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Abstract This paper gives an introduction to a recently established link between the
geometry of numbers and mixed integer optimization. The main focus is to provide a
review of families of lattice-free polyhedra and their use in a disjunctive programming
approach. The use of lattice-free polyhedra in the context of deriving and explaining
cutting planes for mixed integer programs is not only mathematically interesting, but
it leads to some fundamental new discoveries, such as an understanding under which
conditions cutting planes algorithms converge finitely.

Keywords Mixed integer programming · Cutting planes · Disjunctive programming ·
Lattice-free polyhedra
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1 Introduction

Cutting plane techniques have always been one of the prominent topics in the theory of
integer and mixed integer programming. We focus here on a treatment of some of the
novel developments in this direction. Herewith we pursue the goal of understanding
geometric principles that allow cutting plane algorithms to terminate finitely. To be
more specific, the set of feasible solutions of a mixed integer programming problem
attains the form

P ∩ (Zp × R
q),
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222 A. Del Pia, R. Weismantel

Fig. 1 On the left polyhedra P and L . On the right, the resulting polyhedron P\L

where P is a polyhedron in R
p+q , and p, q ∈ N, with p ≥ 1, q ≥ 0. By a polyhedron

we always mean the solution set of a finite system of linear inequalities. We call a
bounded polyhedron a polytope.

The mixed integer hull of P , that we denote by PI , is the set

conv(P ∩ (Zp × R
q)),

where we denote by “conv” the convex hull. If q = 0 we refer to the mixed integer hull
as the integer hull. In this survey we always denote by z the variables in R

n = R
p+q ,

by x the variables in R
p, which are the variables subject to integrality constraints, and

by y the variables in R
q , which are the variables not required to be integer. We recall

that a polyhedron is called rational if it is the solution set of a finite system of linear
inequalities with rational data. The following follows from Meyer (see Meyer 1974;
Schrijver 1986, Section 16.7):

Theorem 1 Let P be a rational polyhedron in R
p+q . Then PI is a rational polyhedron.

Most of the research in mixed integer programming is dedicated to the question
how to derive inequalities from a description of P that are satisfied by all the points
in P ∩ (Zp × R

q). Such inequalities naturally define relaxations of PI in form of
polyhedra that are contained in P and that contain PI .

In order to obtain polyhedra contained in P and that contain PI we use an opera-
tor introduced in Andersen et al. (2010) that may be viewed as a special disjunctive
programming approach invented by Balas (1998).

More formally, given polyhedra P, L ⊆ R
p+q , we denote by P\L the smallest

closed convex set that contains P � int L , where “int” denotes the interior (see Fig. 1).
Hence if we denote by “conv” the closed convex hull,

P\L := conv(P � int L).

It is easy to see that given polyhedra P, L ⊆ R
p+q , then P\L ⊆ P . It will turn

out that the set P\L is again polyhedral. This implies that such an operation can be
also used iteratively. The question arises which polyhedra L one should use in order
to approximate PI sufficiently well. This is the central question of our survey paper.

It is convenient to extend the definition of P\L for polyhedra P ⊆ R
p+q , L ⊆ R

p.
In this case,

P\L := P\(L × R
q).
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Relaxations of mixed integer sets 223

Fig. 2 On the left polyhedra P and L . On the right, an L-disjunctive cut for P

Fig. 3 On the left polyhedra P and S. On the right, a split cut for P

We will show that in order to generate valid inequalities for PI , we will have to use
lattice-free polyhedra L ⊆ R

p, i.e. polyhedra that do not contain points in Z
p in their

interior. In this case, the new set P\L is indeed a relaxation of PI and, in general, a
better approximation of the mixed integer hull PI compared to P . The new inequalities
that arise from this operation are disjunctive cuts that were first introduced by Balas
in the 1970’s (Balas 1998, 1979). Given a polyhedron P ⊆ R

p+q , and a lattice-free
polyhedron L = {x ∈ R

p : ai x ≤ β i , i = 1, . . . , k}, an inequality cz ≤ γ is called
an (L-)disjunctive cut for P if cz ≤ γ is valid for every set

{z ∈ P : ai x ≥ β i }, i = 1, . . . , k.

(See Fig. 2.) It follows easily that cz ≤ γ is an L-disjunctive cut for P if and only if
cz ≤ γ is valid for P\L .

The simplest family of lattice-free polyhedra are the strips. A polyhedron S ⊆ R
p

is called a strip if S = {x ∈ R
p : β ≤ ax ≤ β + 1} where a ∈ Z

p, β ∈ Z,
and the greatest common divisor of the entries in a is 1. The disjunctive cuts corre-
sponding to strips are called split cuts, and were introduced by Cook et al. (1990) (see
Fig. 3). Split cuts have been extensively studied in the literature. Split cuts are equiva-
lent (Nemhauser and Wolsey 1990) to Gomory’s mixed integer (GMI) cuts (Gomory
1963) and to mixed integer rounding cuts (MIR) (Marchand and Wolsey 2001). Most
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224 A. Del Pia, R. Weismantel

of the cutting planes used in practice for mixed integer programming problems are
special classes of split cuts, like for example lift-and-project cuts (Balas et al. 1993).

A recent paper by Andersen et al. (2007) inspired the community to study dis-
junctive cuts for a special relaxation of mixed integer linear sets in tableau form. This
relaxation is called the relaxed corner polyhedron, in which the integrality requirement
of all nonbasic variables is neglected. (This is in contrast to the corner polyhedron that
was introduced by Gomory 1965, 1969. In fact in the latter model a subset of the
nonbasic variables can be required to attain integer values.)

In the relaxed corner polyhedron the integer variables are expressed in terms of the
remaining variables as follows:

x = f +
q∑

j=1

r j y j

x ∈ Z
p

y ∈ R
q
+.

This model is a natural relaxation of a general mixed integer linear set and therefore it
can be used to generate cutting planes for the original mixed integer set. In this special
setting disjunctive cuts take the form of intersection cuts, a simpler type of cutting
planes introduced by Balas (1971). We refer to Conforti et al. (2011a) for a survey on
the relaxed corner polyhedron and intersection cuts.

This is just a very brief summary of some of the newer developments in cutting
plane theory. We are conscious of the fact that this treatment is by no means complete
and it does not represent all important developments.

The main focus of this survey, though, is to provide a basic mathematical under-
standing of convergence and the issue of finiteness of cutting plane algorithms. This
issue has only very marginal ties to recent research on computational aspects of the
topic. This is one excuse of ours that we do not deepen the subject above further.

The survey is organized as follows. In Sect. 2 we study the set P\L and some of
its properties. In Sect. 3 we introduce lattice-free polyhedra, and we see how P\L
can be used in the context of mixed integer programming. In Sect. 4 we focus on the
L-closure L(P) of PI , that is the intersection of many sets P\L , where L varies in a
family L of lattice-free polyhedra. In Sect. 5 we study convergence results when we
are allowed to use the L-closure recursively, i.e. if we are allowed to take closures of
closures. Finally, in Sect. 6 we introduce the concept of rank with the perspective of
defining cutting plane proofs.

The careful reader might have noticed that so far we have been considering mainly
the case where the given polyhedron P is described by means of rational data. This
assumption has been made since in the general (non rational) case, the mixed integer
hull of a polyhedron is not necessarily a polyhedron. This can be seen by analyzing
the integer hull of P := {x ∈ R

2 : x1 ≥ 0, x1 − √
2x2 ≥ 0}. Note though that if

P is a polytope (even in irrational data), then it is easy to see that PI is a rational
polytope. The non rational case, even if interesting from a theoretical point of view,
is in practice much less appealing. Even if the given data are not rationals, a suit-
able rational approximation can always be used instead. This is the reason why in the
remainder of this survey we focus exclusively on a study of the rational case.
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Relaxations of mixed integer sets 225

The following notation will be used throughout this survey. Given a polyhedron
P = {(z, w) ∈ R

n+d : Az + Gw ≤ b}, we denote with projz P ⊆ R
n the orthogonal

projection of P onto the space of the z-variables. More precisely projz P := {z ∈ R
n :

∃w ∈ R
d , Az + Gw ≤ b}. It is a well-known fact that projz P is a polyhedron. We

denote by “cone” the conic hull, by “relint” the relative interior, and by “lin.space”
the lineality space. We always assume that rational numbers, vectors, and matrices are
given in their usual binary encoding (see for example Schrijver 1986, Chapter 2). If
not otherwise specified, polyhedra are given by means of an outer description.

2 Union of polyhedra

The main objective of this section is to study the closed convex hull of a finite union
of polyhedra.

Given polyhedra Pi , i = 1, . . . , k, in this section we consider the smallest closed
convex set that contains all polyhedra Pi , i = 1, . . . , k. This set is defined as

conv
k⋃

i=1

Pi . (1)

The following observation follows easily from the Hahn-Banach separation Theorem
(see for example Rockafellar 1970).

Observation 2 Given polyhedra Pi , i = 1, . . . , k, the set (1) is the intersection of all
the half-spaces containing

⋃k
i=1 Pi .

Note that the topological closure is required in (1) in order to get a closed set, as the
convex hull of a union of polyhedra is not always closed. As an example consider
polyhedra P1 := {z ∈ R

2 : z2 = 0}, and P2 := {(0, 1) ∈ R
2}.

By Minkowski–Weil’s Theorem (see for example Schrijver 1986), for every poly-
hedron Pi there exist a polytope Qi and a polyhedral cone Ci such that Pi = Qi +Ci .
The following theorem can be found in Conforti et al. (2010b, Theorem 11.17) and
characterizes the set (1).

Theorem 3 Let Pi = Qi + Ci , i = 1, . . . , k be nonempty polyhedra. Then
conv

⋃k
i=1 Pi is the polyhedron

conv
k⋃

i=1

Pi = conv
k⋃

i=1

Qi + cone
k⋃

i=1

Ci .

In particular Theorem 3 states that the set (1) is polyhedral.
Given polyhedra Pi ⊆ R

n, i = 1, . . . , k, the polyhedron conv
⋃k

i=1 Pi can be
very complicated, as the number of its facets can grow exponentially with n already
for k = 2 (Benoy et al. 2005). This means that in practice we cannot generally get a
complete description of conv

⋃k
i=1 Pi . However we will see in the next section that

it is possible to efficiently describe conv
⋃k

i=1 Pi in a higher dimensional space.
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226 A. Del Pia, R. Weismantel

2.1 An extended formulation

Given polyhedra Pi ⊆ R
n, i = 1, . . . , k, Balas (1998, 1985) showed that

conv
⋃k

i=1 Pi is the projection of a polyhedron in a higher dimensional space, with
polynomially many variables and constraints.

For i = 1, . . . , k, let Pi = {z ∈ R
n : Ai z ≤ bi } be nonempty polyhedra. Consider

the following system of linear inequalities:

Ai zi − biλi ≤ 0 i = 1, . . . , k (2)

z −
k∑

i=1

zi = 0 (3)

k∑

i=1

λi = 1 (4)

λi ≥ 0 i = 1, . . . , k. (5)

Note that the system (2–5) has n + (n + 1)k variables, which are z ∈ R
n , and

zi ∈ R
n, λi ∈ R, for i = 1, . . . , k. Moreover the system (2–5) has n + 1 equa-

tions, and other
∑k

i=1 mi + k inequalities, where mi is the number of rows of Ai .
The following is Balas’ theorem on union of polyhedra.

Theorem 4 Let Pi = {z ∈ R
n : Ai z ≤ bi }, i = 1, . . . , k, be nonempty polyhedra,

and let P̃ ⊆ R
n+(n+1)k be the polyhedron defined by the system (2–5). Then

conv
k⋃

i=1

Pi = proj
z

P̃.

Theorem 4 does not hold, in the presented form, if some polyhedra among Pi , i =
1, . . . , k, are empty. However sometimes it is useful to consider directly this more
general case. We refer to Conforti et al. (2010b, Theorem 11.18) for a similar but
more general statement.

Theorem 4 is a basic ingredient for efficiently optimizing over (1) by solving a
single linear programming problem. The trick is namely to optimize the given objec-
tive function not in the original space of the z variables, but in the extended space
where P̃ lies. Since linear programming problems can be solved in polynomial time
(see Khachiyan 1979, 1980), the following holds:

Corollary 5 Given polyhedra Pi , i = 1, . . . , k, it is possible to optimize over
conv

⋃k
i=1 Pi in polynomial time.

2.2 A convexification operation

In this survey, a fundamental role is played by the following object. Given polyhedra
P, L ⊆ R

n , we denote by P\L the smallest closed convex set that contains P � int L ,
i.e.
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Relaxations of mixed integer sets 227

P\L := conv(P � int L). (6)

The polyhedrality of L implies that there exist inequalities ai z ≤ β i , i = 1, . . . , k,
such that L = {z ∈ R

n : ai z ≤ β i , i = 1, . . . , k}. It follows that

P � int L =
k⋃

i=1

(P ∩ {z ∈ R
n : ai z ≥ β i }).

In particular:

Observation 6 Let P and L be polyhedra. Then P � int L is the union of a finite
number of polyhedra.

It follows that the properties presented in this section of the closed convex hull of
the union of a finite number of polyhedra are valid also for this special case. Thus by
Theorem 3 the set P\L is polyhedral, and by Corollary 5 it is possible to optimize
over P\L in polynomial time.

Note that also in this special case the topological closure is required in (6) in order
to get a closed set. As an example consider polyhedra P := {z ∈ R

2 : z ≥ 0, z2 ≤ 1},
and L := {z ∈ R

2 : z ≥ 0}.
Given general polyhedra P and L , the polyhedron P\L may have an exponential

number of facets. This may happen even when L is the convex hull of two parallel
and different hyperplanes, as shown in the following example.

Example 1 Let P and L be polyhedra in R
n defined as follows:

P :=

⎧
⎪⎪⎨

⎪⎪⎩
z ∈ R

n : −1 ≤
n∑

j=1

z j ≤ 1, −1 ≤ zi −
n∑

j=1
j 	=i

z j ≤ 1, i = 1, . . . , n

⎫
⎪⎪⎬

⎪⎪⎭
,

L :=
⎧
⎨

⎩z ∈ R
n : −1 ≤

n∑

j=1

z j ≤ 1

⎫
⎬

⎭ .

Moreover consider the following two polyhedra:

P1 := P ∩
⎧
⎨

⎩z ∈ R
n :

n∑

j=1

z j ≥ 1

⎫
⎬

⎭ ,

P2 := P ∩
⎧
⎨

⎩z ∈ R
n :

n∑

j=1

z j ≤ −1

⎫
⎬

⎭ .

Clearly P\L = conv(P1 ∪ P2). It can be verified that the vertices of P1 are the
vectors e1, . . . , en of the canonical basis of R

n , while the vertices of P2 are the vectors
−e1, . . . ,−en . It follows that P\L = conv{±e1, . . . ,±en} is the “cross polytope” in
dimension n. The cross polytope is described by

∑n
i=1 |zi | ≤ 1, and has 2n facets,

one for every orthant of R
n (see Fig. 4).
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228 A. Del Pia, R. Weismantel

Fig. 4 The cross polytope in
dimension 3

We recall that a polyhedron S ⊆ R
p is called a strip if S = {x ∈ R

p : β ≤ ax ≤
β + 1} where a ∈ Z

p, β ∈ Z, and the greatest common divisor of the entries in a is 1.
A slight modification of Example 1 shows that P\S may have an exponential number
of facets even when S is a strip.

Example 2 Let P and S be polyhedra in R
n defined as follows:

P :=

⎧
⎪⎪⎨

⎪⎪⎩
z ∈ R

n : 0 ≤
n∑

j=1

z j ≤ 1, z ≤ 1, (n−1)zi + n
n∑

j=1
j 	=i

z j ≤ n, i = 1, . . . , n

⎫
⎪⎪⎬

⎪⎪⎭
,

S :=
⎧
⎨

⎩z ∈ R
n : 0 ≤

n∑

j=1

z j ≤ 1

⎫
⎬

⎭ .

Moreover consider the following two polyhedra:

P1 := P ∩
⎧
⎨

⎩z ∈ R
n :

n∑

j=1

z j ≥ 1

⎫
⎬

⎭ ,

P2 := P ∩
⎧
⎨

⎩z ∈ R
n :

n∑

j=1

z j ≤ 0

⎫
⎬

⎭ .

Clearly P\S = conv(P1 ∪ P2). It can be verified that the vertices of P1 are the
vectors e1, . . . , en of the canonical basis of R

n , while the vertices of P2 are the vectors
1 − ne1, . . . , 1 − nen . It can be verified that P\S has exactly 2n facets.

2.3 Polyhedral relaxations

Recent work has focused on trying to simplify the construction of P\L . One way to
do this is to obtain a characterization of P\L by considering, instead of a description
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Relaxations of mixed integer sets 229

of the polyhedron P , the descriptions of relaxations of P that are defined by a subset
of the inequalities defining P .

Let Az ≤ b be a system of inequalities defining a polyhedron P . A basic relaxation
of P is a polyhedral relaxation of P that consists of the intersection of the half-spaces
corresponding to at most n linearly independent inequalities of the system Az ≤ b. In
what follows we denote by R(A, b) the family of the basic relaxations of P . Moreover,
we denote by Rk(A, b) the family of the polyhedral relaxations of P that consist of the
intersection of the half-spaces corresponding to at most k inequalities of the system
Az ≤ b.

Andersen et al. (2005) proved the following:

Theorem 7 Let P = {z ∈ R
n : Az ≤ b} be a polyhedron, and let S be a strip. Then

P\S =
⋂

R∈R(A,b)

R\S.

A short proof of Theorem 7 has been recently provided by Dash et al. (2011d), and
uses the equivalence between split cuts and MIR cuts.

Theorem 7 is very useful for constructing P\S when S is a strip. In fact, given a
basic relaxation R of P and any polyhedron L in R

n , the polyhedron R\L can be
described by the system defining R and at most one additional inequality (see for
example Conforti et al. 2011a).

In the more general case where L is a polyhedron with h ≥ 2 facets, Conforti and
Del Pia (2011) proved the following theorem:

Theorem 8 Let P = {z ∈ R
n : Az ≤ b} and L be polyhedra in R

n, and let h ≥ 2
be the number of facets of L. Then

P\L =
⋂

R∈Rn(h−1)(A,b)

R\L . (7)

In Conforti and Del Pia (2011) it is also shown that (7) does not hold if one considers
only polyhedral relaxations in Rn(h−1)−1(A, b).

Note that if h ≥ 3, the polyhedral relaxations in Rn(h−1)(A, b) generally do not
consist only of polyhedra described by linearly independent inequalities. One might
wonder if it is sufficient to consider in (7) only polyhedral relaxations that consist of
linearly independent inequalities. This does not generally hold true, as shown in Con-
forti and Del Pia (2011) for h ≥ 3, and in Andersen et al. (2005) for h = 2.

3 Lattice-free polyhedra

To get polyhedra contained in P and that contain PI , it is possible to use the set P\L
introduced in (6). The set P\L is polyhedral by Theorem 3, and this implies that such
an operation can be also used iteratively. The following is trivially true:
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230 A. Del Pia, R. Weismantel

Observation 9 Let P and L be polyhedra in R
n. Then P\L ⊆ P.

The question arises which polyhedra L one should use in order to approximate PI

sufficiently well. This first requires to characterize polyhedra L such that PI ⊆ P\L
for every polyhedron P in R

p+q .
Given a polyhedron L , we say that L is Z

p × R
q -free if relint L does not contain

any point in Z
p × R

q .

Observation 10 Let L be a polyhedron in R
p+q . Then PI ⊆ P\L for every polyhe-

dron P in R
p+q if and only if L is Z

p × R
q-free.

Hence, given a polyhedron P in R
p+q , any Z

p × R
q -free polyhedron L can be

used to get a polyhedron P\L such that PI ⊆ P\L ⊆ P .
The following easy observation points out the importance of the concept of inclu-

sion when working with the convexification operation P\L .

Observation 11 Let P, L , L ′ be polyhedra in R
n with L ⊆ L ′. Then P\L ′ ⊆ P\L.

In what follows, a polyhedron L ⊆ R
p is said to be lattice-free if it is Z

p-free.
The following observation gives a link between Z

p × R
q -free polyhedra in R

p+q and
lattice-free polyhedra in R

p. For its proof see Conforti et al. (2011a).

Observation 12 Let L be a Z
p × R

q-free polyhedron. Then projx L is a lattice-free
polyhedron and L ⊆ (projx L) × R

q .

Given polyhedra P ⊆ R
p+q , and L ⊆ R

p, we denote by

P\L := P\(L × R
q).

If we could use all lattice-free polyhedra algorithmically then we would be in
good position to compute the mixed integer hull. In fact Jörg (2008, Lemma 3.5) and
Conforti et al. (2010a) showed the following:

Theorem 13 Let P be a rational polyhedron in R
p+q , let cz ≤ γ be a rational

inequality valid for PI , and let L be the family of all lattice-free rational polyhedra.
Then there exists L ∈ L such that cz ≤ γ is valid for P\L.

Note that if P is rational, by Theorem 1, PI is a rational polyhedron. Thus there
exist inequalities ci z ≤ γ i , i = 1, . . . , k such that PI = {z ∈ R

p+q : ci z ≤ γ i , i =
1, . . . , k}. By Theorem 13, for every i = 1, . . . , k, there exists a lattice-free rational
polyhedron Li such that ci z ≤ γ i is valid for P\Li . Hence

PI =
k⋂

i=1

(P\Li ).

This implies that, if L is the family of all lattice-free rational polyhedra,

PI =
⋂

L∈L
(P\L).
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Relaxations of mixed integer sets 231

This representation result is mathematically interesting and has been the point of
departure for research in the past years. However, from an algorithmic point of view,
this representation of PI is of little use since there are infinitely many lattice-free
rational polyhedra, thus their explicit description seems to be entirely intractable.

This motivates us to restrict the family of lattice-free rational polyhedra which we
admit to manipulate the polyhedron P in order to describe or approximate its mixed
integer hull. In Sects. 3.1 and 3.2 we present some special families of lattice-free
polyhedra that turn out to be useful to approximate PI .

3.1 Maximal lattice-free polyhedra

Given a family L of polyhedra, L ∈ L is said to be maximal in L if for every L ′ ∈ L
with L ⊆ L ′, L = L ′. We refer to polyhedra that are maximal in the family of
lattice-free polyhedra as maximal lattice-free.

The following observation is well-known, and follows for example from Bell
(1977).

Observation 14 A maximal polyhedron in the family of lattice-free rational polyhedra
is maximal lattice-free.

Observation 14 implies that the family of maximal polyhedra in the family of lattice-
free rational polyhedra coincides with the family of the rational polyhedra among
maximal lattice-free polyhedra. By Observation 11, Theorem 13 is still valid if L
denotes the family of rational maximal lattice-free polyhedra in R

p.
It follows again from Bell (1977) that each rational maximal lattice-free polyhe-

dron is full-dimensional. The following example shows that in Theorem 13 we need
to consider all rational maximal lattice-free polyhedra in R

p:

Example 3 Let L be a rational maximal lattice-free polyhedron in R
p. L is full-

dimensional, thus it has nonempty interior. Let x̄ ∈ int L , and consider the polyhedron
P := conv((L × {0}) ∪ {(x̄, 1)}) in R

p+1. It is easy to see that the inequality y ≤ 0
is valid for PI and that the only lattice-free polyhedron L ′ such that y ≤ 0 is valid for
P\L ′ is L ′ = L .

The following theorem characterizes full-dimensional maximal lattice-free poly-
hedra. For its proof see for example Lovász (1989).

Theorem 15 A full-dimensional polyhedron L in R
p is maximal lattice-free if and

only if it is lattice-free, and every facet of L contains a lattice point in its relative
interior.

The following interesting result is due to Bell (1977) and Scarf (1977).

Theorem 16 Any full-dimensional maximal lattice-free polyhedron in R
p has at most

2p facets.

The following example shows that the bound 2p given in Theorem 16 is tight.
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232 A. Del Pia, R. Weismantel

Example 4 Let L be the cross polytope in R
p, i.e. L := {x ∈ R

p : ∑p
i=1 |xi | ≤ 1}.

The cross polytope is a rational maximal lattice-free polytope with exactly 2p facets.

Theorem 16 implies that every rational maximal lattice-free polyhedron in R
p has

at most 2p facets. In any case, the family of rational maximal lattice-free polyhedra
in R

p is extremely complicated and large, thus their explicit description is practically
intractable.

As an example, using Theorems 15 and 16 it is easy to characterize the rational
maximal lattice-free polyhedra in R

2. These maximal lattice-free polyhedra are strips,
triangles, and quadrilaterals.

Observation 17 The rational maximal lattice-free polyhedra in the plane are of three
possible forms:

(i) a strip β ≤ a1x1 + a2x2 ≤ β + 1 where a1 and a2 are coprime integers and β

is an integer,
(ii) a triangle with an integral point in the relative interior of each of its edges,

(iii) a quadrilateral with an integral point in the relative interior of each of its edges.

3.2 Integral lattice-free polyhedra

A polyhedron L in R
p is said to be integral if L = L I . In this section, we introduce

a smaller family of lattice-free polyhedra, namely the family of integral polyhedra
among lattice-free polyhedra. We call such polyhedra integral lattice-free polyhedra.
This family is not as strong as the family of rational maximal lattice-free polyhedra,
in the sense that it does not yield a result as strong as Theorem 13. However we will
see later how such a family allows us to derive a result similar to Theorem 13 if we
allow ourselves to recursively apply the convexification operation P\L .

By Observation 11, for our purposes it is enough to consider the maximal polyhedra
among the integral lattice-free polyhedra. We call such polyhedra maximal integral
lattice-free polyhedra. We call an affine transformation that maps Z

p into Z
p an

affine unimodular transformation. A recent result by Averkov et al. (2011) shows the
following.

Theorem 18 For every p ∈ N, the family of maximal integral lattice-free polyhedra
in R

p is finite up to affine unimodular transformations.

The explicit description of the maximal integral lattice-free polyhedra in R
1 and

R
2 is well-known, but for p ≥ 3 such a description is complicated, and still unknown.
Other interesting polyhedra are the integral polyhedra among the maximal lattice-

free polyhedra. We call such polyhedra integral maximal lattice-free polyhedra. It is
easy to see that in general, the family of the integral maximal lattice-free polyhedra
is contained in the family of the maximal integral lattice-free polyhedra. It can be
verified that in R

p, for p ∈ {1, 2}, the two families coincide. Nill and Ziegler (2011)
showed that in R

p, for p ≥ 4, the two families are different. It is still unknown if the
two families differ or not in R

3. In R
3 an explicit description of the integral maximal

lattice-free polyhedra is given by Averkov et al. (2011).
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4 Closures

In this section we focus on the L-closure L(P) of PI , that is the intersection of many
sets P\L , where L varies in a family L of lattice-free polyhedra. By intersecting many
sets P\L , we can further improve our ability to approximate the mixed integer hull
with families of lattice-free polyhedra.

Let P ⊆ R
p+q be a polyhedron, and let L be a (potentially infinite) family of

polyhedra in R
p.

The L-closure L(P) of P is:

L(P) :=
⋂

L∈L
P\L .

If all the polyhedra in L are lattice-free, it follows from Observation 10 that the set
L(P) contains PI for every polyhedron P . Moreover, L(P) is the set of points that
satisfy all disjunctive cuts corresponding to every polyhedron in L.

We denote by S the family of all the strips, and we call the set S(P) the split closure
of P . Clearly S(P) is the intersection of all the split cuts for P . We also denote by I
the family of the maximal integral lattice-free polyhedra. We call the set I(P) the inte-
gral lattice-free closure of P . Since every strip is an integral lattice-free polyhedron,
it follows that I(P) ⊆ S(P) for every polyhedron P .

The split closure has a very interesting property (see Cook et al. 1990):

Observation 19 Let P be a rational polyhedron. If P 	= PI then S(P) � P.

This means that if P 	= PI then S(P) is always a better approximation of PI than P .
Clearly, since I(P) ⊆ S(P) for every polyhedron P , also the integral lattice-free
closure satisfies this property.

Moreover, given a minimal face F of P that contains no point in Z
p × R

q , it is
easy to construct a split cut that cuts off F (see for example Cook et al. 1990).

While it is possible to optimize over P\L in polynomial time (see Corollary 5),
optimizing over a closure is generally hard. In fact, Caprara and Letchford showed
that, given a rational polyhedron P in R

p+q , it is NP-hard to optimize a linear func-
tion over S(P) (Caprara and Letchford 2003). This means that given a point in P it is
NP-hard to find a split cut that cuts it off or to show that no such split cut exists.

4.1 Finite generation and polyhedrality

Let L be a family of polyhedra, and let P be a polyhedron. Although for every L ∈ L,
the set P\L is polyhedral by Theorem 3, the set L(P) is not necessarily polyhedral,
as it is the intersection of a potentially infinite number of polyhedra. An interesting
research direction is to understand under which assumptions on the family L and on
the polyhedron P , the set L(P) is polyhedral.

Given L and P , we say that the set L(P) is finitely generated if there exists a finite
subset L̄ of L such that L(P) = L̄(P). Clearly if L(P) is finitely generated, then the
set L(P) is polyhedral, as it is the intersection of a finite number of polyhedra. The
opposite implication does not hold in general, as shown by the following example.
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Example 5 Let P := {x ∈ R : 0 ≤ x ≤ 1/2}, and let L := {Li : i ∈ N}, where
Li := {x ∈ R : 1/ i ≤ x ≤ 1} for every i ∈ N. It is easy to check that L(P) = {0},
and that for every finite subset L̄ of L,L(P) � L̄(P).

The following easy observation characterizes whenever L(P) is finitely generated.

Observation 20 Let L be a family of polyhedra, and let P be a polyhedron. Then
L(P) is finitely generated if and only if there exists a system ci z ≤ γ i , i = 1, . . . , k,
such that L(P) = {z ∈ R

n : ci z ≤ γ i , i = 1, . . . , k} and for every i = 1, . . . , k
there exists Li ∈ L such that ci z ≤ γ i is valid for P\Li .

Most of the results in literature showing that, under certain assumptions, the set
L(P) is polyhedral, actually prove that L(P) is finitely generated. Cook et al. (1990)
prove the following.

Theorem 21 For any rational polyhedron P, the set S(P) is finitely generated.

Other proofs of Theorem 21 appear in Andersen et al. (2005), Dash et al. (2007),
Vielma (2007).

Theorem 21 states that the set L(P) is finitely generated for every rational polyhe-
dron P , for a specific class L. A more general research direction is to give sufficient
conditions on a family L for the set L(P) to be finitely generated for every rational
polyhedron P .

Note that every strip L in S satisfies the following condition:

for every facet F of L , the affine hull of F contains integral points. (8)

Many other interesting lattice-free polyhedra satisfy condition (8). For example, The-
orem 15 shows that each maximal lattice-free polyhedron in R

p satisfies condition
(8). Also each integral polyhedron in R

p satisfies condition (8).
Let L be a full-dimensional lattice-free polyhedron that satisfies condition (8), and

let ai x ≤ β i , i = 1, . . . , k, be an irredundant system such that L = {x ∈ R
p : ai x ≤

β i , i = 1, . . . , k}, and such that for every i = 1, . . . , k, ai ∈ Z
p and the greatest

common divisor of the entries in ai is 1. We define the max-facet-width w(L) of L as

w(L) := max{β i − min{ai x : x ∈ L} : i = 1, . . . , k}.

(Note that for every i = 1, . . . , k, ai ∈ Z
p and condition (8) imply that β i ∈ Z.)

Example 6 Consider the full-dimensional lattice-free polyhedron L := {x ∈ R
2+ :

x1 + x2 ≤ 2}. L satisfies condition (8), and it can be easily verified that its max-facet-
width is w(L) = 2. See Fig. 5.

Andersen et al. (2010) give sufficient conditions for a set L(P) to be finitely
generated for every rational polyhedron P:

Theorem 22 Let L be a family of rational maximal lattice-free polyhedra such that
there exists k ∈ N with w(L) ≤ k for every L ∈ L. Then for any rational polyhedron
P, the set L(P) is finitely generated.
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Fig. 5 The max-facet-width of L := {x ∈ R
2+ : x1 + x2 ≤ 2} is w(L) = 2

Theorem 22 is stated only for maximal lattice-free polyhedra, but the proof in
Andersen et al. (2010) works as well in a more general setting:

Theorem 23 Let L be a family of full-dimensional rational polyhedra that satisfy
condition (8), and such that there exists k ∈ N with w(L) ≤ k for every L ∈ L. Then
for any rational polyhedron P, the set L(P) is finitely generated.

Del Pia and Weismantel (2011) use Theorem 23 to prove the following.

Theorem 24 For any rational polyhedron P, the set I(P) is finitely generated.

Even if for many interesting families of lattice-free polyhedra L the set L(P) is
polyhedral for every rational polyhedron P , in most of the cases we cannot hope
to get a full description of L(P). In fact, Example 2 shows that L(P) may have an
exponential number of facets even if the family L consists of only one strip.

4.2 Approximation of the mixed integer hull

The sets S(P) and I(P) are generally only relaxations of PI . It is easy to construct
a polyhedron P such that S(P) 	= PI , for example see Cook et al. (1990). For an
example of a polyhedron P such that I(P) 	= PI see Del Pia and Weismantel (2011).

When considering mixed integer linear problems, even the split closure seems to
approximate very well the mixed integer hull, from a practical point of view. In fact,
Balas and Saxena (2008) performed experiments revealing that the split closure closes
about 72% of the integrality gap on average on the well-known benchmark instances
from MIPLIB 3.0.

Despite the fact that many computational tests have been performed to evaluate, for
a given objective function, the gap between optimizing over the split closure versus
the mixed integer hull, it still remains open to develop a mathematical approach that
can analytically solve the following question: given a family L, how well does L(P)

approximate PI ?
In general L(P) does not equal PI for every polyhedron P . In this situation we aim

at inventing a measure that is suited to quantify the distance of the sets L(P) and PI .
An interesting measure of approximability is the strength measure introduced

by Goemans (1995). Such measure can be applied to polyhedra of blocking type.
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A polyhedron P in R
n is of blocking type if P ⊆ R

n+ and if z′ ≥ z ∈ P implies
z′ ∈ P . For more details on polyhedra of blocking type see for example Schrijver
(1986, Chapter 9). Given nonempty polyhedra of blocking type P and Q in R

n with
P ⊆ Q, the strength of P with respect to Q is the minimum value of α ≥ 1 such that
Q ⊆ {x ∈ R

n : αx ∈ P}. The strength measure is clearly a worst-case approximation
measure.

Many recent papers have used the concept of strength to evaluate the quality of
different types of closures. However, since the strength measure can be used only with
polyhedra of blocking type, such studies mainly apply to the relaxed corner polyhedron
that we introduced in Sect. 1.

In the relaxed corner polyhedron case, and when considering only two integer vari-
ables (p = 2), Basu et al. (2011a) showed that the split closure of P is not always a
good approximation of PI . On the other hand they show that both T (P) and Q(P) are
good approximations of PI , where T is the family of maximal lattice-free triangles
in R

2, and Q is the family of maximal lattice-free quadrilaterals in R
2. In the same

settings, but using a probabilistic approach, Basu et al. (2010d) show that on average
the split closure is a good approximation of PI . Del Pia et al. (2011) show that the
addition of a single triangle or quadrilateral inequality to the split closure becomes less
likely to be beneficial the closer the lattice-free polyhedron looks like a strip, i.e. the
closer its geometric width is to one.

We regard it as an interesting open question to find different measures of approxi-
mability that work for general polyhedra.

5 Rounds of closures and convergence issues

Given a rational polyhedron P , in order to get closer to PI , in Sect. 3 we studied
the object P\L , for one single lattice-free polyhedron L . In Sect. 4, in order to get a
better approximation of PI , we employed multiple lattice-free polyhedra from a fam-
ily L, and studied the more complicated set L(P). Also L(P) in many cases does not
equal PI . In particular this situation arises if L is either the family of the strips, or
the family of the maximal integral lattice-free polyhedra. More generally, Example 3
shows that this may happen if L does not contain all the rational maximal lattice-free
polyhedra.

This section studies the iterative application of the closure operation. Since we want
to use the L operator recursively, we need L(P) to be a rational polyhedron for every
rational polyhedron P . In this case, for every rational polyhedron P in R

p+q , and
i ∈ N we can define the i -th L-closure of P as

Li (P) := L(Li−1(P)), where L0(P) := P.

Theorem 21 implies that, for every rational polyhedron P , the set S(P) is a rational
polyhedron. We call the i-th S-closure of P simply the i -th split closure of P .

Cook et al. (1990) showed that there exist polyhedra P such that Sk(P) 	= PI for
every k ∈ N. The following is the example that they gave.
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Fig. 6 Cook, Kannan and
Schrijver’s example

Example 7 Let Q � ε > 0 and consider the polytope

P := {(x, y) ∈ R
2 × R : y ≥ 0, εx1 + εx2 + y ≤ 2ε,

−2εx1 + y ≤ 0, −2εx2 + y ≤ 0}.

(See Fig. 6.) It follows that P is the convex hull of the four vectors

(0, 0, 0), (2, 0, 0), (0, 2, 0), (1/2, 1/2, ε).

Since x1 and x2 are required to be integers while y is not, it follows that PI is
the convex hull of (0, 0, 0), (2, 0, 0) and (0, 2, 0), thus the inequality y ≤ 0 is valid
for PI .

Now it can be shown that there exists Q � ε1 > 0 such that (1/2, 1/2, ε1) ∈ S(P).
Hence S(P) 	= PI , and S(P) contains a polytope of the same form as P . So repeating
the argument, for any k ∈ N the polytope Sk(P) contains the vector (1/2, 1/2, εk)

for some Q � εk > 0. Therefore, we cannot obtain PI after a finite number of split
closures.

Example 7 shows that split closures may never reach the mixed integer hull in
a finite number of iterations. However in some special cases the split closures con-
verge to the mixed integer hull in finite time. It follows from Chvátal (1973) and
Schrijver (1980) that this applies to the pure integer case (i.e. q = 0). This result also
holds true for mixed 0, 1 programs. In fact, Balas’ sequential convexification theorem
(Balas 1998) shows that in this case S p(P) = PI , for every polyhedron P . More-
over, the bound is tight, meaning that it can happen that S p−1(P) 	= PI (Cornuéjols
and Li 2002).

Owen and Mehrotra (2001) have shown that split closures can give an arbitrarily
good approximation of PI , when P is a polytope. This result has been extended by Del
Pia and Weismantel (2011) to general rational polyhedra. In this section we precisely
state these results.

Let {P̃, Pi : i ∈ N} be a family of polyhedra such that P̃ ⊆ Pi+1 ⊆ Pi for every
i ∈ N. We say that the sequence {Pi : i ∈ N} converges to P̃ if for every ε > 0,
there exists k ∈ N such that Pk ⊆ P̃ + εB, where B denotes the unit ball in the
corresponding space. The given definition of convergence is based on the Hausdorff
distance, see Salinetti and Wets (1979, Section 3) for more details. Note that, if P̃ = ∅,
then it follows from the definition that there exists k ∈ N such that Pi = ∅ for all
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i ≥ k. It is a well-known fact that if the sequence {Pi : i ∈ N} converges to P̃ , then
P̃ = ⋂

i∈N
Pi (see for example Salinetti and Wets 1979, Theorem 2, Proposition 2).

There are however many other ways to define a notion of convergence for decreasing
sequences of polyhedra (see for example Salinetti and Wets 1979). We now explain
why the convergence that we defined makes sense in the context of mixed integer
programming. The following observation can be found in Del Pia and Weismantel
(2011):

Observation 25 Let {P̃, Pi : i ∈ N} be a family of polyhedra with P̃ ⊆ Pi+1 ⊆ Pi

for every i ∈ N. Then the sequence {Pi : i ∈ N} converges to P̃ if and only if for
every inequality cz ≤ γ valid for P̃, and every ε > 0, there exists k ∈ N such that
cz ≤ γ + ε is valid for Pk.

Now let {P̃, Pi : i ∈ N} be a family of polyhedra with P̃ ⊆ Pi+1 ⊆ Pi for every
i ∈ N, such that the sequence {Pi : i ∈ N} converges to P̃ . Consider the linear
programming problem max{cz : z ∈ P̃}, and let γ be its optimal value. Since cz ≤ γ

is valid for P̃ , it follows from Observation 25, that for every ε > 0, there exists k ∈ N

such that cz ≤ γ + ε is valid for Pk . Thus the limit of the sequence max{cz : z ∈ Pi }
is the value γ . In other words, even if we do not know P̃ , but we are able to construct
the sequence {Pi : i ∈ N}, we can approximate arbitrarily well the optimal value of
any linear programming problem over P̃ .

The following theorem was shown by Owen and Mehrotra (2001):

Theorem 26 For each polytope P, the sequence {S i (P) : i ∈ N} converges to PI .

Del Pia and Weismantel (2011) extended Theorem 26 to rational polyhedra:

Theorem 27 For each rational polyhedron P, the sequence {S i (P) : i ∈ N}
converges to PI .

From the discussion in this section, we know that split cuts do not suffice alone to
generate the mixed integer hull in a finite number of iterations. We definitely need to
use a larger family of lattice-free polyhedra to obtain this goal. We next state the most
important result of this section.

To this end, let us recall that I denotes the family of all maximal integral lattice-free
polyhedra in R

p. Theorem 24 implies that, for every rational polyhedron P , the set
I(P) is a rational polyhedron. Thus for every rational polyhedron P and every i ∈ N

we can consider the i-th I-closure of P , and we call it the i -th integral lattice-free
closure of P . Del Pia and Weismantel (2011) showed the following:

Theorem 28 For each rational polyhedron P there exists k ∈ N such that

Ik(P) = PI .

Moreover, an easy generalization of Example 7 shows that if any polyhedron in I is
omitted from the family, then the result does not hold (see for example Del Pia 2011).
We believe that Theorem 28 ends a long open standing question. It remains though a
major challenge to turn this structural knowledge into an algorithmic useful tool.
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6 Rank of inequalities and cutting plane proofs

Let L be a family of lattice-free polyhedra. We say that a lattice-free polyhedron M
has finite L-rank if for every rational polyhedron P there exists a sequence L1, . . . , Lk

of polyhedra in L such that

(· · · ((P\L1)\L2) · · · )\Lk ⊆ P\M.

The sense of this definition is the following: M has finite L-rank when, for every
rational polyhedron P , a finite number of disjunctive cuts corresponding to lattice-free
polyhedra in L can yield a relaxation of PI contained in the relaxation of PI that the
M-disjunctive cuts can yield. Thus, if we are interested in what a cutting plane algo-
rithm based on disjunctive cuts can achieve in finite time, M has finite L-rank if and
only if a cutting plane algorithm based on the family L ∪ {M} is always equivalent to
an algorithm based only on the family L.

Note that the given definition of rank is not the classic one. In fact, by directly
extending the definition of finite Chvátal rank (see for example Schrijver 1986), we
would say that a lattice-free polyhedron M has finite L-rank if for every rational poly-
hedron P there exists k ∈ N such that Lk(P) ⊆ P\M . Clearly this classic definition
requires that L(P) is polyhedral for every polyhedron P , while our definition does
not need this assumption.

The following observation however shows that our definition of finite rank coincides
with the classic one when L(P) is finitely generated for every rational polyhedron P .
Notice that this property is satisfied by essentially all interesting families L of lattice-
free polyhedra, see Sect. 4.1.

Observation 29 Let L be a family of full-dimensional lattice-free polyhedra such that
L(P) is finitely generated for every rational polyhedron P. A lattice-free polyhedron
M has finite L-rank if and only if for every rational polyhedron P there exists k ∈ N

such that Lk(P) ⊆ P\M.

We now exhibit the proof of Observation 29 in order to familiarize the reader with
the advanced and not entirely mature material presented in this section. We strongly
believe that the discussion in this section can be extended further in the future and
might lead to a very nice classification of lattice-free polyhedra.

Proof (of Observation 29) To prove necessity of the condition, assume that M has
finite L-rank. Hence for every polyhedron P there exists a sequence L1, . . . , Lk of
polyhedra in L such that

(· · · ((P\L1)\L2) · · · )\Lk ⊆ P\M.

By definition of L(P), we have that L(P) ⊆ P\Li for every i = 1, . . . , k, thus
Lk(P) ⊆ (· · · ((P\L1)\L2) · · · )\Lk . It follows that Lk(P) ⊆ P\M .

To prove sufficiency of the condition we just need to show that for every polyhedron
P , and for every r ∈ N, there exists a sequence L1, . . . , Lk of polyhedra in L such
that
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Fig. 7 On the left a polyhedron M and its integer hull MI . On the right, the strips S1 and S2 show that M
has the S-inclusion property

(· · · ((P\L1)\L2) · · · )\Lk ⊆ Lr (P).

So let P be a polyhedron. We show this by induction on r . If r = 0 the result is
trivial. We now show the inductive step assuming r ≥ 1. Since L(P) is a polyhedron,
by induction hypothesis there exists a sequence L1, . . . , Lk of polyhedra in L such
that

(· · · ((L(P)\L1)\L2) · · · )\Lk ⊆ Lr−1(L(P)) = Lr (P).

Since L(P) is finitely generated, there exists a finite subset L̄ = {M j : j = 1, . . . , h}
of L such that L(P) = L̄(P). Hence

(· · · ((P\M1)\M2) · · · )\Mh ⊆
h⋂

j=1

P\M j = L̄(P) = L(P).

It follows that

(· · · (([(· · · ((P\M1)\M2) · · · )\Mh]\L1)\L2) · · · )\Lk ⊆ Lr (P).

��
Del Pia (2011) gave a characterization of lattice-free polyhedra with finite L-rank,

for any family L of full-dimensional lattice-free polyhedra containing the strips. To
be able to state the result precisely we need to give two definitions.

We say that a polyhedron M ⊆ R
p is L-included if there exists L ∈ L such that

relint M ⊆ relint L . A polyhedron M has the L-inclusion property if every face N of
MI with relint N ⊆ relint M is L-included. Note that one of the faces of MI is MI

itself. See Figs. 7 and 8 for examples of polyhedra with or without the S-inclusion
property, where S is the family of all the strips.

Theorem 30 Let L be a family of full-dimensional lattice-free polyhedra containing
the strips. A full-dimensional lattice-free polyhedron M has finite L-rank if and only
if it has the L-inclusion property.

Theorem 30 helps in the choice of candidate polyhedra M to be added to a
family L used for generating disjunctive cuts in a cutting plane algorithm: M should
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Fig. 8 A polyhedron M = MI , and examples of strips S with relint MI � relint S. It can be checked that
M does not have the S-inclusion property

be added to L if and only if it does not have the L-inclusion property. Notice that the
L-inclusion property is a condition that can be checked aprioristically independently
of the instance P .

We would like to point out that Theorem 30 has been discovered before by several
authors in different special cases. Basu et al. (2011d) recently showed Theorem 30 in
the relaxed corner polyhedron setting, when L is the family of the strips, and M is
bounded. Their results generalizes a theorem by Dey and Louveaux (2011) that holds
when only two variables are required to be integer.

The concept of rank can also be adapted so as to apply to inequalities valid for
PI , once the polyhedron P is fixed. Let L be a family of full-dimensional lattice-free
polyhedra. Given a polyhedron P and an inequality cz ≤ γ valid for PI , we say that
cz ≤ γ has finite L-rank (with respect to P) if there exists a sequence L1, . . . , Lk of
polyhedra in L such that cz ≤ γ is valid for

(· · · ((P\L1)\L2) · · · )\Lk .

Similar to Observation 29, the following result is easy to prove:

Observation 31 Let L be a family of full-dimensional lattice-free polyhedra such that
L(P) is finitely generated for every rational polyhedron P, and let P be a rational
polyhedron. An inequality cz ≤ γ valid for PI has finite L-rank if and only if there
exists k ∈ N such that cz ≤ γ is valid for Lk(P).

A first corollary follows from Theorem 30, and characterizes the inequalities valid
for PI that have finite L-rank, for any family L of full-dimensional lattice-free poly-
hedra containing the strips.

Corollary 32 Let L be a family of full-dimensional lattice-free polyhedra containing
the strips, let P be a polyhedron, and let cz ≤ γ be an inequality valid for PI . Then
cz ≤ γ has finite L-rank if and only if every face M of projx {z ∈ PI : cz = γ }, with
M ∩ proj{z ∈ P : cz > γ } 	= ∅, is L-included.

Another consequence of Theorem 30 is the next corollary.

Corollary 33 Let P ⊆ R
p+q be a polyhedron, let cz ≤ γ be a valid inequality for PI ,

and let L contain the strips and every full-dimensional integral lattice-free polyhedron
L with
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dim lin.space L ≥ p − dim proj
x

{z ∈ PI : cz = γ }.

Then cz ≤ γ has finite L-rank.

In particular, Corollary 33 states that if an inequality cz ≤ γ induces a vertex or
an edge of PI , then the inequality cz ≤ γ has finite split rank. This is an interesting
observation because, given a random instance, most of the times (with probability 1)
we are in this case. Accordingly, if cz ≤ γ induces a two-dimensional face of PI ,
then it can be generated with a finite number of disjunctive cuts corresponding to
full dimensional integral lattice-free polyhedra whose lineality space has dimension
at least p − 2. It is easy to see that such lattice-free polyhedra are all the strips and
all the affine unimodular transformations of {x ∈ R

2+ : x1 + x2 ≤ 2} × R
p−2. In the

other extreme case, if we define I to be the family of all the full-dimensional integral
lattice-free polyhedra in R

p, then Corollary 33 gives the statement of Theorem 28.
It is still open whether analogues of Theorem 30 and its corollaries hold in the more

general case where L is not required to contain all the strips.
In summary we believe that these results are a point of departure for defining a

complexity measure for cutting planes in mixed integer programming. A first sugges-
tion in this direction is given in Andersen et al. (2010). As in the pure integer case
(see Schrijver 1986), we say that a sequence of linear inequalities c1z ≤ γ 1, c2z ≤
γ 2, …, ck z ≤ γ k is a L-cutting plane proof of ck z ≤ γ k (from P), if for each
i = 1, . . . , k, ci z ≤ γ i is a disjunctive cut for P ∩ {x ∈ R

p+q : c j z ≤ γ j , j =
1, . . . , i − 1} corresponding to a lattice-free polyhedron in L. The number k will be
called the length of the L-cutting plane proof. It would be desirable to compute lower
bounds on the length of L-cutting plane proofs for special families of inequalities
ck z ≤ γ k and for special classes of polyhedra P .

Assuming that there are enough students interested in questions of this kind, one
could imagine that the approach discussed here can be refined in a way that it might
result in a significantly better understanding of which lattice-free polyhedra can
approximate the mixed integer hull for certain families of mixed integer programs.

We have only covered here parts of the recently emerging literature on the con-
nections between mixed integer programming and lattice-free polyhedra. The reader
that is interested in further developments of this topic is referred to the following
papers: Averkov (2011), Balas and Margot (2011), Basu et al. (2010a,b,c, 2011b,c,e,f),
Conforti et al. (2011b), Dash (2010), Dash et al. (2011a,b,c,e, 2010), Dey (2011), Dey
and Wolsey (2008, 2010), Fukasawa and Günlük (2011), Morán and Dey (2011).
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