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Abstract In this paper we present a general integer programming-based approach
for the minimal perturbation problem (MPP) in university course timetabling.
This problem arises when an existing timetable contains hard constraint viola-
tions, or infeasibilities, which need to be resolved. The objective is to resolve these
infeasibilities while minimising the disruption or perturbation to the remainder of
the timetable. This situation commonly occurs in practical timetabling, for exam-
ple when there are unexpected changes to course enrolments or available rooms.

Our method attempts to resolve each infeasibility in the smallest neighbour-
hood possible, by utilising the exactness of integer programming. Operating within
a neighbourhood of minimal size keeps the computations fast, and does not permit
large movements of course events, which cause widespread disruption to timetable
structure. We demonstrate the application of this method using examples based
on real data from the University of Auckland.

Keywords Minimal Perturbation Problems · University Course Timetabling ·
Integer Programming · Decision Support Systems

1 Introduction

University course timetabling is a well-known problem in which a time period and
a room are determined for each course event (e.g. a lecture). Construction of a
timetable may be conducted prior to the start of enrolment, or after enrolment data
is known. The former case is referred to as curriculum-based timetabling, because
time clashes between courses are determined by sets of courses known as curricula.
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2 Antony E. Phillips et al.

The latter case is referred to as enrolment-based timetabling because clashes can be
determined and weighted by known enrolments for each course.

In a practical setting, both of these problems are applicable to some extent
(Kingston, 2013a). The timetable is typically constructed significantly prior to
the start of enrolments, and it will commonly need to be modified as enrolments
take place. During each of these phases, the situation can arise where an existing
timetable becomes infeasible due to changes in the underlying data. The mini-
mal perturbation problem addresses how to modify an existing timetable so that
feasibility is found with a minimal amount of perturbation (or disruption) to the
structure of the timetable.

The minimal perturbation problem is first comprehensively addressed in the
context of general dynamic scheduling (El Sakkout, Richards, and Wallace, 1998).
El Sakkout and Wallace (2000) propose an algorithm based on constraint program-
ming techniques, which leverages the efficiency of linear programming to solve part
of the problem.

Recent work on the minimal perturbation problem has been in the broader
context of general constraint satisfaction problems (CSPs). Zivan, Grubshtein,
and Meisels (2011) develop a branch-and-bound-based tree search in “difference-
space”, where nodes represent the set of variables perturbed. Fukunaga (2013)
develops an improved search method in “commitment-space” where nodes repre-
sent the commitment of a variable to a value.

To our knowledge, Barták, Müller, and Rudová (2004) are the first to study
minimal perturbation problems in the context of university course timetabling,
proposing a constraint satisfaction heuristic combined with a branch-and-bound
process. The authors continue this work with a local search-based metaheuristic,
known as “iterative forward search”, which significantly improves performance
(Müller, Rudová, and Barták, 2005). Finally, Rudová, Müller, and Murray (2011)
present a summary of this approach as part of a broader course timetabling pro-
cess, which is implemented at Purdue University, USA. This includes detailed re-
sults on the iterative forward search algorithm as applied to minimal perturbation
problems, and is described in a practical setting.

A similar problem is addressed by Kingston (2013b) in the context of high
school timetabling. Infeasibilities are repaired using an ejection chain heuristic,
although the perturbation or disruption to the overall timetable is not considered.

In this paper we present a new general method for solving minimal perturba-
tion problems which arise in practical course timetabling. In Section 2 we discuss
the real-world timetabling process, and the most common situations where mini-
mal perturbation problems are required to be solved. In Section 3 we outline our
proposed algorithm. Around each infeasibility, we define a small neighbourhood of
events, time periods, and rooms, which we are willing to perturb. Within this
neighbourhood, an integer programme is solved to maximise the number of events
assigned to a suitable time period and room, as detailed in Sections 4 and 5. Util-
ising the exactness of integer programming, we only expand the size or scope of
the neighbourhood when we have certainty that the current neighbourhood is in-
sufficient to resolve or lessen the infeasibility. In Section 6 we further describe how
to limit the size of the neighbourhood, to ensure the computational tractability
of each integer programme. This process also prevents large movements of course
events, which are seen as disruptive to the timetable structure.
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Integer Programming for Minimal Perturbation Problems 3

In Sections 7 and 8 we demonstrate the application of this method using ex-
amples based on real data from the University of Auckland. Finally, in Section
9 we discuss potential extensions to our method. The expanding neighbourhood
methodology has been successfully demonstrated in other real-world applications,
such as minimising disruption in dynamic rail crew scheduling (Rezanova and
Ryan, 2010). This work is an expanded version of a PATAT conference paper
(Phillips, Walker, Ehrgott, and Ryan, 2014), with refinements to the algorithm
and additional results.

2 Minimal Perturbation Problems in University Course Timetabling

A complete solution to the university course timetabling problem specifies a time
period and room for every course event. The solution can be considered feasible if it
does not include any violated hard constraints, or infeasibilities. Quality measures,
or soft constraints, are desirable features of a feasible solution which may also be
considered. For a coverage of commonly used hard and soft constraints, we refer to
the benchmarking paper by Bonutti, De Cesco, Di Gaspero, and Schaerf (2012).

University course timetabling is widely accepted to be a dynamic problem in
practice, where data may continually change throughout construction and im-
plementation of a timetable (McCollum, 2007; Kingston, 2013a). For complex
timetabling at large universities, we discuss how minimal perturbation problems
can arise in each stage of the timetabling process. We draw on our own experi-
ences at the University of Auckland, which bears many similarities to other large
universities considered in the timetabling literature.

The early construction phase of timetabling occurs when most timetabling
data has been gathered, and construction of a timetable is starting. Many time or
room assignments are considered to be tentative, and may be changed relatively
freely. At this stage, almost any changes to the data are possible e.g. new or
removed courses, changes to staff employment status, room availabilities etc. Some
infeasibilities may not need to be resolved until the data is more complete.

The late construction phase occurs when the timetable is close to being finalised
for publication. This stage is the most similar to curriculum-based timetabling
which is addressed widely in the literature. Major changes to the data are less
likely at this stage, and all infeasibilities should be resolved. Infeasibilities may also
arise due to the method of constructing the timetable (as opposed to solely due to
changes in the data). For example, if faculties choose their own time assignments
independently (often “rolled-forward” from the previous year with changes), this
can produce a time assignment for which there is no feasible room assignment.

In this paper, we address this situation at the University of Auckland where
time assignments have been determined in close collaborationwith faculties. Chang-
ing the time period for an event is disruptive, whereas the room assignment may
be more freely perturbed. This application of the minimal perturbation prob-
lem has not been previously addressed in university course timetabling, however
Ásgeirsson (2012) develops heuristics for a conceptually similar situation within
staff scheduling.

The enrolment phase of timetabling begins once the timetable is published,
and students have started to select courses. This phase extends into the semester,
and a further distinction can be made on whether the semester has started. Once

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Antony E. Phillips et al.

enrolments have begun, it can be disruptive to change either the time period or the
room assignment for an event. However, the former is often particularly disrup-
tive, as students and staff may have external obligations affecting their personal
timetable.

During this phase, many potential changes to the data can cause an infeasi-
bility. The most common example occurs when a course receives an unexpectedly
high enrolment, so that the existing room assignment is no longer suitable. At the
University of Auckland, it is a legal requirement that there may not be an excess
or overflow of students in a room. Although not all events will be attended by
every enrolled student (e.g. sickness, retention, recorded lectures), the first events
of a semester are typically well attended.

We also consider an example where the availability of one or more rooms is
lost. A room may become temporarily unavailable for reasons such as damage to
the premises or equipment, or if there is nearby construction work. Alternatively,
a room may become permanently unavailable, for example if it is repurposed from
teaching space to office space. Note that the minimal perturbation problem may
be solved to explore the impact of potential changes, which significantly broadens
its application. At the University of Auckland, repurposing may be conducted if a
particular type of room is under-utilised, e.g. if there are several similar tutorial
rooms, each of which are occupied in less than 40% of time periods.

We finally note that unexpected changes to the data are not necessarily due
to unpredictability in real-world circumstances, and may instead be due to errors
or omissions. A large quantity of data is required to represent all aspects of the
timetabling problem, and data is frequently subject to change between timetabling
semesters. Ideally, all data is known and corrected in the construction phase of
timetabling, however it is possible for residual errors to remain undetected until
the enrolment phase. For example, misreporting of room attributes may occur
when facilities have been added, upgraded or discontinued. A less conspicuous
data error may occur if a faculty has provided an incomplete list of courses which
share common students with a new course (i.e. part of the same curriculum).

As previously mentioned, infeasibilities can arise as a result of any violated hard
constraint in either the time or room assignment. However, rather than considering
an infeasibility as the violation of a particular type of constraint, it is useful to
generalise each infeasibility as one or more unassigned events. For example, if an
event is no longer suitable for its assigned room, it is treated as an unassigned
event (as opposed to infeasibly assigned to the room). Similarly, if a curriculum
is introduced which causes a conflict between two events in the same time period,
one (or both) are unassigned.

By this process, a timetabling solution with various violated constraints may
be represented by two sets of events; those which are feasibly assigned to a time
period and room, and those which are not assigned. Additionally, each unassigned
event has a preferred time period which is typically at the time it was previously
assigned. When the minimal perturbation problem is solved, perturbations for all
events are calculated with respect to the current (or preferred) time period.

For practical minimal perturbation problems, we can have reasonable confi-
dence that it is possible to find a feasible solution without major perturbation
to the existing timetable structure. Whether the infeasibilities arise from rolling
forward an old timetable with changes, or if there are unexpected changes to
enrolment, it is likely that the infeasible timetable will be “close” to feasibility,
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Integer Programming for Minimal Perturbation Problems 5

i.e. only a small number of events will need to change time period or room. Further-
more, because rooms are utilised in approximately 50% of available time periods
(Beyrouthy, Burke, Landa-Silva, McCollum, McMullan, and Parkes, 2007), usually
there are many solutions, or ways to restore feasibility.

3 Expanding Neighbourhood Algorithm

Solving the minimal perturbation problem requires assigning both a time period
and a room for each event, rather than addressing these problems separately.
However, building a model with variables indexed over all events, time periods and
rooms could easily result in millions of binary variables (Burke, Mareček, Parkes,
and Rudová, 2008), which would be intractable. As a result, we would like to build
a model which resolves each infeasibility in as small a neighbourhood as possible.
The neighbourhood around an infeasibility is defined by a restricted set of events
which can be moved, and subsets of time periods and rooms to which events can
be moved. All events outside this neighbourhood are fixed to their existing time
and room assignment.

Because we clearly do not have a priori knowledge of the minimum neigh-
bourhood size required to resolve a given infeasibility, we propose an expanding
neighbourhood algorithm which addresses each infeasiblity sequentially. In each it-
eration, we choose a time period with unassigned events to focus on. Around this
time period, we generate a small neighbourhood, which defines a restricted set
of possibilities for how events can be reassigned. For example, the neighbourhood
may be defined to only consider events of similar size to the unassigned events, and
only to/from the time periods one hour before or after their current time period.
Within this neighbourhood an integer programme (IP) is solved to maximise the
number of neighbourhood events which can be assigned to a suitable time period
and room. If it is not possible to increase the number of assigned events inside
the neighbourhood, we are required to expand the size of the neighbourhood. The
neighbourhood is continually expanded until we are able to assign more events
inside the neighbourhood than were previously assigned. At this stage we can
re-solve the neighbourhood IP to find a solution which minimises the disruption
caused by assigning this number of events.

This process constitutes one iteration of the algorithm, resulting in a decrease
in the number of unassigned events. The algorithm continues to iterate until all
events are assigned. Within each iteration, note that we stop expanding the neigh-
bourhood once the number of assigned events can be improved, rather than only
when all neighbourhood events are assigned. This means we may use more than
one iteration to resolve the infeasibilities in a given time period. This algorithm is
presented as Algorithm 1.

Each iteration of Algorithm 1 requires the solution of at least 2 IPs. These
include the first IP which maximises the number of assignable events in the initial
neighbourhood, and the final IP which minimises the disruption in the final neigh-
bourhood. An additional IP must also be solved each time the neighbourhood is
expanded. Although a large number of iterations and IPs may be required, each
IP model will be relatively small, due to the optimistic methodology of starting
with a small neighbourhood and only increasing the model size when necessary.
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6 Antony E. Phillips et al.

Algorithm 1 Expanding Neighbourhood Algorithm

1: while true do

2: t ← GetInfeasibleTimePeriod(Timetable)
3: if t does not exist then

4: terminate successfully

5: end if

6: N ← GenerateInitialNeighbourhood(t)

7: searching ← true

8: while searching do

9: IP ← BuildNeighbourhoodIP(N)
10: EventsAssignable ← IP .Solve(obj: MaxEventHours)

11: if |EventsAssignable| > |N.EventsAssigned| then

12: EventsAssignable ← IP .Solve(obj: MinDisruption)
13: T imetable.Update(EventsAssignable)

14: searching ← false

15: else

16: N .Expand()
17: end if

18: end while

19: end while

The use of an exact method is well-suited to the minimal perturbation prob-
lem. In contrast to other methods (e.g. manual or heuristic), the major advantage
of incorporating integer programming is that it provides certainty of whether we
are required to expand the neighbourhood. If the maximum number of assignable
events is equal to the current number of assigned events, we have certainty that a
given neighbourhood is of insufficient size. This statement cannot be made if man-
ual or heuristic methods are used. Furthermore, because the size of each neigh-
bourhood is kept small, our method is very fast. This is a notable advantage over
a manual approach.

In the following sections we explore the application of this algorithm to the
minimal perturbation problem as it exists within course timetabling. The defini-
tion of the starting neighbourhood, and the process of expansion, should each be
dependent on the nature of the given infeasibility. The neighbourhood definition
should not only uphold the constraints of the time and room assignment prob-
lems, but also be tailored to include the variables which are likely to resolve the
infeasibility.

4 Event-based Neighbourhood Model

Solving the minimal perturbation problem using Algorithm 1 requires the solution
of a number of integer programmes. For each neighbourhood considered in each
iteration, we solve an IP to maximise the number of events which can be assigned
to a time period and room. Once the number of assigned events can be increased,
we solve an IP to determine the optimal way to assign additional events while
minimising the disruption to the remainder of the timetable.

To describe the neighbourhood IPs, we use notation defined in Table 1. A
simplified representation of a neighbourhood is a subset of the original timetabling
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Integer Programming for Minimal Perturbation Problems 7

problem, where we consider a subset of events EN ⊆ E, time periods TN ⊆ T , and
rooms RN ⊆ R. However, in practice only a subset of time periods are suitable for
a given event e, i.e. Te ⊆ TN . Similarly for the room assignment, Ret ⊆ RN , as not
every room is suitable for every event, and not every room is available in every
time period. Therefore, the precise representation of a neighbourhood is given by
the set of variables as indexed over all event-time-room assignments for e ∈ EN ,
t ∈ Te, and r ∈ Ret.

E all events T all time periods
EN events in neighbourhood N TN time periods in neighbourhood N

Ec events of course c Te time periods suitable for event e

Ecurr events of courses in curriculum
curr

Td time periods on day d

EF events which are single-period or
the first of a long event

t− 1 the time period preceding t on
the same day

Etr events suitable for assignment to
time period t and room r

D all days of the timetabling do-
main

e− 1 the event preceding e in a long
event

DN days of neighbourhood time pe-
riods TN

C all courses H all hours of the timetabling day
CN courses which include an event in

EN

HN hours of neighbourhood time pe-
riods TN

Cstab courses which request time sta-
bility for their events

ht the hour of time period t

ce the course which teaches event e R all rooms
CU all curricula RN rooms in neighbourhood N

CUN curricula which include a course
in CN

Rt rooms available in time period t

Ret rooms suitable for event e and
available in time period t

Table 1: Notation

When solving a minimal perturbation problem, we must consider the effect of
the fixed events (i.e. e ∈ E \EN ) on the set of suitable time periods and rooms for
neighbourhood events. Many explicit constraints in the time assignment and room
assignment models which relate to fixed events can be represented implicitly in
the minimal perturbation model. For example, consider a time assignment which
requires that courses teach a maximum of one lecture event on any given day. If
a fixed event from course c is taught on day d, any neighbourhood events of this
course may not be moved to this day i.e. Te ∩ Td = ∅ ∀e ∈ (c ∩EN ). Similarly, we
represent the effect of fixed events on the curriculum and teacher constraints e.g. if
an event from curriculum curr is fixed in a time period within the neighbourhood,
no events from courses in this curriculum can be moved to this time period. If the
minimal perturbation problem is solved during the enrolment phase of timetabling,
we note the set of curricula may be different from the curricula used to construct
the timetable. It is important that no enrolled student has a timetable which
becomes infeasible after the minimal perturbation problem is solved.

We also consider the complication of long events, which are contiguous blocks
of events from a particular course such as a tutorial spanning multiple hours. The
constituent events from a long event may be perturbed, however they must remain
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8 Antony E. Phillips et al.

in contiguous time periods. In many cases it will also be required that all events of
a long event are taught in the same room, which is referred to as contiguous room

stability.
For some neighbourhood definitions, long events will lie partially in the neigh-

bourhood, i.e. one or more constituent events are fixed, and one or more are in
the neighbourhood. This situation is the simplest if we are not concerned with
contiguous room stability. In this case, the constituent events which are in the
neighbourhood are permitted to change room, but not time period. If we also wish
to enforce contiguous room stability, it is not possible to perturb only a single
constituent event without perturbing the full long event. In this situation, we can
either expand the neighbourhood so that the long event is entirely included, or
fix all parts of the long event. In our implementation, the decision to expand the
neighbourhood is only made if this long event is unassigned i.e. is part of the
infeasibility which needs to be resolved.

Once these constraints are implicitly satisfied in the neighbourhood sets, the
neighbourhood model is only required to enforce constraints which relate to the
assignment of neighbourhood events relative to each other. Using notation defined
in Table 1, we present an integer programming formulation of an event-based neigh-
bourhood perturbation model. In this formulation, the binary variables xetr take
the value 1 if event e ∈ EN is to be taught at time t ∈ Te in room r ∈ Ret. Solving
the following IP (1)–(7) will determine the maximum number of neighbourhood
events which can be assigned to a time period and room.

maximise
�

e∈EN

�
t∈Te

�
r∈Ret

xetr (1)

subject to
�

e∈Etr

xetr ≤ 1 t ∈ TN , r ∈ Rt (2)�
t∈Te

�
r∈Ret

xetr ≤ 1 e ∈ EN (3)�
e∈

(c∩EF )

�
t∈

(Te∩Td)

�
r∈Ret

xetr ≤ 1 c ∈ CN , d ∈ DN (4)�
e∈Ecurr

�
r∈Ret

xetr ≤ 1 curr ∈ CUN , t ∈ TN (5)

xetr − x(e−1)(t−1)r = 0 e ∈ (EN \EF ), t ∈ Te, r ∈ Ret (6)

xetr ∈ {0, 1} e ∈ EN , t ∈ Te, r ∈ Ret (7)

The objective function (1) maximises the total number of events which are
assigned to a time period and room. Constraints (2) ensure that each available
room in each time period is occupied by a maximum of one event, while constraints
(3) ensure that each event is assigned to at most one room in any time period.
Constraints (4) ensure that two events from the same course cannot be assigned to
any time period on the same day. Because long events are represented as more than
one individual event, only the first event e ∈ EF in any long event is included in
each constraint. Constraints (5) ensure that two events from the same curriculum
cannot be assigned to the same time period. Lastly, constraints (6) enforce strict
time contiguity and room stability on the constituent events of a long event.
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Integer Programming for Minimal Perturbation Problems 9

If room stability is not required for long events, constraints (6) can be altered
so that each constraint is summed over all suitable rooms (rather than applied as
one constraint per room) allowing the assigned room to change between individual
event-hours.

Once we have increased the number of assigned events, we wish to minimise the
disruption caused by assigning this number of events. For a weighting of penalties
vetr , we solve the following modified IP (8)–(9), which includes (2)–(7).

minimise
�

e∈EN

�
t∈Te

�
r∈Ret

vetr ∗ xetr (8)

subject to: (2)–(7)�
e∈EN

�
t∈Te

�
r∈Ret

xetr = |EventsAssignable| (9)

The objective (8) minimises the total timetable disruption between the pro-
posed timetable solution, and the initial (infeasible) timetable. Each assignment
variable is multiplied by a disruption coefficient. The disruption penalties for an
event can vary depending on the number of time periods moved, whether the room
changes, and how this relates to any fixed events from this course. With sufficient
available data, precise disruption penalties can be specified for each perturbation.
Constraints (9) are introduced to ensure the maximum number of events are as-
signed.

5 Course-based Neighbourhood Model

Although the event-based formulation is versatile at modelling the disruption for
perturbing each event, it is not able to model the time stability for a course.
The time stability quality measure favours scheduling all weekly events from a
course at the same time of day. Because only some courses are concerned with
time stability, we define Cstab ∈ C as this subset. We further define CNstab as the
set of courses which are concerned with time stability and also include an event
within the neighbourhood N , i.e. CNstab = CN ∩ Cstab. Let the variable ych take
the value 1 if any event of course c is taught in hour h in the timetable.

Building on the event-based formulation for minimising disruption, we propose
the following course-based integer programme.

minimise (8) +
�

c∈CNstab

�
h∈HN

wch ∗ ych (10)

subject to: (2)–(7), (9)

xetr − yceht
≤ 0 e ∈ EN , t ∈ Te, r ∈ Ret (11)

ych ∈ {0, 1} c ∈ CNstab, h ∈ HN (12)

The objective function (10) consists of the event-based disruption (8) and an
expression to penalise each course for each unique hour of the day it uses for
any of its events. Clearly each course must use a minimum of one unique hour,
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which is ignored when reporting the penalty to time stability. Constraints (11)
appropriately tie the values of the ych variables to the xetr variables.

This course-based IP may be used in place of the event-based IP in Algorithm
1 (on line 12). Although no additional modifications to the algorithm are required,
this approach benefits substantially from a tailored neighbourhood definition. In
order to minimise the time stability, the neighbourhood should clearly be chosen
so that many such potential perturbations can be made.

6 Defining the Neighbourhood

As introduced in the previous sections, our method defines a neighbourhood around
each infeasibility, instead of formulating a monolithic integer programme with all
events, time periods and rooms. To maximise the effectiveness of our algorithm,
each neighbourhood (as defined by e ∈ EN , t ∈ Te, and r ∈ Ret) is tailored to ad-
dress the particular infeasibility which we are attempting to resolve. This section
explains how we define the starting neighbourhood and rules for neighbourhood
expansion, so that we prioritise favourable perturbation variables.

In addition to focussing the search on variables which correspond to a low
disruption, we also consider which variables are the most likely to resolve a given
infeasibility. Prioritising such variables reduces the number of expansions required,
and allows the neighbourhood to remain as small as possible. This in turn corre-
sponds to smaller IPs and a shorter overall solve time.

In Section 6.1 we address which time periods to include in the neighbourhood.
The set of time periods largely determines the disruptions associated with the
perturbation variables, as time perturbations are the most disruptive. In Section
6.2 we address which rooms to include in the neighbourhood, which can be focussed
to resolve the given infeasibility.

With a definition for the set of time periods and rooms to include in the neigh-
bourhood, the set of events is simply determined. In addition to the unassigned
events (which comprise the infeasibility), we consider the events currently assigned
to the time period and room which we are introducing to the neighbourhood.

6.1 Neighbourhood Time Periods

Because each unassigned event has a desired time period, it is logical to expand the
neighbourhood around this time period. The starting neighbourhood will consist
only of variables which make a small perturbation from the current timetable,
i.e. those which allow movements within and around this time period. As the
neighbourhood expands, events from more distant time periods (relative to the
infeasibility) are considered, and we permit larger movements of individual events.

When using an event-based model of disruption, we apply a disruption penalty
of 1 for each hour of the day moved and 2 for each day moved. There is also a
small penalty (ǫ) for changing room within the same time period. The disruption
coefficients provide a simple way to determine the order in which additional time
periods are included in the neighbourhood.

For a course-based model, the disruption is computed as the sum of event-based
and course-based disruptions (as specified by (10)). In this work we apply a penalty
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10am

11am

12pm LAW121 LAW121 LAW121

(a) A 2-hour perturbation, with loss of time stability

10am

11am

12pm LAW121 LAW121 LAW121

(b) Three 2-hour perturbations, without loss of time stability

Table 2: Course-based Perturbation Example

of 5 for each disruption to time stability (i.e. an additional hour). This penalty
must be sufficiently large to offset the event-based penalty of moving several events
from a course.

In Table 2 we provide an example, where infeasibility can be resolved by per-
turbing one event by two hours. However, this solution (shown in Table 2a) results
in a course-based disruption of 5, in addition to the event-based disruption of 2
(for a total of 7). The solution in Table 2b is able to maintain time stability by
moving all 3 events of this course by 2 hours, for a total disruption of 6. This
example demonstrates a situation where it is less disruptive to move additional
events, to avoid the large course-based penalty. However, if this course consisted
of 4 events, or if a perturbation of 3 hours was required, it would be less disruptive
to only move the single event (for these chosen penalty coefficients).

When using a course-based model of disruption, it is not useful to simply ex-
pand the neighbourhood around a central time period, as is suitable for event-based
models. In order to generate variables which avoid a time stability disruption, when
the neighbourhood expands into a new time period, the neighbourhood should ex-
pand into all time periods in the week at the same hour. The solution in Table 2b
clearly can only be found if the neighbourhood includes all “10am” time periods
across the week.

Finally we note that in all iterations of Algorithm 1, the perturbation penalties
are calculated relative to the starting timetable. This means that an event which
is perturbed in an early iteration may have its perturbation penalty reduced (or
removed) in a later iteration.

6.2 Neighbourhood Rooms

When considering a set of neighbourhood time periods around an infeasibility,
we consider which rooms from each time period to include. We are most likely
to increase the number of assigned events by considering rooms which are ap-
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proximately the same size as the unassigned events. Including these rooms in the
neighbourhood creates opportunities for unassigned events to find a suitable room
in a “nearby” time period. However, due to a generally high room utilisation, such
rooms are typically occupied by other events. Due to the further complicating
factors of staff and curricula (which constrain each event differently), solutions
to minimal perturbation problems typically involve a series of perturbations (see
Section 8).

The suitability of an event-to-room assignment depends on the size and at-
tributes of the room. Abstractly, the most useful rooms to include in the neigh-
bourhood are those which are approximately the same size and feature the set of
attributes as required the unassigned events.

To formalise the method in which rooms are considered for inclusion in the
neighbourhood, we use a hierarchy of room and event attribute sets and sizes, as
depicted in Figure 1. In this figure, rooms are represented by rectangular nodes,
with an associated size (i.e. maximum student capacity) and set of room attributes.
Events are represented by circular nodes, with a minimum room size (i.e. number
of students) and set of required room attributes. The arcs point to the immediate
superiors of each node, i.e. those which feature (or request) a superset of their
room attributes, and are of at least the same size. This means that an event can
be feasibly assigned to any room which is its descendent, or equivalently, a room
can host any event which is its ancestor.

This representation allows us to identify which rooms feature the combina-
tion of attributes and size that is most likely to resolve a given infeasibility. For
an unassigned event, in each neighbourhood time period we initially include the
closest superior rooms in the attribute set graph. By definition, this identifies the
rooms which “fit” this event the best (in terms of size and attributes). Subse-
quently, we need to include rooms both from the superior and inferior sides of the
unassigned event. The total number of rooms included in the neighbourhood is set
as a proportion of all possible rooms.

For example, if the unassigned events require large tutorial rooms, including
superior rooms in the neighbourhood ensures that we consider rooms which are
larger and suitable for tutorials. This will resolve the infeasibility if such rooms
are vacant in nearby time periods. However, we also include inferior rooms (such
as smaller tutorial rooms, or larger non-tutorial rooms). If a large tutorial room
is occupied by an event which can instead be taught in an inferior room, these
inferior rooms must be in the neighbourhood to allow this movement. The inferior
and superior rooms are identified from the hierarchy graph, and are added using
a greedy breadth-first-search until the required proportion of rooms is met.

For a given neighbourhood, the proportion of rooms added in the infeasible
time period may be chosen as greater than the proportion of rooms used in the
“distant” time periods. In this work, 50% of all inferior and superior rooms may
be considered for an unassigned event in the infeasible time period. In the most
distant time period, this proportion is reduced to 20% (with a linear relationship
between, based on the distance penalty). As the neighbourhood expands in time,
the proportion of rooms included in existing time periods is allowed to increase,
to expand the search.

The effectiveness of this method to identify the critical rooms can be signifi-
cantly affected by the quality of the partial room assignment. When the minimal
perturbation problem arises as part of the construction phase of timetabling (e.g. as
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Size: 500
Attr: {B, C, D}

Size: 200
Attr: {C, D}

Size: 50
Attr: {C}

Size: 50
Attr: {B}

Size: 100
Attr: {A, B}

Size: 400
Attr: {A, B, D}

Size: 300
Attr: {D}

Size: 250
Attr: {D}

Size: 25
Attr: {}

Size: 25
Attr: {}

Fig. 1: An Example Room and Event Attribute Set Graph

described in Section 2), a room assignment algorithm can ensure a high quality
partial room assignment. In this work we have used a lexicographic algorithm (see
Phillips, Waterer, Ehrgott, and Ryan, 2015) which generates a room assignment
that is Pareto optimal with respect to the event hours, seated student hours, seat
utilisation and room preference.

Maximising the event hours in the room assignment ensures that the smallest
possible number of events remain unassigned to a room. Therefore, in order to
find a suitable room for unassigned events (without causing other events to be
unassigned), perturbations to the time assignment are necessarily required.

Maximising the number of seated student hours in the room assignment ensures
that any unassigned events will be as small as possible. As a result, if we observe
that large events remain unassigned, we can infer a shortage of large rooms in
the associated time periods. This would not necessarily be true if we had only
maximised the event hours. Without maximising the seated student hours, the
existence of unassigned large events could be due to a general lack of rooms of any
size.

The room assignment process also maximises the seat utilisation, where it is
favourable to assign events to rooms which are closely matched in size. This opti-
misation is important, particularly for time periods which do not contain an unas-
signed event themselves, but are adjacent or near to time periods with unassigned
events. In the case of a complete room assignment for a particular time period,
the previous optimisations (of event hours and seated student hours) would permit
assigning small events in larger rooms than necessary, provided it is still possible
to assign all events. Maximising the seat utilisation will result in the largest (most
flexible) rooms remaining vacant.
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The room assignment process may be further altered to include one or more
quality measures addressing the room attributes. For example, prioritising the
assignment of events which require many attributes, or assigning events into rooms
with a good “fit” in terms of attributes. These are analogous to maximising seated
student hours, and seat utilisation respectively. However, for our datasets the
attributes are less important than the room sizes, because rooms with a similar
size (but different attribute sets) are typically “close” on the hierarchy and will be
added to the neighbourhood early in the solution process.

For minimal perturbation problems where we are not able to re-assign rooms
using a room assignment algorithm, such as in the enrolment phase, we cannot
make the previous inferences about the cause of infeasibility. In this situation it
may be possible to resolve the infeasibility by perturbing very few events (or even
no events), such as when an unassigned event can be simply assigned to a suitable
vacant room in the same time period.

7 Results for Construction Phase Problems

To demonstrate our algorithm, we first present results on minimal perturba-
tion problems from the construction phase of timetabling. We use datasets from
Semesters 1 and 2 at the University of Auckland in 2010 and 2013.

The timetabling problem from 2010 involves approximately 2300 events, 72
rooms, and 50 weekly time periods (8am to 6pm, Monday to Friday). Although
the dataset from 2013 is structurally similar, it is notably larger in size, involv-
ing approximately 5000 events, 250 rooms, and 50 time periods. This increase in
timetable size is predominantly due to an expansion in the scope of which events
and rooms are managed by the centralised timetabling administration, instead of
being administered independently by individual faculties.

The second important difference between the timetabling problems in 2010
and 2013 is the measurement of timetable quality for the existing timetable. In
the 2010 timetabling process, time stability was a consideration for many courses
and is upheld for many courses in the existing time assignment. To maintain this
consideration, in our results on the 2010 dataset, perturbations are measured using
both the event-based and course-based models of disruption. By constrast, time
stability for courses was not considered in the 2013 timetabling process, so an
event-based model is more appropriate.

The disruption penalties and expansion rules are given in Section 6. It is impor-
tant to note that we demonstrate one particular implementation of the expanding
neighbourhood algorithm. Based on an understanding of the specific priorities
and bottlenecks of another university system, it may be more appropriate to more
readily expand the neighbourhood into many new time periods (allowing large
movements in time for individual events), but only consider a small subset of
potential rooms.

All computational tests in this section are conducted using Gurobi 5.6 on 64-bit
Ubuntu 14.04, with a quad-core 3.5GHz processor (Intel i5-4690).
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7.1 UoA 2010

The timetabling process at the University of Auckland in 2010 involved each fac-
ulty generating a time assignment for their own courses. The individual faculty
time assignments were then collated by timetable administrators into a time as-
signment for the full university. Based on this time assignment, IPs are solved
to assign the maximum number of events to suitable rooms, resulting in a par-
tial room assignment (Phillips et al, 2015). In this section we solve the minimal
perturbation problem to find a suitable time period and room for the unassigned
events in each semester.

7.1.1 Event-based Model

Solving the minimal perturbation problem using an event-based IP formulation,
within the expanding neighbourhood algorithm (Algorithm 1) gives the results
shown in Table 3. The first group of rows gives a summary of the overall process,
listing the total number of events assigned (which were previously unassigned),
the number of iterations of the expanding neighbourhood algorithm required, the
total number of IPs solved, and the total time taken. The next group of rows lists
the event-based perturbations applied to the timetable over the entire process.
For each perturbation type the number of events perturbed is stated, and the
total disruption (weighted for each type of perturbation) is given. We also list the
course-based perturbations applied, although these are not measured or penalised
by this model. These perturbations refer to the number of extra hours used by
events of each course which desires time stability. Finally, the last group of rows
gives an indication of the size of the integer programmes, by listing information
on the largest (as measured by the number of variables) IP solved.

The results in Table 3 demonstrate that it is possible to find a feasible time
and room assignment for all events within a short solve time. As stated in Section
2, this is our expectation, as the starting timetable is already close to feasibility.

The total amount of disruption to the timetable also appears acceptable. Only
a small number of events are required to change time period, and the perturbations
are relatively minor (i.e. events remain close to their original time period).

The small size of the largest IP demonstrates the importance of focussing
the neighbourhood (from Section 6). The number of events and time periods in
the neighbourhood is significantly smaller than the total number of events and
time periods. During development of this method, we observed significantly larger
neighbourhoods before finding a feasible solution, which resulted in a poorer per-
formance.

The short solve time can be partly attributed to the small neighbourhoods
which correspond to a low number of variables and constraints in the IPs. However,
we also note that these problems benefit from an integerising structure in the IP,
which is similar to that of assignment problems (or bipartite matching). Optimal
integer solutions are typically found near (or at) the optimal LP solution.
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Semester 1 Semester 2

Summary

Assigned Events 26 23
Iterations of Algorithm 1 17 10
Neighbourhood IPs Solved 40 25
Total Solve Time (s) 0.9 0.5

Event-based Perturbations

Change of Room 4 3
0 days, 1 hour 23 24
0 days, 2 hours 8 7
0 days, 3 hours 2 2
Total Penalty 45 42

Course-based Perturbations

1 extra hour 3 3
2 extra hours 0 2
Total Penalty 15 25

Largest IP

Events |E| 101 131
Time Periods |T | 4 4
Rooms |R| 50 55
Variables 4977 9131
Constraints 1323 1752
Solve Time (s) 0.1 0.1

Table 3: UoA 2010 Event-based Timetable Construction Results

7.1.2 Course-based Model

Solving the same problem as the previous section using a course-based IP formu-
lation, gives the results shown in Table 4. This table uses the same row headings
as Table 3.

The results in Table 4 demonstrate that it is possible to consider a more com-
plex objective involving auxiliary variables, and still maintain relatively short solve
times.

The total amount of disruption to the timetable is similar to when the event-
based model is used, except it consists of an increased event-based disruption and
no course-based disruption. We specifically observe an increase in the number of
“lateral” perturbations of 1 day and 0 hours, as these avoid incurring a penalty to
the time stability.

The size of largest neighbourhood is significantly greater for these problems
than the event-based problems. As explained in Section 6.1, this is due to the
requirement of considering time periods across the full week, rather than a smaller
number centred around a particular time period.

The course-based IPs require a significantly longer solve time than in the event-
based case. In addition to an increased number of variables and constraints, this is
due to the increased opportunities for fractionality, and a corresponding integrality
gap.
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Semester 1 Semester 2

Summary

Assigned Events 26 23
Iterations of Algorithm 1 12 8
Neighbourhood IPs Solved 24 16
Total Solve Time (s) 7.0 5.0

Event-based Perturbations

Change of Room 10 18
0 days, 1 hour 18 27
0 days, 2 hours 8 2
0 days, 3 hours 0 1
1 day, 0 hours 8 8
1 day, 1 hour 3 0
Total Penalty 59 50

Course-based Perturbations

Total Penalty 0 0

Largest IP

Events |EN | 345 381
Time Periods |TN | 15 15
Rooms |RN | 66 61
Variables 48201 68263
Constraints 28037 37813
Solve Time (s) 1.7 2.7

Table 4: UoA 2010 Course-based Timetable Construction Results

7.2 UoA 2013

The 2013 data at the University of Auckland requires us to solve a minimal per-
turbation problem with a greater number of unassigned events than for 2010. This
is because our process uses an algorithmically generated time assignment, instead
of a faculty-provided time assignment which is already close to feasibility.

7.2.1 Event-based Perturbation

Solving the minimal perturbation problem using an event-based IP formulation,
within the expanding neighbourhood algorithm (Algorithm 1) gives the results
shown in Table 5. This table uses the same row headings as Table 3.

The problems addressed in Table 5 are notably larger (in terms of the num-
ber of unassigned events) than those faced in the 2010 dataset. In particular for
the Semester 2 problem, many unassigned events require a large number of it-
erations of Algorithm 1, many IPs solved, and a greater overall solve time. The
size of the largest neighbourhood is also greater than the neighbourhoods for the
2010 event-based results. This can be explained by the nature of the 2010 data,
which originates from a “rolled-forward” timetable which is close to feasibility.
When many events are unassigned in a small number of neighbouring time peri-
ods, several neighbourhood expansions may be required. However, consistent with
the philosophy of our method, the largest neighbourhood remains at a manageable
size with a solve time of less than 1 second.
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Semester 1 Semester 2

Summary

Assigned Events 33 110
Iterations of Algorithm 1 17 37
Neighbourhood IPs Solved 37 114
Total Solve Time (s) 5.2 33.2

Event-based Perturbations

Change of Room 0 2
0 days, 1 hour 35 100
0 days, 2 hours 16 25
0 days, 3 hours 1 6
0 days, 4 hours 0 5
1 day, 0 hours 0 2
1 day, 1 hour 0 2
Total Penalty 70 198

Largest IP

Events |EN | 162 333
Time Periods |TN | 7 13
Rooms |RN | 238 246
Variables 11999 63971
Constraints 18692 37813
Solve Time (s) 0.2 0.9

Table 5: UoA 2013 Event-based Timetable Construction Results

As with the previous results, the majority of perturbations correspond to an
event moving by 1 hour. However, in the case of the most difficult data from
Semester 2, a small number of events are perturbed by 4 hours. Depending on
details of the specific events involved, this may be acceptable or it may be consid-
ered too great a perturbation. For example, if this event is part of a curriculum
taught as a morning or afternoon programme, a perturbation of 4 hours may ei-
ther remain within the existing time bounds of this curriculum, or constitute a
substantial 4 hour extension.

Ultimately these construction-phase results (along with those from 2010) can
be considered promising, as a feasible time and room assignment is found for all
events.

8 Results for Enrolment Phase Problems

To demonstrate our algorithm on another type of minimal perturbation problem,
we present results from the enrolment phase of the timetabling process. We analyse
two scenarios which can cause infeasibility in an existing timetable, based on the
datasets from Semester 2 at the University of Auckland in 2010 and 2013. The
same perturbation penalties and solve parameters are used as in Section 7.
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8.1 UoA 2010 Over-enrolment

This example is used to analyse the problem arising when courses are subject to an
unexpectedly high enrolment, such that the existing room assignment is no longer
feasible. Table 6 defines such a situation for two introductory courses which are
scheduled during “peak” time periods. These particular courses are susceptible to
an unpredictable enrolment, as they are available to new-entrant students, and
may be taken as an elective by students from many academic programmes.

Course Name Time Periods Planned Enrolment Revised Enrolment

SOCIO 100 Mon 12pm, Thu 2pm 320 500

LAW 121G Mon 12pm, Wed 12pm,
Fri 12pm

269 500

Table 6: Scenario Changes to Course Enrolments

This situation is modelled as 5 unassigned events, because the existing room
assignments are no longer valid. If this situation had arisen within the construction
phase of timetabling, we could initially re-solve the room assignment algorithm.
This can improve the partial room assignment, such as assigning one of these events
and leaving a smaller event unassigned. However, this is typically not suitable
for an enrolment phase problem, as it may result in significant perturbations to
the room assignment. Therefore, we address this situation solely as a minimal
perturbation problem.

8.1.1 Event-based Perturbation

We first solve the problem of unassigned events using an event-based IP formula-
tion. Because this problem is small (in terms of the number of unassigned events)
the solution can be presented visually, as shown in Table 7. The 5 unassigned
events (i.e. the events of “SOCIO100” and “LAW121”) are bolded, and perturba-
tions are demonstrated using arcs. Each perturbation affecting the time assignment
is shown using a bold arc. When the arc from one event points to another event,
this represents the former event “displacing” the latter event, in terms of occupy-
ing its assigned room. This must be accompanied by a perturbation of the latter
event to find a new suitable room. A simple case is shown on Wednesday, between
“LAW121” and “PROP344”. In this case, there is a vacant room at 11am which is
suitable for “PROP344”, but not for “LAW121”. If the vacant room were suitable
for the unassigned event, a room perturbation would not have been required in
the optimal solution. A more complex chain of perturbations is shown on Monday,
originating from “LAW121”.

In the perturbations on Friday, note that the event from “LAW121” does not
change time period, but causes “STATS108” to move to an hour earlier instead.
This type of manoeuvre commonly occurs in solutions to minimal perturbation
problems, and is understood through the set of suitable time periods for each
event. Some events are relatively inflexible in potential movements (due to curric-
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ula, staffing and other requirements), and a feasible solution may involve moving
another event which has greater flexibility.

Monday Tuesday Wednesday Thursday Friday

10am

11am
CHEMM121
ACCTG102 PROP344 ANCHI254

12pm
LAW121 LAW121 STATS108

LAW121

SOCIO100

1pm
COMLA201

2pm
SOCIO100

3pm

Table 7: Event-based Solution

This solution corresponds to a total event-based disruption of 6, comprised of 6
1-hour perturbations. Solving the 12 IPs required for this problem was very rapid,
as each involved less than 1500 variables, and terminated in less than one second.

8.1.2 Course-based Perturbation

In the previous solution (Table 7), three courses (“LAW121”, “CHEMM121”, and
“STATS108”) incurred a disruption to time stability. To address the situation
where time stability is important, we solve the minimal perturbation problem
using a course-based model of disruption.

The solution to this problem is presented visually in Table 8, where the impact
of modelling time stability is evident. For example, all 3 events from “LAW121”
are reassigned to one hour later in the day to maintain the structure. Also, to
preserve time stability for “HIST102” which moves from 11am on Monday, an
event on Wednesday similarly moves an hour later. This solution shows the lateral
perturbation of an event from “COMLA201”, which moves from 1pm on Friday to
1pm on Thursday, so that time stability in unaffected. Finally, an interesting pair
of perturbations occur between events from “POLIT113” and “ANTHR106” where
a simple swap of assigned room occurs at 12pm on Thursday. This is explained
by observing that “ANTHR106” consists of a long event, which requires the same
room for the events at 12pm and at 1pm. Therefore, this room swap is ultimately
part of the chain of perturbations used to assign the Friday event from “LAW121”.

This solution corresponds to a total event-based disruption of 9, comprised of 7
1-hour perturbations, and 1 1-day perturbation. Although this is a greater penalty
than in the event-based solution, we are now able to resolve the infeasibilities with
no disruption to the time stability. Solving the IPs required for this problem was
again rapid, with less than 5000 variables in the largest case, and cumulative
run-time of less than one second.
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Monday Tuesday Wednesday Thursday Friday

10am

11am
HIST102
CHEMM121
ACCTG102 HIST102

12pm
SOCIO100 HIST364 POLIT113

ANTHR106
LAW121 LAW121 LAW121

1pm
COMLA201 ACCTG221 ANTHR106 COMLA201

HIST364 PSYCH203

2pm
SOCIO100

3pm

Table 8: Course-based Solution

8.2 UoA 2013 Loss of Room Availability

This example analyses the problem arising when a room becomes unavailable,
after it has been used in the timetabling process and has events currently assigned.
Although the total number of available rooms is decreased, if the unavailable room
is relatively common (i.e. there are equivalent or superior rooms in the hierarchy
graph), this problem can typically be resolved. Because the unassigned events
are necessarily spread across many different time periods, it is likely that each
infeasibility can be resolved locally.

For this example we remove two rooms, “206-201” and “206-220”, which are
shared by events from many departments, and are originally scheduled to host
52 events in total. These rooms possess a standard set of lecture room attributes
(e.g. two data projectors, tiered seating), and can seat 44 and 107 students respec-
tively. Solving this problem using an event-based model gives the results shown in
Table 9.

Similar to the results in Tables 3 and 5, Table 9 demonstrates that it is possible
to find a feasible time and room assignment for all events within a short solve time.
However, the total amount of disruption penalty can be considered particularly low
for this number of unassigned events. This is because some events are able to be
assigned to a suitable room without perturbing the time assignment, i.e. suitable
vacant rooms exist in some of the time periods.

The results in this section demonstrate both the broad application of minimal
perturbation problems, and the effectiveness of our proposed algorithm. The visual
representations of even the simple solutions also suggest it would difficult for a
human timetabler to identify such a set of perturbations quickly.
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Semester 2

Summary

Assigned Events 52
Iterations of Algorithm 1 18
Neighbourhood IPs Solved 37
Total Solve Time (s) 5.92

Event-based Perturbations

Change of Room 54
0 days, 1 hour 33
0 days, 2 hours 4
0 days, 3 hours 1
Total Penalty 44

Largest IP

Events |EN | 296
Time Periods |TN | 4
Rooms |RN | 215
Variables 24237
Constraints 13600
Solve Time (s) 0.3

Table 9: UoA 2013 Loss of Room Availability Results

9 Conclusion and Future Work

In this paper we have proposed a general integer programming-based approach for
minimal perturbation problems which arise in practical university course timetabling.
This approach is versatile, as there are many possibilities for customisation in the
way the neighbourhoods are constructed and expanded. We have shown two ap-
plications of this process on real data from the University of Auckland.

An extension to the proposed method involves modelling a more complex def-
inition of disruption. Presently, the quality of the time assignment is upheld im-
plicitly, by treating perturbations as equivalent to disruption. However, if the time
assignment has been generated with respect to known quality measures, it may be
possible to explicitly model quality within each neighbourhood.

We would also like to consider a notion of equity or fairness when choosing
a set of perturbations, so that no faculty or course is excessively inconvenienced.
Techniques from multiobjective optimisation would be useful in this case, so that
multiple solutions can be generated with a different weighting of total disrup-
tion versus equity of disruption. These solutions could be provided to a human
timetabler through a decision support system, and assessed in the context of pri-
orities of the particular university groups involved.
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