic definitions,
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notation and preliminary results. Sectidn 3 presents thia megult of this paper. Sectiohs$ 4
and5 discuss the applications of the main result.

2 Preliminaries

2.1 Basic definitions and notation

LetZ = {0,+1,+2,...},Z, ={0,1,2,... }andN = {1,2, 3, ... }, respectively. For any dis-
tribution functionf” onR . := [0, c0), let F' = 1 — F andF,, denote the equilibrium distribution
function of F, i.e., F.(z) = [ F(y)dy/ [,° F(y)dy for z > 0, which is well-defined ift" has
a positive finite mean. For any nonnegative random varigbldth positive finite mean, leY,
denote the equilibrium random variableYfsuch that

P <0) = gpr [ PO >l weZy
andYy. = |Y.], which is called the discretized equilibrium random valeabf Y. If Y is
nonnegative integer-valued, then

P(Yoe = k) = %P(Y >k), keZ,.

We now definee and I as the column vector of ones and the identity matrix, respadgt
with appropriate dimensions according to the context. Upegscript t” represents the trans-
pose operator for vectors and matrices. The notdtion (rep.[-];) denotes thé:, j)th (resp.
1th) element of the matrix (resp. vector) in the square briascke o

For any matrix sequencéM (k);k € Z}, let M(k) = >°, ., M(l) and M (k) =
> repis M(1) for k € Z. For any two matrix sequencgd (k); k € Z} and{N (k); k € Z}
such that their products are well-defined, {&7 « N (k); k € Z} denote the convolution of
{M(k)} and{N(k)}, i.e.,

Mx«N(k)=> M(k—-)N() =Y MUINk-1), kel
leZ IEZ
In addition, for any square matrix sequerc® (k); k € Z}, let {M™(k);k € Z} (n € N)
denote the:-fold convolution of{ M (k) } with itself, i.e.,
M (k)y=> M V(k-0)M(), ke
leZ
whereM*°(0) = T andM*°(k) = O for k € Z \ {0}.
Finally, for simplicity, we may writeZ (z) = o( f(z)) and Z (z) ~ Zf(x) to represent
L Z(@) Z(x) _

=0 lim =7
M % BFe P

respectively.
The above definitions and notation for matrices are appledettors and scalars in an
appropriate manner.
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2.2 Stationary distribution of GI/G/1-type Markov chain

Let My = {1,2,..., My} andM = {1,2,..., M}, whereMy, M € N. We then define
{(X,,Sn);n € Z,} as a Markov chain with state spaBe:= ({0} x Mj) U (N x M) and
transition probability matrix”, which is given by

B(0) B(1) B(2) B(@3)
B(-1) A(0) A(1) A2 ---
T=| B(-2) A(-1) A(0) A1) --- |, (2.1)
B( 3) A( 2) A( 1) A0) ---

whereB(0) and A(0) in the diagonal blocks ar&/, x M, andM x M matrices, respectively.
Each element of is specified by two nonnegative integéksi) € F, where the first variable
k is calledleveland the second onds calledphase

Throughout this paper, we make the following assumption:

Assumption 2.1 (i) T is irreducible and stochastic; (i) -, kB(k)e < oo; (i) A =
> rez A(k) isirreducible and stochastic; (i}) .., |k|A(k) < oo; (V) o =7, ., kA(k)e <
0, wherer := (m;);em iS the stationary probability vector of := >, _, A(k).

Remark 2.1 T is positive recurrent if and only i < 0 and ), kB(k)e < oo, pro-

vided thatT and A are irreducible and stochastic (see, €.g., Asmussen 2083pt& XI,

Proposition 3.1). Therefore Assumptibnl2.1 is equivalencandition (I) of Assumption 2
in Kimura et al. (2013).

Remark 2.2 Fork € N, we haveB(—-k)e + >, | A(l)e = e. Thus condition (iii) of
Assumption 2.1l implie§m,,_,., B(—k) = O, which shows that the one-step transition proba-
bility from level “infinity” to level zero is equal to zero,4., no “disasters” happen in the context
of queueing models.

Letz := (x(0),x(1),z(2),...) denote the unique stationary probability vectoZbfwvhere
x(0) (resp.x(k); k € N)isal x M, (resp.1 x M) subvector ofc corresponding to level zero
(resp. levelk). To characterizer = (x(0),x(1),x(2),...), we introduceR-matrices. Let
Ry(k) andR(k) (k € N) denoteM, x M andM x M matrices, respectively, such that

Tck
[Ro(k));; = E [Z 1(X, =k S, =7)| Xo=0,5 = z] :
n=1

and for any fixed, € N,

Y

n=1

T<k+1/
:E[Z 1(X,=k+v,S,=75)| Xo=v,5 =i
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whereT, =inf{n e N; X,, <k < X,, (m=1,2,...,n— 1)} and1(-) denotes the indicator
function of the event in the parentheses. For conveniert®J(0) = O andR(0) = O. It
then follows (see, e.g., Kimura etial. 2013; Li and Zhao 2008)

x(k) =x(0)Ry x F(k), keN,

where ~
F(k)=) R™Fk), keZ,. (2.2)
n=0
Thus we have
Z(k) = x(0)Ry * F(k), keZy, (2.3)
and especially,
z(0) = z(0)Ro(I — R)™", (2.4)

whereR = 77 | R(k) andR, = ) .-, Ro(k).
For the discussion in the next section, we need some mordtaefsand preliminary re-
sults. LetG (k) (k € N) denote anV/ x M matrix such that for any fixed € N,
[G(k’)]@j = P(XT<k+u =V, ST<k+u :] | XQ = ]{3 + v, SQ = Z), ]{3 € N
Let ®(0) denote an\/ x M matrix such that for any fixed € N,
[®@(0)]:; = P(ST,, = j | Xo =1, 50 =1),

whereT|, = inf{n e N; X,, =v < X,, (m=1,2,...,n—1)}. Note heretha} > ,(®(0))" =
(I-®(0))~ ! exists becausF is irreducible. Since Assumption 2.1 is equivalent to ctindi(l)
of Assumption 2 in Kimura et al. (2013) (see Remark 2.1), weehthe following result:

Proposition 2.1 (Kimura et al: 2013, Lemma 3.1.1)Under Assumption 2.1,
o=—n(I-R)I—-®0)) kG(k)e € (—o0,0).
k=1

Let L(k) (k € N) denote an\/ x M matrix such that for any fixed € N,
[L(k)]z,] = P(STM, :] | XO = ]{3 + v, SO = Z), ]{3 € N.

We then have .

L(k)=) G™(k), keN.
m=1
In terms of L(k), the matricedR(k) and R(k) are expressed as
Ry(k) = |B(k)+ > _ B(k+m)L(m)

m=1

(I —-®(0)", keN,

R(k) = | A(k) + i A(k +m)L(m)

m=1

(I —®(0)", k € N. (2.5)

The following proposition is used to prove Lemmal3.1 in thetrsection.
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Proposition 2.2 (Kimura et al/[2013, Lemma 3.1.2)If Assumption 2]1 holds, then

T—1

JggoZL(nT +1) = rex,
1=0
where
Y =7(I - R)(I - ®(0))/(-0), (2.6)

and T denotes the period of an Markov additive process with kefelglk); £ € Z} (see Ap-
pendix B in Kimura et &l. 2010).

Remark 2.3 Proposition 2.1l implies thap is finite.

2.3 Long-tailed distributions

We begin with the definitions of the long-tailed class andhkigorder long-tailed classes.

Definition 2.1 A nonnegative random variablé and its distributionf;; are said to be long-
tailed if P(U > z) > 0 forallz > 0andP(U > = +y) ~ P(U > x) for some (thus ally > 0.
The class of long-tailed distributions is denotedy

Definition 2.2 A nonnegative random variablé and its distributior¥}; are said to be the th-
order long-tailed ifU'/* € £, wherey > 1. The class of theth-order long-tailed distributions
is denoted byC*. Further ifU € L£* (resp.Fy € £#) forall p > 1, we writeU € L (resp.
Fy € £°) and callU (resp.Fy) infinite-order long-tailed.

The basic properties of the higher-order long-tailed @agscluding the long-tailed class)
are summarized in Propositibn 2.3 below.

Proposition 2.3 (Masuyamé 2013, Lemmas A.1-A.3)
(i) £r2 c Lmforl < py < .
(i) If U € £# (u > 1), thenP(U > x) = exp{—o(z'/")}.

(i) U € £*(n > 1)ifand only if P(U > z — &x'~1/#) & P(U > x) for some (thus all)
¢ € R\{0}.

Next we introduce the subexponential class, which is thgektrtractable subclass 6f

Definition 2.3 (Goldie and Klippelberg!1998; Sigman 1999)A nonnegative random variable
U and its distributionf;; are said to be subexponentiaPifU > x) > 0 for all z > 0 and

P(U, + Uy > x) X~ 2P(U > ),

wherelU;’s (i = 1,2, ...) are independent copies©@t The class of subexponential distributions
is denoted bysS.
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Remark 2.4 The classS includes Pareto, heavy-tailed Weibull, lognormal, Bund &oggamma
distributions, etc (see, e.q., Goldie and Kluppelhergg)99

The following proposition is used several times in the sgbsat sections.

Proposition 2.4 (Masuyama 2011, Proposition A.3) et { M (k);k € Z.} and{N (k); k €
7.} denote finite-dimensional nonnegative matrix sequenasstbat their convolutiod M x
N(k);k € Z4} is well-defined andVf = > 77 M (k) and N := Y7 N(k) are finite.
Suppose that for some random variablec S,

M(k)  ~ Nk) =

lim ——"2_ =M>0, lm-—’ =N>O0
koo P(U > k) =% BN PU k) =

whereM = N = O is allowed. We then have

. Mx«N(k) —~ —~
lim ———==MN+ MN.
Pl P(U > k) *
Finally we describe two subclasses®f which are used to apply the main result of this

paper to the BMAP/GI/1 queue in Sectidn 4.

Definition 2.4 (Shneel 2006)A nonnegative random variablé and its distribution function
Fy and cumulative hazard functiof; := —log F';y belong to the subexponential concave
classSC with indexa (0 < a < 1) if the following hold: (i) @y is eventually concave; (ii)
logz = o(Qu(x)); and (iii) there exist some, > 0 such thai); (z)/z* is nonincreasing for
all z > x, i.e.,

T > u > .

2= ()

Uu
The subexponential concave class with indes denoted bysSC,,.

Remark 2.5 SC, ¢ £'/?forall0 < o < 8 < 1 (see Lemma A.6 in Masuyama 2013). In
addition, typical examples @, € SC are (i) Qu(x) = (logz) "z and (i) Qu (x) = (log x)?,
where0) < a < 1, § > 1 andy € R. See Appendix A.2 in Masuyama (2013) for further
remarks.

Definition 2.5 A nonnegative random variablé and its distribution functior¥;; belong to the
consistent variation clagsif F;(z) > 0 for all x > 0 and
Fy(vr) Fy(vr)

lim lim inf — =1 or equivalently, lim lim sup — =1
vll z—00 FU(.T d 4 vl :c—)oop FU(.T)

Remark 2.6 It is known that (i)C C £* (see Lemma A.4 in Masuyama 2013); (R) C C C
LND c S whereD andR denote the dominated variation class and the regular i@rielass,
respectively (see, e.g., the introduction of AleSkean@& et al. 2008).
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3 Main Result

Before presenting the main result, we first show a relatedtres

Proposition 3.1 (Kimura et al!|l2013, Theorem 3.1.1)Suppose that (i) AssumptibnP.1 is sat-
isfied; and (ii) there exists some random variablen Z, with positive finite mean such that
Use € S and B B
. A(k)e ca , B(k)e cp
lim = , lim = ;
k—o0 P(U > ]{3) E[U] k—o0 P(U > k‘) E[U]
wherec, andcp are M x 1 and M, x 1 nonnegative vectors, respectively, satisfying# 0
or cg # 0. We then have

(3.1)

lim z(k) _ x(0)eg +T(0)ca o

k—oo P(Uge > k) —0

In this section, we present a more general result than thesgiyoposition. For this purpose,
we make the following assumption:

Assumption 3.1 There exists some random variablen Z_ such that

_ A(k)e _ B(k)e
mey=m % Meysp o (3:2)
wherec, andep are M x 1 and M, x 1 nonnegative vectors, respectively, satisfying+ 0

orcg # 0.

Remark 3.1 We suppose thdt (3.1) holds for some some random variabieZ, with positive
finite mean U4 € S is not necessarily assumed). It then follows frém](3.1) that

lim _Ak)e lim _Bke
150 PUge = k) 7 k50 PUge=k)
which yield B B
A(k)e B(k)e

= Cy, lim

k—o0 P(Udc > /{3)

lim

k—o0 P(Udo > /{3)
Thus Assumptiof 311 holds faf = Uy,.

= CpB.

The following theorem is the main result of this paper.

Theorem 3.1 Suppose that (i) Assumption 2.1 is satisfied; and (ii) Assiom{8.1 holds for
someY € S. We then have
z(k) z(0)cg +®(0)ca

li = -, 3.3
koo P(Y > k) 0 T (3:3)
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Before proving Theorern 3.1, we compare the above theoretm Rvibpositiori 311. Ac-
cording to Remark 31, condition (ii) of Proposition 3.1 igfiient for condition (ii) of Theo-
rem[3.1. On the other hand, the latter do not imply the formeiconfirm this, we suppose that
(3.2) holds for a randori” in Z,. such that

P(Uge > 2n), k=2n,n¢eZ,,

PIY'> k) = { %{P(Udc >2n)+P(Uge >2n+ 1)}, k=2n+1,neZ,, (34)
whereU is a random variable iZ . such that/ € S andUy,. € S (see Goldie and Kluppelberg
1998 and also Definition A.3 and Proposition A.2 in Masuya®@&id. It follows fromUy. € S
and [3.4) thaP(Y > k) X P(Uqe > k) and thusY” € S (Sigman 1999, Proposition 2.8), which
shows that condition (ii) of Theorem 3.1 holds i6re S defined in[(3.4).

Note here tha{(312),_(3.4) add € S C L yield

2n —1)e — A(2n)e
{P(Uge > 2n — 2) + P(Uge > 2n — 1)} — e4P(Uge > 2n)

A(2n)e =

n
~

|@ 2

= c4 E {P(Use > 20 — 2) — P(Uge > 2n — 1)}

+ P(Uge > 2n — 1) — P(Uge > 2n)

1
=cy |:§P(Ude =2n—1)4+PUs = 271)]

e (% P E[ZT]’ -V, P“{EFU]Q")) n 3Pl [>U]2”>, (3.5)
and
A2n+1)e = A(2n)e — A(2n+ 1)e
% eaP(Use > 2n) — %“ (P(Use > 2n) + P(Ugo > 2n + 1)}
- %A {P(Uge > 2n) — P(Use > 2n + 1)}
_ Cap(, — o 1) = aPU>2nE L) (3.6)

2 2 E[U]

The equations[(3l5) an@ (3.6) show thiat, .., A(k)e/P(U > k) does not exist and thus
condition (ii) of Proposition 311 does not hold. Conseqiyeritheoren{ 3.1l is a more general
result than Propositidn 3.1.

In what follows, we prove Theorem 3.1. To this end, we essabtfiree lemmas.

Lemma 3.1 Suppose that Assumptioni2.1 is satisfied. If Assumptiorods for some&” € L,
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then
. ~~A(k+m)L(m) ean(I - R)(I— ®(0))
i TP > k) — ’ S
.~ B(k+m)L(m) _ cpm(I - R)(I — ®(0))
i PY > k) o ' (3.8)
Proof. See Appendik AJl. O

Lemma 3.2 Suppose that Assumptioni2.1 is satisfied. If Assumpfioro®d$ for som&” € L,
then

R(k) ca(I — R)

i PY >k = -0 (3:9)
. Ry(k) cpm(I — R)
A P(Y > k) — (3.10)
Proof. From [2.5), we have
R(k) = |A(k) + i A(k+m)L(m)| (I —®(0))"" (3.11)
m=1

A(k) . Ak —1)eet — A(k)eet _

im ——’ < =0.
DY s k) S P(Y > k) ©
Thus [3.11) yields
. R(k) . A(k+m)L(m) -
B ey s T Ty sy 2O (3.12)
Substituting[(3.7) intd(3.12), we obtain (B.9). Similasye can prove (3.10). 0

Lemma 3.3 Suppose that Assumptioni2.1 is satisfied. If Assumpfiorodd$ for som&” € S,

then _
F(k) (I - R) leymw

i PY > k) o (3.13)
Proof. It follows from (2.2) that
Y F(k)=I-R)™" (3.14)

k=0

Further combining (Z]2) with Lemma 6 iin Jelenkovi¢ and lrgd®98) and[(3.14) yields

- F(k) L. Rk »
T B U L L
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From this and[(319), we have (3]13). O

We now provide the proof of Theordm 3.1.

Proof of Theorem 3]1.Applying Proposition 214 to(213) and usirig (3.10), (3.18)43.14),

we obtain

: _ o -1
I B sy~ o LonT ol = R)ean].
Substituting[(2.14) into the above equation yields](3.3). O

4 Application to BMAP/GI/1 Queue

This section discusses the application of the main restittestandard BMAP/G/1 queue.

4.1 Model description

We first introduce the batch Markovian arrival process (BMARIcantoni 1991). LefJ(¢);t >

0} denote a Markov chain with state spade= {1,2,..., M}, which is called background
Markov chain. Let{N(¢);¢ > 0} denote the counting process of arrivals from the BMAP.
We assume that the bivariate proc¢sa/(¢), J(t));t > 0} is a Markov chain with state space
Z. x M and the following infinitesimal generat@}:

C D(1) D(2) D(@3)
O C D(1) D2

Q=0 O C DO - | (4.1)
o o o c -

where D(k) > O (k € N), [C];; < 0@ € M), [C|;; > 0 (¢ # j, 14,7 € M) and

(C+>°;2, D(k)) e = 0. Thus the BMAP is characterized by the rate matrig€s D(1), D(2), . ..

Let D(z) = >, 2*D(k)andD = D(1) = Y re; D(k). It then follows from [4.1) that
EL"O1(I(1) = 5) | J0) =] = [exp{(C+ DY . g em ¢ >0,

and thatC+ D is the infinitesimal generator of the background Markov oKdi(t); t > 0}. For
analytical convenience, we assume tat D is irreducible, and then define := (w;);em >

0 as the unique stationary probability vector@f+ D. In this setting, the mean arrival rate,
denoted by, is given by

A= wiD(k)e, (4.2)
k=1

which is assumed to be strictly positive (i.&.;> 0) in order to exclude a trivial case.

1.
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Customers are served on the first-come-first-served basistheir service times are in-
dependent and identically distributed (i.i.d.) accordingdistribution functiond with mean
h € (0,00) andH(0) = 0. We assume that the offered loac= \h > 0 satisfies

p <1,

which ensures that the BMAP/GI/1 queue is stable (Layne2)196

Lety(k) denote a x M vector such thajy(k)|; = P(L =k, J =) for (k,i) € Z, x M,
whereL and.J denote generic random variables for the number of custoiméng system and
the state of the background Markov chain, respectivelyteady state. It is known that :=
(y(0),y(1),y(2),...) is the stationary probability vector of the following tréien probability
matrix of M/G/1 type [(Takine 2000):

P(0) P(1) P(2) P(3)
P(0) P(1) P(2) P3) ---
Tyyjcn = O P(0) PQ1) P2 - [, (4.3)
O O P(0) P(1) ---
whereP (k) (k € Z,) denotes aid/ x M matrix such that
P(z) =) "P(k) = / h exp{(C + D(z))z}dH (x). (4.4)
k=0 0
It is easy to see thdl'y,c 1 is equivalent tdl’ in (2.1) with
B P(k), keZy,
A(k) = { Z(IH b P2 B)= { P(0), k=—1, (4.5)
’ -7 O, k< -2

Note here that (412)[_(4.4) and= \h yield

w i kP(k)e = wP'(1)e = wi kD(k)e - /OO xdH (z) = M\h = p. (4.6)
k=1 0

k=1
We now defineP, (k) (k € Z.) as anM x M matrix such that
P(2) =Y P (k) = / exp{(C + D(2))a}dH,(z), (4.7)
k=0 0

where H, is the equilibrium distribution of the service time distitton /7. We then have the
following lemma:

Lemma4.1

Nl

(k)e = h-P.x D(k)e, kelZs,. (4.8)
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Proof. Post-multiplying both sides of (4.7) byC — ﬁ(z) and integrating the right hand side
by parts yield

P.(2)(—-C —D(2))=h"'(I-P(2), |7 <1. (4.9)
It follows from (@.9) and—Ce = De = D(1)e that
ﬁe(z)D“)‘i - f<z)e - h*%, 2] < 1. (4.10)

Note here that

~ ~

> #Dike = PWEZPEE (e = ¢ P
k=0 k=0

Substituting these equations info (4.10), we have

P.(2)Y D(k)e=h""Y " 2"P(k)e,
k=0 k=0
and thus .
P(k)e=h-Y P()D(k—1lle, keZ,
=0
which shows tha{(418) holds. O

4.2 Asymptotic formulas for the queue length

In this subsection, we present some subexponential asyigfationulas for the stationary queue
length distribution of the BMAP/GI/1 queue. For this purppwe use the following result:

Corollary 4.1 Suppose that there exists some random variabie Z, such thatt” € S and

P(ke

lim ——2%  —¢>0,#0. 4.11
My w207 (4.11)

We then have e
y(k) & @ P(Y > k). (4.12)

—p

Proof. Recall thatT'y;;q,: in (4.3) is equivalent td in (2.1) with block matricesA(k) and
B(k) (k € Z) satisfying(4.5). Recall also that is the stationary probability vector 6f + D.
Thus [4.4) implies thato satisfieszAD(l) = w and corresponds to the stationary probability
vectorm of A = 3", , A(k). Combining these facts with (4.5), (4.6) and (4.11), we have

Ak)e L Bk)e L c-P(Y > k),
c=w) (k—1)P(k)e=p—1.
k=0
Therefore[(4.12) follows from Theorem 8.1 and0)]; + [¥(0)]; = P(J = i) = w; (i € M). O

In the following, we consider three cases: (i) the serviceetdistribution is light-tailed; (ii)
second-order long-tailed; and (iii) consistently varying
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4.2.1 Light-tailed service time
Let G denote a random variable ¥, such thaP(G = 0) = 0 and

wD(k)e

Ao
where )\ is the arrival rate of batches, i.e\¢ = wwDe. From the definition of~, we have
E[G] = A/A¢ and thus

P(G=k)= keN, (4.13)

wD(k)e
)\ )
We now make the following assumption:

P(Gae > k) = keZ.. (4.14)

Assumption 4.1 There exists somég > 0, = 0 such that

D(k)e —dg. (4.15)

lim

k—o00 P(Gdo > ]{7)

Theorem 4.1 Suppose that/ is light-tailed, i.e., [~ ¢"dH (z) < oo for somes > 0. Further
if Assumption4]1 holds and,. € S, then

P(k)e £ hP.(1)dg - P(Gae > k), (4.16)
and
P(L>kJ=1)% %wi P(Ge > k). (4.17)
—p
Proof. It follows from (4.7) andew(C + D) = 0 that
wf’e(l) = o, (4.18)
and from [(4.14) and (4.15) that N
wdg = ). (4.19)

Thus if (4.16) holds, theri (4.18), (4]19) and Corollary 4idlg/

glk) & ﬁw P(Gue > k),
which shows tha{{4.17) holds.
In what follows, we prove(4.16). LeA(k) (k € Z.) denote

I+07'C, k=0,
A(k) = { 6-1D(k). keN. (4.20)

wheref = max;ey |[C];;]. We then rewrite[{4]7) as

oo n

/ o0 9‘”’3 —dH, (x) [Z 2 A(k)

Y

k=0
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which implies that

P.(k) = /0 h f:e—% (ezl)ndHe(x)W(k), ke, (4.21)

According to Corollary 3.3 in_Sigman (1999, € S C L impliesP(G > k) =
o(P(Gge > k)). It thus follows from [(4.1B),[(4.14)[ (4.20) and > 0 that fori € M,

_ e [D(k)e]; < \¢ wD(k)e

[A(K)e]; 0 e S 0m e
_ ;‘;iP(G > k) = o(P(Gae > k). (4.22)

Using this and Propositidn 2.4, we obtain
A(k) = o(P(Gae > k), n € N. (4.23)

Note here that{ is light-tailed if and only ifH. is light-tailed. Therefore similarly to the proof
of Lemma 3.5 in Masuyama et/al. (2009), we can readily provnff4.21) and(4.23) that

P.(k) = o(P(Gae > k). (4.24)

As a result, we obtain (4.16) by applying Proposifion 2.44@) and using(4.15) and (4]24).
O

Masuyama et all (2009) present a similar result:

Proposition 4.1 (Masuyama et al. 2009, Theorem 3.2%uppose that (i is light-tailed; and
(ii) there exists som® > O,+# O such thatD(k) L DP(G > k). Furtherif G € S and
Gg4e € S, then [4.1T7) holds.

TheorenT 4.1l shows that the conditiGhe S in Propositiorf 411 is not necessary for the
subexponential asymptotic formula_(4.17). In additionpdition (ii) of Propositior 4.1l im-
plies Assumptio 4]1 whereas its converse does not. Thisdamnfirmed similarly to the
comparison of Theoreimn 3.1 and Proposition 3.1 in Se¢tlon 8.aAesult, the conditions of
Proposition 4.1 are more restrictive than those of Thedrdin 4

4.2.2 Second-order long-tailed service time

Theorem 4.2 Suppose that (if/, € £* for someu > 2; and (i) .2, e“® D(k) < oo for
some cumulative hazard functighe SC such thatr'/* = O(Q(z)). We then have

o(k) & e - Hao(k/N). (4.25)

~l

In addition, if (iii) H, € S, then

(ke & pe - Ho(k/N), (4.26)

il
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and
P(L>k,J=i)% %wz Ho(k/)). (4.27)
P

Remark 4.1 Condition (i) implies that.(z) = exp{—o(x'/*)} (see Proposition 2.3 (ii)).
Further condition (i) implies thaD (k) = o(exp{—dk'/#}) for somes > 0. ThusD(k) =
o(H(k)).

Proof of Theorem 4]2.Let T denote a nonnegative random variable distributed Withinde-
pendently of BMAP{C, D(1), D(2),...}. We can readily obtain

PIN(T) > k| J(0)=d) X P(T > k/)), i€M, (4.28)

by following the proof of Lemma 3.1 in Masuyama et al. (200&) asing Corollary Bl instead
of Lemma 2.1 in_Masuyama et'al. (2009). Further similarly ie proof of Lemma 3.2 in
Masuyama et ali (2009), we can prove fram (4.28) that

P(N(T) > k, J(T) = j | J(0) =) & @;P(T > k/\),  i,j €M,

which shows tha{{4.25) holds.
Next we provel[(4.26). According to Remarki4Id(k) = o(exp{—5k*/*}) for somes > 0,
which implies that

o0

D(k) < o(exp{—(6/2)k""}) > exp{—(5/2)I"/"}

I=k+1

= ofexp{—(0/2)k"/"}).

Thus sinced (k/\) = exp{—o(k'/*)} (see Remark4l1), we obtain

D(k) = o(H.(k/N)). (4.29)

Applying Propositio 24 td (418) and usirig (4.25) aind (}yeld
P(k)e X hew > D(k)e - He(k/\) = pe - Ha(k/N),

k=0
where the last equality is due fo (4.2) ame- A\h. Therefore we havé (4.26).
Finally, from (4.26) and Corollarly 4.1, we have

y(h) & o T (/).

which shows tha{(4.27) holds. O

We now compare Theoreim 4.2 with a similar result presentédasuyama et al. (2009),
which is as follows:
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Proposition 4.2 (Masuyama et al. 2009, Theorem 3.1If (i) # < £? and H, € S; and (ii)
S eVED(E) < oo for somep > 0, then [@.27) holds.

Note that if H € £2, thenH, € £? (see Lemma A.2 in Masuyama et al. 2009). Note
also thatH, € £? if and only if H, € £+ for someu > 2 (see Proposition 2.3 (i)). Thus
conditions (i) and (iii) of Theorem 4.2 are weaker than ctindi(i) of Proposition 4.2. Further if
Q(z) = ¢+/z, then condition (ii) of Theorein 4.2 is reduced to conditighdf Propositior 4.2.
As aresult, Theorem 4.2 is a more general result than Priopoldi.2.

Actually,/Asmussen et al. (1999) consider an M/GI/1 queuh airival rate\ and service
time distribution, and the authors prove thatif, € £2N S,

P(L> k)& L H.(k/N.
L—p
Theoreni 4.2 includes this result as a special case wherepestion 4.2 does not.

4.2.3 Consistently varying service time

Theorem 4.3 Suppose that (iH. € C and [;° H.(z)dz < oo and (i) D(k) =

o(H
We then have (4.25). Further if (iii) there eX|sts some fialte > 0 such that ﬁ( k)e
H,(k/)\)dy, then

o(k))-

Zw

Plkle o (pe + hﬁo(l)EH) . (k/N), (4.30)

and

k p—l—hwdH

P(L>k J=1i) % @ - Ho(k/N). (4.31)

Proof. As in the proof of Theorem 4.2, 16t denote a nonnegative random variable distributed
with H, independently of BMARC, D(1), D(2),...}. Itis easy to see that the conditions of
Proposition B.P are satisfied. Using Proposifion B.2, wealatain [4.28) and thu§ (4.25) in the
same way as the proof of Theoréml4.2, where we do not requirditoan (iii).

In addition, applying Propositidn 2.4 tio (#.8) and usin@B}.and condition (iii), we obtain

P(kle X h (ew iﬁ(l@)e + ﬁe(1)EH> Heo(k/)\)

= <pe + hgc(l)3H> He(k/\),

where the last equality follows frori (4.2) apd= Ah. Therefore we have (4.80). Combining
(4.30), [4.18) and Corollafy 4.1 yields

_ & pthwdy
y(k) =,

which leads to[(4.31). O

Heo(k/N),
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Suppose]H = 0. It then follows that asymptotic formula (4J31) in Theored #as the
same expression ds (4127) in Theofen 4.2. The two theoresumasthatD (k) = o(H,(k))
(see Remark 411 and condition (ii) of Theoreml 4.3) and thasttie service time distribution
has a dominant impact on the tail of the stationary queuettedigtribution.

Conversely, the following theorem assumes, as with The@dirthat the batch size distri-
bution has a dominant impact on the tail of the stationaryuguength distribution.

Theorem 4.4 Suppose that conditions (i) and (ii) of Theorem 4.3 are §iatis Further suppose
that Assumptiof 411 holds fd¥y. € S such thatH(k/\) = o(P(Gg. > k)). We then have

(4.18) and thud(4.17).

Proof. As shown in the proof of Theorem 4.3, the asymptotics (4.28)$under conditions
(i) and (i) of Theoreni 413. From (4.25) ardd.(k/)\) = o(P(G4. > k)), we havel(4.24), i.e.,
P.(k) = o(P(Gq4. > k)). The rest of the proof is the same as that of Thedremn 4.1. O

5 Application to MAP/GI (“?/1 Queue

In this section, we apply out main result to a single-servesug with Markovian arrivals and
the (a, b)-bulk-service rule, which is denoted by MAP/G?/1 queuel(Singh et al. 2013).

5.1 Model description

We assume that the arrival process is a Markovian arrivatge® (MAP), which is a special
case of the BMAP{C, D(1), D(2),...} (introduced in Sectionl4) such th& (k) = O for
all k > 2. For convenience, we use the symbols defined for the BMAP ati@€4, though
we denote, for simplicityD(1) by D. Thus the MAP is characterized HY”, D}. As with
Sectior 4, we assume tha@t + D is irreducible and that the arrival rateis strictly positive,
i.e.,

A=wDe >0, (5.1)

wherezo is the unique stationary probability vector©f+ D.

We also assume that the server works according tddhe-bulk-service rulel(Singh et al.
2013). To explain théa, b)-bulk-service rule, we suppose thHatustomers are waiting in the
queue at the completion of a service. Theb)-bulk-service rule is as follows:

() If 0 <1 < a, the server keeps idle until the queue length is equal toother threshold:
and then starts serving all thecustomers when the queue length reachesd

(i) If [ > a, the serverimmediately starts servimgn(/, b) customers in the queue and makes
the otherl — b customers (if any) be in the queue.
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The service times are assumed to be independent of the naintigstomers in service and
i.i.d. according to distribution functio®/ with meanh € (0,00) and H(0) = 0. We assume
that the offered loag = \h satisfies

p <b, (5.2)

under which the system is stable (Loynes 1962).
It should be noted that sind® (k) = O for all & > 2, (4.4) and[(4.]7) are reduced to

P(z) = /000 exp{(C + zD)x}dH (z), (5.3)
P.(2) = /O " exp{(C + 2D)a}dHo(x). (5.4)

In addition, sinceD(0) = D andD(k) = O for all k£ € N, it follows from Lemmd4.1 that

P(k)e = h-P.(k)De, keZ,. (5.5)

5.2 Queue length process

Let LY (¢) (t > 0) denote the total number of customers in the system at timeet .J(t)
(t > 0) denote the state of the background Markov chain at timet0) = ¢, <t; <t, < ---
denote time points at each of which a service is completed.

Let LY andJ, (n € Z..) denote

LY = lim L@V (t, + ),  J, = lim J(t, + ).
el0 el0

ThusL{" and.J, denote the number of customers in the gueue and the state lohtkground
Markov chain, respectively, immediately after the comipletof the nth service. It follows
(Singh et al. 2013) that(L'"” ., J,);n € N, } is a discrete-time Markov chain with state space
7. x M, whose transition probability matr[k“ﬁf’b) is given by

Py(0)  Po(1) Py(2) Py(a) Py(b)
P.(0) Py(1) P2 Pi(a) P(b)
Poi(0) Par(1) Pus(2) -+ Pas(a) -+ Pus(b)
PO) P(1) P(2) (a) (b)
TSf’b) — P(O) P(1) P2 P(a) P(b) 7 (5.6)
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where

P(k)=[(-C)"'D]""P(k), 1=0,1,....a—1, keZ,. (5.7)

Under the stability conditiori{5.2), the Markov chaifL{”, J,);n € N,} and thusT'™"
have the unique stationary distribution. lagtc) denote a x M vector such that

WP (k)] = lim P(LE@Y =k, J, =1), (ki) € Zy x M.

n—o0

It should be noted that the stochastic prodgds®® (¢), J(t));t > 0} is a semi-regenerative
process with the embedded Markov renewal prodégs™”, J,.t,);:n € Z,} (Cinlar|1975,
Chapter 10). Note also thé(Lﬁ?’b), Jn,tn);m € Z4} is aperiodic because the arrival process
is Markovian (Cinlar 1975, Chapter 10, Definition 2.22).rfher the mean regenerative cycle
(mean inter-departure time) is given by

n—zz CE[ty | LEY =k, Jo = ]

k=0 ieM
a—1 ( ) d 00 a—k
_ a,b o : s —sT
_ h+Zy+ (k) (~1) lin = [ /0 e exp{Cr}dzD| e
—h— Zy Wlim - [(sT - €)D" " e
510 ds
a—k—1 l
_h+zy(‘”’ ) Y [(-0)™'D]' (-C)*De
=0
a—k—1 l
- h+Zy(“b [(-C)'D]' (-C)e. (5.8)

According to Theorem 6.12 in Chapter 10 of Cihlar (1975),hage for(k, j) € Z, x M,

[y (k));
= i PO = 4,500 =)
= —ZZ / Puiy (LD (x) =k, J(x) = j,tr > z)dx, (5.9)
=0 iem 0

whereP( () = P(- | L@ (0) =1, J(0) =9).
We now defineP(t, k) (t > 0, k € Z,) as anM x M matrix such that

[P(t,k)]i; =PN({t) =k, J(t) =j [ J(0)=1),  ijeM
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It then follows from [5.9) that

YOO =30 (o)D) o) o<k <a-,

=0
a

y @ (q) = % ySf’b)(l) [(-C)™'D] ot /OOO P(z,0)H (z)dz,

a

y (k) = % y (0 [(-C) D] / Pl k- o)
=0 0

k
1 o —
+- ) y(f"”(l)/ P(z,k—)H(z)dz, k>a+1.
N l=a+1 0
Note here thati!(x) = h=*H(z) for z > 0. Note also that

/O P ) H (2)ds = /0 ¥ P, k)dHL(z) = Po(k),

where the last equality is due {0 (#.7). Thus (5.11) and }>ca8 be rewritten as

a

¥V (@ =13y [(=C) D] Puo)

¥V ) = 23y 0 [(-C) D) Pyl a)

=0
h k
+= 3 Y0Pk - 1), k>a+1.
U l=a+1
5.3 Asymptotic formulas for the queue length

Let S(0) denote &M x bM matrix such that

21

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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and letS(k) (k € N) denote &M x M matrix such that

Py(k+b-1)
P (k+b-1)

| P (k.+b—1)
S(k) = P(1]€+b_1) . (5.16)

P(k+b—1)

P(k+b—-1)
Further letS(—k) (k = 1,2,...,b) denote anV/ x bM matrix such that

S(—k) = (‘o,o,...,o‘, P(0),P(1),...,P(b— k)) . (5.17)

We then rewrite[(5]6) as

S0) | S@) 5(2) S(3)
S0 Pb) Pb+1) Pb+2)
S(-2) | Pb—1) PL) Pb+1)

(5.18)

- Q0

which is a GI/G/1-type Markov chain without disasters.

Lemma 5.1 Suppose that the arrival process is the MA®, D}, i.e., a BMAP characterized
by {C, D(1),D(2),...} suchthatD(k) = O forall k > 2. If H, € £2, then

P.(k) L ew - H.(k/N), (5.19)
Pk) L pe H.(k/N), (5.20)
S(k) X pe - Ho(k/N). (5.21)

Proof. Since conditions (i) and (ii) of Theorem 4.2 are satisfied,abymptotic equation (5.119)
hold. Substituting[(5.19) intd (5.5) and using (5.1) ang A\h yield

P(k)e £ hewDe - Ho(k/\) = pe - Ho(k/\),

which shows tha{{5.20) holds. Further applyihg (5.20)t@)and using—C)~'De = e, we
obtainforl =0,1,...,b—1,

- k

Py(k)e & [(=C)'D]"" pe - Ho(k/)) = pe - Ho(k/).
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Finally, incorporating this and(5.20) into (5]16) yiel@2Z1). 0
Theorem 5.1 If H, € £2N S, then
yfb%k)ﬁjg{;;cv-?iXk/AL (5.22)
g0 (k) X h b . Ho(k/N). (5.23)
nb—p

Proof. Note thatl’Sf’b) in (5.18) is equivalent td” in (Z.1) with

[ P(k+1b), k> -b, [ S(k), k> b,
A%%_{O, k< —b-—1, B“ﬂ_{cx k< —b—1. (5.24)

It then follows from [4.6) and_(512) that

w > kA(k)e=w Y kP(k+be=p—b<0.
kEZ k=—b

It also follows from [5.2D),[(5.21) and (5.24) that

Ak)e X pe - H.(k/\), Blkle X pe-Ho(k/N),
where the dimensions o?l(k;)e andf(k;)e are different each other. Combining these results
and Theorerh 311 yields
00 (a,b)
g (h) & 22 W 57 ) Lo T,/
—p —p
which shows tha{(5.22) holds.
Next we prove[(5.23). Froni (5.114), we have foP a,

a

7o (k) = %Z V(1) [(~C) D) Pulk - a)

h e = B e a —
+ =y Po(k) — = >y )Pk - 1).
n n —o
Applying (5.19), [5.2P) and Propositidn 2.4 to the aboveatiqu and using the long-tailed
property ofH,, we obtain

a

_(avb) ]{; h a a _ a— h a
w2 LS00 (-0 D) ew - LYyt e

lim =
koo He(k/A) 1155 =
h o u o
+— ygr’b)(l)ew + wa Z Pe(l)]
=0 IR
hc~ h~ h
= — yi’b)(l)ew - — ysr’b)(l)ew + — {w + Lw]
ni ni= U b—p
h b
—= ——w7

nb—p
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where the second equality follows from

(-C)'De = e, wZPe( =, Zy(“b
=0
The proof is completed. O

Remark 5.1 Suppose: = b = 1. It then follows that the MAP/G?/1 queue is reduced to
the standard MAP/GI/1 queue, which is a special case of théBM&1/1 queue. Further from

(5.8) and[(5.100), we have

I (1,1) _O)! A h
_h u 7 OEC)e b Yy (0)e =" 41— p, (5.25)
n n n n

where the last equality holds becaugé? (0)e = 1 — p (due to Little’s law). The equation
(5.28) yieldsh/n = p. Substituting this intd(5.23), we have

— k 57
g & T Tk,

which is consistent with (4.27) in Theorém#.2.

A Proofs

A.1 Proof of Lemma[3.1

We prove[(3.7) only. The proof of (3.8) is omitted becauss gimilar to that of[(317).
According to Proposition 212, we fix > 0 arbitrarily andm,. := m.(e) such that for all
m>m,andl =0,1,...,7— 1,

3
|
—_

e(tp —ee') <Y L(|m/7]T+1) <e(ty +ce'). (A.1)

Il
o

Further sincel(m) < ee' for all m € N, it follows from (3.2) andY” € £ that

A(k+m)L e j k+m —1)ee —j(k:jtm)eet
li < li =0
b Z PY > k: Zl P P(Y > k) ’
and thus
I —~ A(k+m)L(m i (k +m)L(m) (A2)
koo 2= P(Y > k) = L TP(Y > k) '
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To prove [3.7) it suffices to show that for any fixed- 0,

[e.e]

Ak+m L(m) ¢
hin_)sgp E P > ) ca( +cee' /1), (A.3)
. A(k+m)L(m
imint 3 Al (+Y Q’z)( ) > ea(ep — cet/r). (A.4)

Indeed, letting: | 0 in (A.3) and (A.4) we obtain

3 Akt m)Lm) _ o _ eanI — R)IT - 2(0))

PY >k) —0

lim
k—oo

where the second equality is duelto {2.6). Substituting thained equation intg (Al2), we have

@B.1).
We first prove[(A.B). By definition{ A(k); k € Z,} is nonincreasing. We thus obtain

S 00 T—1
> A(k+m)Lim)< ) A(k+nt+1)L(nt +1)
M= n=|ms /7| =0
00 T—1
< > A(k+nr)) L(nt+1)
n=|ms« /7] =0

3
|
—_
3
|
-

[ 1 .
< Z T A(k+nt—1i)- Y L(nt+1).

3
]
El
~
3
R
-
[
o
—~
[
o

Z A(k+m)L(m) < Z ZA(k—l—m-—z) Ny

M= P(Y = k) n=|m /7| 1=0 P(Y k)
B j(kjL |m./T|T —T)e .
= P > k) (¢ +ce' /7). (A.5)

From [A3), [3:2) and” € £, we have[(A.B).

Next we prove[(A#). Sinc€A(k)} is nonincreasing, we have

i A(k +m)L(m) > Z A(k+nt+1)L(nt +1)

T—1

T—1

Z ZAI{:+7LT+T+Z) ZL(m’—l—l).

S 1=0
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Combining this with[[A.1) yields
=\ A(k+m)L(m) Ak +nt +ie .
> — .
2. PY > &) = Z Z P(Y > &) ~(w —ce'/7)
m=ms n=[ms/T]+1 =1
B A(k:—i— [m./T]T +T)e .
- P(Y > k) (W —ce'/).
Therefore similarly to[(A), we can obtain (A.4). O

B Cumulative process sampled at heavy-tailed random times

This section summarizes some of the results presented inyasa (2013), which are used in
Section$ ¥ and]5.

Let {B(t);t > 0} denote a stochastic process (6o, oo), where|B(0)| < oo with prob-
ability one (w.p.1). We assume that there exist regenergoints) < 7o < 74 < 7o < - -~
such that{ B(t + 7,,) — B(7,,);t > 0} (n € Z,) is independent of B(u);0 < u < 7,,} and is
stochastically equivalent tbB(t + m9) — B(7);t > 0}. The proces§ B(t);t > 0} is called
(regenerative) cumulative processhich is introduced by Smith (1955).

Let A7y = 7o andAr, = 7, — 7,1 forn € N. Let

sup max(B(t),0), n =20,
AB. — B(TO)> n =0, AB* OStSpTO ( () )
" B(1,) — B(1,-1), n €N, sup B(t) — B(1,-1), ne€N.
Tn-1<t<7p

It is easy to see thahB: > AB, forn € Z, and that{Ar,;n € N} (resp.{AB,;n € N}
and{AB;n € N}) is a sequence of i.i.d. random variables, which is indepahaf A7, (resp.
ABy andABy).

Remark B.1 The counting procesgN (¢);¢ > 0} of BMAP {C, D(1), D(2), ...} is a cumu-
lative process such that regenerative points are hittmggito any fixed background state and
the regenerative cycle follows a phase-type distributsae (equations (3.3)—(3.5).in Masuyama
2013).

We now assume that
PO<AT, <o0)=P(0<AB) <o0)=1 (n=0,1),
E[|[AB;|] < o0, 0<E[AT] <00, b:= E[ABl]/E[Aﬁ] >0

We then obtain the following results.

Proposition B.1 (Masuyama 2013, Theorem 3.3puppose thaf” is a nonnegative random
variable independent dfB(¢);t > 0}. Further suppose that (iJ' € £* for someu > 2; (ii)
E[(A7)?] < oo andE[(AB;)? < oo; and (iii) E[fexp{Q(AB})}] < oo (n = 0,1) for some
cumulative hazard functio € SC such that:'/* = O(Q(x)). We then have(B(T) > bx) ~
P(T > x).
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Corollary B.1 Suppose thdf is a nonnegative random variable independert(o¥ (¢), J(¢)); t >
0}, where{N(t)} and{.J(¢)} denote the counting process and the background Markov chain
respectively, of BMARC, D(1), D(2),...} introduced in subsection 4.1. Suppose that (i)
T € £+ for somey > 2; and (i) >~ , exp{Q(k)}D(k) < oo (n = 0, 1) for some cumulative
hazard function) € SC such thatz/# = O(Q(z)). We then hav®(N(T) > k) X P(T >
k/N).

Proof. It suffices to prove that conditions (i)—(iii) of Propositi®3.1 are satisfied. For this
purpose, fixB(t) = N(t) for ¢ > 0. Since the regenerative cycle follows a phase-type distri-
bution (see RemarkB.1), we hatt§(Ar;)?] < oo. Further since{B(t) = N(t);t > 0} is
nondecreasing, we haweB* = AB, for all n € Z,. Therefore it follows from the renewal
reward theorem (see, e.g., Wolff 1989, Chapter 2, Theoretima?)

E[ABY]
E[ATl]

E[exp{Q(AB;
E[ATl]

= A € (0,00),

W — 23" ep{Q}Dik)e < oo,
k=1

which lead toE[exp{Q(AB})}] < oo and thus[(AB;)?] < .

It remains to proveE[exp{Q(AB})}] < oco. Leti, denote the background state at regen-
erative points, i.e.J(r,) = i for all n € Z,. Suppose that there exists soine M such
that

Elexp{Q(N (7))} - 1(J(70) =io) | J(0) = i] = o0, (B.1)
wherery = inf{t > 0; J(t) = io}. LetT7™ = inf{t > 7; J(t) = i}. Since the background
Markov chain is irreducible, we have

P(I7™ <7 | J(10) = ig) > O, (B.2)

wherer; = inf{t > 7y; J(t) = io}. It follows from AB} = N(m) — N(7), (B.Q) and [B.2)
that

Elexp{Q(AB])}] = Elexp{Q(N (1) — N(70))}]
2 P(Tfm <7 | J(TQ) = ZQ)
x Elexp{Q(N(n) = N(I7™)} | J(T7™) =4, T7™ < 7]

=P(T7™ <n | J(m0) = io)
x Elexp{Q(N(m))} | (0) = i] = oo,
which is inconsistent wittE[exp{Q(AB})}] < oco. Thus [B.1) is not true. As a result, for
any: € M, we haveE[exp{Q(N(1))} - L(J(m0) = ip) | J(0) = i] = oo, which implies that
Elexp{Q(ABg)}] < oc. O
A similar result is presented in Masuyama (2013).

Proposition B.2 (Masuyama 2013, Corollary 3.1)Suppose thaf’ is a nonnegative random
variable independent of(N(t), J(t));t > 0}, where{N(¢)} and{.J(¢)} denote the counting



28 H. Masuyama

process and the background Markov chain, respectivelyMAB{C, D(1), D(2), ... } intro-
duced in subsectidn4.1. Suppose thal(i} C; (i) E[T] < oo; and (i) D(k) = o(P (T > k)).
We then hav® (N (T') > k) i P(T > k/\).
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