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Abstract We consider the Critical Node Problem: given an undirected graph and an

integer number K, at most K nodes have to be deleted from the graph in order to

minimize a connectivity measure in the residual graph. We combine the basic steps

used in common greedy algorithms with some flavour of local search, in order to obtain

simple hybrid heuristic algorithms. The obtained algorithms are shown to be effective,

delivering improved performances (solution quality and speed) with respect to known

greedy algorithms and other more sophisticated state of the art methods.

Keywords Critical Node Problem · Graph Fragmentation · Hybrid Heuristics

1 Introduction

The Critical Node Problem (CNP) is to determine a set of vertices in a graph whose

deletion results in a graph having the minimum pairwise connectivity.

To the authors’ knowledge, the origin of the problem can be traced back to the so-

called network interdiction problems studied by Wollmer [25] and later by Wood [26],

although these seminal papers focused on arc deletion. Due also to the renewed em-

phasis on security-related research in networks (see [13]) recently the attention has

moved to node deletion problems. In particular, when the assessment of the robustness

of communication network is considered (see [10,9]), the deleted nodes in the solution

of CNP, represent the critical node of the network. Further applications of CNP arise

in different contexts. In [5] the CNP is stated in the context of detecting so-called “key

players” in a relational network. In [3] and [18] contagion control via vaccination of
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a limited number of individuals is considered: the nodes of the graph are potentially

infected individuals and the edges represent contacts occurring between them.

In this paper we consider the CNP formulated as follows. Given an undirected

graph G = (V,E) and an integer K, determine a subset of K nodes S ⊆ V , such that

the number of node pairs still connected in the induced subgraph G[V \ S]

f(S) = |{i, j ∈ V \ S : i and j are connected by a path in G[V \ S]}|

is as small as possible. The CNP is known to be NP-complete [3], polynomially solvable

on trees [7] and other specially structured graphs via dynamic programming: graphs

with bounded tree-width [1] and series-parallel graphs [16].

The CNP on general graphs has been tackled by branch and cut methods. A MILP

model is proposed in [3]; a very large model relying on constraint separation is used

in the branch and cut methods proposed in [8]; recently a compact MILP formulation

has been proposed in [21].

A heuristic approach based on finding an indepent set, coupled with a 2-exchange

local search phase is proposed in [3]. Metaheuristics — namely population-based incre-

mental learning and simulated annealing — are studied and experimentally compared

in [18]. An approximation algorithm based on a randomized rounding of the relaxed

linear programming model is proposed in [19]. Negative results for approximation, out-

side of the probabilistic framework, are provided in [1]. For a broad literature review,

including problems with different metrics about graph fragmentation, we refer to [13,

17,22–24] and references within.

State of the art literature considers sets of benchmark instances whose size is up

to few thousand nodes (but usually smaller). On the other side, instances coming

from applications can be considerably larger. For this reason, computationally efficient

algorithms capable to deal with such instances are still worth to investigate.

Our focus is on developing computationally efficient heuristics able to deal with

large instances of CNP. Instead of adapting classical metaheuristics to the problem, we

concentrate on ad-hoc greedy methods proposed for CNP, combining them in order to

obtain new ad-hoc heuristics with some flavor of local search.

Simple constructive heuristics and their hybridization are discussed in Section 2.

Computational tests are reported and discussed in Section 3.

2 The algorithms

Observe that deleting any S ⊆ V that is a vertex cover for G completely disconnects

the graph, giving f(S) = 0 (only the complementary independent set survives). Since

in general a vertex cover has more than K nodes, such S is infeasible for the CNP.

Anyway it is possible to build a feasible solution by iteratively adding back to the graph

one node at a time. Based on this rule, Arulselvan et al. [3] propose Algorithm 1, that

we call Greedy1.

An efficient implementation of Greedy1 (Algorithm 1) deals with the key step

on line 3 by keeping trace of the connected components of G[V \ S]. It looks at all

neighbours of all nodes in S in order to determine the connected components that

can be fused together and the dimension of the new component. If the connected

components of the residual graph are stored, this requires at most O(|E|) operations;

after the best node has been chosen, and added back to the graph (i.e. deleted from S),

the other nodes in V \S are explored to update the component they now belong to. The



3

Algorithm 1: Greedy1

Data: Graph: G, K
Result: S∗

1 Set S to a vertex cover of G;
2 while |S| > K do
3 i = argmin{f(S \ {i}) − f(S)};
4 S := S \ {i}; // Added back to G ⇐⇒ deleted from S

5 S∗ := S;

complexity of identifying and/or merging components does not exceed O(|V | + |E|).
These operations are repeated until K nodes remain out of the graph, meaning less

than |V |−1−K. The complexity of (heuristically, greedily) generating the initial vertex

cover is bounded by O(|E|).
Greedy1 has the following fundamental weakness: if a node k belongs to an optimal

(or even only good) solution S∗ but it is not in the initial vertex cover, there will be

no chance of bringing it into the solution. Consider for example the graph in Figure 1

with K = 1. The optimal solution is obviously S∗ = {6}; if the minimal vertex cover

computed at step 1 is {2, 3, 4, 5, 7, 8, 9, 10}, Greedy1 is deemed to deliver the worst

possible solution, leaving the graph with a single, large connected component.

2 4 7 9

1 6 11

3 5 8 10

Fig. 1: Example

One might think about a completely specular approach, that — starting from

the whole graph — sequentially applies remove operations, leading to Greedy2 (see

Algorithm 2).

Algorithm 2: Greedy2

Data: Graph: G, K
Result: S∗

1 S = {∅};
2 while |S| < K do
3 i = argmax{f(S)− f(S ∪ {i})};
4 S := S ∪ {i}; // Added to S ⇐⇒ removed from G.

5 S∗ = S;

This algorithm may seem to make perfectly sense, but at a closer look, it reveals a

striking weakness. Indeed, it results in a completely random choice of i, unless G[V \S]
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contains a so-called articulation point, i.e. a node whose removal results in splitting

the graph into two or more connected components. For example, even if Greedy2 easily

handles the example of Figure 1, on the graph in Figure 2 with K = 2 it is likely

to deliver the worst possible solution — a single large connected graph, whereas the

optimal choice would obviously be to delete {6, 7}.
An efficient implementation of Greedy2 is a bit more tricky than Greedy1. The

search for an articulation point is done through a modified graph visit, tracking the

presence of articulation points and the dimension of the connected components rooted

at it (see [14] for details). In the search for K nodes to delete one applies K times an

algorithm of complexity O(|V |+ |E|). The recent work of [20] also proposes an efficient

implementation of algorithm Greedy2.

2 4 8 10

6

1 12

7

3 5 9 11

Fig. 2: Example

In order to take advantage both of the efficient add-back step as well as of the

detection of articulation points, we developed a hybrid approach, alternating the ap-

plication of the two basic greedy steps: add-back and remove (see lines 3-4 of Greedy1

and Greedy2 ).

Furthermore, aiming at recovering from possibly wrong decisions, after finding a

feasible solution, we allow the algorithm to move into the unfeasible region — with

additional ∆+
K add-back or ∆−

K remove steps — before returning to a feasible solution.

The exploration of the solution space benefits of a somewhat stronger perturbation

than that achieved by the basic add-and drop move, still possibly preserving some

good structure of the previously generated feasible solutions. The resulting algorithm,

that we call Greedy3 (see Algorithm 3), acquires some flavor of local search while

retaining most of the simple structure of greedy algorithms. That’s why we still call it

“greedy”.

Greedy3 alternates stages where a number of add-back steps is applied with stages

where the remove operation takes place. In each of these stages, a feasible solution is

found (when exactly K nodes are removed from the graph), and if it is better of the

actual best solution found, it is saved as record. As a stopping criterion, a maximum

number of generated feasible solutions NS are allowed to be evaluated, where NS is an

exogenous parameter (set by the user).

As a matter of fact Greedy3 is considerably less myiopic than the other two, since

it has indeed chances of undoing wrong choices taken at early iterations. Experimental
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comparisons show that a single run of Greedy3 is considerably more effective than a

multistart application of the basic greedy algorithms.

Algorithm 3: Greedy3

Data: Graph: G, K

NS : the number of feasible

solutions that we are allowed to

generate

Result: S∗

1 S := Vertex Cover(G);

2 n := 0, S∗ := {∅}, f(S∗) := ∞ ;

3 repeat

4 while |S| > K do

5 i =

argmin{f(S\{i})−f(S)};
6 S := S \ {i};
7 if f(S) ≤ f(S∗) then
8 S∗ := S;

9 n := n+ 1;

10 while |S| > K −∆−
K do

11 i =

argmin{f(S\{i})−f(S)};
12 S := S \ {i};
13 while |S| < K do

14 i = argmax{f(S)−
f(S ∪ {i})};

15 S := S ∪ {i};
16 if f(S) ≤ f(S∗) then
17 S∗ := S;

18 n := n+ 1;

19 while |S| < K +∆+
K do

20 i = argmax{f(S)−
f(S ∪ {i})};

21 S := S ∪ {i};
22 until n > NS ;

Algorithm 4: Greedy4

Data: Graph: G, K

NS : the number of feasible

solutions that we are allowed to

generate

Result: S∗

1 S := ∅;
2 n := 0, S∗ := {∅}, f(S∗) := ∞;

3 repeat

4 while |S| < K do

5 i = argmax{f(S)−
f(S ∪ {i})};

6 S := S ∪ {i};
7 if f(S) ≤ f(S∗) then
8 S∗ := S;

9 n := n+ 1;

10 while |S| < K +∆+
K do

11 i = argmax{f(S)−
f(S ∪ {i})};

12 S := S ∪ {i};
13 while |S| > K do

14 i =

argmin{f(S\{i})−f(S)};
15 S := S \ {i};
16 if f(S) ≤ f(S∗) then
17 S∗ := S;

18 n := n+ 1;

19 while |S| > K −∆−
K do

20 i =

argmin{f(S\{i})−f(S)};
21 S := S \ {i};
22 until n > NS ;

The procedure we use for extracting a vertex cover is a modified version of the

greedy heuristic which selects the node with highest degree, adds it to the cover, deletes

all adjacent edges, and then repeats until the graph is empty (see, e.g., [15]). Our

modifications are concerned with an initial shuffling of the nodes in such a way to

consider them in random order instead of by decreasing order of node degree, and a

pre-processing phase to take out the nodes of degree 1.

Following the same logic we also define Greedy4 (see Algorithm 4) that starts,

similarly to Greedy2, with a remove stage.

Dynamically restarting the search. Computational experience showed that our

mechanism of sequentially adding and removing ∆±
K nodes around the feasible so-
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lution, implemented in Greedy3 and Greedy4, is not always sufficient to avoid being

trapped in “bad” solutions. Therefore, when a solution does not improve after a given

number of iterations I, we allow the algorithm to perform a complete restart (i.e.,

generating a new vertex cover from scratch). We kept the same stopping criterion,

allowing NS feasible solutions to be evaluated. This new algorithm is called Greedy3d

(that is Greedy3 with dynamical restart). Performances improve, at the modest cost of

handling the additional parameter I. A similar modification was applied to Greedy4,

leading to a dynamically restarted procedure Greedy4d.

3 Computational results

In order to experimentally evaluate the algorithms we relied on two test beds. The first

set is built on the basis of the 16 graphs used in [18]. They are divided into 4 types of

graphs with different structures, and with number of nodes ranging from 250 to 5000

(see Table 1).

We got several instances of CNP by choosing various values for the parameter K

from the set {5, 10, 20, 30, 50, 75, 100, 150, 200, 300, 500, 1000, 1500, 3000} (always keep-

ing K < |V |); we decided however to delete each instance for which we can certify a

solution with 0 value, regarding such instances as easy ones. Therefore we got a set of

159 instances — we label it “set 1” in the following.

Barabasi-Albert (BA) Erdos-Renyi (ER) Forest-Fire (FF) Watts-Strogatz (WS)

|V |,|E|,K
500,499,50 235,350,50 250,514,50 250,1246,70
1000,999,75 466,700,80 500,828,110 500,1496,125

2500,2499,100 941,1400,140 1000,1817,150 1000,4996,200
5000,4999,150 2344,3500,200 2000,3413,200 1500,4498,265

Table 1: Sizes of the graphs from [18] from which set 1 is derived.

In order to obtain larger instances we downloaded example graphs from The Stan-

ford Large Network Dataset Collection (SNAP)1— mainly graphs from the Internet

peer-to-peer networks category and the Collaboration networks category. These in-

stances represent respectively 8 networks of computers connected to the internet and

exchanging files, plus 5 networks of physicists collaborating around the world and

linked by their published works on the website www.arxiv.org. The size of such graphs

is reported in Table 2.

Given the large number of nodes and the substantial difference between the graphs’

dimensions (up to a factor of 6), we choose to select values of K as fractions of the

number of nodes |V |. In practice we choose five values of K for each graph. The two

types of graphs do not have the same density, therefore, in order to obtain interesting

instances, we set the values for K as:

peer-to-peer: K ∈ {0.01|V |, 0.05|V |, 0.1|V |, 0.15|V |, 0.2|V |}.

scientific collaborations: K ∈ {0.1|V |, 0.2|V |, 0.3|V |, 0.4|V |, 0.5|V |}.

1 http://snap.stanford.edu/data/
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Larger values of K easily lead to completely disconnected graphs with an optimum

that is easily detected by all the algorithms. The total number of obtained instances

in the test bed is 65 — we call it “set 2” in what follows.

Peer to peer

Graph name |V | |E|
p2p1 10876 39994
p2p2 8846 31893
p2p3 8717 31525
p2p4 6301 20777
p2p5 8114 26013
p2p6 26518 65369
p2p7 22687 54705
p2p8 36682 88328

Scientific collaboration

Graph name |V | |E|
grqc 5242 14484
hepth 9877 25973
hepph 12008 118489
astroph 18772 198050
condmat 23133 93439

Table 2: Graphs taken from SNAP from which set 2 is derived.

We compare the relative performances of the various algorithms by means of per-

formance profiles. The performance profile for each algorithm A on a collection of

instances T is the function defined by

pA(n) =
|{I ∈ T : A(I) ≤ 2nBEST(I)}|

|T |

where A(I) is the result of algorithm A on instance I and BEST(I) is the best result

obtained in the test campaign (with all the considered algorithm) for instance I ; the

point (n, p(n)) on the curve denotes the fraction of tested instances for which algorithm

A delivered a solution with a relative error 2 less then or equal to 2n−1 with respect to

the best result found. Note that the curve works with a logarithmic scale; particularly,

the relative error obtained by the algorithm grows exponentially as a function of n:

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Err% 0 7.2 14.9 23.1 32.0 41.4 51.6 62.5 74.1 86.6 100.0

When plotting the curves for two algorithms A, A′, algorithm A can be considered

better than A′ if the performance profile of A lies at north-west of the profile of A′.
See [11] for a detailed introduction.

All tests were performed on a server equipped with two AMD Opteron 8425HE

processors, 2.1 GHz clock and 16 GB RAM running Linux, the code is developped in

C++.

As for the algorithms’ parameters we set values for ∆±
K and I after a few prelimi-

nary experiments. We chose ∆±
K = K/2 for all the new algorithms and I = 5 for the

dynamic restarted versions. This choice gave satisfactory results without asking for an

excessive effort in calibration.

2 Calculated as
A(I)− BEST(I)

BEST(I)
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Comparing the basic approaches. We tested Greedy3 and Greedy4 all instances in

set 1, allowing a single run on each instance, fixing for both NS = 60.

In order to fairly compare Greedy3 and Greedy4 against Greedy1 and Greedy2, we

ran Greedy1 and Greedy2 on a multistart basis, allowing 60 runs for each algorithm

and keeping the best solution delivered.

The overall results are presented in the performance profile shown in Figure 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7

p(
n)

n

Greedy1
Greedy2
Greedy3
Greedy4

(a) complete curves

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

p(
n)

n

Greedy1
Greedy2
Greedy3
Greedy4

(b) initial part of the same curves

Fig. 3: Performance profiles for Greedy1, Greedy2, Greedy3, Greedy4 . Tests performed

on set 1.

Algorithm Greedy2 exhibits by far the worse behavior, being strongly outperformed

by all the others. Greedy3 and Greedy4 offer the best performances with Greedy3 being

slightly better. Although Greedy1 performances seem not too far from Greedy3 and

Greedy4, a relevant difference is remarkable on the first part of the profiles, meaning

that Greedy3 and Greedy4 are actually significantly better at delivering best solutions,

with Greedy1 being only able to deliver a best solution in 20% of the tests, while

Greedy3 and Greedy4 deliver the best solution in approximately 35% of the tests.

Furthermore, if we look more into detail (see Figure3b), we can observe that accepting

a relative error smaller then 10%, Greedy3 and Greedy4 are able to “solve” 90% of the

instances, while Greedy1 only around 70%.

We also ran the same tests with all the algorithms being stopped after the same

amount of running time. Each instance was solved by Greedy3 with NS = 60, keeping

track of the running time. The same amount of CPU time was allotted to the multistart

application of the other algorithms. We got completely similar results, with also a

slightly improved performance record for Greedy3 and Greedy4.

Dynamic restart. We tested Greedy3d and Greedy4d with a single run on each in-

stance of set 1, with NS = 60; Greedy1 and Greedy2 were tested in a multistart fashion

as described above over 60 runs. The results over set 1 are summarized by the perfor-

mance profiles in Figure 4.

The profiles show thatGreedy1 andGreedy2 are strongly outperformed byGreedy3d

and Greedy4d, while also Greedy3 and Greedy4 are outperformed by Greedy3d. Hence

adding the dynamic restart to Greedy3 proves to be fruitful. It is interesting to note

that adding the dynamic restart to Greedy4 is not as beneficial as in the Greedy3 case.
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Fig. 4: Performance profiles on set 1.

Comparison with previous approaches. Since we used graphs generated in previ-

ous works on the CNP [18], we will compare the results of our algorithms Greedy3d

and Greedy4d with those delivered by the metaheuristic (Simulated Annealing and

Population-Based Incremental Learning) algorithms presented in [18]. Results for

these two algorithms are presented in the cited paper for 30 runs, with information

on the best and worst results as well as the average result for the objective. We ran a

single execution of our algorithms with NS = 30. We compare our results with the best

results found by SA and PBIL3. The results are summarized in Table 3. We warn the

reader that the tests for SA and PBIL reported in [18] ran on a different machine (Intel

i7-2600 K, 3.4 GHz clock, 8 GB RAM). The cpu times reported in Table 3 for SA and

PBIL are the cumulative times for 30 runs, with the objective function value being the

best value delivered over all such runs. It is interesting to observe how Greedy3d and

Greedy4d find the best results in all cases except one, often with a large gap compared

to SA and PBIL. We do not aim at a fine-grained comparison, but the large differences

in the solution quality and computation times cannot be explained only by the differ-

ent machines. Greedy3d and Greedy4d can then outperform metaheuristics like SA and

PBIL, that should perform extensive exploration of the solution space. Hence we take

the figures of Table 3 as an indication of the effectiveness of our algorithms.

The results are somewhat surprising since a well tailored metaheuristic with suf-

ficient running time would be expected to outperform a greedy-based approach. A

possible explanation could reside in the fact that evaluating the cost of a local search

move has a priori the complexity of a DFS on the graph, making the local search part

of an algorithm very slow. A way around this situation is provided in a companion

work [2] in the form of a Variable Neighbourhood Search (VNS) algorithm. Such a

metaheuristic is able to provide better quality solution than algorithms Greedy3d and

Greedy4d described in this work, however the two types of algoritm have different

scopes: while the VNS is able to identify potentially better solutions, it is much slower

and therefore more limited on large graphs. In order to fairly compare Greedy3d and

Greedy4d with such a VNS algorithm, we use a maximum running time for the VNS

which is equal to the maximum running time between Greedy3d and Greedy4d. We use

3 the values of K for the FF graphs are different from those printed in [18] — they have
been corrected in [12].
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Graph K SA PBIL Greedy3d Greedy4d
Obj. Val Time Obj. Val Time Obj. Val Time Obj. Val Time

ER235 50 7700 1140 6700 2250 315 1 313 <1
ER466 80 48627 3300 44255 5490 1938 1 1993 1
ER941 140 234479 1083 229576 14070 8106 3 8419 3
ER2344 200 2011122 57930 2009132 65130 1118785 12 1112685 10
BA500 50 997 1980 892 3780 195 <1 195 1
BA1000 75 3770 5160 3057 7920 559 2 559 1
BA2500 100 31171 25200 28044 35340 3722 9 3722 6
BA5000 150 170998 94620 146753 105450 10196 27 10196 18
WS250 70 14251 2100 13786 4050 11694 <1 11401 1
WS500 125 54201 5190 53779 7890 4818 2 11981 2
WS1000 200 311700 16440 308596 20280 316416 9 318003 8
WS1500 265 717369 54480 703241 61920 157621 15 243190 11
FF250 50 1841 1110 1386 2640 199 1 197 0
FF500 110 2397 4680 1904 6690 262 1 264 1
FF1000 150 92800 123000 59594 15270 1288 4 1271 4
FF2000 200 387248 51690 256905 58830 4647 12 4592 11

Table 3: Results of the algorithms SA and PBIL from [18], Greedy3d and Greedy4d

presented here, on the graphs introduced by [18]. The best of four results is displayed

in bold font.

a VNS with First Improvement strategy, which is the most competitive version of the

algorithm presented in [2].

Another type of algorithm which has been developed for dealing with critical node

problems are greedy heuristics based on the so-called centrality measures: the principle

is to delete the node having the highest value with respect to a given centrality measure,

update the centrality values and repeat the operation until K nodes are deleted. In

order assess the quality of our results, we also compute solutions using two centrality-

based greedy algorithms: one called Gcent
deg where the centrality values are the degree of

each node in the graph and one called Gcent
bet , based on the betweenness centrality of the

nodes (see [6] for definition and computation). The centrality values are recomputed

at each step, which makes Gcent
bet extremely slow because betweenness centrality is

computed through a procedure of complexity O(|V ||E|) [6]. In order to maintain a fair

comparison, these greedy algorithms are restarted until 30 feasible solutions have been

constructed and only the best result is reported, while the time value represents the

total running time over 30 runs.

The results from the comparisons are displayed in Table 4. Results in boldface are

reported for the algorithm reaching the best solution. Results in italic font are reported

in order to highlight cases where a competitor delivers better results that our Greedy

algorithms. VNS manages to find better solutions than both Greedy3d and Greedy4d in

only 4 instances over 16 (ER466, ER941, WS500). This is a hint that, although the VNS

framework is most promising when sufficient running time is available, both types of

algorithm are actually complementary. As far as the comparison with centrality-based

algorithms is concerned, it can be noted that good quality results are achieved by Gcent
bet

but at the price of an extremely high computational time. While Gcent
deg is unable to give

satisfying results compared to Greedy3d and Greedy4d, we see that Gcent
bet provides good

quality results for the densest graphs of the Watts-Strogatz type, which is probably

due to the difficulty of greedy rules to distinguish between the different nodes at each

step. Nonetheless, the very large running times for recomputing the centrality values

make the use of Gcent
bet somewhat unrealistic when it comes to real-world instances.
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Graph K Greedy3d Greedy4d VNS Gcent
deg Gcent

bet

Obj. Val Time Obj. Val Time Obj. Val Time Obj. Val Time Obj. Val Time

ER235 50 315 1 313 <1 316 1 499 1 378 194
ER466 80 1938 1 1993 1 1924 1 4636 9 2118 2167
ER941 140 8106 3 8419 3 7687 3 70871 59 8582 26698
ER2344 200 1118785 12 1112685 10 1323124 12 1811785 526 2063566 876024
BA500 50 195 <1 195 1 196 1 197 5 199 283
BA1000 75 559 2 559 1 559 2 578 34 559 1922
BA2500 100 3722 9 3722 6 3722 9 4153 305 3726 20444
BA5000 150 10196 27 10196 18 10222 27 12626 1812 10216 151750
WS250 70 11694 <1 11401 1 12613 1 16110 2 9529 633
WS500 125 4818 2 11981 2 3154 2 67189 15 2786 4100
WS1000 200 316416 9 318003 8 310117 9 319600 85 203340 114473
WS1500 265 157621 15 243190 11 161844 15 761995 239 19511 233341
FF250 50 199 1 197 0 199 1 241 2 198 143
FF500 110 262 1 264 1 269 1 291 15 264 889
FF1000 150 1288 4 1271 4 1330 4 1679 88 1289 10555
FF2000 200 4647 12 4592 11 4691 12 7660 478 4676 62427

Table 4: Results of the greedy algorithms based on degree and betweenness centrality,

together with results from a VNS algorithm, on the graphs introduced by [18].

Results on large real-world instances. Figure 5 contains performance profiles drawn

for the testing of Greedy3, Greedy4, Greedy3d and Greedy4d on the instance set named

set 2. Algorithms Greedy3d and Greedy4d appear to strongly dominate Greedy3 and

Greedy4. Also, for this test set Greedy4d shows much better performances than those

obtained on set 1. Hence on set 2 Greedy4 strongly benefits from the addition of the dy-

namic restart feature. By examining the behavior of the algorithms on some instances,

we explain this phenomenon as follows. Our algorithms, although incorporating some

flavor of neighborhood search through perturbating the solutions, they are still — and

this was in the scope of the research — greedy-like, in the sense that the neighbor-

hood exploration is kept limited. The first feasible solution generated by Greedy4 is

basically obtained by an application of Greedy2, which has proved to offer really poor

performances. A very bad solution generated at the first stage is unlikely to be so

strongly improved in successive stages. The dynamic restart offers a chance to restart

the search from a (possibly, very) different solution, especially on a large graph. On the

other hand, Greedy3 benefits from a first stage that applies the logic of Greedy1, which

is much more effective than Greedy2, hence the dynamic restart has a still a beneficial

but somehow milder impact.

On the large instances of set 2, Greedy3d and Greedy4d offer the best performances.

Greedy4d offered a substantially larger number of best solutions found on set 2 — on

more than 80% of the tests, while Greedy3d only his the best results in 45% on the

instances. Nevertheless, if we accept a relative error up to 3% both algorithms offer

such precision on 96% of the instances, while for the remaining instances Greedy4d can

have a relative error of over 100% while Greedy3d remains within a relative error of

20%.

4 Conclusion

Building on top of basic greedy algorithms, we proposed “hybrid” heuristic algorithms

in order to tackle the Critical Node Problem by combining the two most basic greedy

rules. While more straightforward greedy algorithms start from the original graph or a

completely fragmented graph and respectively delete or add back the nodes one by one,
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Fig. 5: Performance profiles obtained on set 2, for Greedy3, Greedy4, Greedy3d,

Greedy4d.

we chose to alternatively add and delete nodes around a feasible solution, in order to

get out of local minima. The results are clearly in favour of our new approach, especially

when allowing for a dynamic restarting of the algorithm after a certain amount of non-

improving iterations. We further validated these results by applying the algorithms

on larger graphs representing peer-to-peer networks or scientific collaborations. The

results are encouraging and can be taken as a hint that greedy methods for the CNP

should be applied to practical applications such as computational biology, as suggested

by [4], or any field that requires to find maximal fragmentation of large networks. One

possible step forward would be the inclusion of global information on the graph at hand

in order to help minimize the bad random choices of the greedy algorithms.
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