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Abstract

We study the strategic purchasing of priorities in a time-dependent accumu-
lating priority M/G/1 queue. We formulate a non-cooperative game in which
customers purchase priority coefficients with the goal of reducing waiting costs
in exchange. The priority of each customer in the queue is a linear function
of the individual waiting time, with the purchased coefficient being the slope.
The unique pure Nash equilibrium is solved explicitly for the case with ho-
mogeneous customers. A general characterisation of the Nash equilibrium is
provided for the heterogeneous case. It is shown that both avoid the crowd
and follow the crowd behaviours are prevalent, within class types and between
them. We further present a pricing mechanism that ensures the order of the
accumulating priority rates in equilibrium follows a Cµ type rule and improves
overall efficiency.

1 Introduction

Service systems are often required to serve customers with heterogeneous character-
istics, such as arrival rates, service demand, and waiting time sensitivity. A standard
practice to address heterogeneity is incorporating priorities into the service regime.
The most common priority regime is absolute priority in which customers are assigned
priority and are admitted to service only when there is no higher priority customer in
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the queue. While it can be optimal in the sense of minimizing expected waiting times,
when applying the well known Cµ rule, the major shortcoming of this regime is that it
can lead to very high expected waiting times for low priority customers. This may be
undesirable if the system seeks to achieve some “fairness” objective too. Furthermore,
in healthcare systems the condition of the patients may deteriorate while they wait.
A possible modification of this regime is to allow customers to accumulate priority
while waiting in the queue at varying rates, determined by their priority class (see
[11]). Our work introduces an economic analysis of an Accumulating Priority (AP)
Queue, in which customers purchase their linear rates of accumulation.

We consider an unobservable M/G/1 queue with a non-preemptive AP regime.
There is a discrete number of customer types, who may differ in their arrival rates,
service distributions and linear waiting costs. Upon arrival every customer purchases
a linear AP coefficient, referred to as a bid, knowing her own type but not the system
state. All customers share the belief that the system is in steady state upon their
arrival. This results in a non-cooperative game, and our goal is to characterise and
analyse its Nash equilibrium. We explicitly compute the unique symmetric equilib-
rium when all customers have the same waiting costs, but not necessarily the same
service distribution. It is further shown that both avoid the crowd (ATC) and follow
the crowd (FTC) behaviours are possible for different bidding levels. We then proceed
to a characterisation of the symmetric (within type classes) equilibrium in the gen-
eral case. The equilibrium is pure and given by a solution to a system of non-linear
equations that can be represented by two recursive formulas for the expected waiting
times that need to be satisfied simultaneously. We show that ATC and FTC between
class types are both possible for different bidding levels. The order of the bids in
equilibrium is determined by the waiting time costs, and not the service moments.
This may potentially yield very far from optimal results in terms of expected waiting
times. We therefore suggest a simple service time based pricing mechanism in order to
achieve a balance between the AP regime constraint and the socially optimal absolute
priority regime.

The accumulating priority regime was introduced for the M/M/1 queue by Klein-
rock in [11], with a more detailed analysis (for the M/G/1 queue) in the context of
other priority regimes later appearing in p126 of [12]. The main result was a recursive
formula for the expected waiting times of the different priority classes. Note that it
was then referred to as the time-dependent priority regime, but this has been used in
other contexts over the years so we use instead the terminology of Stanford et al. in
[19]. The latter work presented a rigorous analysis of the waiting time distributions
of the different classes via their Laplace transforms. A multi-server extension was
studied by Sharif et al. in [18] with the additional assumption of exponential ser-
vice times. Several works provided extensions and generalizations of the mean value
analysis for non-linear AP rates: power law [13], affine [5], concave [15], and negative
linear [10]. When departing from the linear model there are no longer any closed form
solutions for the expected waiting times.
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Analysis of the social optimization problem for absolute priorities can also be
found in p135 of Kleinrock [12]. Balachandran [2] showed that “stable”, in a game
equilibrium sense, purchasing of absolute priority is not socially optimal. Glazer and
Hassin provided explicit analysis of this model in [4]. Haviv and van der Wal in [9]
studied the game of purchasing priorities in an M/M/1 queue for two related regimes,
namely relative priority and random order that are both determined by the customer
bids. Mendelson and Whang suggested an incentive compatible pricing mechanism
for the purchasing of absolute priorities in [14]. Hassin [6] analysed the decentralized
regulation of an absolute priority queue in which customers have the option of balking,
on top of the purchasing of priorities. In [1], Afèche and Mendelson presented a general
model with dependent service and delay valuations, and analysed the optimal pricing
mechanism for both preemptive and non-preemptive absolute priority regimes. Our
work makes a contribution to this body of knowledge in the context of a dynamic
priority queueing regime.

2 Queueing model and preliminaries

Suppose N ∈ N+ types of customers arrive to a single server queue according to
independent Poisson processes with rates λi for i = 1, . . . , N , such that λ :=

∑N

i=1 λi.
We assume that the service time of any type i = 1 . . . , N customer is a random
variable Xi ∼ Gi (independent of all other service and arrival times), where Gi is
some general cdf. Further denote the k’th moment of the service time by xk

i := EXk
i

for i = 1, . . . , N . Customers are assigned an accumulating priority (AP) rate bi for
every unit of waiting time according to their class type, i = 1, . . . , N . Without loss of
generality we assume b1 ≤ b2 ≤ · · · ≤ bN . The AP at time t of a type i customer who
arrived at time s, s ≤ t, is bi(t − s). Upon a service completion, if the queue is not
empty then the server admits the customer with the highest accumulated priority,
and completes her service without preemption. An example of the dynamics of the
accumulating priority regime is illustrated in Figure 1. If bi = b, ∀i = 1, . . . , N , then
clearly the queue is a standard First-Come First-Served (FCFS ) M/G/1.
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Figure 1: Example of the priority evolution for a type 1 customer arriving at t = 0
(solid red), and a type 2 customer arriving at t = 1 (dashed blue), with coefficients
b1 = 0.5 and b2 = 1, respectively. At any time t < 2 the type 1 customer has higher
priority than the type 2 customer, but from t = 2 and on she has lower priority and
will effectively be overtaken.

Let Wi be the stationary waiting time of a type i = 1 . . . , N customer, excluding
service, and denote Wi := EWi. We assume the stability condition ρ :=

∑N

i=1 ρi < 1,
where ρi := λixi. Hence, from p131 of Kleinrock [12], the expected waiting times
satisfy the recursive formula,

Wi =

W0

(1−ρ)
−∑i−1

k=1 ρk(1− bk
bi
)Wk

1−∑N

k=i ρk(1− bi
bk
)

, 1 ≤ i ≤ N, (1)

where W0 =
∑N

i=1
ρix2

i

2xi
is the expected residual service of the customer in service.

This formula allows for an easy computation of the expected waiting times given the
AP rates b1, . . . , bN .

In order to introduce economic analysis we assume that customers are sensitive
to waiting in the queue. Specifically, customers of type i = 1, . . . , N incur a cost of
Ci > 0 per unit of time in the queue (not including service). The cost parameter may
be homogeneous for all customers or may depend on their type, and we will analyse
both scenarios.

For the game analysis in the following sections it will be useful to consider a
straightforward generalization of (1). Specifically, the case where every arriving type
i = 1, . . . , N customer is independently assigned a priority parameter according to a
r.v. Bi ∼ Fi. To avoid technicalities we make a standard assumption on the priority
rate distribution. We then proceed to analyse the general properties of the expected
waiting times, namely continuity and convexity with respect to a single AP coefficient.
We denote the expected waiting time of a customer with realised AP rate a, given
the profile of distributions F = {Fi, i = 1, . . . , N}, by W(a;F). Take note that this
expectation is not dependent on the type of the customer.

Assumption 2.1 The priorities are strictly positive, F (0) = 0, and F is comprised
of a countable collection of atoms and continuous intervals with a positive density.
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Lemma 2.2 Let F = {Fi, i = 1, . . . , N} such that Fi satisfies Assumption 2.1 for
all i = 1, . . . , N .

1. The expected waiting time of a customer with an AP rate of a satisfies:

W(a;F) =

W0

1−ρ
−∑N

i=1

∫ a

0
ρiW(b;F)

(

1− b
a

)

dFi(b)

1−∑N

i=1

∫∞
a

ρi
(

1− a
b

)

dFi(b)
. (2)

2. W(a;F) and d
da
W(a;F) are continuous with respect to a.

3. W(a;F) is decreasing and strictly convex with respect to a.

We leave the proof of this generalization for the appendix. Observe that the original
discrete formulation of (1) is a special case, where Fi(a) = 1{a≥bi}, ∀i = 1, . . . , N .
The importance of Lemma 2.2 is that if customers have linear waiting costs, then
the cost function they wish to minimize (given F) is strictly convex with well defined
first-order conditions with respect to their individual AP rate, denoted here by a.
Note that the lemma and the above conclusion also hold for a continuum of customer
types with any joint distribution of service and AP rates.

3 Purchasing priorities

The question now is what if customers have to pay for their AP rates instead of
having them exogenously assigned? To answer this question we formulate a game in
which customers with linear waiting sensitivity can purchase priorities. We assume
that there are N customer types with linear waiting costs per unit of time, C1 <
C2 < · · · < CN . An individual customer’s action is a bid b > 0 for priority rate given
her type. Apart from the knowledge of one’s type we assume all customers share
the distributional belief of the process being in steady state. A mixed strategy is a
probability distribution on the non-negative real values. A symmetric (within classes)
strategy profile is a set of distributions, F = {Fi, i = 1, . . . , N}, specifying a single
bidding strategy for every type of customer. The cost incurred by a type i customer
paying b given that all other customers pay according to F is

ci(b;F) := CiW(b;F) + b, i = 1, . . . , N. (3)

A symmetric strategy profile F is a Nash equilibrium if Fi is a best response to
F for any customer of type i = 1, . . . , N . We will next assert that an equilibrium
exists, and further that any equilibrium is pure. The existence is verified using the
conditions of Kakutani’s Fixed-Point Theorem. The fact that the equilibrium is in
pure strategies is due to the the strict convexity of the waiting cost with respect to a
customer’s bid.
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According to Lemma 2.2, the waiting time of any customer is decreasing and
strictly convex with her own AP rate. This means that the cost function given by
(3) is strictly convex, and therefore has a unique minimizer b > 0 for any strategy
profile F of the other customers. In particular, any equilibrium point is pure as by
definition as all customers are playing a cost minimizing strategy. Thus, from now
on we focus on pure strategy profiles given by b = (b1, . . . , bN) ∈ RN , where bi is a
deterministic action for i = 1, . . . , N . Let ri(b) be the best response of a customer of
type i to strategy profile b.

Definition 3.1 A pure strategy profile be is a symmetric Nash equilibrium if

bei = ri(b
e), ∀ i = 1, . . . , N.

The game is non-atomic in the sense that the action of a single customer has no
impact on the steady-state properties of the system. This implies that all individual
customers of the same type face the same cost function, and therefore also have the
same unique best response. Hence, any equilibrium is symmetric (within type classes)
and we do not lose generality by considering only symmetric strategy profiles. Also,
note that no customer will bid higher than

bi := Ci

λx2 + 2(1− ρ)x

2(1− ρ)2
, i = 1, . . . , N,

which is the waiting cost incurred by customer with cost Ci with absolute zero priority
(see [8] pp. 60). We can therefore limit the actions of the customers to the compact
and convex action space given by the Cartesian product,

B :=
N
∏

i=1

[0, bi] ⊂ R

N .

As we have already stated, the best response function r(b) := {ri(b), i =
1, . . . , N} returns a unique value for each coordinate, hence r(b) ∈ RN is trivially a
convex set for any b. Finally, r also has a closed graph. This can be argued in two
steps: first of all, the convexity of the cost function (part 3 of Lemma 2.2) implies
that the best response function is given by the first-order conditions, secondly the
first-order conditions are continuous (part 2 of Lemma 2.2). To summarize:

• B ⊂ R

N is a compact and closed set.

• r(b) is a convex set for any b ∈ B.

• r : B → B has a closed graph.

We have thus established that the existence conditions of Kakutani’s Fixed-Point
Theorem (see [16]), yielding the following general existence Lemma for our model.

Lemma 3.2 There exists a (within class) symmetric pure strategy equilibrium.
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4 Homogeneous customers

We now assume that there is only a single customer type, i.e. N = 1, the total arrival
rate is λ, the service distribution is G, and all customers incur waiting cost C per
unit of time in the queue.

Theorem 4.1 If N = 1, then the unique pure Nash equilibrium bid is

be =
CρW0

1− ρ
. (4)

In particular, the resulting queueing process is that of a FCFS regime where all cus-
tomers incur a cost of C(1 + ρ)W0

1−ρ
.

Proof We commence by analysing the best response of a single customer when all
other customers make the same bid b. If the customer bids a then we can use (1) for
N = 2, with arrival rates zero (for the tagged customer) and λ (for all others), to
obtain her expected waiting time,

W(a; b) =































W0

1−ρ
b

(1−ρ)b+ρa
, a < b,

W0

1−ρ
, a = b,

W0

1−ρ

(1−ρ)a+ρb

a
, a > b.

The derivative of the waiting time with respect to a for a 6= b is then

d

da
W(a; b) =















−W0

1−ρ

ρb

((1−ρ)b+ρa)2
, a < b,

−W0

1−ρ

ρb

a2
, a > b.

(5)

It is easy to verify directly that the second derivative is positive in both cases, but
this is not necessary as convexity was generally established in Lemma 2.2. Further-
more, it was shown that the derivative is continuous, hence by (5) we have that

lim
a↑b

d

da
W(a; b) = lim

a↓b

d

da
W(a; b) = − ρW0

(1− ρ)b
. (6)

The cost minimizing bid is given by the first-order condition, d
da
c(a; b) = 0, where

c(a; b) := CW(a; b)+a. The best response, r(b) = {a : d
da
c(a; b) = 0}, can be obtained

for a < b and a > b by solving the respective constrained quadratic equations, however
it is not necessary for finding the equilibrium value of b. We are interested in the
fixed point be = r(be), and from (6) we get the equilibrium bid in (4). Therefore, all
customers bidding be and incurring a cost of C(1+ ρ)W0

1−ρ
is the unique equilibrium of

the game.
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Remark 4.2 The equilibrium remains unchanged even if customers are heteroge-
neous in their service time distributions. That is, the general model with λi and Gi

for i = 1, . . . , N , and homogeneous costs Ci = C. This is due to the non-preemptive
regime which implies that the waiting time in the queue is not affected by one’s own
service time.

We next proceed to highlight an interesting feature of this game, namely the non-
monotone behaviour of the best-response function, r(b) := argmina>0 c(a; b). The
game is said to satisfy the avoid the crowd (ATC) property or follow the crowd
(FTC) property if r(b) is monotone decreasing or increasing, respectively (see p6 of
[7]). We show that our game is neither ATC or FTC, but rather displays monotone
increasing behaviour for b ≤ b̃ and monotone decreasing behaviour for b > b̃ where

b̃ := be max
{

1, 1
4(1−ρ)2

}

. We formally characterise the best response function and

ATC/FTC behaviour in the following proposition. We assume that b > 0 and later
comment on the case b = 0.

Proposition 4.3 If all customers bid b > 0 then

r(b) =































√
beb, 0 < b < be,

√
beb−(1−ρ)b

ρ
, be ≤ b < be

(1−ρ)2
,

0, b ≥ be

(1−ρ)2
.

(7)

Moreover, if ρ ≤ 1
2
then

• r(b) is monotone increasing (FTC) for 0 < b < be,

• r(b) is monotone decreasing (ATC) for be < b < be/(1− ρ)2,

and if ρ > 1
2
, then

• r(b) is monotone increasing (FTC) for 0 < b < be/(4(1− ρ)2),

• r(b) is monotone decreasing (ATC) for be/(4(1− ρ)2) < b < be/(1− ρ)2.

Observe that be < be/(4(1− ρ)2). Finally, r(b) = 0 for b > be/(1− ρ)2.

Proof If all customers make bid b > 0 then from Lemma 2.2 we have that there is
a unique solution to the first-order condition d

da
c(a; b) = 0. In (5) we saw that the

condition is different for a < b and a > b:

1 = beb
((1−ρ)b+ρa)2

, a < b,

1 = beb
a2

, a > b.
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If b < be then the second equation has a solution a such that b < a < be. By the
convexity property we have that there is only one solution, and therefore if there is a
solution to the second equation then the first equation does not have a solution, and
vice versa. If b > be then there is no solution to the second equation and the best
response is either the solution to the first equation or zero. Simple algebra yields (7).
By taking derivative of r(b) w.r.t. b and comparing to zero we get the remainder of
the proposition.

Figure 2 illustrates the shape of the best response function for two numerical
examples. In the left-hand side example we set ρ = 1

2
and the FTC changes to ATC

at be exactly. In the right-hand side example we set ρ > 1
2
and the change occurs

after be. Queueing games with FTC behaviour often have multiple pure equilibria,
but we have shown that for our model the equilibrium is nevertheless unique. The
fact that at some point the best response function becomes ATC is one reason for
this. An additional feature of this model is that there is a discontinuity at zero,
which prevents the strategy of all bidding zero from being an equilibrium point. If
all customers bid zero then a singled out user will always want to bid some, as small
as possible, ǫ > 0 and get absolute priority. Note that all bidding zero is socially
optimal since the customers are homogeneous. This implies that our model displays
the common phenomenon of rent-dissipation (see p85 of [7]).

b

r(b)

0 0.5 1 2
0

0.5

be = 0.5

(a) ρ = 0.5

b

r(b)

0 0.9 2 3 4 5 6
0

0.5

0.9

be = 0.9

(b) ρ = 0.6

Figure 2: Best response functions for parameters C = 1, x = 1, x2 = 2, and two
different levels of λ.

It is interesting to compare the equilibrium result we have obtained to those of
Haviv and van der Wal [9]. They also assumed that customers incur a cost of C
per unit of waiting time. Two service regimes were examined: processor sharing of
capacity proportional to the purchased priorities and random admittance with prob-
abilities also proportional to the purchased priorities. In both cases they showed that
the Nash equilibrium is a pure strategy where all customers purchase the same pri-
ority, with bids CW0

µ(1−ρ)(2−ρ)
and CρW0

µ(1−ρ)(2−ρ)
, respectively. Note that effectively, i.e. in
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equilibrium, no customer has any priority over the others in both cases . In partic-
ular, the first model results in the FCFS regime while the second in the Egalitarian
Processer Sharing (EPS) regime. We can conclude that the equilibrium bid under
the AP regime, CρW0

µ(1−ρ)
, is higher than that of the relative priority regime, but may be

either higher or lower than under the PS regime, depending on the value of ρ.

5 Heterogeneous customers

We now return to the general model in which there are N types of customers with
arrival rates λi and service distributions Gi, for every i = 1, . . . , N . As before,
we denote the expected waiting time of a customer bidding a while all others bid
according to b = (b1, . . . , bN) (i.e., each class has a respective bid) by W(a;b). A
customer of type i has a waiting cost of Ci, and wishes to minimize CiW(a;b) + a,
where b is the profile being used by all other customers. We seek the Nash equilibrium
strategy profile be := (be1, . . . , b

e
N ).

Recall that according to Lemma 2.2 there is a unique best response for any cus-
tomer to the strategies of other customers. Furthermore, this best response is identical
for all non-atomic customers of the same type. This implies that any equilibrium pro-
file is pure and symmetric within the classes of types, as was discussed in Section 3.
The expected waiting time of a customer bidding a when all other users bid according
to profile b, regardless of her type, is given by (1):

W(a,b) =

W0

(1−ρ)
−∑{k:bk<a} ρk(1− bk

a
)W(bk,b)

1−∑{k:bk≥a} ρk(1− a
bk
)

, (8)

Lemma 5.1 If C1 < C2 < · · · < CN , then the equilibrium bids are ordered:

be1 < be2 < · · · < beN .

Proof Assume that b is an equilibrium strategy profile such that bi > bj for some
i < j. From Lemma 2.2 we know that the best response bid to any strategy profile
is unique. In equilibrium, for any single customer of type i the cost of increasing her
bid from bj to bi is smaller than the corresponding reduction in waiting cost, i.e.,

bi − bj < Ci (W(bj ;b)−W(bi;b)) .

But since Ci < Cj, for any single customer of type j we also have that

bi − bj < Cj (W(bj ;b)−W(bi;b)) ,

which contradicts the assumption that bj is a best response for a type j customer.
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The implications of Lemma 5.1 are not merely technical, as they highlight the fact
that the equilibrium order of priorities is determined solely by the order of the costs
(Ci, i = 1, . . . , N) and not by the expected service times (xi, i = 1, . . . , N). This
can come at a considerable cost in terms of social welfare when classes with higher
waiting costs also have higher expected service times. We will elaborate on this issue
in the sequel.

Suppose that all customers pay according to an ordered bidding profile b. The
necessary conditions of the equilibrium are obtained as follows:

1. The unique best response, a, to b of a singled out customer of type i = 1, . . . , N
is given by the first-order condition, Ci

d
da
W(a;b) + 1 = 0.

2. The symmetric best response, ai, to b−i for all customers of type i is given by
Ci

d
da
W(ai;b−i ∪ ai) + 1 = 0.

3. The Nash equilibrium is given by the simultaneous symmetric best response of
all types i = 1, . . . , N .

The solution to the first-order condition of a singled out user of type i lies in
exactly one of the possible N + 1 intervals defining (8). Suppose that the solution
is one such that a ∈ (bi−1, bi), which is sufficient for equilibrium analysis in light of
Lemma 5.1. By taking derivative of (8) we have that for a ∈ (bi−1, bi),

d
da
W(a;b)

equals

−
∑i−1

k=1 ρk
bk
a2

(

1−∑N

k=i ρk

(

1− a
bk

))

+
∑N

k=i
ρk
bk

(

W0

1−ρ
−∑i−1

k=1 ρk
(

1− bk
a
W(bk;b)

)

)

(

1−∑N

k=i ρk

(

1− a
bk

))2 .

After applying some algebra, the first-order condition for type i is

1−
N
∑

k=i

ρk

(

1− a

bk

)

= Ci

(

1

a2

i−1
∑

k=1

ρkbkW(bk;b) +W(a;b)

N
∑

k=i

ρk
bk

)

.

Plugging in a = bi we derive that the symmetric first-order condition for all type
i customers is W(bi;b) = W̃(bi;b), where

W̃(bi;b) =
1−∑N

k=i ρk

(

1− bi
bk

)

− Ci

b2i

∑i−1
k=1 ρkbkW(bk,b)

Ci

∑N

k=i
ρk
bk

, i = 1, . . . , N. (9)

The above analysis yields the main result of this section.

Theorem 5.2 Any symmetric Nash equilibrium be := {be1, . . . , beN} is ordered in the
same order as the waiting costs, and satisfies

W(bi;b) = W̃(bi;b), ∀i = 1, . . . , N.
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Note that W(bi;b) is given by the recursive expected waiting time solution (1),
and that W̃(bi;b) is also a recursive formula (9) in terms of the expected waiting
times, and thus an equilibrium solution satisfies both recursions simultaneously.

In Figure 3 we illustrate the equilibrium solution for an example with five customer
types. In particular, the expected waiting times and equilibrium bids are calculated.
As the level of utilization grows, all waiting times increase, as expected, and customers
increase their bids as well according to their type.

ρ

bei

0.2 0.4 0.6 0.8 1
0

5

10

(a) Equilibrium bids

ρ

Wi

0.2 0.4 0.6 0.8 1
0
5
10
15
20
25

(b) Expected waiting times

C1 = 0.2 C2 = 0.4 C3 = 0.6 C4 = 0.8 C5 = 1

Figure 3: Equilibrium bids and waiting times for increasing values of ρ. The other
parameters are fixed at N = 5, x = 1, x2 = 2, and λi

λ
∈ (0.2, 0.3, 0.15, 0.25, 0.1).

ρ

bei
be
1

0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

(a) Equilibrium bids

ρ

Wi

W1

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

(b) Expected waiting times

C1 = 0.2 C2 = 0.4 C3 = 0.6 C4 = 0.8 C5 = 1

Figure 4: Ratio of equilibrium bids and waiting times of all classes with respect to
the lowest cost class (

bei
be
1

and Wi

W1

), and increasing values of ρ. The other parameters

are fixed at N = 5, x = 1, x2 = 2, and λi

λ
∈ (0.2, 0.3, 0.15, 0.25, 0.1).

In Figure 4, for the same examples, all equilibrium values are scaled by those of
the lowest priority class (i.e. customers with waiting cost C1). The ratio between
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the bids of the different types decreases with the level of server utilization, while
the ratio between waiting times increases. That is, in a busy system customers with
lower waiting costs spend more on priority purchasing (than in a less busy system),
relative to those with higher waiting costs, but experience relatively longer waiting
times. A possible explanation for this is that in a busy system waiting times are
typically long enough for a lot of overtaking to take place, even if the difference
between accumulation rates is small.

We now wish to dig a bit deeper into the equilibrium properties. It is of interest
to study the behaviour of the best response functions determined by the first-order
conditions of Theorem 5.2. We will show a within class analogue of the alternating
ATC/FTC phenomena occurs that was discussed in Section 4.

Proposition 5.3 Let b0 = 0 and bN+1 = bN . For any ordered b the following prop-
erties are satisfied for i = 1, . . . , N :

1. W̃(bi;b) is monotone increasing with respect to bi ∈ (bi−1, bi+1).

2. W̃(bi;b) is monotone decreasing with respect to bj ∈ (bj−1, bj+1), for any j < i.

3. W̃(bi;b) is not necessarily monotone in any direction with respect to bj ∈
(bj−1, bj+1), for any j > i.

We leave this proof for the appendix. Clearly, the waiting W(bi;b) decreases with
respect to bi but increases with respect to bj such that j 6= i. Therefore, if W̃(bi;b)
increases (decreases) with bj then bi must be increased (decreased) as well to maintain
the first-order condition. Proposition 5.3 yields the following corollaries.

Corollary 5.4 If b is ordered and all bj such that j 6= i are kept constant then there is
at most one solution bi ∈ [bi−1, bi+1] to the equilibrium condition W(bi;b) = W̃(bi;b).

Corollary 5.4 implies that a simple bisection can be used in order to numerically
compute the symmetric best response of any single class given the strategy of the
others. The next question we wish to address is how does this best response behave
when the strategies of other types are changed.

Let b−i denote an ordered profile of all customers excluding type i, and denote
the solution set, which is either empty or has a single element, by

bi(b) := {bi : W(bi;b−i ∪ bi) = W̃(bi;b−i ∪ bi)}, i = 1, . . . , N.

We can now define a local symmetric best response of type i customers to b−i,

Ri(b−i) :=































bi−1, W(bi−1;b−i ∪ bi) > W̃(bi−1;b−i ∪ bi),

bi(b), bi(b) 6= ∅,

bi+1, W(bi+1;b−i ∪ bi) > W̃(bi+1;b−i ∪ bi).
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Figure 5: Symmetric best response functions for class 3 when moving a single
coordinate from the equilibrium profile, be = (0.28, 1.48, , 1.565, 2.39, 2.69). The
other system parameters are C = (0.2, 0.7, 0.75, 1.25, 1.6), x = (0.35, 0.85, 1, 4.5, 5),
x2 = (2.1, 3.7, 1.5, 21.8, 29), and λ = (0.06, 0.09, 0.04, 0.07, 0.03).

Combining Proposition 5.3 and Corollary 5.4 we get the following result, regarding
the local behaviour of the best response functions for ordered bidding profiles.

Corollary 5.5 If b−i are the ordered bids of all customer types excluding i, then

1. For every i = 1, . . . , N , Ri(b−i) is monotone increasing (FTC) with bj ∈
[bj−1, bj+1] such that j < i.

2. For every i = 1, . . . , N , Ri(b−i) may be increasing or decreasing with bj ∈
[bj−1, bj+1] such that j > i. Thus, it is neither ATC nor FTC.

This non-monotone behaviour is illustrated for a numerical example in Figure 5.
Specifically, the symmetric best response of type 3 customers (R3) is computed when
a single coordinate is changed from the equilibrium solution, for every one of the
other types i ∈ {1, 2, 4, 5}.

This interesting behaviour of the best response functions, together with the non-
explicit recursive form of the first-order conditions makes it a cumbersome task to
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check whether the equilibrium is unique. In particular, verifying that the best re-
sponse correspondence R(b) : RN → R

N is a contraction mapping. The lack of
monotonicity in the first-order conditions implies that there is no submodular form
(as defined in [20]) which can in some cases be used to show uniqueness or to construct
algorithms that converge to equilibrium points (see [22]). We were not able to ana-
lytically verify the general diagonally concave conditions of [17], however numerical
analysis suggests that they indeed hold for this game (with the proper modification
for the non-atomic form). Different numerical methods, such as a naive search on a
discretized grid and a best response iteration, converged to a unique equilibrium for
all instances tested. The authors believe the equilibrium is unique, but this is left as
an open question.

Conjecture 5.6 The Nash equilibrium given by Theorem 5.2 is unique.

6 Regulation and pricing

Suppose now that a central planner can set the priority coefficient for each of the
customer types, with the goal of minimizing average waiting costs. Thus, we are
interested in characterising the profiles

b∗ := argmin
{b∈B}

N
∑

i=1

λiCiWi(bi;b).

If the waiting time sensitivity is linear, then according to the well known Cµ rule
(see for example p69 of [8]), an optimal service regime is one that assigns absolute
priority according to the order of the ratios Ci

1
xi
. If N = 2 this can be achieved by

setting b1 = 0 and b2 > 0. Otherwise, if N > 2 an approximation of optimal regime
can be obtained by a scaling of rates b(n), such that1

b
(n)
i

b
(n)
i−1

n→∞−−−→ ∞, i = 1, . . . , N,

where b
(n)
0 is set to equal an arbitrary positive constant. For example, b

(n)
i = βni

satisfies the condition for any β > 1.
It should be highlighted that the equilibrium can be very far from optimal as the

order of the equilibrium bids is determined solely by the order of the waiting time
costs, regardless of the expected waiting times (see Lemma 5.1). That is, customers
with high waiting time costs and long expected service time will potentially purchase
a much higher priority than what is socially desired.

It seems that the AP service regime may not be appropriate if minimizing linear
waiting costs is the only goal of the central planner. However, it is possible that this is

1This approximation was suggested to us by Binyamin Oz.
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a system constraint, for example for the sake of fairness or if the condition of patients
deteriorates while waiting as in healthcare applications. If this is the case we suggest
a simple pricing mechanism based on [14], that will encourage customers to internalise
at least some of the disutility caused by their service time. The mechanism prices the
AP rate of every customer proportionally to the realised service time. Specifically,
a customer purchasing priority b will pay after receiving service of length x a price
of xb. The cost function of a type i customer, given the profile b used by all other
customers, is then

ci(b;b) = CiW(b;b) + xib, i = 1, . . . , N.

Clearly, this game is equivalent to the original game with cost Ci

xi
for type i cus-

tomers. The equilibrium is therefore given by Theorem 5.2 with the updated cost.
Moreover, from Lemma 5.1 we have the following property for the above pricing
scheme.

Proposition 6.1 If π is an order permutation such that,

Cπ1

xπ1

<
Cπ2

xπ2

< · · · < CπN

xπN

,

then the equilibrium profile be, under the service time pricing, satisfies

beπ1
< beπ2

< · · · < beπN
.

Observe that this pricing scheme requires that the customers know their type, but
the system administrator does not necessarily have to be able to distinguish between
them. If the administrator does know the customer types then simply charging a type
i according to xi and not the realised service time would yield the same result. The
prices need not necessarily be in the unit of the service time, and can be scaled to
any other units by charging a price of αxb for AP rate b, where α > 0 is a constant.
More generally, the price can be non-linear: α(x)b. This can potentially change the
order of the equilibrium bids, for example to take into account the second, or any
other, moment of the service distribution.

16



ρ

∑N
i=1

λiCiWi(bi;b)e
∑N

i=1
λiCiWi(bi;b)∗

0.2 0.4 0.6 0.8 1
1

1.2
1.4
1.6
1.8

(a) x = (1, 2, 0.5, 1.2, 1.5)

ρ

∑N
i=1

λiCiWi(bi;b)e
∑N

i=1
λiCiWi(bi;b)∗

0.2 0.4 0.6 0.8 1
1

1.2
1.4
1.6
1.8
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Figure 6: Ratio between social welfare in the AP equilibrium and under the absolute
Cµ regime, for two different vectors of expected service times. The other parameters
are fixed at N = 5, x2 = (1.36, 5.44, 1.5, 3.75, 5), Ci = (0.2, 0.4, 0.6, 0.8, 1.0), and
λ = (0.16, 0.25, 0.12, 0.21, 0.08).

In Figure 6 the effect of the pricing mechanism on the expected waiting times
in equilibrium is illustrated for two numerical examples. In Figure 6a, the order
of the Cµ rule is completely reversed to that of the waiting costs alone, resulting in
significantly worse results without the pricing scheme (up to∼ 1.8 higher than optimal
without pricing, and up to ∼ 1.2 higher than optimal with pricing). In Figure 6b we
see another example in which expected service times are not homogeneous and the
Cµ order is not achieved in equilibrium, but in a milder manner. In this case the
pricing scheme does not have much impact on the distance from the optimal waiting
times. We can conclude that the pricing scheme is most effective when the order
of costs is not aligned with the Cµ order and the expected service times are very
non-homogeneous.

7 Discussion

This paper has presented and analysed a game of purchasing priorities in an accumu-
lating priority queue. We have shown that if waiting costs are linear then the Nash
equilibrium is in pure strategies, and provided a general characterisation that enables
a computation of the equilibrium bids. Qualitatively, we showed that both ATC
and FTC occur at different bidding levels. If we consider a dynamic play starting
at a non-equilibrium point then sometimes customers will compete and outbid each
other, and sometimes they will do the opposite and bid less in response to higher
bids from others. A numerical analysis shows that in busy systems the customers
with low waiting costs will wait much longer on average in equilibrium, even though
they make similar bids to the “higher” priority customers. Finally, if expected service
times differ among types and are not aligned with the waiting time costs (in a Cµ
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sense) then pricing the AP rates according to realised service times can greatly reduce
the congestion levels in the system.

A natural extension of our model is allowing the cost functions to be non-linear,
which may provide further motivation for applying this type of dynamic priority
regime. This analysis can perhaps be carried out (at least numerically) for some
non-linear functions using the machinery of [19] for the general distribution of the
AP queue. Note that the Cµ order may no longer be optimal, and a pricing scheme
aiming at a generalized Cµ rule, as suggested and shown to be asymptotically optimal
in [21], can be considered.

There are several other interesting game variations that can be studied for the
accumulating priority queue. For instance, customers are exogenously assigned pri-
orities and need to decide whether or not to join. The customers may or may not
observe the queue state upon arrival. Other options are considering a relative priority
(or relative processor sharing) queue, in which the relative priority is accumulated as
the waiting time increases.
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Appendix - proofs

Proof of Lemma 2.2 1. The proof of the recursive waiting time formula (2) fol-
lows the same arguments used in p126-131 of [12] for the discrete case. We
outline the proof without going into all the details. If the AP rate of a singled
out customer is a then her expected waiting is

W(a;F) = W0 + E
N
∑

i=1





Ni(a)
∑

j=1

Xij +

Mi(a)
∑

j=1

Xij





= W0 +

N
∑

i=1

xi(Mi(a) + Ni(a)),

(10)

where W0 is the expected remaining time of the customer in service, Xij is the
service time of the j’th type i customer, Mi(a) is the expected number of type
i customers who will overtake her, and Ni(a) is the expected number of type i
customers who were present in the queue upon her arrival and will be admitted
into service before her. The second equality in (10) requires a more cautious
consideration. The condition for the Wald identity,

E

Mi(a)
∑

j=1

Xij = EMi(a)EXi,

to hold can be stated as (see p158 of [3])

EXm1{Mi(a)≥m} = EXm P(Mi(a) ≥ m), ∀m ≥ 1.

This is indeed correct because the event {Mi(a) ≥ m} simply means that the
m’th arrival of type k has overtaken the tagged customer, and this only depends
on the service times prior to m (recall there is no preemption), and is therefore
independent of Xm. In a similar manner, if we order the customers present in
the queue by their arrival times then the event {Ni(a) ≥ n} does not depend
on Xn, but only on the service times X1, . . . , Xn−1.

If the customer arrived at time 0 and waited for w ≥ 0 time in the queue
then any type i customer with rate b > a that arrived at time t such that
b(w − t) > aw has overtaken her. In other words, all arrivals in the interval
(

0, w
(

1− a
b

))

overtake the tagged customer. The arrival rate of such customers
is λi, hence by the splitting splitting and superposition properties of the Poisson
process and iterating on conditional expectation on the waiting time, we obtain

Mi(a) = λiW(a;F)

∫ ∞

a

(

1− a

b

)

dFi(b), i = 1, . . . , N. (11)
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We are left with computing the number of type i customers in the queue (upon
arrival) that the customer bidding a will not overtake. Clearly she will not over-
take any customers who bid b ≥ a, and the expected number of such customers
is λi

∫∞
a

W(b;F) dFi(b). A customer with priority b < a who arrived at t − s
and waits v time in the queue will still be in the queue if s < v and will not
be overtaken if (v − s)a < vb. Thus, the probability of a customer with rate b
who arrived at t − s being overtaken by the tagged customer who arrived at t
is then

P

(

s < W(b;F) <
a

a− b
s

)

= P (W(b;F) > s)− P

(

W(b;F) >
a

a− b
s

)

.

Again, we use the properties of the Poisson process, namely splitting and su-
perposition, to obtain the expected number of such customers,

λi

∫∞
0

[

P (W(b;F) > s)− P
(

W(b;F) > a
a−b

s
)]

ds dFi(b)

= λi

[

W(b;F)−
(

1− b
a

)

W(b;F)
]

dFi(b) = λiW(b;F) b
a
dFi(b)

.

For detailed analysis and justification of the above computations the reader is
referred to [12] and [19]. By integrating on all customer types we get

Ni(a) = λi

[
∫ a−

0

W(b;F)
b

a
dFi(b) +

∫ ∞

a

W(b;F) dFi(b)

]

, (12)

where a− indicates that the integral does include the atom, dFi(a), if it exists.
Combining (11) and (12) we get

W(a;F) = W0+

N
∑

i=1

ρi

[
∫ a−

0

W(b;F)
b

a
dFi(b) +

∫ ∞

a

(

W(a;F)
(

1− a

b

)

+W(b;F)
)

dFi(b)

]

,

or equivalently

W(a;F) =
W0 +

∑N

i=1 ρi

[

∫ a−
0

W(b;F) b
a
dFi(b) +

∫∞
a

W(b;F) dFi(b)
]

1−∑N

i=1 ρi
∫∞
a

(

1− a
b

)

dFi(b)
.

By the work conservation property we have that

N
∑

i=1

ρi

∫ ∞

a

W(b;F) dFi(b) =
W0ρ

1− ρ
−

N
∑

i=1

ρi

∫ a−

0

W(b;F) dFi(b),

which leads to the general recursive formula (2). Note that a− can be replaced
by a because if there is a point mass at a the value inside the integral is zero.
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Furthermore, since the waiting time is a decreasing function of the bid and
ρ < 1, all above integrals are finite. Specifically, for every i = 1, . . . , N we have

∫ ∞

a

W(b;F) dFi(b) < W(a;F)

∫ ∞

a

dFi(b) < W(a;F) < ∞,

and
∫ ∞

a

(

1− a

b

)

dFi(b) <

∫ ∞

a

dFi(b) < 1.

2. We can rewrite (2) as

W(a,F) =

W0

1−ρ
−∑N

i=1 ρiHi(a)

1−∑N

i=1 ρiJi(a)
,

where

Hi(a) :=

∫ a

0

W(b;F)

(

1− b

a

)

dFi(b)

and

Ji(a) :=

∫ ∞

a

(

1− a

b

)

dFi(b).

The only possible points of discontinuity of Hi(a) and Ji(a) are ones such that
there is a jump in the measure of integration, i.e. a point ã such that Fi(ã−) <
Fi(ã) (and dFi(ã) > 0). Observe however, that in these points the value inside
the integral is zero. Thus, we have established the continuity of W(a,F).

The derivative is continuous at ã such that Fi(ã−) = Fi(ã) for some i = 1, . . . , N
if

lim
a↑ã

d

da
W(a,F) = lim

a↓ã

d

da
W(a,F).

Let H(a) :=
∑N

i=1 ρiHi(a) and J(a) :=
∑N

i=1 ρiJi(a). The first derivative at any
point a such that Fi(a−) = Fi(a), ∀i = 1, . . . , N is

d

da
W(a,F) =

−H ′(a)(1− J(a)) + J ′(a)
(

W0

1−ρ
−H(a)

)

(1− J(a))2

=
W(a,F)J ′(a)−H ′(a)

1− J(a)
.

We have already established that H(a) and J(a) are continuous. Hence, the
denominator is continuous. Moreover, the numerator is continuous if

K(a):=W(a,F)J ′(a)−H ′(a),
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is continuous. With some caution we can apply the derivative chain rule to
both integral terms. Using Assumption 2.1 that F is defined as a combination
of point masses and intervals with positive density we have that

K(a) =

N
∑

i=1

ρi

[

W(a,F)
d

da

∫ ∞

a

(

1− a

b

)

dFi(b)−
d

da

∫ a

0

W(b,F)

(

1− b

a

)

dFi(b)

]

= −
N
∑

i=1

ρi

[
∫ ∞

a

W(a,F)
1

b
dFi(b) +

∫ a

0

b

a2
W(b,F)dFi(b)

]

.

By the right continuity of the cdf we have that at any discontinuity point ã,
the term WF (ã)

1
ã
dF (ã) moves from the left integral to the right integral. Thus,

we can conclude that lima↑ã K(a) = lima↓ã K(a), for any discontinuity point ã.

3. First we observe that K(a) < 0 and therefore W(a;F) is a monotone decreasing
function, as expected. It can further be verified that J ′(a) < 0 and K ′(a) > 0
for all a > 0, hence

d2

da2
W(a;F) =

ρK ′(a)(1− ρJ(a)) +K(a)ρJ ′(a)

(1− ρJ(a))2
> 0.

Therefore the expected waiting time of a single customer is strictly convex with
respect to a change in her own AP rate, regardless of F .

Proof of Proposition 5.3 We prove the monotonicity properties of

W̃(bi;b) =
1−∑N

k=i ρk

(

1− bi
bk

)

− Ci

b2i

∑i−1
k=1 ρkbkW(bk;b)

Ci

∑N

k=i
ρk
bk

, i = 1, . . . , N,

where

W(bi;b) =

W0

(1−ρ)
−∑i−1

k=1 ρk(1− bk
bi
)W(bk;b)

1−∑N

k=i ρk(1− bi
bk
)

, 1 ≤ i ≤ N.

Throughout the proof we assume that b is ordered and only allow changes of single
coordinates that maintain the order, i.e., bi ∈ (bi−1, bi+1) for i = 1, . . . , N .

1. We will first show that W̃(bi;b) is monotone increasing w.r.t. bi. The result is
immediate for i = 1, as the sum in the numerator is empty. For i > 1 it suffices
to show that

1

b2i
W(bj ;b) =

W0

(1−ρ)
−∑j−1

k=1 ρk(1− bk
bj
)W(bk;b)

b2i

(

1−∑N

k=j ρk

)

+
∑N

k=j

bjb
2

i

bk

,

is monotone decreasing w.r.t. bi for all j < i. The denominator clearly increases
with bi. The expected waiting time W(bk;b) increases with any bj such that
j 6= k, and as this is the only element of the numerator dependent on bi we have
that the numerator is decreasing.
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2. Next we will show that W̃(bi;b) decreases with bj if j < i. By taking derivative
we have that

d

dbj
W̃(bi;b) ∝ −ρj

d

dbj
[bjW(bj ;b)]−

∑

{k 6=j,k<i}
ρkbk

d

dbj
W(bk;b).

The sum on the right-hand side is positive because d
dbj

W(bk;b) is positive for

all k 6= j. It therefore remains to be shown that

bjW(bj ;b) =

W0

1−ρ
−∑j−1

k=1

(

1− bk
bj

)

W(bk;b)

1
bj

(

1−∑N

k=j+1 ρk

)

+
∑N

k=j+1
ρk
bk

,

is an increasing function w.r.t. bj . For j = 1 this is clearly true, as the sum in the
numerator is empty. Furthermore, the the convexity of the waiting time implies
that W(bj ;b) is decreasing at a decreasing rate, and hence cannot decrease
faster than bj > b1.

3. The last part of the Lemma is a negative result, that can be verified by examples.
Numerical examples such as those in Figure 2 show that the W̃i can be both
increasing or decreasing with bj such that j > i. Obviously, explicit numbers
can be plugged into the equations for this verification.
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