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Abstract Motivated by the ABO issue of the blood bank system, in which the portions
stored have constant shelf life, we consider two subsystems of perishable inventory. The two
Perishable Inventory Subsystems-PIS A and PIS B, are correlated to each other through a
one-way substitution of demands. Specifically, the input streams and the demand streams
applied to each subsystem are four Poisson processes, which are independent of one another.
However, if the shelf of PIS A (blood of type O) is empty of items, an arriving demand of
type A is unsatisfied, since demand of type A cannot be satisfied by an item of type B (blood
portions of type AB), but if the shelf of PIS B is empty of items, an arriving demand of type
B is applied to PIS A, since demands of type B can be satisfied by both types. This one-way
substitution of the issuing policy generates for PIS A a modulated Poisson demand process
operating in a two-state non-Markovian environment. The performance analysis of PIS B
is known from previous work. Thus, in this study we focus on the marginal performance
analysis of PIS A. Based on a fluid formulation and a Markovian approximation for the one-
way substitution demand process, we develop a unified approach to efficiently and accurately
approximate the performance of the PIS A. The effectiveness of the approach is investigated
by extensive numerical experiments.
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1 Introduction

We consider a stochastic input-output inventory system composed of two correlated Per-
ishable Inventory Systems-PIS A and PIS B. Items of type A arrive in the shelf of PIS A
according to a Poisson process with rate λA and items of type B arrive in the shelf of PIS
B according to a Poisson process with rate λB . The shelf life of all items is a constant that
without loss of generality is equal to 1. Demands of type A, that arrive according to a Poisson
process with rateμA apply to PIS A and demands of type B, that arrive according to a Poisson
process with rate μB , apply first to PIS B, but if PIS B is empty the application is endorsed to
PIS A. The four Poisson streams are independent. However, since demands of type A can be
satisfied only by items of type A, a demand of type A leaves unsatisfied if shelf A is empty.
Unsymmetrically, demands of type B can be satisfied by either items of type B or by items
of type A. We assume that the issuing policy in both subsystems is first-in-first-out (FIFO).

We are interested in the marginal performance analysis of each subsystem. The perfor-
mance measures are the long-run averages for the number of items on shelf sA (sB ), the rate
of item loss due to perishing �A (�B ) and the rate of overall demand loss m. In fact, several
versions of the marginal performance analysis of PIS B have already been carried out in
previous work [for the analysis of the basic PIS B as described above, see Kaspi and Perry
(1983)]. However, the performance analysis of PIS A appears to be new. To see the intricate-
ness of a rigorous analysis, note that while the arrival process of items into PIS B is Poisson
with rate λB and the demand process is Poisson with rate μB , the arrival process into PIS
A is Poisson with rate λA, but the demand process applied to PIS A is a modulated Poisson
process operating in a two-state random environment, which is determined according to the
environment status of PIS B. Namely, when shelf B is not empty, the demand process applied
to PIS A is a Poisson process with rate μA, but when shelf B is empty, the demand process
applied to PIS A is a Poisson process with rate μA + μB . Also, while the time periods in
which shelf B is empty are exponentially distributed (with parameter λB ), the time periods
in which shelf B is not empty are not exponential (but the law of these time periods can be
computed), so that the random environment associated with the demand arrival process into
PIS A is not Markovian. The latter fact makes a rigorous analysis of PIS A too complicated,
if possible at all. In light of the intricateness of the input process into PIS A, which is a
non-renewal process, it seems that it is not likely to be able to perform an exact analysis
of the relevant performance measures of PIS A. Accordingly, for the analysis of PIS A we
apply an accurate approximation based on the following approach (Osogami and Harchol-
Balter 2006): Let Un be the length of the nth non-emptiness period in PIS B, which we call
ON period. Clearly U1,U2, . . . are independent and identically distributed (i.i.d.) random
variables and let U be the generic random variable of this sequence. Since we know how to
compute the law of U we also know to compute its moments. Now take a random variable
Û with a known phase-type distribution such that EUk = EÛk for all k = 1, 2, . . . , n, for
some predetermined n. Then intuitively, the model in which the original U is replaced by
Û will be a good approximation to the original model and the approximation is expected to
improve as n increases, see Osogami and Harchol-Balter (2006).

Our model is motivated by the ABO issue associated with the blood bank system. In prac-
tice, there are four types of blood-O, A, B and AB (in this study we assume a generic model
of only two types). The blood portions arrive in accordance with four independent Poisson
streams and are classified into the four categories (shelves)-O, A, B and AB. According to
the formal statistics, more than 40% of the population belong to category O and less than
5% belong to category AB. Demands of type O can be satisfied by only blood portions of
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type O, but demands of type AB can be satisfied by either blood portions of type O or blood
portions of type AB. It turns out that a shortage in blood portions of type O might have been
a disaster, but a shortage in blood portions of type AB is important only from a managerial
point of view. According to the formal standards and regulations, the maximum shelf life of
all blood portions is 21 days. That means that after 21 days any blood portion cannot be used
for transfusion. Then, after 1 unit of time (21 days), the blood portion is removed from the
shelf where the removed items generate the so-called outdating process. Except for extreme
urgency, it is natural to believe that the issuing policy of blood portions is FIFO. Namely,
if the shelf is not empty, any arriving demand is satisfied by the oldest portion on the shelf.
From a modeling point of view this means that the FIFO issuing policy can be used as a good
approximation to reality.

Over the last three decades several review papers on inventorymodels with deterioration in
the utility of the items have been published in the operations research literature. We indicate
here only the comprehensive overviews (Nahmias 1982, 2011; Karaesmen et al. 2009); the
other reviews focus on other operations research issues and as a result, are not relevant
to this study. The three aforementioned monographs refer to more than 200 works about
perishable inventory models. Undoubtedly, the general literature about perishable inventory
models is very rich, but the dominant component of the field aims at models that apply
optimization and/or control; namely, models that study the behavior of the optimal values of
certain decision variables. Apparently, in most of the operations research models there exists
a controller who faces the problems of ‘when to place an order’ and ‘how much to order’.
However, there is a very large class of perishable inventory systems for which this type of
well motivated problems is of irrelevance. These include models operating in the absence
of ordering policies; that is, models that are run without controllers who face the above
traditional problems of ‘when to order’ and ‘how much to order’. For example, some blood
bank systems with stochastic input (the arrival process of items) and stochastic output (the
demand for those items and also outdatings of the items) might be regarded as appropriate
applications of such models. Astonishingly, this natural stream of problems received only a
sparse attention in the operations research literature. It appears that the inventory literature on
perishable inventories with random input (and with the absence of control ordering policies)
is not rich at all. The reason for that is probably the fact that such models are closely related
to stochastic queueing models. As a result, these models focus generally on performance
analysis, not on optimization. More precisely, these models may comprise two separated
phases; the first phase is that of performance analysis. Then, the relevant measures and
functionals that are found in the first phase lay the groundwork for the second phase, which
is optimization. However, the type of control in the second phase is completely different from
the traditional problems of when and how much to order, since naturally, the decision factors
are different. Due to the intricateness of the stochastic model introduced in this study, we
restrict our attention to the first phase of a prototype problem and focus on the performance
analysis of a certain stochastic perishable inventory system. In the language of operations
research applied to health care, this problem is called the ABO transfusion of blood problem
(as mentioned above).

Every natural objective function will take into account at least three factors (or measures):
the unsatisfied demands, the outdatings and the number of items on the shelf for the holding
costs. In particular, in the blood bank application, unsatisfied demand might be a disaster. On
the other hand, toomany outdatings show that the system is run inefficiently and the controller
will have to pay high holding costs if too many items wait on the shelf. Our analysis is based
on a one-dimensional process, which is the age of the oldest item on the shelf, and once we
know the steady state law of the age of the oldest item on the shelf, we are able to compute
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the rate of the unsatisfied demand process, the rate of the outdating process and the law of
the number of items on the shelf in steady state (recall that the latter process is not a Markov
process).

As indicated above, tractable PISs are mostly restricted to renewal arrival processes.
Hence the current PIS with a non-renewal demand process motivates us to develop a new
approach to analyze a single PIS under a pure Markovian setting. Accordingly, we relax the
renewal property and exploit theMarkov property by taking approximations when necessary,
for tractability. The approach is a combination of two simple ideas of practical importance:
(i) Approximate the non-renewal arrival process by a Markovian arrival process (cf. Neuts
1979); specifically, a Markov-modulated Poisson process, and (ii) Use a fluid formulation
for the virtual waiting time process (e.g. Asmussen 2003, p. 308).

The rest of the paper is organized as follows. In Sect. 2, we present a fluid formulation for
the PIS. We apply the fluid formulation to PIS B and immediately obtain a fluid model driven
by a continuous time Markov chain (CTMC). In Sect. 3, we address PIS B and illustrate
the proposed approach in detail. We re-derive several known results. We introduce explicit
formulas for quantities of our interest, in particular, for the ON period. A direct application
of the fluid formulation to PIS A results in a non-Markovian model. In Sect. 4, we propose to
approximate the ON period by certain phase type distributed random variables by using the
same moments of the ON period. We extend the state space of the driving CTMC. Then the
approximate evaluation of PIS A is similar to that of PIS B. In Sect. 5, we present numerical
experiments to investigate approximation errors. Finally, in the last section, we summarize
our results and indicate possible directions for future research.

2 Fluid formulation

Consider A(t), the age of the oldest stock in a PIS at time t ≥ 0. By convention, let A(t) = 0
if the system is empty (out-of-stock) at time t . Illustrated in upper Fig. 1, the sample path
of A(t) has a linear growth of rate 1 when the inventory is in stock. The linear growth is
interpreted as the aging of the oldest stock. A downward jump occurs when the oldest stock
is removed from the system. A removal of the oldest stock happens due to either

(a) an arrival of demand (recall that in Sect. 1 we assume FIFO, namely the oldest stock is
always used to satisfy a demand); or

(b) perishing.

Let 0 ≤ S1 ≤ S2 ≤ . . . be all epochs that an item is removed. We assume that the sequence
{Si }i=1,2,··· corresponds to a locally finite counting process, i.e. P{limi→∞ Si < ∞} = 0.
Clearly the size of the i th jump, i = 1, 2, . . ., is the inter-arrival time of the i th supply and the
next, possibly truncated due to nonnegativity of A(t). We assume A(t) is right continuous.
We shall analyze the age process {A(t)}t≥0 and show that the performance measures of our
interest can be derived from the stationary distribution of the age process. Our approach is
to couple the age process with a family of bivariate processes {(Ir , Ar )} parameterized by
a single positive constant r . The motivation is easy to see by thinking of vertical jumps in
a sample path as segments of infinite slope (r = ∞). We construct Ar in such a way that
the sample paths of Ar converge to the sample paths of A as r → ∞. Under a Markovian
setting, it turns out that the (Ir , Ar ) process is a piecewise deterministic Markov process
(PDMP, cf. Davis 1984) with continuous (linear) sample paths, also known as fluid models.
Thus we formulate and solve the PIS problem as a fluid model. A similar approach is also
used in Liu and Kulkarni (2008) to analyze the busy period of a M/PH/1 queueing model
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with impatient customers. Although the probability laws can be derived directly for the A
process within the PDMP framework, we introduce such a construction because it is a unified
approach, which is directly amenable to computations. The construction, and our rationale
to introduce it, shall become clear in the following sections. The numerical experiments in
Sect. 5 also serve as a convincing support of the approach.

The idea is explained in Fig. 1, where Ar is constructed from A by (i) extending instants
when the oldest stock in the system perishes (so A reaches 1) with exponential times with
mean 1/r (during which A stays 1) and (i i) replacing vertical jumps by jumps of the same
size, but with slope r . Formally, for any r > 0, let us define process {Ar (t)}t≥0 as the
following transform of the A process.

S0 = 0,

Zi = Si+1 − Si ,

�X
i = Xi1{A(Si )+Zi=1}/r,

�Y
i = (A(Si ) + Zi − A(Si+1)) /r,

Ti = Si +
∑

j<i

(�X
j + �Y

j ),

Ar (t) =
⎧
⎨

⎩

A(t − Ti + Si ), t ∈ [Ti , Ti + Zi ),

1, t ∈ [Ti + Zi , Ti+1 − �Y
i ),

A(Si ) + Zi − r(t + �Y
i − Ti+1), t ∈ [Ti+1 − �Y

i , Ti+1),

i = 0, 1, . . . , (1)

where

(a) X0, X1, . . . are i.i.d. exponential random variables with mean 1;
(b) 1{x} denotes the indicator function that equals 1 if condition x is true and 0 otherwise.

Clearly �X
i is an exponential time with mean 1/r when the i th supply perishes, and �X

i
equals 0 when the i th supply is removed due to an arrival of demand. �Y

i is the duration of
the i th downward jump with slope r . The instants Ti are obtained from Si by inserting all
pieces �X

j and �Y
j with j < i .

Let

T ′
i = inf{t ∈ [Ti , Ti + Zi ) : Ar (t) > 0},

Ir (t) =

⎧
⎪⎪⎨

⎪⎪⎩

−, t ∈ [Ti , T ′
i ),+, t ∈ [T ′

i , Ti + Zi ),

+, t ∈ [Ti + Zi , Ti+1 − �Y
i ),

−, t ∈ [Ti+1 − �Y
i , Ti+1),

i = 0, 1, . . . (2)

So Ir = + when Ar increases or Ar = 1, and Ir = − otherwise (when Ar decreases or
Ar = 0). Figure 1 is an illustration of the construction in (1) and (2), with r = 1.

The construction, in the limit, gives an equivalent representation of the original A process.
More precisely, we have the following proposition. Let τ be any stopping time of the A
process, and τr be the corresponding one for the Ar process, τr := τ + ∑

i :Si<τ (�
X
i + �Y

i ).
Further let the random variable A(∞) and Ar (∞), respectively, be distributed as the limiting
distribution of the A and Ar processes.
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Fig. 1 A sample path of the A process, with the corresponding sample path of the (Ir , Ar ) process

Proposition 1 As r → ∞:

(a) For all t ≥ 0, Ar (t) → A(t) almost surely.
(b) τr ↓ τ almost surely.
(c) For all n ≥ 0 and t ≥ 0, EAn

r (t) → EAn(t).
(d) For all n ≥ 0, Eτ nr → Eτ n.
(e) For all n ≥ 0, EAn

r (∞) → EAn(∞).

Proof (a) and (b) immediately follow from the construction of the Ar process. (c) and (d)
follow from dominated, respectively monotone convergence. To prove (e), note that A is
regenerative. Let C be the first cycle in the A process, and Cr be the corresponding one in
the Ar process. By (a) and (b),

∫

Cr

An
r (t)dt →

∫

C
An(t)dt,

with probability 1. Then, by dominated convergence

E

∫

Cr

An
r (t)dt → E

∫

C
An(t)dt.

So

EAn
r (∞) = E

∫
Cr

An
r (t)dt

ECr
→ E

∫
C An(t)dt

EC
= EAn(∞).
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The implication of Proposition 1 is that it is sufficient to perform our probabilistic com-
putations, for both transient and limiting analysis, on the (Ir , Ar ) process, then take the limit
with respect to r . With this in mind we now turn our attention to the analysis of the (Ir , Ar )

process. We treat the PIS B case in the next section before we go into a slightly more general
setting for PIS A.

3 PIS B, Poisson demands

In this section we apply the fluid formulation to the A process in PIS B, where both demand
and supply are independent Poisson processes of rate μB and λB respectively. We give
results for the stationary distributions of the (Ir , Ar ) process (Proposition 2) and the A
process (Theorem 3). We derive the performance measures from the stationary distribution
(Sect. 3.2). We also study a first passage time of the age process in PIS B, which is useful
when we proceed to PIS A. It is known from general PDMP studies that the stationary
distribution, or the transform of a first passage time of the (Ir , Ar ) process, is the solution to
a certain boundary value problem of linear ordinary differential equations (ODE).We exploit
this result and give our solutions explicitly.

For conciseness, we omit the subscripts in λB and μB when handling solely PIS B.
Since the inter-supply times, and the inter-demand times, for PIS B are i.i.d. exponential
random variables, {(Ir (t), Ar (t))}t≥0 is a time-homogeneous Markov process with state
space {+,−}×[0, 1]. The (Ir , Ar ) process evolves as follows. When Ir = + (resp. Ir = −),
Ar increases (decreases) with rate 1 (r ), unless Ar = 1 (Ar = 0). In the latter case Ar

stays flat until Ir switches to the other state. When Ir = + (resp. Ir = −), Ir stays for an
exponentially distributed time with mean μ−1 (r−1λ−1) in that state, then switches to the
other, unless Ar = 1 (Ar = 0). In the latter case Ir remains + (resp. −) for an exponentially
distributed time with mean r−1 (λ−1) and then switches to the other, which in consequence
takes Ar away from the boundaries and the evolution again is driven according to the rules
for Ar ∈ (0, 1). The description above is exactly the so-called fluid model driven by a CTMC
with a state space {+,−} (cf. Kulkarni 1997), with special behavior on the boundaries. It is
easy to see that the generator of Ir is as follows:

Qt =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[−r r
0 0

]
≡ Q, if Ar (t) = 1,

[−μ μ

rλ −rλ

]
≡ Q, if 0 < Ar (t) < 1,

[
0 0
λ −λ

]
≡ Q, if Ar (t) = 0.

(3)

3.1 Stationary distribution

Let diag(�v) denote the diagonal matrix of a vector �v and

R = diag([1 − r ]) =
[
1 0
0 −r

]
. (4)

It can be proved rigorously within the PDMP framework that the stationary distribution of the
(Ir , Ar ) process has a density fr (i, x) at (i, x) ∈ {+,−} × (0, 1) and atoms pr (+), pr (−)

at (+, 1) and (−, 0) respectively, which satisfy the following system of equations:

�pr Q − �fr (0)R = �0, (5a)
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�pr Q +
∫ x

0

�fr (u)duQ − �fr (x)R = �0, x ∈ (0, 1), (5b)

�pr Q + �fr (1)R = �0, (5c)

where �pr and �fr (x) are row vectors as follows

�pr = [pr (+) pr (−)], �fr (x) = [ fr (+, x) fr (−, x)]. (6)

Intuitively, the i th equation of (5a)–(5c) are the global balance equations for the state sets
{(i, 0)}, {(i, a) : 0 ≤ a < x} and {(i, 1)} respectively. Now write (5b) in derivative form as

�fr (x)Q − d �fr (x)
dx

R = �0. (7)

Thus (5) becomes a standard boundary value problem of linear ODE. The explicit solution
is given in the following proposition.

Proposition 2 Let Q, Q and Q be as in (3). Let R be as in (4). The (Ir , Ar ) process has a
unique stationary distribution, which has a density fr of the form

�fr (x) = �pr Q exp(R−1Qx)R−1, x ∈ (0, 1), (8)

andatoms pr (+), pr (−)at (+, 1)and (−, 0) respectively. The atomsare uniquely determined
by

�pr
(
Q exp(R−1Q) + Q

) = �0, (9a)
(

�pr +
∫ 1

x=0

�fr (x)dx
)

�1 = 1, (9b)

where �0 is the zero row vector and �1 is the column vector with all entries being 1.

Proof From (5a) and (7) we get (8). Evaluating �fr (1) using (8) and substituting in (5c) we
get (9a). Since Q + Q is irreducible, the null space of

(
Q exp(R−1Q) + Q

)
has exactly one

dimension. Then �pr is completely determined by the normalization equation (9b). 	

Remark 3.1 The matrix R−1Q in the exponent does not depend on r and is diagonalizable.

The stationary distribution of the A process can be obtained by taking the limit r → ∞
(Proposition 1). Let

f (x) = lim
r→∞ fr (+, x), p = lim

r→∞ pr (−), (10)

where p is the proportion of time the system is out of stock. Alternatively it is simply the
conditional distribution given that Ir = + and Ar < 1, or Ir = − and Ar = 0 (e.g. Asmussen
2003, Proposition 1.12, p. 309). Hence, for any given r > 0,

f (x) = 1

σr
fr (+, x), p = 1

σr
pr (−), (11)

where σr is the probability that Ir = + and Ar < 1, or Ir = − and Ar = 0,

σr = lim
t→∞P {(Ir (t), Ar (t)) ∈ {(+, a) : 0 ≤ a < 1} ∪ {(−, 0)}}

=
∫ 1

x=0
fr (+, x)dx + pr (−). (12)

Either way we give the explicit result in the following theorem and omit the proof.
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Theorem 3 (Stationary distribution) The age of the oldest stock in PIS B has a unique
stationary distribution, which has a density

f (x) = pλe(λ−μ)x , x ∈ (0, 1)

and an atom

p =
{

λ−μ

λeλ−μ−μ
, if λ �= μ

1
μ+1 , if λ = μ

at 0.

Remark 3.2 Theorem 3 is well known in the context of the finite dam model and coincides
with Corollary 2.7 of Perry and Asmussen (1995).

We are interested in the distribution of the stock level in steady state, denoted by N . The
generating function of N can be obtained by conditioning on the age of the oldest stock in
steady state, namely E(zN ) = E(E(zN |A)), |z| ≤ 1. Notice that if A = a > 0, then N − 1,
the number of supplies since the arrival of the oldest stock, has a Poisson distribution with
mean λa, i.e.,E(zN−1|A = a > 0) = e−λa(1−z). The probability distribution can be obtained
from the coefficients of the power series of the generating function. We give the result in the
following corollary and omit the proof.

Corollary 4 (Stock Level) Let

h(z) = λz − μ

λzeλz−μ − μ
.

The moment generating function of the stock level in steady state is

E(zN ) = h(1)

h(z)
, |z| ≤ 1,

and

P(N = k) = p

(
λ

μ

)k

e−μ
∞∑

i=k

μi

i ! .

Remark 3.3 A direct calculation of the long-run average stock level is as follows.

sB = E(N ) = E(E(N |A)) =
∫ 1

x=0
(1 + λx) f (x)dx . (13)

3.2 Performance measures

Recall that the performance measures we consider for PIS B are long-run average stock
level (sB ) and perishing rate (�B ). Also the substitution demand rate (mB ) is of interest,
since the performance of PIS A depends on mB . Clearly mB = μp. Since every supply is
either perished or issued to a demand, and every demand is either satisfied by a supply or
lost, in the long run, we have λ − �B = μ − mB . We use this conservation law to compute
�B = λ − μ + mB . The stock level can be computed from Corollary 4. Notice that all three
performance measures can be expressed in terms of p, where p is the portion of time the
system is out of stock as defined in (10) and Theorem 3. We list them as follows:
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Corollary 5 (PIS B Performance)When λ �= μ,

mB = μ(λ − μ)

λeλ−μ − μ
, �B = λ − μ + mB , sB = λ(λ + 1)eλ

λeλ − μeμ
− λ

λ − μ
.

When λ → μ,

mB → μ

μ + 1
, �B → μ

μ + 1
, sB → μ(μ + 2)

2(μ + 1)
.

3.3 First passage times

We start by identifying the ON and OFF periods in PIS B, which are closely related to the
performance measures of our interest. The ON (resp. OFF) period is the period during which
A(t) > 0 (A(t) = 0) and demands are satisfied (unsatisfied and routed to PIS A). Let U
(resp. D) be the generic random variables for the duration of the ON (OFF) period. The ON
and OFF periods affect the performance of PIS A by modulating its demand process.

Obviously D is exponentially distributed with mean λ−1. Now we define, for the (Ir , Ar )

process, the first passage time, τr , and the Laplace-Stieltjes transform (LST), φα,r , which are
related to U . Let

τr = inf{t > 0 : Ar (t) = 0}, (14a)

φα,r (i, x) = E(e−ατr |Ir (0) = i, Ar (0) = x), x ∈ [0, 1], Re(α) > 0. (14b)

Let φ(α) = E(e−αU ) be the LST of the ON period. From Proposition 1 we have

φ(α) = lim
r→∞ φα,r (+, 0). (15)

An immediate result from the PDMP theory is that the column vector �φα,r (x) =
[φα,r (+, x) φα,r (−, x)]T satisfies the following differential equation:

d �φα,r (x)

dx
= R−1(α I − Q) �φα,r (x), x ∈ (0, 1), (16)

where I is the identity matrix. Next we specify the boundary conditions. Clearly

φα,r (−, 0) = 1. (17)

Recall that the trajectory of Ar , given Ir (0) = + and Ar (0) = 1, stays on the boundary for
an exponentially distributed time with mean r−1, and then leaves upon Ir switching from +
to −. Therefore we have the following factorization,

φα,r (+, 1) = r

α + r
φα,r (−, 1). (18)

With these two boundary conditions, the solution is uniquely determined as given in the
following proposition.

Proposition 6 Let Q, Q and Q be as in (3). Let R be as in (4). The LST of the first passage
time defined in (14) is given by

[
φα,r (+, x)
φα,r (−, x)

]
= M(x)

[
φα,r (+, 0)

1

]
, x ∈ [0, 1], (19)

where

M(x) = exp(R−1(α I − Q)x),

[
m+ m↓
m↑ m−

]
= M(1),
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and

φα,r (+, 0) =
(
m+ − r

α + r
m↑

)−1 (
r

α + r
m− − m↓

)
. (20)

Proof From (17) and (16) we get (19). Evaluate φα,r (1) by (19), in which we substitute (18)
and obtain

{ r
α+r φα,r (−, 1) = m+φα,r (+, 0) + m↓,

φα,r (−, 1) = m↑φα,r (+, 0) + m−.

Solving the equation above yields (20). 	

The following theorem is a direct result from Proposition 6 and (15).

Theorem 7 (ON Period, LST) The LST of the ON period of PIS B is given by

φ(α) = ν + (α + λ − μ) + eν[ν − (α + λ − μ)]
ν − (α − λ + μ) + eν[ν + (α − λ + μ)] ,

where

ν =
√

(α + λ − μ)2 + 4μα =
√

(α − λ + μ)2 + 4λα.

Remark 3.4 Theorem 7 is in agreement with Perry and Asmussen (1995, Corollary 3.1,
Model II).

Remark 3.5 An alternative way to determine p, instead of using (10) is to use the mean
of U and D. Notice that the process {1{A(t)>0}}t≥0 is an alternating renewal process. Then
p = E(D)/(E(U ) + E(D)).

The i th moment of the ON period can be obtained from Theorem 7 by

E(Ui ) = (−1)i
dφ(α)

diα

∣∣∣∣
α=0

.

We list the explicit formulas for the first three moments in:

Corollary 8 (ON Period, Moments)When λ �= μ,

E(Ui ) = i

(λ − μ)2i−1

i∑

j=0

ci j e
j (λ−μ), i = 1, 2, 3,

where

c10 = − 1,

c11 = 1,

c20 = − μ,

c21 = − (λ(1 + λ) − μ(1 + μ)),

c22 = λ,

c30 = − 2μ(λ + μ),

c31 = 2λ3 + λ4 − 4λμ − 6λ2μ + 2μ2 + 2λμ2 − 2λ2μ2 + 2μ3 + μ4,

c32 = − 2λ (λ(1 + 2λ) − μ(3 + 2μ)) ,

c33 = 2λ2.
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Fig. 2 A contour plot of
c2U (λ, μ)

When λ → μ,

E(U ) → 1, E(U 2) → 1 + 2

3
μ, E(U 3) → 1 + 2μ + 4

5
μ2.

These moments are useful when we deal with PIS A in the next section. The squared coeffi-
cient of variation (SCV) of the ON period, defined as

c2U (λ, μ) = E(U 2)/E2(U ) − 1,

is given as follows.

c2U (λ, μ) =
⎧
⎨

⎩

2
3μ, if λ = μ,(
e2λ−e2μ−2eλ+μ(λ−μ)

)
(λ+μ)

(eλ−eμ)
2
(λ−μ)

, if λ �= μ.

This seems an interesting result for further comparative study with the diffusion approxima-
tion of M/M/1/K queues (cf. Williams 1992, Eq. (6); Berger and Whitt 1992, Eq. (29)).
Figure 2 shows a contour plot of c2U (λ, μ). Note that c2U (λ, μ) is sensitive near the ridge
λ = μ, which is a symmetry axis of the function values as well, i.e., c2U (λ, μ) = c2U (μ, λ).
The sensitivity increases when λ (= μ) gets larger. The region {(λ, μ) : c2U (λ, μ) ≥ c}
shrinks to a ray as c → ∞.

The observations above provide certain heuristic information to explore the parameter
space in the numerical experiments, presented in Sect. 5.

4 PIS A, modulated Poisson demands

As mentioned in Sect. 1, the demand process of PIS A is a modulated Poisson process. For
PIS A, the resulting (Ir , Ar ) process by the fluid formulation of (1) and (2) is not Markovian
any more. We adopt an approximation as follows. First we use a phase type (PH) distribution
(cf. Neuts 1975) with an irreducible representation ( �γ , T ) to approximate the distribution of
the ON period U in PIS B, i.e.
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U ≈ Û , P{Û > x} = �γ eT x �1, for x ≥ 0.

To specify the representation ( �γ , T ), a probably over-simplified solution is to take �γ = 1
and T = −1/E(U ), i.e., approximateU by an exponential random variable with meanE(U ).
It is worth noting that closed form solutions are developed in Osogami and Harchol-Balter
(2006) for mapping a general distribution (on the positive half-line) to a PH distribution,
which matches the first three moments. In this section let us assume ( �γ , T ) is given.

The PH approximation enables us to enlarge the state space of the Ir process in order to
render the (Ir , Ar ) process Markovian. Let n − 1 ≥ 1 be the number of phases in the PH
random variable that approximates the ON period. Let J (t) = i, i = 1, 2, . . . , n− 1 if PIS
B is in phase i of an ON period and J (t) = n if PIS B is in an OFF period at time t . Then
the process {J (t), t ≥ 0} is a CTMC with a generator M (of size n) as follows.

M =
[

T −T �1
λB �γ −λB

]
.

The steady-state analysis now proceeds as a straightforward extension of our treat-
ment of PIS B. Recall that the fluid formulation approach is to construct a fluid model
driven by a CTMC of finite state space, the Ir process. The additional modulating
CTMC J introduced here induces an extension of the state space of Ir from {+,−} to
{+1,+2, . . . ,+n,−1,−2, . . . ,−n}. This extended state now captures information about
the J process as well, as the numeric part in our notation. For matrix notations, we index the
states by 1 through 2n in the order they are listed above. The essence of the construction in
(1) is to insert pieces (parameterized by r > 0) into the original A process so that, as r → ∞,
these pieces vanish and the two processes coincide with probability 1. During the inserted
periods, the J process is not allowed to make a transition, i.e., its state will be suspended.
This implies that the conditional (Ir , Ar ) process is identical to the original (J, A) process,
and hence, the same approach as (11) can be employed to obtain the stationary distribution
of (J, A). Specifically we extend the matrices in (3) as follows.

Qt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−r I r I
0I 0I

]
≡ Q, if Ar (t) = 1,

[
M − diag( �μ) diag( �μ)

rλA I −rλA I

]
≡ Q, if 0 < Ar (t) < 1,

[
0I 0I
λA I M − λA I

]
≡ Q, if Ar (t) = 0,

(21)

where I is the identity matrix of size n. Notice the diagonal matrices r I in Q, and rλA I in
Q, effectively suspend the J process by disallowing phase transitions. The entries of the row
vector �μ are the demand rates of PIS A modulated by J , i.e., all entries of �μ are μA, except
the last one, which is μA + μB . The dimension of R is also extended as

R =
[
I 0
0 −r I

]
. (22)

For the stationary distribution, Proposition 2 is readily extendable. First we introduce the
following vector notations.

�fr (+, x) = [ fr (+1, x) fr (+2, x) . . . fr (+n, x)] ,

�fr (−, x) = [ fr (−1, x) fr (−2, x) . . . fr (−n, x)] ,
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�pr (+) = [pr (+1) pr (+2) . . . pr (+n)] ,

�pr (−) = [pr (−1) pr (−2) . . . pr (−n)] .

Then we extend the notation introduced in (6) as

�pr = [ �pr (+) �pr (−)], �fr (x) = [ �fr (+, x) �fr (−, x)].
Equipped with these notations, we extend Proposition 2 as follows.

Proposition 9 Let Q, Q and Q be as in (21). Let R be as in (22). The (Ir , Ar ) process has
a unique stationary distribution, which has a density fr of the form (8) and atoms pr (+ j),
pr (− j) at (+ j, 1) and (− j, 0) respectively, for j = 1, 2, . . . , n. The atoms are uniquely
determined by (9).

For the stationary distribution of the (J, A) process, �f (x) and �p, we extend (10)–(12) as
follows.

�f (x) = lim
r→∞

�fr (+, x), �p = lim
r→∞ �pr (−). (23)

�f (x) = 1

σr
�fr (+, x), �p = 1

σr
�pr (−), (24)

σr = lim
t→∞P

⎧
⎨

⎩(Ir (t), Ar (t)) ∈
n⋃

j=1

{(+ j, a) : 0 ≤ a < 1} ∪ {(− j, 0)}
⎫
⎬

⎭

=
[∫ 1

x=0

�fr (+, x)dx + �pr (−)

]
�1. (25)

However we can no longer get explicit expressions of such a simple form as in Theorem 3.
We can again compute the performance measures from the stationary distribution of the

(J, A) process. Clearly m = �μ �pT. By the conservation law for supply and demand, we get
�A = λA − (μA + mB) + m. Extending (13), we get the average stock level

sA =
∫ 1

x=0
(1 + λAx) �f (x)dx�1. (26)

Although first passage times in PIS A are irrelevant to the performance measures in our
current consideration, we note that Proposition 6 is readily extendable as well. Denote

�φα,r (+, x) = [φα,r (+1, x) φα,r (+2, x) . . . φα,r (+n, x)]T,

�φα,r (−, x) = [φα,r (−1, x) φα,r (−2, x) . . . φα,r (−n, x)]T.

Then we have:

Proposition 10 Let Q, Q and Q be as in (21). Let R be as in (22). The LST of the first
passage time defined in (14) is given by

[ �φα,r (+, x)
�φα,r (−, x)

]
= M(x)

[ �φα,r (+, 0)
�1

]
, x ∈ [0, 1],

where

M(x) = exp(R−1(α I − Q)x),

[
m+ m↓
m↑ m−

]
= M(1),
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m• are n × n blocks and

�φα,r (+, 0) =
(
m+ − r

α + r
m↑

)−1 (
r

α + r
m− − m↓

)
�1.

To this end, the approach outlined above provides a unified treatment for similar models
where the supply and demand are two independent Markovian arrival processes. Certainly it
becomes delicate to construct the Qt matrix and evenmore so to specify theMarkovian arrival
process of the unsatisfied demands. The size of the state space of the driving Markov chain
may grow rapidly, which is a common limitation for approaches based on Markovianization
with supplementary variables.

5 Numerical experiments

To validate our approach, in this section we conduct experiments which focus on approx-
imation errors in comparison to discrete event simulation of the inventory systems. Three
approximations are in consideration:

• Poisson approximation (namedPA): isolated PISAhas demand streamas Poisson process
(PP) with rate μA + mB .

• Exponential approximation (named EA): isolated PIS A has demand stream as ON-
OFF Markov-modulated PP with rates μA and μA + μB respectively. The ON period is
approximated by an exponential random variable, the mean of which coincides with the
mean duration of the ON period in PIS B.

• Three-moment approximation (named M3A): Same as EA, except that the ON period is
approximated by a PH random variable that matches the first three moments of the ON
period, using the algorithm developed by Osogami and Harchol-Balter (2006, Fig. 8).

Clearly, PA is the most straightforward one to use and it is usually seen in the literature
(e.g. Zhao et al. 2006; Reijnen et al. 2009). The other two belong to the PH approximation
discussed in Sect. 4. Compared to EA, M3A uses a more refined approximation for the ON
period, thus better approximates the exact superposition demandprocess of PISA. In principle
we can continue to refine such an approximation to be as precise as desired, attributed to
the denseness of the class of PH distributions, which is a well-known fact stated as follows
(e.g. Wolff 1989, p. 271). For any non-negative random variable, the ON period U in our
case, there exists a sequence of PH random variables that converges toU in distribution. The
main difficulty in practice is to find the PH approximation. A fruitful approach in this area
is the so-called moment matching algorithm, for which we refer the reader to Osogami and
Harchol-Balter (2006) and the references therein.

Although it would be of practical interest to bound the error for each approximation (so
that one can choose an approximation of the lowest refinement level from all approximations
that meet a given precision requirement), we are not going to pursue thematter here. However
we are interested to see whether it is possible to draw qualitative conclusions at this stage.
Intuitively, the significance of an exact description of the total demand process diminishes,
if the substitution demands have a relatively negligible contribution. We may use a ratio as
follows to roughly quantify the impact of PIS B on PIS A,

η = mB

μA
.

Then one may think of η as an “amplifier” of the approximation error and expect that, for any
of the three approximations, the accuracy decays as η increases, given other possible factors
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remain the same. Heuristically, another factor of importance seems the variability of the ON
period in PIS B in the sense that the larger the normalized variance, the more significant
an exact description of the total demand process will be. Hence the advantage of using a
more refined approximation should be more prominent when the ON period is of higher
variability. When we consider these factors simultaneously, it is plausible to conjecture that
the normalized error is expected to increase in η, in c2U , and to decrease in the refinement
level of the approximations. Therefore, at least, one would be somewhat assured to use PA
when both η and c2U are small, otherwise be alerted about the potential pitfall.

The main purpose of the experiments in this section is to evaluate the three approxima-
tions. Meanwhile we try to seek numerical evidence for the above discussion on the choice
of an economically adequate approximation. The following experiments are carried out in
three settings to generate test cases. We start with a setting to get a general review of the
approximations for a fairly wide range of system parameters. This setting also conveniently
serves as a cross validation for our implementations of the analytical computation and the
simulation. Then we proceed to an interesting extreme setting for which we are able give a
high contrast demonstration of the approximation quality. Finally we return to our motivating
application and test the approximations for several series of realistic system parameters.

5.1 The wide setting

The test cases in this setting are generated as follows. We fix μA = 1 (so that η = mB ) and
λA = μA.1 Then we vary both μB and the supply-demand ratio of PIS B ρB = λB/μB in
{2i ; i = −2, . . . , 2}. Thus we obtain 25 test cases in total.

The side-by-side comparison of M3A and simulation is reported in Table 1. We do not
list the perishing rate (�) since it is computed in terms of the demand lost rate (m).

We make the following observations from a close examination of Table 1. First, the wide
coverage of these 25 test cases is evident by the ranges of η (from nearly 0 to 3.04), c2U (from
0.1 to 2.67) and the size of thematrix T (from 2 to 20). Second, the precision is extraordinarily
high. The absolute differences between the values by M3A and by simulation are in the scale
of 10−4. Hence M3A is remarkably accurate in this setting. Third, performance evaluation
byM3A is efficient. For all cases, it takes merely several milliseconds on an ordinary desktop
computer, which makes M3A accessible for evaluation-intensive optimization procedures.

On the other hand, EA (even PA) also performs reasonably well in this setting. Table 2
illustrates the relative errors. The outcome can be mostly explained by our intuitive rationale
about the relation between η, c2U and the approximation error. For example, a comparison
between Case λB = 2, μB = 4 and Case λB = 4, μB = 2 reveals the influence of η;
a comparison between Case λB = 0.25, μB = 1, Case λB = 0.5, μB = 1 and Case
λB = 4, μB = 4 reveals the influence of c2U . The top three errors of PA indeed involve large
η and/or c2U . For the remaining 22 cases, the error of PA is less than 4%. This observation
motivates the next setting where we shall see the effort for a refined approximation is well
paid off.

5.2 The extreme setting

Here we consider an interpretation of our PIS A/B model as follows. Let us think of A and B
as two quality grades of a product with shelf life, say, one month. A customer who demands
a grade B product will always be willing to accept a grade A (which is a higher grade)

1 The choice of an originally balanced PIS A is somewhat arbitrary. A simple reason is that in general a
balanced system is more sensitive to perturbations than an imbalanced one.
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Table 1 M3A versus simulation

Rate,
supply B

Rate,
demand
B

Rate,
subs.

SCV
(ON)

n (PH) Stock level A Rate, demand lost Sim.time (S)

M3A Sim. M3A Sim.

0.0625 0.25 0.24 0.10 20 0.6974 0.6975 0.6543 0.6541 12.26

0.125 0.5 0.45 0.21 11 0.6523 0.6524 0.8065 0.8064 13.90

0.25 1 0.85 0.41 7 0.5782 0.5783 1.1116 1.1117 16.76

0.5 2 1.59 0.78 5 0.4695 0.4695 1.7424 1.7426 22.00

1 4 3.04 1.29 2 0.3336 0.3335 3.1001 3.0996 32.16

0.125 0.25 0.22 0.12 12 0.7002 0.7004 0.6458 0.6456 13.14

0.25 0.5 0.41 0.25 8 0.6616 0.6617 0.7763 0.7763 15.21

0.5 1 0.72 0.50 5 0.6042 0.6043 1.0119 1.0120 19.25

1 2 1.23 0.97 4 0.5288 0.5290 1.4414 1.4420 26.80

2 4 2.15 1.77 2 0.4360 0.4359 2.2871 2.2871 40.70

0.25 0.25 0.20 0.17 8 0.7055 0.7056 0.6301 0.6300 17.73

0.5 0.5 0.33 0.33 5 0.6778 0.6779 0.7238 0.7238 17.73

1 1 0.50 0.67 4 0.6474 0.6475 0.8516 0.8517 23.86

2 2 0.67 1.33 2 0.6256 0.6255 0.9970 0.9971 35.02

4 4 0.80 2.67 2 0.6204 0.6205 1.1334 1.1332 55.79

0.5 0.25 0.16 0.25 6 0.7145 0.7146 0.6034 0.6033 16.96

1 0.5 0.22 0.50 4 0.7027 0.7028 0.6448 0.6448 22.32

2 1 0.23 0.97 4 0.7030 0.7031 0.6549 0.6551 32.39

4 2 0.15 1.77 2 0.7216 0.7217 0.6035 0.6035 51.09

8 4 0.04 2.66 2 0.7432 0.7433 0.5272 0.5271 87.08

1 0.25 0.10 0.41 4 0.7276 0.7277 0.5648 0.5647 21.56

2 0.5 0.09 0.78 2 0.7306 0.7306 0.5582 0.5581 30.85

4 1 0.04 1.29 2 0.7420 0.7420 0.5253 0.5252 48.47

8 2 0.00 1.63 2 0.7492 0.7493 0.5025 0.5024 82.80

16 4 0.00 1.67 2 0.7500 0.7501 0.5000 0.4999 149.97

The length of the 99 % confidence intervals (CI-99) of all simulation estimates are in the scale of 10−4

The M3A computation times are several milliseconds (λA = μA = 1)

product but never the other way around. For certain reasons, we regard all customers equally
important and decide to satisfy any demand whenever it is possible. Now suppose grade B
product is a “fast mover”, a product of high supply and demand rates, say, thousands of units
per month; grade A product is a “slow mover”, a product of low supply and demand rates,
say, tens of units per month. An interesting case arises if PIS B is balanced, i.e., the supply
rate equals the demand rate. In this case a shortage of grade B product can be quite unlikely.
For example, if λB = μB = 1000, then for a long term the probability of shortage is less than
0.1%. However, such an event is not too unlikely to be negligible for PIS A. For example, if
μA = 9, then the substitution demand amounts to almost 10% of the total demand of PIS A.
Whenever a shortage of grade B product happens, PIS A bears a billowing surge of demands.
This hints at a high variability in the superposition demand process of PIS A, for which we
would expect a high contrast in accuracies of the three approximations.
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Table 3 M3A versus simulation

Rate,
supply B

Rate,
demand B

Rate,
subs.

SCV
(ON)

n (PH) Stock level A Rate, demand lost Sim.
time (S)

M3A Sim. M3A Sim.

0.25 0.25 0.20 0.17 8 0.7055 0.7056 0.6301 0.6300 14.45

0.5 0.5 0.33 0.33 5 0.6778 0.6779 0.7238 0.7238 17.73

1 1 0.50 0.67 4 0.6474 0.6475 0.8516 0.8517 23.97

2 2 0.67 1.33 2 0.6256 0.6255 0.9970 0.9971 35.24

4 4 0.80 2.67 2 0.6204 0.6205 1.1334 1.1332 56.01

8 8 0.89 5.33 2 0.6294 0.6313 1.2423 1.2437 94.84

16 16 0.94 10.67 2 0.6432 0.6508 1.3181 1.3247 169.97

32 32 0.97 21.33 2 0.6549 0.6716 1.3652 1.3806 318.95

64 64 0.98 42.67 2 0.6626 0.6905 1.3919 1.4185 617.31

128 128 0.99 85.33 2 0.6670 0.7058 1.4063 1.4437 1210.82

The length of CI-99 of all simulation estimates are in the scale of 10−4, except for demand lost rate in the last
5 cases, where the lengths are in the scale of 10−3

The M3A computation times are several milliseconds (λA = μA = 1)

We generate 10 test cases as follows. We fix λA = μA = 1, balance supply and demand
for PIS B, then vary μB in {2i ; i = −2, . . . , 7}.

The side-by-side comparison of M3A and simulation is reported in Table 3. Figure 3
illustrates the relative errors for all three approximations. As we expect, the errors increase
as η and c2U increase simultaneously.We can clearly see that among the three approximations,
M3A is the most accurate while PA is the least. The experiment in this setting also reveals a
limitation of our approach. Here we record an error slightly higher than 5% for the average
stock level evaluated by M3A. If we keep increasing μB , then the accuracy of M3A may
eventually become insufficient. This observation suggests a direction of further investigation
in heavy-tailed traffic queueing systems for alternatives.

Another observation is that our approximations apparently tend to under-estimate the
average stock level and the demand lost rate.

5.3 The realistic setting

In this setting, we start from (λA = 25, μA = 20, μB = 30, λB = 40), which is supposedly
close to the reality of our motivating blood bank application. We try to see the influence of
substitution, as well as the relation between system parameters and performance.We generate
five series of parameters as follows.

(a) Vary each parameter of the four, so that the supply-demand ratio for the corresponding
system (PISA or B) varies within the interval [0.5, 1.5]. This results in four series, named
λA-series, μA-series, etc. For example, the λA-series is generated by varying λA from 10
to 30.

(b) Vary the shelf life parameter (b) within the interval [1, 2]. This results in one series,
named b-series.

For λA-, μA- and b-series, we expect hardly any accuracy difference between the three
approximations. All of them should be quite accurate, since the influence of PIS B on PIS A
is negligible in all cases (the largest η being in the scale of 10−5). Our expectation is indeed
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Fig. 3 Relative errors, λA = μA = 1

verified by the outcome. More interesting results from the test series are shown in Fig. 4.
The performance of PIS A is sensitive to the varying parameter when the supply-demand
ratio of PIS B is in the range of 0.5 to 1. Also in this region, accuracy difference among the
approximations is observed. The accuracy of M3A is superior.
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Fig. 4 Approximations vs. simulation, λB -series (μB = 30) and μB -series (λB = 40), λA = 25, μA = 20

6 Summary and further research

In this studywe introduce a prototypePISwith random input.As far as is known to the authors,
such inventory models that are subject to one way substitution have never been introduced in
the operations research literature. Accordingly, due to the intricateness of the model we have
focused mainly on the first part of the problem, namely, on the performance analysis part of
the stochastic model. It appears that even if the demand processes of type A and of type B are
independent Poisson processes the total demand arrival process into PISA is neither a Poisson
process nor a renewal process. We suggest a methodology based on a certain approximation
for the analysis of PIS A. The Laplace transform of the ON period can be found. Thus, the
moments of the ON periods can be obtained by taking derivatives at 0. Our approach is based
on the idea that the lawof theONperiod can be approximated byphase-type (PH) distributions
that have the samemoments as those of the original distribution of the ON period. Intuitively,
as the fitness between the moments increases, the approximation improves. The drawback of
our approach is the fact that, theoretically, moments do not determine the distribution. For
that reason, we are unable to compute bounds to that approximation. However, practically
and intuitively, the higher fitness among the moments the better approximation is obtained.

The model can be extended in several directions, which are left for further research:

• In the current study we focus only on the marginal analysis of PIS A. The joint analysis
of PIS A and PIS B is completely forsaken.

• In practice, there aremore than two types of blood.As a result,more complicated relations
than a one way substitution exist.
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• Both the item and the demand arrival processes are assumed to be Poisson processes.
This assumption can be extended to arrival processes in a random environment. Namely,
it is known that demands for blood portions are subject to changes due to disasters such
as tsunami, earthquake, terror attack, and so on.

• The demand arrival rate can be controlled by increasing the publicity according to the
state of the content level.

• Considering optimization, where the decision variables are the arrival rate, the demand
rate and the shelf life of the items.
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