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Abstract Activator-inhibitor FitzHugh-Nagumo (FHN) equation is an example for reaction-
diffusion equations with skew-gradient structure. We discretize the FHN equation using
symmetric interior penalty discontinuous Galerkin (SIPG) method in space and average vec-
tor field (AVF) method in time. The AVF method is a geometric integrator, i.e. it preserves
the energy of the Hamiltonian systems and energy dissipation of the gradient systems. In
this work, we show that the fully discrete energy of the FHN equation satisfies the mini-
maximizer property of the continuous energy for the skew-gradient systems. We present
numerical results with traveling fronts and pulses for one dimensional, two coupled FHN
equations and three coupled FHN equations with one activator and two inhibitors in skew-
gradient form. Turing patterns are computed for fully discretized two dimensional FHN
equation in the form of spots and labyrinths. Because the computation of the Turing pat-
terns is time consuming for different parameters, we applied model order reduction with
the proper orthogonal decomposition (POD). The nonlinear term in the reduced equations is
computed using the discrete empirical interpolation (DEIM) with SIPG discretization. Due
to the local nature of the discontinuous Galerkin (DG) method, the nonlinear terms can be
computed more efficiently than for the continuous finite elements. The reduced solutions
are very close to the fully discretized ones. The efficiency and accuracy of the POD and
POD-DEIM reduced solutions are shown for the labyrinth-like patterns.
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1 Introduction

The FitzHugh-Nagumo (FHN) equation was proposed for modeling the electrical impulses
in a nerve axon as a simplified Hodgkin-Huxley model. Although the FHN equation is devel-
oped as a model in physiology, it is used as a generic model that exhibits many phenomena
in excitable or oscillatory chemical media. FHN equation is a singularly perturbed, param-
eter dependent equation with a complex dynamics. In the literature the most known type of
the FHN equation is the one which consists of a partial differential equation (PDE) for the
activator and an ordinary differential equation (ODE) for the inhibitor. In this work we con-
sider the so called diffusive FHN equation consisting of two or three PDEs with an activator,
and one or two inhibitors. Depending on the relationship between the reaction and diffusion
parameters, and the bistable nonlinearity, the specific patterns in one and two dimensional
FHN equation are like traveling fronts, pulses, spots or labyrinth like patterns. Energy of
the system plays an important role in the selection of these patterns. As a reaction diffusion
equation FHN equation has been used to study the wave dynamics in excitable media and
bifurcation phenomena.

For large class of reaction-diffusion systems there exist Lyapunov functions, so that all
the solutions converge to equilibria. But it is difficult to derive gradient structure for reaction-
diffusion systems, because the reaction terms contain quite general nonlinearities. For cer-
tain classes, gradient structures can be constructed. Among these are the activator-inhibitor
type reaction-diffusion systems which are not order preserving and their linearized forms
around the steady states are not self-adjoint. Yanigada (Yanagida, 2002b) introduced the
concept of skew-gradient systems to investigate the stability of these systems. It was shown
in (Yanagida, 2002b) under some restrictions on the parameters the diffusive FitzHugh
Nagumo system and Gierer-Meinhardt system exhibit skew-gradient structure. In short,
these activator-inhibitor equations consist of two gradient systems.

In the following we consider the coupled reaction-diffusion system of the form

τ1ut = d1∆u+ f (u,v)

τ2vt = d2∆v+g(u,v)
(1)

in a smooth bounded domain Ω in Rn(n≤ 2) and on a time period [0,T ] with u = u(x, t) and
v = v(x, t), x ∈Ω , t ∈ [0,T ]. Here τ1, τ2 and d1, d2 correspond to time scales and diffusion
coefficients of u and v, respectively. The system (1) has a skew-gradient structure if there
holds (Yanagida, 2002b)

∂

∂v

(
f (u,v)

τ1

)
=− ∂

∂u

(
g(u,v)

τ2

)
. (2)

A particular example of the skew-gradient system is the diffusive FHN equation model-
ing the transmission of electrical impulses in a nerve axon. For this equation, we can write
f (u,v) and g(u,v) in equation (1) as a summation of separate functions of u and v as

τ1ut = d1∆u+ f1(u)+ f2(v)
τ2vt = d2∆v+g1(u)+g2(v)

(3)

where f1(u) = u(u−β )(1−u), f2(v) =−v+κ , g1(u) = u, g2(v) =−γv+ε and γ > 0. The
FHN equation (3) is an activator-inhibitor system, where u is the activator since it activates v,
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i.e. leads to an increase of v. On the other hand, v is the inhibitor since it leads to a decrease
in u and v. Moreover, FHN equation (3) is a skew-gradient system (1) through the energy
functional

E(u,v) =
∫

Ω

(
d1

2
|∇u|2− d2

2
|∇v|2 +F(u,v)

)
dx

with the corresponding potential function

F(u,v) =−u4

4
+

(1+β )u3

3
− βu2

2
−uv+

γv2

2
− εv, (4)

where ∇ denotes the gradient operator. The first equation of (3) is a gradient flow with
the potential F(u,v), and the second with the potential −F(u,v) (Yanagida, 2002a). The
energy functional E(u,v) does not correspond to the Lyapunov functional, because it is not
necessarily non-increasing or non-decreasing in time, but the steady state (u,v) = (φ ,ψ) of
a skew-gradient system is stable if it is a mini-maximizer of E(u,v) (Yanagida, 2002b).

The stationary uniform solutions of (3) can be found by solving f1(φ)+ f2(ψ) = 0 =
g1(φ)+g2(ψ). For one dimensional skew-gradient systems, the number of solutions of this
equation determines the type of the solutions of the FHN equation (3). If it has only one
intersection point, then it is called monostable case. However, if there is three intersec-
tion points with two stable and one unstable fixed points, then it is called bistable case.
For the monostable case, the solution of FHN equation (3) exhibits traveling pulses and
for the bistable case, it exhibits traveling fronts. For two dimensional systems, under some
conditions on the parameters, Turing patterns may exist, when the spatially homogeneous
steady-state (u,v) is not a mini-maximizer of E(u,v) (Yanagida, 2002b).

In this paper, we use symmetric interior penalty discontinuous Galerkin finite elements
(SIPG) (Arnold, 1982; Riviere, 2008) for space discretization and average vector field (AVF)
method (Celledoni, E. and Grimm, V. and McLachlan, R. I. and McLaren, D. I. and O’Neale,
D. J. and Owren, B. and Quispel, G. R. W., 2012; Hairer and Lubich, 2014) for time dis-
cretization. Discontinuous Galerkin (DG) method uses discontinuous polynomials for the
discretization of PDEs. DG methods can support high order local approximations that can
vary non-uniformly over the mesh, by which fronts, pulses and layers can be captured bet-
ter. The AVF method is second order in time and preserves for conservative systems, like
Hamiltonian, the energy and for gradient systems the energy dissipation. We show that the
AVF integrator combined with SIPG space discretization preserves the mini-maximizing
property of the skew-gradient systems (Yanagida, 2002a) in the discrete form.

FHN equation has front or pulse solutions in one dimensional domains depending on
the parameters. We show in numerical simulations the existence of the multiple pulse and
front solutions for the two and three component one dimensional FHN equations in the
skew-gradient form. We also show for two the dimensional FHN equation in skew-gradient
form the criteria of the existence of patterns like spots and labyrinths. The time evolution of
the discrete energy shows that the energy remains constant in long term integration, which
proves the stability of the solutions obtained by the numerical solutions.

There has been significant development in the efficient implementation and analysis of
the model order reduction (MOR) techniques for parametrized PDEs (Grepl, 2012). The
aim of the model order reduction is the construction of a reduced order model (ROM) of
small dimension which essentially captures the dynamics of the full order model (FOM).
The most known model order reduction technique is the proper orthogonal decomposition
(POD). Even though the POD is a very successful MOR technique for linear problems, for
nonlinear problems the computational complexity of the evaluation of the nonlinear reduced



4 Bülent Karasözen et al.

model still depends on the dimension of the FOM. In order to reduce the computational cost
several methods are developed so that the nonlinear function evaluations are independent of
the dimension of the FOM and the computational complexity is proportional to the number
of ROMs. Among the best known of them is the discrete empirical interpolation method
(DEIM) (Chaturantabut and Sorensen, 2010) which is adopted from the empirical interpola-
tion method (EIM) (Barrault et al, 2004). The DEIM was originally developed for nonlinear
functions which depend componentwise on single variables, arising from the finite differ-
ence discretization of nonlinear PDEs. For the finite element discretization, the nonlinear
functions depend on the mesh and on the polynomial degree of the finite elements. There-
fore the efficiency of the POD-DEIM can be degraded. A modified version of POD-DEIM
is developed in (Tiso and Rixen, 2013) using the unassembled finite elements. This reduces
the number of nonlinear function calls during the online computation, but the size of the
nonlinear snapshots are enlarged, which increases the offline computational cost. In (Antil
et al, 2014), the assembled and unassembled finite element POD-DEIM are compared for
parametrized steady state PDEs. In case of DG discretization, each component of the non-
linear functions depends only on the local mesh in contrast to the continuous finite element
discretization where the nonlinear function depends on multiple components of the state
vector. Therefore the number of POD-DEIM function evaluations for DG discretization is
comparable with the finite difference discretization.

The paper is organized as follows. In Section 2, the discretization of FHN equation (3) in
space by SIPG is given. In Section 3, the fully discrete formulation of the FHN equation (3)
is presented using the gradient stable AVF time integrator. The Energy analysis of the fully
discrete scheme is given in Section 4. In Section 5, numerical simulations are shown for the
FHN equation exhibiting front and pulse solutions in one dimensional domains. We present
in Section 6 the numerical results for the three component FHN equation in skew-gradient
form with multiple pulse solutions in one dimensional domains. Turing patterns for two-
dimensional FHN equation are shown in Section 7. We show in Section 8 the effectiveness
and accuracy of the reduced order models for SIPG discretization with application of the
POD-DEIM to the nonlinear term. The paper ends with some conclusions.

2 Space discretization by discontinuous Galerkin method

In last twenty years, the DG methods gained an increasing importance for an efficient and
accurate solution of PDEs. Although continuous finite elements (FEM) require continuity of
the solution along element interfaces, DG does not require continuity of the solution along
the interfaces. In contrast to the stabilized continuous Galerkin finite element methods, DG
methods produce stable discretization without the need for extra stabilization strategies,
and damp the unphysical oscillations. Due to the local structure of DG discretization, DG
methods are parallelizable and adaptive meshing techniques can be implemented efficiently.
The DG methods combines the best properties of the finite volume and continuous finite
elements methods.

In this section, we will describe the DG discretized semi-discrete (continuous in time)
form of the FHN equation (3) with homogeneous Neumann (zero-flux) boundary condition.
The classical (continuous) weak solution of (3) solves for t ∈ (0,T ] the variational formula-
tion

(τ1ut ,w1)+a(d1;u,w1)− ( f1(u),w1)− ( f2(v),w1) = 0, ∀w1,
(τ2vt ,w2)+a(d2;v,w2)− (g1(u),w2)− (g2(v),w2) = 0, ∀w2

(5)
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with the initial conditions satisfying

(u(0),w1) = (u0,w1), (v(0),w2) = (v0,w2),

where (·, ·) := (·, ·)Ω is the L2 inner product over the domain Ω , w1 and w2 are the test
functions and a(d;u,w) = (d∇u,∇w)Ω stands for the classical bilinear form.

Let εh be the disjoint partition of the domain Ω with elements (triangles) {Ei}Nel
i=1 ∈ εh,

where Nel is the number of elements in the partition. On εh, we set the discrete solution and
test function space

Dk = Dk(εh) := {w ∈ L2(Ω) : wE ∈ Pk(E) ∀E ∈ εh},

where Pk(E) is the space of polynomials of degree at most k on E ∈ εh. Multiplying (3) by
w1 and w2 and integrating by using Green’s theorem over each mesh element, we obtain the
following semi-discrete variational formulation: ∀t ∈ (0,T ], find uh(t), vh(t)∈Dk satisfying(

τ1
∂uh
∂ t ,w1

)
+ah(d1;uh,w1)− ( f1(uh),w1)− ( f2(vh),w1) = 0, ∀w1 ∈ Dk,(

τ2
∂vh
∂ t ,w2

)
+ah(d2;vh,w2)− (g1(uh),w2)− (g2(vh),w2) = 0, ∀w1 ∈ Dk,

(6)

where the SIPG bilinear form ah(d;u,w) is given by

ah(d;u,w) = ∑
E∈εh

∫
E

d∇u ·∇w− ∑
e∈Γ 0

h

∫
e
{d∇u} · [w]ds

− ∑
e∈Γ 0

h

∫
e
{d∇w} · [u]ds+ ∑

e∈Γ 0
h

σd
he

∫
e
{∇u} · [w]ds,

where he denotes the length of an edge e, Γ 0
h denotes the set of inter-element faces (edges),

[ ] and { } stand for the jump and average operators respectively. Introducing the degrees of
freedom N :=Nloc×Nel , where Nloc denotes the local dimension on each element depending
on the polynomial order k, the semi-discrete DG solutions of (6) are of the form

uh(t) =
N

∑
i=1

ui(t)φi , vh(t) =
N

∑
i=1

vi(t)φi, (7)

where u(t) := (u1(t), . . . ,uN(t))T and v(t) := (v1(t), . . . ,vN(t))T are the vectors of time de-
pendent unknown coefficients of uh and vh, respectively, and φ := (φ1, . . . ,φN)

T is the vector
of basis functions. Plugging (7) into the scheme (6) and choosing w1 =w2 = φi, i= 1, · · · ,N,
we get the system of 2×N dimensional ODEs for the unknown vectors u and v as

τ1Mut +Suu−F1(u)−F2(v) = 0,

τ2Mvt +Svv−G1(u)−G2(u) = 0,
(8)

where M, Su, Sv ∈ RN×N are the mass matrix and stiffness matrices, respectively, and the
remaining are the vectors in RN of the unknowns u and v.
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3 Time discretization by the average vector field method

Energy stable time discretization methods preserve the dissipative structure of the numerical
solution of gradient flow equations and skew-gradient systems like the FHN equation. The
small values of the diffusion parameters leads to stiff systems after spatial discretizations.
Implicit/implicit-explicit methods are developed since the explicit methods are not suitable
for stiff systems and the fully implicit systems require solution of non-linear equations at
each time step. In the semi-implicit schemes, the linear stiff part is treated implicitly and
the nonlinear part explicitly, so that at each time step a linear system of equations is solved.
However, these methods do not preserve the energy dissipation of the system. Implicit Eu-
ler method and average vector field (AVF) method are energy stable time discretization
techniques which are robust with small diffusion parameters. The AVF method is the only
second order implicit energy stable method and it preserves energy decreasing property for
the gradient systems and for systems with Lyapunov functionals like the FHN equation. In
this work, we apply AVF method to solve the system of ordinary differential equations (8)
arising from the semi-discretization of the model problem (3).

We split the time interval [0,T ] into J equally-length subintervals (tk−1, tk] with 0 = t0 <
t1 < .. . < tJ = T with the uniform step-size ∆ t = tk− tk−1, k = 1,2, . . . ,J. The AVF method
for an arbitrary ODE ẏ = f (y) is given by

yn+1− yn

∆ t
=
∫ 1

0
f (ξ yn+1 +(1−ξ )yn)dξ , (9)

where yn ≈ y(tn) for n = 1, . . . ,J and y0 = y(t0). Applying the AVF formulation (9) to the
system of ODEs (8), in space SIPG discretized fully discrete formulation of the equation (3)
reads as(

τ1M+
∆ t
2

Su

)
un+1 =

(
τ1M− ∆ t

2
Su

)
un +∆ t

1∫
0

F1(ξ un+1 +(1−ξ )un)dξ

+ ∆ t
1∫

0

F2(ξ vn+1 +(1−ξ )vn)dξ ,

(
τ2M+

∆ t
2

Sv

)
vn+1 =

(
τ2M− ∆ t

2
Sv

)
vn +∆ t

1∫
0

G1(ξ un+1 +(1−ξ )un)dξ

+ ∆ t
1∫

0

G2(ξ vn+1 +(1−ξ )vn)dξ .

(10)

The fully discrete system of nonlinear equations (10) is solved by Newton’s method on each
time-interval (tn−1, tn], n = 0,1, . . . ,J−1.

4 Energy analysis of fully discrete scheme

It was proved in (Yanagida, 2002a) that a steady state of a skew-gradient system is stable if
and only if it is a mini-maximizer of the energy functional (12):

– If u = ξ is a local minimizer of E(u,η) and v = η is a local maximizer of E(ξ ,v), then
(u,v) = (ξ ,η) is a mini-maximizer of E(u,v).
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– If E(ξ , v̄) ≤ E(ξ ,η) ≤ E(ū,η) for any neighborhoods ū, v̄ of ξ and η , resp., then we
say that (u,v) = (ξ ,η) is a mini-maximizer of E(u,v).

We will examine the relation between the stability of a steady state solution (ξ ,η) of (3)
and the mini-maximizing property of the critical point of the energy functional (12) for the
SIPG-AVF fully discrete system.

Let un and vn denote the solutions of (3) at t = tn. Steady state solutions (un,vn) =
(ξ (x),η(x)) of (3) satisfies

d1∆ξ + f1(ξ )+ f2(η) = 0,

d2∆η +g1(ξ )+g2(η) = 0.
(11)

Then the solution of (11) is a critical point of the following energy functional

E(un,vn) =
d1

2
‖∇un‖2

L2(εh)
− d2

2
‖∇vn‖2

L2(εh)
+(F(un,vn),1)

+ ∑
e∈Γ 0

h

(
−({d1∂nun}, [un])e +

σd1

2he
([un], [un])e

)

− ∑
e∈Γ 0

h

(
−({d2∂nvn}, [vn])e +

σd2

2he
([vn], [vn])e

)
,

(12)

where F(·, ·) is the potential function (4). Fully discrete variational formulation reads

τ1

∆ t
(un+1−un,w1) =−

1
2

ah(d1;un+1 +un,w1)+

1∫
0

( f1(ξ un+1 +(1−ξ )un),w1)dξ

+

1∫
0

( f2(ξ vn+1 +(1−ξ )vn),w1)dξ

τ2

∆ t
(vn+1− vn,w2) =−

1
2

ah(d2;vn+1 + vn,w2)+

1∫
0

(g1(ξ un+1 +(1−ξ )un),w2)dξ

+

1∫
0

(g2(ξ vn+1 +(1−ξ )vn),w2)dξ

(13)

By taking w1 = un+1−un and w2 = vn+1−vn in (13), and using the identity (a+b,a−b) =
(a2−b2,1) and the bilinearity of ah, we get

τ1

∆ t
(un+1−un,un+1−un) =−

1
2

ah(d1;un+1,un+1)+
1
2

ah(d1;un,un)

+( f1(ξ un+1 +(1−ξ )un),un+1−un)dξ

+( f2(ξ vn+1 +(1−ξ )vn),un+1−un)dξ ,

τ2

∆ t
(vn+1− vn,vn+1− vn) =−

1
2

ah(d2;vn+1,vn+1)+
1
2

ah(d2;vn,vn)

+(g1(ξ un+1 +(1−ξ )un),vn+1− vn)dξ

+(g2(ξ vn+1 +(1−ξ )vn),vn+1− vn)dξ .

(14)
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Using the Taylor expansion for the terms f1, f2, g1, g2 in (14), and subtracting F(un,vn)
from F(un+1,vn+1), we get

F(un+1,vn+1)−F(un,vn)≈
∂F
∂u

(ξ un+1 +(1−ξ )un,vn)(un+1−un)

+
∂F
∂v

(ξ un+1 +(1−ξ )un,vn)(vn+1− vn).

(15)

Using the derivatives ∂F
∂u = f1(u) + f2(v), ∂F

∂v = −(g1(u) + g2(v)), which are the skew-
gradient conditions (2), and plugging the identity (15) into the system (14), we obtain the
relation

E(un+1,vn+1)−E(un,vn)≈−
τ1

∆ t
‖un+1−un‖2

L2(Ω)+
τ2

∆ t
‖vn+1− vn‖2

L2(Ω) . (16)

Now, at the steady state point (un,vn) = (ξ ,η), τ2
∆ t ‖vn+1− vn‖2

L2(Ω) = 0 if v is fixed to
η(x), leading according to the relation (16) to E(ξn+1,η)≤ E(ξn,η). In a similar way, if u
is fixed to ξ (x), we obtain E(ξ ,ηn+1) ≥ E(ξ ,ηn). Thus, the first equation of (3) describes
a gradient flow with E(u,η) and the second equation of (3) describes a gradient flow with
−E(ξ ,v), meaning that (un,vn) = (ξ ,η) is stable as a steady state of (3) since it is a mini-
maximizer of E(u,v) (Yanagida, 2002a).

5 Traveling fronts and pulses of FitzHugh-Nagumo equation

Localized structures like fronts and pulses are most-well known one-dimensional waves in
reaction diffusion systems (Chen and Hu, 2014). Fronts connect two different state of a
reaction-diffusion system with a bistable nonlinearity. Pulses exist far away from the homo-
geneous equilibrium and results from the balance between the dissipation and nonlinearity.
Existence of fronts and pulses for the FHN equation (3) are shown in (Chen and Hu, 2014).
In this section we derive conditions for the parameters of the FHN equation (3) exhibiting
traveling fronts or traveling pulses which depend on mono/bi-stability of the homogeneous
steady state solutions of (3)

f (u)− v = 0, γu−δv+ ε = 0. (17)

Here, we consider the bistable cubic nonlinearity f (u) = u(u−β )(1−u), with 0 < β < 1
2 .

Eliminating v = γu+ε

δ
from (17) and fixing the parameters β = 2

25 , γ = 1, ε = 7
10 , we obtain

u3− 27
25

u2 +

(
2
25

+
1
γ

)
u+

7
10γ

= 0. (18)

For the bistable case, the equation (18) must have three distinct reel roots, or equivalently
its derivative equation

3u2− 54
25

u+
(

2
25

+
1
γ

)
(19)

must have two distinct roots. In other words, we need the condition

∆ =

(
54
25

)2

−4 ·3 ·
(

2
25

+
1
γ

)
=

2316
625

− 12
γ

> 0.

Hence, for γ > 3.2383, the equation (3) attains the bistable case, as a result, the solution of
(3) is traveling fronts. Otherwise it will be monostable and the traveling pulses will occur.
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5.1 Traveling fronts

We consider the FHN equation (3) on Ω = [−60,60] with the parameters d1 = 1, d2 = 1.25,
τ = 12.5, β = 1

3 , γ = 8 and ε = 0.7. We set the initial conditions u(x,0) = tanh(x), v(x,0) =
1− tanh(x), and the spatial mesh size ∆x = 0.1 and the temporal step size ∆ t = 0.5. The
traveling front solutions can be clearly seen from Fig. 1, whereas the discrete energy is
decaying very slowly.
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Fig. 1: Traveling front solutions and evolution of the discrete energy for Example 5.1

5.2 Traveling pulses

All parameters other than γ = 0.8 are the same as for the traveling front solutions in Example
5.1. Initial conditions are taken as u(x,0) = tanh(x) and v(x,0) =−0.6. The traveling pulse
solutions obtained for ∆x = 0.1 and ∆ t = 0.1 are shown in Fig. 2. The discrete energy
remains constant after an oscillation.
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Fig. 2: Traveling pulse solutions and evolution of the discrete energy for Example 5.2
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6 Three component FitzHugh-Nagumo system

The rich dynamics of localized structures like multi-pulse and multi-front solutions were
recently investigated for singularly perturbed three component reaction-diffusion systems
(Or-Guil et al, 1998; van Heijster et al, 2008; van Heijster and Sandstede, 2011)

ut = uxx +u−u3− ε(αv+β s+ γ),

τvt =
1
ε2 vxx +u− v,

θst =
d2

ε2 sxx +u− s,

(20)

where 0 < ε� 1, τ,θ > 0, d > 1, and α and β denoting the reacting rates and the constant
γ is the source term. The system (20) was originally introduced as a model for gas discharge
dynamics (Or-Guil et al, 1998). It became a standard model to study the dynamics and inter-
actions of spatially localized structures like pulses and fronts in one dimensional reaction-
diffusion equations. The three component model (20) is also considered as augmented FHN
equation with a second inhibitor w which diffuses more rapidly than the second inhibitor v.

The last two equations of (20) imply that all the components of the stationary solutions
are equal. Elimination of the components v and s leads to the equation

u3−u+ ε(αu+βu+ γ) = 0, (21)

which has three different roots if its derivative equation 3u2−1+ ε(α +β ) has two distinct
roots, i.e. ε(α +β ) < 1. In this case, it is called bistable medium since two of the roots of
(21) is stable. Hence, (20) has front solutions, and depending on the initial conditions we
can get one-front, two-front or multi-front solutions.

On the other hand, the three component FHN equation (20) has skew-gradient structure
if there hold

εα

τ
=

1
θ
,

εβ

τ
=

1
θ
. (22)

In addition to the skew-gradient condition (22), if ε(α +β )> 1 is satisfied, then we obtain
one stationary point. In this situation, the stationary point is always unstable since the Jaco-
bian matrix around this stationary point of (20) satisfies det(J)< 0 and oscillatory traveling
waves exists satisfying the skew-gradient condition (22).

In the following numerical examples we present one pulse (two-front), two pulse (four
front) and multi-pulse (multi-front) solutions of (20) similar to those in (van Heijster et al,
2008) for different set of parameters satisfying the skew-gradient condition (22) under the
homogeneous Neumann boundary conditions on both ends. In all examples we have taken
ε = 0.01.

6.1 One pulse solutions

We consider the space-time domain x ∈ [−1000,1000] and t ∈ [0,200] with ∆x = ∆ t = 0.5,
and the initial conditions are given by

u(x,0) =
{

1 x ∈ [−50,50]
−1 otherwise , v(x,0) = s(x,0) = 0.

We use the set of parameters (α,β ,γ,d,τ,θ) = (3,1,−0.25,5,100/3,100). The solution
profiles at t = 25 and at the final time t = 200, together with the energy plot, are shown in
Fig. 3.
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Fig. 3: One pulse solutions and evolution of discrete energy for Example 6.1

6.2 Two pulse solutions

For the two pulse solutions, we use the same settings as in Example 6.1 with the final time
T = 100. We give the related results in Fig. 4 for the initial conditions

u(x,0) =
{

1 , if x ∈ [−350,−150]∪ [150,350],
−1 , otherwise. , v(x,0) = s(x,0) = 0.
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Fig. 4: Two pulse solutions and evolution of discrete energy for Example 6.2

6.3 Multi pulse solutions

Interaction of multi-fronts are shown in Fig. 5 for the set of parameters (α,β ,γ,d,τ,θ) =
(100,100,−0.25,5,1,1), and for the initial conditions

u(x,0) =
{

0 , if x ∈ [50,50],
−1 , otherwise. , v(x,0) = s(x,0) = 0.
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Fig. 5: Multi pulse solutions and evolution of discrete energy for Example 6.3

7 Pattern formation for the FitzHugh-Nagumo equation

In this section, we will study Turing’s pattern formation of FHN equation (3). In order to
determine what kind of spatial patterns is formed for Turing systems, an analytic criterion
is developed in (Marquez-Lago and Padilla, 2014). Here, we will give this result and Turing
instability conditions for the FHN equation (3) with two different sets of f1(u), f2(v), g1(u),
g2(v) in two-dimensional spatial domain Ω . Alan Turing proposed this relationship between
the parameters of reaction-diffusion equations and pattern formation (Turing, 1952). He
showed that under certain conditions any stable steady state can be converted into an un-
stable state. This is known as diffusion driven instability or Turing instability. The Turing
instability conditions for the system (3) are given by

∂ f1

∂u
+

∂g2

∂v
< 0,

∂ f1

∂u
· ∂g2

∂v
− ∂ f2

∂v
· ∂g1

∂u
> 0,

d2
∂ f1

∂u
+d1

∂g2

∂v
> 0,(

d2
∂ f1

∂u
+d1

∂g2

∂v

)2

> 4d1d2

(
∂ f1

∂u
· ∂g2

∂v
− ∂ f2

∂v
· ∂g1

∂u

)
,

(23)

which have to be evaluated at the steady state solutions. The first two conditions of (23) are
already the stability conditions of the steady state solutions of (3). The last two conditions
make this stable steady state solutions unstable under the presence of the diffusion terms.

Turing patterns for FHN equation occur in form of spots or labyrinth-like patterns, de-
pending on the number of global minimums of the Lyapunov energy functional (4) (see
(Marquez-Lago and Padilla, 2014)). When the Lyapunov energy functional (4) of the sys-
tem has a unique global minimum, then patterns appear as spots, otherwise, labyrinth-like
patterns occur..

7.1 Pattern examples

We fix the parameters τ1 = τ2 = 1, d1 = 0.00028, and we take the bi-stable nonlinear term
f1(u) = u−u3, f2(v) = κ− v, g1(u) = u and g2(v) =−v. First of all, note that the reaction
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terms include an even term κ . So for κ = 0, the pattern formation will be labyrinth-like
patterns, and for nonzero κ the results will be spots. We have to determine the values of d2
so that the Turing instability conditions (23) are satisfied. The only steady state solution of
(3) with the given conditions in this problem is (u0,v0)≈ (−0.368403,−0.368403). When
we evaluate the first order partial derivatives at this point, we get

∂ f1

∂u
≈ 0.592838,

∂ f2

∂v
=−1,

∂g1

∂u
= 1,

∂g2

∂v
=−1.

The first two conditions of (23) are clearly satisfied. In order to satisfy the third and last
conditions of (23), we need d2 > 0.000472 and d2 > 0.002242, respectively. Hence, for
Turing instability, we obtain d2 > 0.002242 .

We take d2 = 0.005 and consider the domain (x,y) ∈ [−1,1]× [−1,1] and t ∈ [0,200]
with the uniformly distributed random number between−1 and 1. Space mesh size and time
step size are taken as ∆x = 1/16 and ∆ t = 1/10, respectively. The steady state is reached
at t = 200. The corresponding solution profiles and energy plots of spot and labyrinth-like
patterns are given in Fig. 6 and Fig. 7, respectively.
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Fig. 6: Spots: Solution profile of the first component u (left), second component v (middle)
and evolution of discrete energy (right) for Example 7.1
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Fig. 7: Labyrinth-like patterns: Solution profile of the first component u (left), second com-
ponent v (middle) and evolution of discrete energy (right) for Example 7.1
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8 Reduced order model approximation for the FitzHugh-Nagumo system

For MOR we consider the following special form of the FHN equation (3)

ut = d1∆u+ f (u)− v+κ

vt = d2∆v− v+u
(24)

The SIPG semi-discretization of(24) leads to the following system of ODEs

Mut = Suu+F(u)−Mv+K

Mvt = Svv−Mv+Mu
(25)

with the stiffness matrices Su,Sv ∈ RN×N , M ∈ RN×N is the mass matrix, K ∈ RN is the
constant vector related to the integral containing the parameter κ and F ∈ RN is the vector
of the bi-stable nonlinear terms of u = (u1,u2, . . . ,uN). The number N = Nloc×Nel stands
for the degrees of freedom in DG methods, where Nloc and Nel represent the number of
local dimension in each element (triangle) and the number of elements, respectively. The
solutions of (25) are of the form

u(t) =
N

∑
i=1

ui(t)φi(x) = φu(t) , v(t) =
N

∑
i=1

vi(t)φi(x) = φv(t) (26)

where ui(t),vi(t) ∈ R are the unknown coefficients and φi are the DG basis functions.
Because the computation of the Turing patterns for (25) is very time consuming, we

construct the reduced order model (ROM) of small dimension (25) by utilizing the POD
method (Kunisch and Volkwein, 2001).

8.1 Reduced order model

The ROM for (25) of dimension k� N is formed by approximating the solutions u(t) and
v(t) of the FOM (25) in a subspaces spanned by a set of M-orthogonal basis functions
{ψu,i}k

i=1 and {ψv,i}k
i=1 of dimension k in RN and then projecting onto that subspace. The

approximate ROM solutions have the form

u(t)≈
k

∑
i=1

ũi(t)ψu,i , v(t)≈
k

∑
i=1

ṽi(t)ψv,i, (27)

where ũ(t) = (ũ1(t), . . . , ũk(t))T and ṽ(t) = (ṽ1(t), . . . , ṽk(t))T are the coefficient vectors of
the ROM solutions. The reduced basis functions {ψu,i} and {ψv,i} of the ROM solutions in
(27) are constructed with DG finite element basis functions {φi}N

i=1

ψu,i =
N

∑
j=1

Ψu, j,iφ j(x) = φΨu , ψv,i =
N

∑
j=1

Ψv, j,iφ j(x) = φΨv, (28)

where the coefficient vectors of the i− th reduced basis functions ψu,i and ψv,i are located at
the i−th columns of the matrices Ψu = [Ψu,·,1, . . . ,Ψu,·,k]∈RN×k and Ψv = [Ψv,·,1, . . . ,Ψv,·,k]∈
RN×k, respectively.

The M-orthogonal reduced basis functions {ψu,i} and {ψv,i}, i = 1,2, . . . ,k, are com-
puted by the POD (Kunisch and Volkwein, 2001). We consider the snapshot matrices U =
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[u1, . . . ,uJ ] and V = [v1, . . . ,vJ ] in RN×J , where each member of the snapshot matrices U
and V are the corresponding coefficient vectors of the discrete solutions {ui}J

i=1 and {vi}J
i=1,

respectively, of the FOM (25) at the time ti, i= 0,1, . . . ,J, with ui≈ u(ti) and vi≈ v(ti). Then,
for w ∈ {u,v}, the M-orthogonal reduced basis functions {ψw,i}, i = 1,2, . . . ,k, are given by
the solution of the minimization problem

min
ψw,1,...,ψw,k

1
J

J

∑
j=1

∥∥∥∥∥w j−
k

∑
i=1

(w j,ψw,i)L2(Ω)ψw,i

∥∥∥∥∥
2

L2(Ω)

subject to (ψw,i,ψw, j)L2(Ω) =Ψ
T

w,·,iMΨw,·, j = δi j , 1≤ i, j ≤ k,

where δi j is the Kronecker delta. The above minimization problem is equivalent to the eigen-
value problem

U U T MΨu,·,i = σ
2
u,iΨu,·,i , V V T MΨv,·,i = σ

2
v,iΨv,·,i , i = 1,2, . . . ,k (29)

for the coefficient vectors Ψu,·,i and Ψv,·,i of the POD basis functions ψu,i and ψv,i, respec-
tively. Defining Û = RU and V̂ = RV (RT is the Cholesky factor of the mass matrix M),
we obtain the equivalent formulation of (29) as

Û Û T
Ψ̂u,·,i = σ

2
u,iΨ̂u,·,i , V̂ V̂ T

Ψ̂v,·,i = σ
2
v,iΨ̂v,·,i , i = 1,2, . . . ,k (30)

where Ψ̂·,·,i = RΨ·,·,i. The solutions Ψ̂·,·,i of (30) are obtained as the first k left singular vec-
tors Ψ̂u,·,i = ζu,i and Ψ̂v,·,i = ζv,i in the singular value decomposition (SVD) of Û and V̂ ,
respectively, as

Û = ζuΣuβ
T
u , V̂ = ζvΣvβ

T
v ,

where the diagonal matrices Σu and Σv contain the singular values σu,i and σv,i on the di-
agonals, respectively. Using Ψ̂·,·,i = RΨ·,·,i, the coefficient vectors Ψ·,·,i of the POD basis
functions are computed as

Ψu,·,i = R−1
Ψ̂u,·,i , Ψv,·,i = R−1

Ψ̂v,·,i , i = 1,2, . . .k.

In addition, using the expansions (26), (27) and (28), we have

u =Ψuũ , v =Ψvṽ. (31)

For the construction of the k-dimensional ROM, we substitute the relations (31) into
the system (25) and we project onto the reduced spaces spanned by {ψu,1, . . . ,ψu,k} and
{ψv,1, . . . ,ψv,k}, respectively, leading to the system

ũt = Ãũ+Ψ
T

u F(Ψuũ)− M̃uṽ+Ψ
T

u K

ṽt = B̃ṽ− ṽ+ M̃vũ
(32)

with the reduced matrices

Ã =Ψ
T

u AΨu , B̃ =Ψ
T

v BΨv , M̃u =Ψ
T

u MΨv , M̃v =Ψ
T

v MΨu.
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8.2 Discrete empirical interpolation method (DEIM)

Although the dimension of the reduced system (32) is small, k� N, the computation of the
nonlinear term

N(ũ) =Ψ
T

u F(Ψuũ) (33)

still depends on the dimension N of the full system. We apply the DEIM (Chaturantabut and
Sorensen, 2010) to approximate the nonlinear function F(Ψuũ) from a subspace generated
by the non-linear functions. Let F = [F1,F2, . . . ,FJ ] ∈RN×J denotes the snapshot matrix of
the nonlinear functions at each time instances t1, . . . , tJ computed as the solution of the full
system (25) with Fi = F(Ψuũ(ti)), i = 1,2, . . . ,J. Using the SVD of the matrix F , we can
find m�N orthogonal basis functions {Wi}m

i=1 spanning the m-dimensional subspace of F .
Then, with W = [W1, . . . ,Wm] ∈ RN×m, we can approximate the nonlinear function by

F(Ψuũ(t))≈Ws(t) (34)

with the corresponding coefficient vector s(t). We note that the system (34) is overdeter-
mined. Thus, to compute the coefficient vector s(t), we take m distinguished rows from the
system Ws(t) through the projection using a permutation matrix P = [e℘1 , . . . ,e℘m ] ∈RN×m

where e℘i is the i-th column of the identity matrix I ∈ RN×N and computed by Algorithm 1
(Chaturantabut and Sorensen, 2010) so that PTW is non-singular.

Algorithm 1 DEIM Algorithm
Input: POD basis functions {Wi}m

i=1
Output: Index Vector ℘= [℘1, . . . ,℘m]

T and Permutation Matrix P = [e℘1 , . . . ,e℘m ]

1: INPUT: {Wi}m
i=1 ⊂ RN

2: OUTPUT: ℘= [℘1, ...,℘m]
T ∈ Rm, P ∈ RN×m

3: [|ρ|,℘1] = max{|W1|}
4: W = [W1],P = [e℘1 ],℘= [℘1]
5: for i = 2 to m do
6: Solve (PTW )c = PTWi for c
7: r =Wi−Wc
8: [|ρ|,℘i] = max{|r|}

9: W ← [W Wi],P← [P e℘i ],℘←
[

℘

℘i

]
10: end for

The projection of (34) leads to the system

s(t) = (PTW )−1PT F(Ψuũ(t)). (35)

Then, using (34) and (35), the non-linear term (33) can be approximated as

N(ũ(t))≈ Ñ(ũ(t)) = QF̃ , (36)

where the matrix Q=Ψ T
u W (PTW )−1 ∈Rk×m is precomputable and F̃ =PT F(Ψuũ(t))∈Rm

is the m-dimensional non-linear vector which can be computed in an efficient way.
The DG requires only computation of the integrals on a single triangular element, which

is not the case in continuous finite elements where all the interior degrees of freedoms are
shared by usually 6 triangular elements (see Fig. 8). The unassembled finite element ap-
proach is used in (Antil et al, 2014), so that each DEIM point is related to one element. This



Skew-gradient reaction-diffusion systems 17

reduces the online computational cost, but increases the number of snapshots and therefore
the cost of the offline computation. Due to its’ local nature, the DG discretization is automat-
ically in the unassembled form and it does not require computation of additional snapshots
(see Fig. 8).
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Fig. 8: Connectivity of degrees of freedoms for linear basis

For the solution of the nonlinear system by Newton’s method, the entries of the Jacobian
JF ∈ RN×N of the non-linear terms are of the form for i, j = 1,2, . . . ,N

(JF)i, j =
∂

∂u j
Fi(u) =

∫
Eti

∂ f (u)
∂u j

φidx =
∫

Eti

f ′(u)φ jφidx.

Because the DG basis functions are defined only a single element and they vanish out-
side that element, the integral terms of the Jacobian matrix (JF)i, j vanish on the triangular
elements Eti where the basis function φ j is not defined. Unlike the continuous finite elements
where the Jacobian matrix contains overlapping blocks, Jacobian matrix in DG appears in
block diagonal form, and has the form

∂

∂ ũ
N(ũ) =Ψ

T
u JFΨu ,

∂

∂ ũ
Ñ(ũ) = Q(PT JF)Ψu.

We note that (PT JF) ∈ Rm×N is the matrix whose i-th row is the ℘i-th row of the Jacobian
JF , i= 1,2, . . . ,m, and in each row of the Jacobian there are only Nloc nonzero terms because
of the local structure of the DG.

8.3 Numerical results

We consider the FHN system (24) with labyrinth-like patterns on Ω = [−1,1]2 with zero
flux boundary conditions and with the initial conditions as uniformly distributed random
numbers between −1 and 1. We set the parameters d1 = 0.00028, d2 = 0.005 and κ = 0.

In Fig. 9 the decay of the singular values related to U , V and the nonlinear term F are
shown. In Figs. 10, 11, 12, we demonstrate that the ROM solutions and energy plots for
k = 7 POD and m = 10 DEIM basis functions are almost the same as the FOM solutions in
Fig 7. The computational efficiency of the POD-DEIM is obvious from Fig. 13.
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Fig. 9: Decay of the singular values related to U , V and nonlinearity F

Fig. 10: Solution profiles of the component u at the steady state

Fig. 11: Solution profiles of the component v at the steady state

We demonstrate the computational efficiency of the POD-DEIM algorithm for linear
and quadratic DG elements. In Table 1 we give the CPU time and the speed-up factors SPOD
and SDEIM of POD and POD-DEIM, respectively,

SPOD =
CPU time for FOM

CPU time for POD ROM
, SDEIM =

CPU time for FOM
CPU time for POD-DEIM ROM

.

In all computation only one Newton iteration is needed. The results show clearly that
as the mesh size increases, the speed-up factors increases, which shows the efficiency of
POD-DEIM method. In Table 2, we show the computed mean relative L2 errors between
FOM and POD, and between FOM and POD-DEIM solutions which are acceptable because
POD-DEIM is an approximation of the non-linearity in contrast to the POD.
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Fig. 13: CPU times

Table 1: The computation time (in sec) and speed-up factors for k = 10 POD basis functions
and m = 50 DEIM basis functions on different grids and with different polynomial degrees

Polynomial degree p = 1 p = 2
Mesh number 1 2 3 1 2 3
# triangles 128 512 2048 128 512 2048
# nodes 81 289 1089 81 289 1089
# DoFs 384 1536 6144 768 3072 12288
Full 9.92 26.25 124.37 29.42 81.53 423.97
POD 7.65 13.50 33.64 22.23 38.67 116.82
POD-DEIM 7.11 9.64 12.67 16.29 19.12 31.23
SPOD 1.34 2.00 3.83 1.34 2.15 3.71
SDEIM 1.40 2.90 9.81 1.86 5.50 15.39

9 Conclusions

Neurons, the building blocks of the central nervous system, are highly complex dynami-
cal systems. The FHN equation as the simplified version of the Hodgkin-Huxley equation
models in a detailed manner activation and deactivation dynamics of a spiking neurons. The
FHN equation can describe the bifurcations with the variation of the key parameters for neu-
ron dynamics. Within time FHN equations became a favorite model for simulation of wave
propagation in excitable media, such as heart tissue or nerve fiber. Understanding the com-
plex behavior of patterns in neuroscience can have big impact for dealing and preventing
with various diseases. In this paper we have shown that patterns like pulses, fronts, spots
and labyrinths for the FHN equation are computed accurately using the structure preserving
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Table 2: Mean relative L2 errors between the solutions of the full system and the ones for
POD system and POD-DEIM system with k = 10 POD basis functions and m = 50 DEIM
basis functions

Polynomial degree p = 1 p = 2
Mesh number 1 2 3 1 2 3
POD (Comp. u) 3.8e-2 1.2e-2 1.0e-2 8.9e-3 1.1e-2 1.1e-2
POD-DEIM (Comp. u) 3.6e-2 1.5e-2 1.5e-2 1.2e-2 2.5e-2 2.9e-2
POD (Comp. v) 1.4e-2 5.6e-3 4.7e-3 6.0e-3 6.1e-3 6.4e-3
POD-DEIM (Comp. v) 1.4e-2 6.0e-3 5.4e-3 6.6e-3 8.1e-3 9.1e-3

time integrator AVF in combination with DG finite elements in space. MOR can dramati-
cally reduce simulation costs by preserving the behavior of parametrized PDEs, which was
demonstrated here for the FHN equation with Turing patterns. In the literature MOR is ap-
plied usually in connection with the finite differences and continuous finite elements. We
have shown that the DG discretization in space can save the computational cost and due its
local structure DG is more efficient than the continuous finite elements.

Quantitative methods are indispensable to structure the clinical, epidemiological, and
economic evidence in health care and qualitative insight in making better decisions. Model
based analysis allows to quantify different concepts relating to uncertainty in decision mod-
eling. Therefore effective simulation methods like the MOR can contribute in for more pre-
cise decisions and better treatment of diseases. Beside the MOR, the two important fields
of the modern scientific computing are uncertainity quantification and optimal control. The
FHN equation is an ideal model in this respect to recover the uncertainities with respect to
parameters and input variables in the context of neuron modeling. Also optimal treatment of
the diseases can be designed using reduced order simulation effectively. Optimization and
uncertainty quantification techniques combined with MOR can improve model predictions,
to evaluate monitoring schemes and apply better therapy in the medical practice.
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