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Abstract We develop a mixture procedure for multi-sensor systems to mon-
itor data streams for a change-point that causes a gradual degradation to a
subset of the streams. Observations are assumed to be initially normal random
variables with known constant means and variances. After the change-point,
observations in the subset will have increasing or decreasing means. The subset
and the rate-of-changes are unknown. Our procedure uses a mixture statistics,
which assumes that each sensor is affected by the change-point with proba-
bility p0. Analytic expressions are obtained for the average run length (ARL)
and the expected detection delay (EDD) of the mixture procedure, which are
demonstrated to be quite accurate numerically. We establish the asymptotic
optimality of the mixture procedure. Numerical examples demonstrate the
good performance of the proposed procedure. We also discuss an adaptive
mixture procedure using empirical Bayes. This paper extends our earlier work
on detecting an abrupt change-point that causes a mean-shift, by tackling the
challenges posed by the non-stationarity of the slope-change problem.

Keywords statistical quality control · change-point detection · intelligent
systems

1 Introduction

As an enabling component for modern intelligent systems, multi-sensory moni-
toring has been widely deployed for large scale systems, such as manufacturing
systems [2], [8], power systems [16], and biological and chemical threat detec-
tion systems [5]. The sensors acquire a stream of observations, whose distribu-
tion changes when the state of the network is shifted due to an abnormality
or threat. We would like to detect the change online as soon as possible after
it occurs, while controlling the false alarm rate. When the change happens,
typically only a small subset of sensors are affected by the change, which is a
form of sparsity. A mixture statistic which utilizes this sparsity structure of
this problem is presented in [18]. The asymptotic optimality of a related mix-
ture statistic is established in [3]. Extensions and modifications of the mixture
statistic that lead to optimal detection are considered in [1].

In the above references [18,1], the change-point is assumed to cause a shift
in the means of the observations by the affected sensors, which is good for
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modeling an abrupt change. However, in many applications above, the change-
point is an onset of system degradation, which causes a gradual change to the
sensor observations. Often such a gradual change can be well approximated by
a slope change in the means of the observations. One such example is shown
in Fig. 1, where multiple sensors monitor an aircraft engine and each panel of
figure shows the readings of one sensor. At some time a degradation initiates
and causes decreasing or increasing in the means of the observations. Another
example comes from power networks, where there are thousands of sensors
monitoring hundreds of transformers in the network. We would like to detect
the onset of any degradation in real-time and predict the residual life time of
a transformer before it breaks down and causes a major power failure.

In this paper, we present a mixture procedure that detects a change-point
causing a slope change to the means of the observations, which can be a
model for gradual degradations. Assume the observations at each sensor are
i.i.d. normal random variables with constant means. After the change, obser-
vations at the sensors affected by the change-point become normal distributed
with increasing or decreasing means. The subset of sensors that are affected
are unknown. Moreover, their rate-of-changes are also unknown. Our mixture
procedure assumes that each sensor is affected with probability p0 indepen-
dently, which is a guess for the true fraction p of sensors affected. When p0
is small, this captures an empirical fact that typically only a small fraction
of sensors are affected. With such a model, we derive the log-likelihood ra-
tio statistic, which becomes applying a soft-thresholding to the local statistic
at each sensor and then combining the results. The mixture procedure fires
an alarm whenever the statistic exceeds a prescribed threshold. We consider
two versions of the mixture procedure that compute the local sensor statistic
differently: the mixture CUSUM procedure T1, which assumes some nominal
values for the unknown rate-of-change parameters, and the mixture generalized
likelihood ration (GLR) procedure T2, which uses the maximum likelihood es-
timates for these parameters. To characterize the performance of the mixture
procedure, we present theoretical approximations for two commonly used per-
formance metrics, the average run length (ARL) and the expected detection
delay (EDD). Our approximations are shown to be highly accurate numerically
and this is useful in choosing a threshold of the procedure. We also establish
the asymptotic optimality of the mixture procedures. Good performance of
the mixture procedure is demonstrated via real-data examples, including: (1)
detecting a change in the trends of financial time series; (2) predicting the life
of air-craft engines using the Turbofan engine degradation simulation dataset.

The mixture procedure here can be viewed as an extension of our earlier
work on multi-sensor mixture procedure for detecting mean shifts [18]. The
extensions of theoretical approximations to EDD and especially to ARL are
highly non-trivial, because of the non-i.i.d. distributions in the slope change
problem. Moreover, we also establish some new optimality results which were
omitted from [18], by extending the results in [7] and [15] to handle non-
i.i.d. distributions in our setting. In particular, we generalize the theory to a
scenario where the log likelihood ratio grows polynomially as a result of linear
increase or decrease of the mean values, whereas in [18], the log-likelihood ratio
grows linearly. A related recent work [3] studies optimality of the multi-sensor
mixture procedure for i.i.d. observations, but the results therein do not apply
to the slope change case here.

The rest of this paper is organized as follows. Section 2 sets up the for-
malism of the problem. Section 3 presents our mixture procedures for slope
change detection, and Section 4 presents theoretical approximations to its ARL
and EDD, which are validated by numerical examples. Section 5 establishes
the first order asymptotic optimality. Section 6 shows real-data examples. Fi-
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nally, Section 7 presents an extension of the mixture procedure that adaptively
chooses p0. All proofs are delegated to the appendix.

2 Assumptions and formulation

Given N sensors. For the nth sensor n = 1, 2, . . . , N , denote the sequence
of observations by yn,i, i = 1, 2, . . .. Under the hypothesis of no change, the
observations at the nth sensor have a known mean µn and a known variance
σ2
n. Probability and expectation in this case are denoted by P∞ and E∞,

respectively. Alternatively, there exists an unknown change-point that occurs
at time κ, 0 ≤ κ <∞, and it affects an unknown subset A ⊆ {1, 2, . . . , N} of
sensors simultaneously. The fraction of affected sensors is given by p = |A|/N .
For each affected sensor n ∈ A, the mean of the observations yn,t changes
linearly from the change-point time κ + 1 and is given by µn + cn(t − κ)
for all t > κ, and the variance remains σ2

n. For each unaffected sensor, the
distribution stays the same. Here the unknown rate-of-change cn can differ
across sensors and it can be either positive or negative. The probability and
expectation in this case are denoted by PAκ and EAκ , respectively. In particular,
κ = 0 denotes an immediate change occurring at the initial time. The above
setting can formulate as the following hypothesis testing problem:

H0 : yn,i ∼ N (µn, σ
2
n), i = 1, 2, . . . , n = 1, 2, . . . , N,

H1 : yn,i ∼ N (µn, σ
2
n), i = 1, 2, . . . , κ,

yn,i ∼ N (µn + cn(i− κ), σ2
n), i = κ+ 1, κ+ 2, . . . , n ∈ A,

yn,i ∼ N (µn, σ
2
n), i = 1, 2, . . . , n ∈ Ac.

(1)

Our goal is to establish a stopping rule that stops as soon as possible after a
change-point occurs and avoids raising false alarms when there is no change.
We will make these statements more rigorous in Section 4 and Section 5.
Here, for simplicity, we assume that all sensors are affected by the change
simultaneously. This ignores the fact that there can be delays across sensors.
For asynchronous sensors, one possible approach is to adopt the scheme in [4],
which claims a change-point whenever the any sensor detects a change. We
plan investigate the issue of delays in our future work.

A related problem is to detect a change in a linear regression model. One
such example is a change-point in the trend of the stock price illustrated in
Fig. 7(a). This can be casted into a slope change detection problem, if we fit
a linear regression model under H0 (e.g., using historical data) and subtract
it from the sequence. The residuals after the subtraction will have zero means
before the change-point, and their means will increase or decrease linearly after
the change-point.

Remark 1 (Reason for not differencing the signal.) One legitimate question
is that why not de-trending the signal at each sensor by difference, which
may turn the slope change into a mean change problem and we can apply the
standard CUSUM procedure designed for detecting the mean shift. Indeed,
for the affected sensors after the change-point, E[yn,i+1− yn,i] = cn. However,
differencing will also increase the variance, as Var[yn,i+1− yn,i] = 2σ2

n. Hence,
differencing reduces the signal-to-noise ratio and this is particularly bad for
weak signals and makes them even non-detectable. This is validated by real
data as well. Consider the engine data displayed in Fig. 1. The first panel in
Fig. 2 corresponds to observations of one sensor that is affected by noise, which
clearly has the “signal” as the mean is increasing. However, after we difference
the signal, the change is almost invisible, as illustrated. We then try applying
CUSUM on the difference, where the statistic either rises slowly which means
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Fig. 1 Degradation sample paths recorded by 21 sensors, generated by C-MAPSS [11].
A subset of sensors are affected by the change-point, which happens at an unknown time
simultaneously and it causes a change in the slopes of the signals. The change can cause
either an increase or decrease in the means.

it cannot detect quickly. We also try applying CUSUM (designed for mean
change detection) directly on the original signal. Although the statistics rises
reasonably fast; however, clearly this statistic cannot estimate the change-
point location accurately due to its model mismatch. The last panel in Fig. 2
shows our proposed statistic, which can detect the change fairly quickly, and
it can also accurately estimate the change-point location.
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Fig. 2 Engine data displayed in Fig. 1: the first panel corresponds to observations of one
sensor that is affected by noise, which clearly has the “signal” as the mean is increasing.
However, after we difference the signal, the change is almost invisible. Then we compare ap-
plying CUSUM procedure (designed for mean shift) on the original signal, on the difference,
and applying our proposed statistic on the original signal.

3 Detection procedures

Since the observations are independent, for an assumed change-point location
κ = k and an affected sensor n ∈ A, the log-likelihood for observations up to
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time t > k is given by

`n(k, t, cn) =
1

2σ2
n

t∑
i=k+1

[
2cn(yn,i − µn)(i− k)− c2n(i− k)2

]
. (2)

Motived by the mixture procedure in [18] and [14] to exploit an empirical fact
that typically only a subset of sensors are affected by the change-point, we
assume that each sensor is affected with probability p0 ∈ (0, 1] independently.
In this setting, the log likelihood of all N sensors is given by

N∑
n=1

log (1− p0 + p0 exp [`n(k, t, cn)]) . (3)

Using (3), we may derive several change-point detection rules.

Since the rate-of-change cn is unknown, One possibility is to set cn equal
to some nominal post-change value δn and define the stopping rule, referred
to as the mixture CUSUM procedure:

T1 = inf

{
t : max

0≤k<t

N∑
n=1

log (1− p0 + p0 exp[`n(k, t, δn)]) ≥ b

}
, (4)

where b is a threshold typically prescribed to satisfy the average run length
(ARL) requirement (formal definition of ARL is given in Section 4).

Another possibility is to replace cn by its maximum likelihood estimator.
Given the current number of observations t and a putative change-point loca-
tion k, by setting the derivative of the log likelihood function (2) to 0, we may
solve for the maximum likelihood estimator:

ĉn(k, t) =

∑t
i=k+1(i− k)(yn,i − µn)∑t

i=k+1(i− k)2
. (5)

Define τ = t−k to be the number of samples after the change-point k. Denote
the sum of squares from 1 to τ , and the weighted sum of data as, respectively,

Aτ =

τ∑
i=1

i2, Wn,k,t =

t∑
i=k+1

(i− k)(yn,i − µn)/σn.

Let

Un,k,t = (Aτ )
−1/2

Wn,k,t. (6)

Substitution of (5) into (2) gives the log generalized likelihood ratio (GLR)
statistic at each sensor:

`n(k, t, ĉn) = U2
n,k,t/2, (7)

and we define the mixture GLR procedure as

T2 = inf

{
t : max

0≤k<t

N∑
n=1

log
(
1− p0 + p0 exp

[
U2
n,k,t/2

])
≥ b

}
, (8)

where b is a prescribed threshold.
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Fig. 3 Matched filter interpretation of the generalized likelihood ratio statistic at each
sensor Un,k,t = A−1

τ
∑t
i=k+1(i − k)(yn,i − µn)/σn: data at each sensor is matched with a

triangle-shaped signal that starts at a hypothesized change-point time k and ends at the
current time t. The slope of the triangle is A−1

τ , so that the `2 norm of the triangle signal
is one.

Remark 2 (Window limited procedures.) In the following we use window lim-
ited versions of T1 and T2, where the maximum for the statistic is restricted
to a window t − w ≤ k ≤ t − w′ for suitable choices of window size w and
w′. In the following, we use T̃ to denote a window-limited version of a pro-
cedure T . By searching only over a window of the past w − w′ + 1 samples,
this reduces the memory requirements to implement the stopping rule, and it
also sets a minimum level of change that we want to detect. The choice of w
may depend on b and sometimes we need make additional assumptions on w
for the purpose of establishing the asymptotic results below. More discussions
about the choice of w can be found in [6] and [7]. The other parameter w′

is the minimum number of observations needed for computing the maximum
likelihood estimator for parameters. In the following, we set w′ = 1.

Remark 3 (Relation to mean shift.) For the mean-shift multi-sensor change-
point detection [18], the detection statistic depends on a key quantify, which is
the average of the samples in the time window [k+1, t]. Note that in the slope
change case, the detection statistic has a similar structure, except that the
key quantity is replaced by a weighted average of the samples in the window:
(t − k)−1/2

∑t
i=k+1(yn,i − µn)/σn. This has an interpretation of “matched

filtering”, as illustrated in Fig. 3: each data stream is matched with a triangle
shaped signal starting at a potential change-point time k that represents a
possible slope change.

Remark 4 (Recursive computation.) The quantity Wn,k,t involved in the de-
tection statistic for (8) can be calculated recursively,

Wn,k,t+1 = Wn,k,t + (t+ 1− k) ((yn,t+1 − µn)/σn) ,

where Wn,t,t , 0. This facilitates online implementation of the detection pro-
cedure. The quantity Aτ can be pre-computed since it is data-independent.

Remark 5 (Extension to correlated sensors.) The mixture procedure (8) can
be easily extended to the case where sensors are correlated with a known co-
variance matrix. Define a vector of observations yi = [y1,i, . . . , yN,i]

ᵀ for all
sensors at time i. When there is no change, yi follows a normal distribution
with a mean vector µ = [µ1, . . . , µN ]ᵀ and a covariance matrix Σ0. Alterna-
tively, there may exist a change-point at time κ such that after the change, the
observation vectors are normally distributed with mean vector µ + (i − κ)c,
c = [c1, . . . , cn]ᵀ and the covariance matrix remains Σ0 for all i > κ. We can

whiten the signal vector by ỹi , Σ
−1/2
0 (yi − µ), where Σ

−1/2
0 is the square-

root of the positive definite covariance matrix that may be computed via its
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eigen-decomposition. The coordinates of ỹi are independent and the problem
then becomes the original hypothesis testing problem (1) with all sensors be-
ing affected simultaneously by the change-point, the rate-of-change vector is

Σ
−1/2
0 c, the mean vector is zero before the change, and the covariance remains

an identity matrix before and after the change. Hence, after the transform, we
may apply the mixture procedure with p0 = 1 on ỹi.

4 Theoretical properties of the detection procedures

In this section we develop theoretical properties of the mixture procedure. We
use two standard performance metrics (1) the expected value of the stopping
time when there is no change, the average run length (ARL); (2) the expected
detection delay (EDD), defined to be the expected stopping time in the ex-
treme case where a change occurs immediately at κ = 0. Since the observations
are i.i.d. under the null, the EDD provides an upper bound on the expected
delay after a change-point until detection occurs when the change occurs later
in the sequence of observations (this is also a commonly used fact in change-
point detection work [18]). An efficient detection procedure should have a large
ARL and meanwhile a small EDD. Our approximation to the ARL is shown
below to be accurate. In practice, we usually fix ARL to be a large constant,
and set the threshold b in (8) accordingly. The accurate approximation here
can be used to find the threshold analytically. Approximation for EDD shows
its dependence on a quantity that plays a role of the Kullback-Leibler (KL)
divergence, which links to the optimality results in Section 5.

Average run length (ARL). We present an accurate approximation for
ARL of a window limited version of the stopping rule in (8), which we denote

as T̃2. Let
g(x) , log(1− p0 + p0 exp(x2/2)), (9)

and
ψ(θ) = logE{exp[θg(Z)]},

where Z has a standard normal distribution. Also let

γ(θ) =
1

2
θ2E

{
[ġ(Z)]2 exp [θg(Z)− ψ(θ)]

}
,

and

H(N, θ) =
θ[2πψ̈(θ)]1/2

γ2(θ)N1/2
exp{N [θψ̇(θ)− ψ(θ)]},

where the dot ḟ and double-dot f̈ denote the first-order and second-order
derivatives of a function f , respectively. Denote by φ(x) and Φ(x) the stan-
dard normal density function and its distribution function, respectively. Also
define a special function ν(x) = 2x−2 exp[−2

∑∞
n=1 n

−1Φ(−|x|n1/2/2)]. For
numerical purposes an accurate approximation is given by [13]

ν(x) ≈ (2/x)[Φ(x/2)− 1/2]

(x/2)Φ(x/2) + φ(x/2)
.

Theorem 1 (ARL of T̃2.) Assume that N →∞ and b→∞ with b/N fixed.
Let θ be defined by ψ̇(θ) = b/N . For a window limited stopping rule of (8) with
w = o(br) for some positive integer r, we have

E∞{T̃2} = H(N, θ) ·

[∫ √2N/(4/3)1/2

√
2N/(4w/3)1/2

yν2(y
√
γ(θ))dy

]−1
+ o(1). (10)
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The proof of Theorem 1 is an extension of the proofs in [18] and [19] using
the change of measure techniques. To illustrate the accuracy of approximation
given in Theorem 1, we perform 500 Monte Carlo trials with p0 = 0.3, and
w = 200. Figs. 4(a) and (b) compare the simulated and theoretical approxi-
mation of ARL given in Theorem 1 when N = 100 and N = 200, respectively.
Note that expression (10) takes a similar form as the ARL approximation
obtained in [18] for the multi-sensor mean-shift case, and only differs in the
upper and lower limits in the integration. In Figs. 4(a) and (b) we also plot the
approximate ARL for the mean shift case in [18], which shows the importance
of having the corrected integration upper and lower limits in our approxima-
tion. In practice, ARL is usually set to 5000 and 10000. Table 1 compares
the thresholds obtained theoretically and from simulation at these two ARL
levels, which demonstrates the accuracy of our approximation.

b
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Fig. 4 (a) Comparison of theoretical and simulated ARL when (a): N = 100, p0 = 0.3, and
w = 200; (b): N = 200, p0 = 0.3, and w = 200.

Table 1 Theoretical versus simulated thresholds for p0 = 0.3, N = 100 or 200, and w = 200.

ARL Theory b Simulated ARL Simulated b
N = 100 5000 46.34 5024 46.31

10000 47.64 10037 47.60
N = 200 5000 77.04 5035 76.89

10000 78.66 10058 78.59

Expected detection delay (EDD). After a change-point occurs, we are
interested in the expected number of additional observations required for de-
tection. In this section we establish an approximation upper bound to the
expected detection delay. Define a quantity

∆ =

(∑
n∈A

c2n/σ
2
n

)1/2

, (11)

which roughly captures the total signal-to-noise ratio of all affected sensors.

Theorem 2 (EDD of T̃2.) Suppose b→∞, with other parameters held fixed.
Let U be a standard normal random variable. If the window length w is suffi-
ciently large and greater than (6b/∆2)1/3, then

EA0 {T̃2} ≤
{
b− |A| log p0 − (N − |A|)E{g(U)}

∆2/6

}1/3

+ o(1), (12)
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where EA0 is defined at the beginning of Section 2. To demonstrate the accuracy
of (12), we perform 500 Monte Carlo trials. In each trial, we let the change-
point happen at the initial time and randomly select Np sensors affected by
the change and set the rate-of-change cn = c for a constant c, n ∈ A. The
thresholds for each procedure are set so that their ARLs are equal to 5000.
Fig. 5 shows EDD versus c, where our upper bound turns out to be an accurate
approximation to EDD.

Rate-of-Change c
0 0.1 0.2 0.3 0.4 0.5

ED
D

0
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20
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30

35

40

45

50
Theory
Simulation

Fig. 5 Comparison of theoretical and simulated EDD when N = 100, p0 = 0.3, p = 0.3,
and w = 200. All rate-of-change cn = c for affected sensors.

5 Optimality

In this section, we prove that our detection procedures: T1 and the window lim-
ited versions T̃1 and T̃2 are asymptotically first order optimal. The optimality
proofs here extends the results in [15], [7], for our multi-sensor non-i.i.d. data
setting. The non-i.i.d.ness is due to the fact that under the alternative, the
means of the samples change linearly as the number of post-change samples
grows. Following the classic setup, we consider a class of detection procedures
with their ARL greater than some constant γ, and then find an optimal pro-
cedure within such a class to minimize the detection delay. Since it is difficult
to establish an uniformly optimal procedure for any given γ, we consider the
asymptotic optimality when γ tends to infinity.

We first study a general setup with non-i.i.d. distributions for the multi-
sensor problem, and establish optimality of two general procedures related to
T1 and T2. Then we specialize the results to the multi-sensor slope-change
detection problem. In particular, we generalize the lower bound for the detec-
tion delay from the single sensor case (Theorem 8.2.2 in [15] and Theorem 1
in [7]) to our multi-sensor case. We also generalize the result therein to our
setting where the log-likelihood ratio grows polynomially on the order of jq

for q ≥ 1 as the number of post-change observations j grows (in the classic
setting q = 1); this is used to account for the non-stationarity in our problem.

Setup for general non-i.i.d. case. Consider a setup for the multi-sensor
problem with non-i.i.d. data. Assume there are N sensors that are indepen-
dent (or with known covariance matrix so the observations can be whitened
across sensors), and that the change-point affects all sensors simultaneously.
Observations at the nth sensor are denoted by xn,t over time t = 1, 2, . . ..
If there is no change, xn,t are distributed according to conditional densities
fn,t(xn,t|xn,[1,t−1]), where xn,[1,t−1] = (xn,1, . . . , xn,t−1) (this allows the dis-
tributions at time t to be dependent on the previous observations). Alter-
natively, if a change-point occurs at time κ and the nth sensor is affected,
xn,t are distributed according to conditional densities fn,t(xn,t|xn,[1,t−1]) for
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t = 1, . . . , κ, and are according to g
(κ)
n,t (xn,t|xn,[1,t−1]) for t > κ. Note that

the post-change densities are allowed to be dependent on the change-point κ.
Define a filtration at time t by Ft = σ(x1,[1,t], . . . , xN,[1,t]). Again, assume a
subset A ⊆ {1, 2, . . . , N} of sensors are affected by the change-point. Similar
to Section 2, with a slight abuse of notation, we denote P∞, E∞, PAκ and
EAκ as the probability and expectation when there is no change, or when a
change occurs at time κ and a set A of sensors are affected by the change,
with the understanding that here the probability measures are defined using
the conditional densities.

Optimality criteria. We adopt two commonly used minimax criteria to es-
tablish the optimality of a detection procedure T . Similar to Chapter 8.2.5
of [15], we consider two criterions associated with the m-th moment of the
detection delay for m ≥ 1. The first criterion is motivated by Lorden’s work
[9], which minimizes the worst-case delay

ESMAm(T ) , sup
0≤k<∞

esssup EAk
{

[(T − k)+]m|Fk
}
, (13)

where “esssup” denotes the measure theoretic supremum that excluded points
of measure zero. In other words, the definition (13) first maximizes over all
possible trajectories of observations up to the change-point and then over the
change-point time. The second criterion is motivated by Pollak’s work [10],
which minimizes the maximal conditional average detection delay

SMAm(T ) , sup
0≤k<∞

EAk {(T − k)m|T > k} . (14)

The extended Pollak’s criterion (14) is not as strict as the extended Lorden’s
criterion in the sense that SMAm(T ) ≤ ESMAm(T ), and we prefer (14) since it is
connected to the conventional decision theoretic approach and the resulted op-
timization problem can possibly be solved by a least favorable prior approach.
The EDD defined earlier in Section 4 can be viewed as ESMm and SMm for
m = 1, and the supremum over k happens when k = 0.

Define C(γ) to be a class of detection procedures with their ARL greater
than γ:

C(γ) , {T : E∞{T} ≥ γ}.

A procedure T is optimal, if it belongs to C(γ) and minimizes ESMm(T ) or
SMm(T ).

Optimality for general non-i.i.d setup. Under the above assumptions, the
log-likelihood ratio for each sensor is given by

λn,k,t =

t∑
i=k+1

log
g
(k)
n,i (xn,i|xn,[1,i−1])
fn,i(xn,i|xn,[1,i−1])

.

For any set A of affected sensors, the log-likelihood ratio is given by

λA,k,t =
∑
n∈A

λn,k,t. (15)

We first establish an lower bound for any detection procedure. The constant
IA below can be understood intuitively as a surrogate for the Kullback-Leibler
(KL) divergence in the hypothesis problem. When the observations are i.i.d.,
IA is precisely the KL divergence [7].
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Theorem 3 (General lower bound.) For any A ⊆ {1, . . . , N} such that
there exists some q ≥ 1, j−qλA,k,k+j converges in probability to a positive
constant IA ∈ (0,∞) under PAk ,

1

jq
λA,k,k+j

PAk−−−→
j→∞

IA, (16)

and in addition, for all ε > 0, for an arbitrary M →∞

sup
0≤k<∞

esssup PAk
{
M−q max

0≤j<M
λA,k,k+j ≥ (1 + ε)IA

∣∣∣∣Fk} −−−−→M→∞
0. (17)

Then,

(i) for all 0 < ε < 1, there exists some k ≥ 0 such that

lim
γ→∞

sup
T∈C(γ)

PAk
{
k < T < k + (1− ε)(I−1A log γ)

1
q

∣∣∣T > k
}

= 0. (18)

(ii) for all m ≥ 1,

lim inf
γ→∞

infT∈C(γ) ESMAm(T )

(log γ)m/q
≥ lim inf

γ→∞

infT∈C(γ) SMAm(T )

(log γ)m/q
≥ 1

I
m/q
A

. (19)

Consider a general mixture CUSUM procedure related to T1, which has
also been studied in [14] and [18]:

TCS = inf

{
t : max

0≤k<t

N∑
n=1

log(1− p0 + p0 exp(λn,k,t)) ≥ b

}
, (20)

where b is a prescribed threshold. The following lemma shows that for an
appropriate choice of the threshold b, TCS has an ARL lower bounded by γ
and, hence, for such thresholds it belongs to C(γ).

Lemma 1 For any p0 ∈ (0, 1], TCS(b) ∈ C(γ), provided b ≥ log γ.

Theorem 4 (Optimality of TCS.) For any A ⊆ {1, . . . , N} such that there
exists some q ≥ 1 and a finite positive number IA ∈ (0,∞) for which (17)
holds, and for all ε ∈ (0, 1) and t ≥ 0,

sup
0≤k<t

esssup PAk
(
j−qλA,k,k+j < IA(1− ε)

∣∣Fk) −−−→
j→∞

0. (21)

If b ≥ log γ and b = O(log γ), then TCS is asymptotically minimax in the class
C(γ) in the sense of minimizing ESMAm(T ) and SMAm(T ) for all m ≥ 1 to the
first order as γ −→∞.

We can also prove that the window-limited version T̃CS is asymptotically
optimal. Since the window length affects ARL and the detection delay, in the
following we denote this dependence more explicitly by wγ .

Corollary 1 (Optimality of T̃CS.) Assume the conditions in Theorem 4
hold and in addition,

lim inf
γ→∞

wγ

(log γ/IA)
1/q

> 1. (22)

If b ≥ log γ and b = O(log γ), then T̃CS(b) is asymptotically minimax in the
class C(γ) in the sense of minimizing ESMAm(T ) and SMAm(T ) for all m ≥ 1
to the first order as γ −→∞.
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Intuitively, this means that the window length should be greater than the
first order approximation to the detection delay [(log γ)/IA]1/q. Note that our
earlier result (12) for the expected detection delay of the multi-sensor case is
of this form for q = 3 and IA = ∆2/6.

Similarly, we may consider a general mixture GLR procedure related to T2
as in [18]. Denote the log-likelihood (15) as λA,k,t(θ) to emphasize its depen-
dence on an unknown parameter θ. The mixture GLR procedure maximizes
θ over a parameter space Θ before combining them across all sensors. Unfor-
tunately, we are unable to establish the asymptotic optimality for the general
GLR procedure and its window limited version, due to a lack of martingale
property.

Optimality for multi-sensor slope change. Note that T1 and T̃1 corre-
spond to special cases of TCS, T̃CS, so we can use Theorem 4 and Corollary
1 to show their optimality by checking conditions. Although we are not able
to establish optimality of the general mixture GLR procedure as mentioned
above, we can prove the optimality for T̃2 by exploiting the structure of the
problem.

Lemma 2 (Lower bound.) For the multi-sensor slope change detection prob-
lem in (1), for a non-empty set A ⊆ {1, . . . , N}, the conditions of Theorem 3
are satisfied when q = 3 and IA = ∆2/6.

The following lemma plays a similar role as the general version Lemma 1 in
our multi-sensor case in (1), and it shows that for a properly chosen threshold

b, ARL of T̃2 is lower bounded by γ and, hence, for such threshold it belongs
to C(γ).

Lemma 3 For any p0 ∈ (0, 1], T̃2(b) ∈ C(γ), provided

b ≥ N/2− 4 log
[
1− (1− 1/γ)

1/wγ
]
.

Remark 6 (Implication on window length.) Lemma 3 shows that to have b =
O(log γ), we need logwγ = o(log γ).

Theorem 5 (Asymptotical optimality of T1, T̃1 and T̃2.) Consider the
multi-sensor slope change detection problem (1).

(i) If b ≥ log γ and b = O(log γ), then T1(b) is asymptotically minimax in
class C(γ) in the sense of minimizing expected moments ESMAm(T ) and
SMAm(T ) for all m ≥ 1 to the first order as γ −→∞.

(ii) In addition to conditions in (i), if the window length satisfies

lim inf
γ→∞

wγ

[6(log γ)/∆2]
1/3

> 1, (23)

then T̃1(b) is asymptotically minimax in class C(γ) in the sense of min-
imizing expected moments ESMAm(T ) and SMAm(T ) for all m ≥ 1 to first
order as γ −→∞.

(iii) If b ≥ N/2 − 4 log[1 − (1− 1/γ)
1/wγ ], b = O(log γ), the window length

satisfies log(wγ) = o(log γ) and (23) holds, then T̃2(b) is asymptotically

minimax in class C(γ) in the sense of minimizing ESMAm(T ) and SMAm(T )
for m = 1 to first order as γ −→∞.

Remark 7 Above we prove the optimality of T1(b) and T̃1(b) for m ≥ 1. How-

ever, we can only prove the optimality of T̃2(b) for a special case m = 1, due
to a lack of martingale properties here.
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6 Numerical Examples

Comparison with mean-shift GLR procedures. We compare the mixture
procedure for slope change detection, with the classic multivariate CUSUM
[17] and the mixture procedure for mean shift detection [18]. The multivariate
CUSUM essentially forms a CUSUM statistic at each sensor, and raises an
alarm whenever a single sensor statistic hits the threshold. As commented
earlier in Remark 3, the only difference between T̃2 and the mixture procedure
for mean shift in [18] is how Un,k,t is defined. Following the steps for deriving
(32), we can show that the mean shift mixture procedure is also asymptotically
optimal for the slope change detection problem. Here, our numerical example
verifies this, and show that the improvement of EDD by using T̃2 versus the
multi-variate CUSUM and the mean-shift mixture procedure is not significant.
However, the mean-shift mixture procedure fails to estimate the change-point
time accurately due to model mismatch. Fig. 6 shows the mean square error for
estimating the change-point time κ, using the multi-chart CUSUM, the mean-
shift mixture procedure, and T̃2, respectively. Note that T̃2 has a significant
improvement.

Rate-of-Change c
0 0.2 0.4 0.6 0.8 1

E
j5̂
!
5
j2

10-3

10-2

10-1

100

101

102

103

Slope Change
Mean Shift
Multi-CUSUM

Fig. 6 Comparison of mean square error for estimating the change-point time for the mix-
ture procedure tailored to slope change T̃2, the mixture procedure with mean shift, and
multi-chart CUSUM, when N = 100, p0 = 0.3, p = 0.5 and w = 200.

Financial time series. In the earlier example illustrated in Fig. 7(a), the
goal is to detect a trend change online. Clearly a change-point occurs at time
8000 in the stock price, and such a change-point is verifiable. Fig. 7(b) shows
that there is a peak in the bid size versus the ask size, which usually indicates
a change in the trend of the price (possible with some delay). To illustrate
the performance of our method in this financial dataset, we plot the detection
statistics by using a “single-sensor”, i.e., using only one data stream, and by
using “multi-sensor” scheme, i.e. using data from multiple streams, which in
this case correspond to 8 factors (e.g, stock price, total volume, bid size and
bid price, as well ask size and ask price). In fact, only 4 factors out of 8
factors contain the change-point. Fig. 7(c) plots the statistic if we use only a
single-sensor. Fig. 7(d) illustrates the statistic when we use all the 8 factors
and preprocess by whitening with the covariance of the factors as described
in Section 5. The statistics all rise around time 8000 with the multi-sensor
statistic to be smoother and indicates a lower false detection rate. Looking at
Fig. 7(d), after the major trend change (around sample index 8000), the multi-
chart CUSUM statistic rises the slowest. Although it appears, the slope-change
mixture procedure rises a bit slower than the mean-shift mixture procedure,
we demonstrate in simulation that for fixed ARL these two procedures have
similar EDDs, and also in Fig. 5 that the slope-change mixture procedure has
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a better performance in estimating k∗ than the mean-shift mixture procedure.
Therefore, the slope-change mixture procedure is still preferrable.
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(c) Single-sensor. (d) Zoom-in of (c).
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(e) Multi-sensor, correlation. (f) Zoom-in of (e).

Fig. 7 Statistic for detecting trend changes in financial time series with w = 500 for both
single sensor and multi-sensor procedures, and p0 = 1 for the multi-sensor procedure.

Aircraft engine multi-sensor prognostic. We present an engine prognostic
example using the aircraft turbofan engine dataset simulated by NASA1. In the
dataset, multiple sensors measure different physical properties of the aircraft
engine to detect a faulty condition and to predict the whole life time. The
dataset contains 100 training systems and 100 testing systems. Each system
is monitored by N = 21 sensors. In the training dataset, we have a complete
sample path from the initial time to failure for each of the 21 sensors of each
training system. In the testing dataset, we only have partial sample paths (i.e.,
the system fails eventually but we have not observed that yet and it still has a
remaining life). Our goal is to predict the whole life for the test systems using
available observations. The dataset also provides ground truth, i.e., the actual
failure times (or equivalently the whole life) of the testing systems.

We first apply our mixture procedures to each training system j, j =
1, . . . , 100, to estimate a change-point location κj (which corresponds to the

maximizer of k in the definition of T̃2 when the procedure stops), and the
rate-of-change at nth sensor for the jth system ĉn,j using (5). Then fit a
simple survival model using κ̂j and ĉn,j as regressors in determining the re-
maining life. We build a model for the Time-To-Failure (TTF) Yj of system
j based a log location-normal model, which is commonly used in reliability
theory [2]: P{Yj ≤ y} = Φ [(log(y)− πj)/η] , where η is a user specified scale

1 Data can be downloaded from http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-
repository/
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parameter that is assumed to be the same for each system, πj is the loca-
tion parameter that is assumed to be a linear function of the rate-of-change:
πj = β0 +

∑N
n=1 βj ĉn,j , where (β0, β1, . . . , βN ) is a vector of the regression

coefficients that are estimated by maximum likelihood. Next, we apply the
mixture procedure on the jth testing system to estimate the change-point
time κ̂j and the rate-of-change ĉn,j , and substitute them into the fitted mod-
els to determine a TTF using the mean value. The whole life of the jth system
is estimated as κ̂j plus its mean TTF.

We use the relative prediction error as performance metric, which is the
absolute difference between the estimated life and the actual whole life, divided
by the actual whole life. Fig. 8 shows the box-plot of the relative prediction
error versus threshold b. Our method based on change-point detection works
well and it has a mean relative prediction error around 10%. Here the choice
of the threshold b has a tradeoff: the relative prediction error decreases with
a larger b; however, a larger b also causes a longer detection delay.
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Fig. 8 Aircraft engine prognostic example: box-plot for relative prediction error of the
estimated life time of the engine versus threshold b.

7 Discussion: adaptive choice of p0

The mixture procedure assumes that a fraction p0 of the sensors are affected by
the change. In practice, p0 can be different from p which is the actual fraction
of sensors affected. The performance of the procedure is fairly robust to the
choice of p0. Fig. 9 compares the simulated EDD of a mixture procedure with
a fixed p0 value, versus a mixture procedure when setting p0 = p if we know
the true fraction of affected sensors. Again, thresholds are chosen such that
ARL for all cases are 5000. Note that the detection delay is the smallest if p0
matches p; however, EDD in these two settings are fairly close when p0 6= p.

Still, we may improve the performance of the mixture procedure by adapt-
ing the parameter p0 using a method based on empirical Bayes. Assume each
sensor is affected with probability p0, but now p0 itself is a random variable
with Beta distribution Beta(α, β). This also allows the probability of being
affected to be different at each sensor. With sequential data, we may update
by computing a posterior distribution of p0 using data in the following way.
Choosing a constant a, we believe that the nth sensor is likely to be affected
by the change-point if Un,k,t is larger than a. Let I{·} denote an indicator
function. For each t, assume sn,t = I {maxt−w≤k<t Un,k,t > a} is a Bernoulli
random variable with parameter pn. Due to conjugacy, the posterior of p0 at
the nth sensor, given sn,t up to time t, is also a Beta distribution with param-
eters Beta(sn,t+α, 1−sn,t+β). An adaptive mixture procedure can be formed
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Fig. 9 Simulated EDD for a mixture procedure with p0 set to a fixed value, versus a mixture
procedure with p0 = p equal to the true fraction of affected sensors, when cn = 0.1, N = 100
and w = 200.

using the posterior mean of p0, which is given by ρn , (sn,t + α)/(α+ β + 1):

Tadaptive = inf

{
t : max

t−w≤k<t

N∑
n=1

log(1− ρn + ρn exp(U2
n,k,t/2)) ≥ b

}
, (24)

where b is a prescribed threshold.
We compare the performance of T̃adaptive with its non-adaptive counterpart

T̃2 by numerical simulations. AssumeN = 100 and there are 10 sensors affected
from the initial time with a rate-of-change cn = c. The parameters for T̃adaptive
are α = 1, β = 1 and a = 2. Again, the thresholds are set so that the simulated
ARL for both procedures are 5000. Table 7 shows that T̃adaptive has a much

smaller EDD than T̃2 when signal is weak with a relative improvement around
20%. However, it is more difficult to analyze ARL of the adaptive method
theoretically.

Table 2 Comparing EDD of T̃2 and T̃adaptive.

Rate-of-change 0.01 0.03 0.05 0.07 0.09

Non-Adaptive T̃2 54.15 26.24 18.75 14.98 12.74

Adaptive T̃adaptive 38.56 20.28 14.42 12.17 10.13
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A An informal derivation of Theorem 1: ARL

We first obtain an approximation to the probability that the stopping time is greater than
some big constant m. Such an approximation is obtained using a general method for com-
puting first passing probabilities first introduced in [19] and developed in [14]. The method
relies on measure transformations that shift the distribution of each sensor over a window
that contains the hypothesized post-change samples. More technical details to make the
proofs more rigorous are omitted. These details have been described and proved in [14].

In the following, let τ = t − k. Define the log moment-generating-function ψτ (θ) =
logE exp{θg(Un,k,t)}. Recall that Un,k,t is a generic standardized sum over all observations
within a window of size τ in one sensor, and the parameter θ = θτ is selected by solving the
equation

ψ̇τ (θ) = b/N.

Since Un,k,t is a standardized weighted sum of τ independent random variables, ψτ converges
to a limit as τ →∞, and θτ converges to a limiting value. We denote this limiting value by
θ.

Denote the density function under the null as P. The transformed distribution for all
sequences at a fixed current time t and at a hypothesized change-point time k (and hence
there are τ hypothesized post-change samples) is denoted by Pkt and is defined via

dPkt = exp

[
θτ

N∑
n=1

g(Un,k,t)−Nψτ (θτ )

]
dP.

Let

`N,k,t = log(dPkt /dP) = θτ

N∑
n=1

g(Un,k,t)−Nψτ (θτ ).

Let the region

D = {(t, k) : 0 < t < t0, 1 ≤ t− k ≤ w}

be the set of all possible change-point times and time up to a horizon m. Let

A =

{
max

(t,k)∈D

N∑
n=1

g(Un,k,t) ≥ b
}
.
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be the event of interest. Hence, we have

P{A} =
∑

(t,k)∈D
E

 e`N,k,t∑
(t′,k′)∈D e

`N,k′,t′
;A

 =
∑

(t,k)∈D
Ekt


 ∑

(t′,k′)∈D
e
`N,k′,t′

−1

;A


=

∑
(t,k)∈D

e−N(θτ b−ψτ (θτ )) × Ekt
{
MN,k,t

SN,k,t
e−

˜̀
N,k,t−logMN,k,t ; ˜̀

N + logMN,k,t ≥ 0

}
︸ ︷︷ ︸

I

(25)

where

˜̀
N,k,t =

N∑
n=1

θτ [g(Un,k,t)− b],

SN,k,t =
∑

(t′,k′)∈D
e
∑N
n=1 θτ [g(Un,k′,t′ )−g(Un,k,t)],

MN,k,t = max
(t′,k′)∈D

e
∑N
n=1 θτ [g(Un,k′,t′ )−g(Un,k,t)].

As explained in [14], under certain verifiable assumptions, a “localization lemma” allows
simplifying the quantities of the form in I into a much simpler expression of the form

σ−1
N,τ (2π)−1/2E{M/S},

where σN,τ is the Pτs standard deviation of ˜̀
N and E[M/S] is the limit of E{MN,k,t/SN,k,t}

as N →∞. This reduction relies on the fact that, for large N and m, the “local” processes
MN,k,t and SN,k,t are approximately independent of the “global” process ˜̀

N . This allows
the expectation to be decomposed into the expectation of MN/SN times the expectation
involving ˜̀

N + logMN , treating logMN as a constant.
Let τ ′ = t′ − k′, and denote by zn,i = (yn,i − µn)/σn which are i.i.d. normal random

variables, i = 1, 2, . . .. Note that, use Taylor expansion up to the first order, we obtain

N∑
n=1

θτ [g(Un,k′,t′ )− g(Un,k,t)] ≈
N∑
n=1

θτ ġ(Un,k,t)[Un,k′,t′ − Un,k,t]

=

N∑
n=1

θτ ġ(Un,k,t)[A
−1/2
τ ′ Wn,k′,t′ −A

−1/2
τ Wn,k′,t′ +A

−1/2
τ Wn,k′,t′ −A

−1/2
τ Wn,k,t]

=
N∑
n=1

θτ ġ(Un,k,t)√
Aτ ′

(
τ ′∑
j=1

jzn,t′−τ ′+j −

√
Aτ ′

Aτ

τ ′∑
j=1

jzn,t′−τ ′+j)

+

N∑
n=1

θτ ġ(Un,k,t)A
−1/2
τ

 τ ′∑
i=1

izn,t′−τ ′+i −
τ∑
i=1

izn,t−τ+i



(26)

Note that in the above expression, the first term has two weighted data sequences running
backwards from t′ and when τ and τ ′ both tends to infinity they tend to cancel with each
other. Hence, asymptotically we need to consider the second term. Observe that one may let
t′ − k′ = τ and θ = limτ→∞ θτ for θτ in the definition of the increments and still maintain
the required level of accuracy. When τ = u the first term in the above expression, and
the second term consists of two terms that are highly correlated. The second term can be
rewritten as

A
−1/2
τ θτ

[
N∑
n=1

ġ(Un,k,t)Wn,k′,t′ −
N∑

n′=1

ġ(Un′,k,t)Wn′,k,t

]
. (27)

Since all sensors are assumed to be independent (or has been whitened by a known covariance
matrix so the transformed coordinates are independent), so the covariance between the two
terms is given by

Cov

(
N∑
n=1

ġ(Un,k,t)Wn,k,t,

N∑
n′=1

ġ(Un′,k,t)Wn′,k,t

)
=

N∑
n=1

[ġ(Un′,k,t)]
2Cov(Wn,k,t,Wn′,k′,t′ ).

(28)
For each n, let k < k′ < t < t′ and t − k = t′ − k′ = τ , and define u , k′ − k and

s , t− k′. We have

A−1
τ Cov(Wn,k,t,Wn,k′,t′ ) =E


(∑t

i=k+1(i− k)zn,i

)(∑t′

i=k′+1(i− k′)zni
)

∑τ
i=1 i

2


=E

{∑t
i=k′+1(i− k)(i− k′)z2n,i∑τ

i=1 i
2

}
=

∑s
i=1 i

2 + u
∑s
i=1 i∑τ

i=1 i
2

.
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By choosing u =
√
τ , we know that the expression above is approximately on the order of

1−
(k′ − k) + (t′ − t)

2
(
2
3
τ2 + 1

3
τ
) ≈ 1−

(k′ − k) + (t′ − t)
4
3
τ2

.

Let η , 4
3
τ2. Hence, by summarizing the derivations above and applying the law of large

number, we have that when N → ∞ and τ → ∞, the covariance between the two terms
become

cov

(
N∑
n=1

θτg(Un,k′,t′ ),
N∑

n′=1

θτg(Un′,k,t)

)
≈ θ2N · [1−

1

η
(k′ − k)−

1

η
(t′ − t)].

This shows that the two-dimensional random walk decouples in the change-point time k′

and the time index t′ and the variance of the increments in these two directions are the
same and are both equal to θ2N/η. Hence, the random walk along these two coordiates
are asymptotically independent and it becomes similar to the case studied in [14]. Compare
this with (the equation following equation (A.4) in [14]), note that the only difference is
that here the variance of the increment is proportional to 3/(4τ2) instead of τ , so we may
follow a similar chains of calculation as in the proof in Chapter 7 of [19], [14] [18], the final
result corresponds to modifying the upper and lower limit by changing the window length
expression to be

√
4/3 and

√
4w/3.

B An informal derivation of Theorem 2: EDD

Recall that Un,k,t is defined in (6), let zn,i = (yn,i−µn)/σn. Then for n ∈ A, zn,i are i.i.d.
normal random variables with mean cni/σn and unit variance, and for n ∈ Ac, zn,i are i.i.d.
standard normal random variables. Since we may write

Un,k,t =

∑t
i=k+1(i− k)zn,i√∑t
i=k+1(i− k)2

. (29)

For any time t and n ∈ A, we have

EA0 {U2
n,0,t} = 1 +

(
cn

σn

)2 t∑
i=1

i2 = 1 +

(
cn

σn

)2 t(t+ 1)(2t+ 1)

6
=

(
cn

σn

)2 t3

3
+ o(t3), (30)

which grows cubically with respect to time. For the unaffected sensors, n ∈ Ac, EA0 {U2
n,0,t} =

1. Hence, the value of the detection statistic will be dominated by those affected sensors.

On the other hand, note that when x is large,

g(x) = log(1− p0 + p0e
x2/2) = log p0 +

x2

2
+ log

(
1− p0
p0

e−x
2/2

)
≈
x2

2
+ log p0.

Then the expectation of the statistic in (8) can be computed if w is sufficiently large (at
least larger than the expected detection delay), as follows:

EA0

{
max
k<t

N∑
n=1

g
(
Un,k,t

)}
≈

|A| log p0 +
1

2

∑
n∈A

EA0
{
U2
n,k,t

}
+

(N − |A|)
2

 ,

At the stopping time, if we ignore of the overshoot of the threshold over b, the value statistic
is b. Use Wald’s identify [12] and if we ignore the overshoot of the statistic over the threshold
b, we may obtain a first order approximation as b→∞, by solving

|A| log p0 +
N − |A|

2
+

EA0 {T 3}
6

∑
n∈A

(
cn

σn

)2
 = b. (31)

From Jensen’s inequality, we know that EA0 {T 3
2 } ≥ (EA0 {T2})3. Therefore, a first-order

approximation for the expected detection delay is given by

EA0 {T2} ≤
(
b−N log p0 − (N − |A|)E{g(U)}

∆2/6

)1/3

+ o(1). (32)
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C Proof for Optimality

Proof (Proof of Theorem 3) The proof starts by a change of measure from P∞ to PAk . For
any stopping time T ∈ C(γ), we have that for any Kγ > 0, C > 0 and ε ∈ (0, 1),

P∞ {k < T < k + (1− ε)Kγ |T > k}

= EAk
{
I{k<T<k+(1−ε)Kγ} exp(−λA,k,T )

∣∣∣T > k
}

≥ EAk
{
I{k<T<k+(1−ε)Kγ ,λA,k,T<C} exp(−λA,k,T )

∣∣∣T > k
}

≥ e−CPAk

{
k < T < k + (1− ε)Kγ , max

k<j<k+(1−ε)Kγ
λA,k,j < C

∣∣∣∣∣T > k

}
≥ e−C

[
PAk {T < k + (1− ε)Kγ |T > k}−

PAk

{
max

1≤j<(1−ε)Kγ
λA,k,k+j ≥ C

∣∣∣∣∣T > k

}]
,

(33)

where I{A} is the indicator function of any event A, the first equality is Wald’s likelihood
ratio identity and the last inequality uses the fact that for any event A and B and probability
measure P, P(A

⋂
B) ≥ P(A)− P(Bc).

From (33) we have for any ε ∈ (0, 1)

PAk {T < k + (1− ε)Kγ |T > k} ≤ p(k)γ,ε(T ) + β
(k)
γ,ε(T ), (34)

where

p
(k)
γ,ε(T ) = eCP∞ {T < k + (1− ε)Kγ |T > k} ,

β
(k)
γ,ε(T ) = PAk

{
max

1≤j<(1−ε)Kγ
λA,k,k+j ≥ C

∣∣∣∣∣T > k

}
.

Next, we want to show that both p
(k)
γ,ε(T ) and β

(k)
γ,ε(T ) converge to zero for any T ∈ C(γ)

and any k ≥ 0 as γ goes to infinity.
First, choosing C = (1 + ε)I[(1− ε)Kγ ]q , then we have

β
(k)
γ,ε(T ) = Pk

{
[(1− ε)Kγ ]−q max

1≤j<(1−ε)Kγ
λA,k,k+j ≥ (1 + ε)I

∣∣∣∣∣T > k

}

≤ esssup PAk

{
[(1− ε)Kγ ]−q max

1≤j<(1−ε)Kγ
λA,k,k+j ≥ (1 + ε)I

∣∣∣∣∣Fk
}
.

(35)

By the assumption (17), we have

sup
0≤k<∞

β
(k)
γ,ε −−−−→

γ→∞
0. (36)

Second, by Lemma 6.3.1 in [15], we know that for any T ∈ C(γ) there exists a k ≥ 0,
possibly depending on γ, such that

P∞ {T < k + (1− ε)Kγ |T > k} ≤ (1− ε)Kγ/γ.

Choosing Kγ = (I−1 log γ)1/q , then we have

C = (1 + ε)I(1− ε)qI−1 log γ = (1− ε2)(1− ε)q−1 log γ,

and therefore,

p
(k)
γ,ε(T ) ≤ γ(1−ε

2)(1−ε)q−1
(1− ε)Kγ/γ

= (1− ε)(I−1 log γ)1/qγ(1−ε
2)(1−ε)q−1−1 −−−−→

γ→∞
0,

(37)

where the last convergence holds since for any q ≥ 1 and ε ∈ (0, 1) we have (1 − ε2)(1 −
ε)q−1 < 1. Therefore, for every ε ∈ (0, 1) and for any T ∈ C(γ) we have that for some k ≥ 0,

PAk {T < k + (1− ε)Kγ |T > k} −−−−→
γ→∞

0,

which proves (18).
Next, to prove (19), since

ESMAm(T ) ≥ SMAm(T ) ≥ sup
0≤k<∞

EAk
{

[(T − k)+]m
∣∣T > k

}
,
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it is suffice to show that for any T ∈ C(γ),

sup
0≤k<∞

EAk
{

[(T − k)+]m
∣∣T > k

}
≥ [I−1 log γ]m/q(1 + o(1)) as γ −→ 0, (38)

where the residual term o(1) does not depend on T . Using the result (18) just proved, we
can have that for any ε ∈ (0, 1), there exists some k ≥ 0 such that

inf
T∈C(γ)

PAk
{
T − k ≥ (1− ε)(I−1 log γ)

1
q

∣∣∣T > k
}
−−−−→
γ→∞

1.

Therefore, by also Chebyshev inequality, for any ε ∈ (0, 1) and T ∈ C(γ), there exist some
k ≥ 0 such that

EAk
{

[(T − k)+]m
∣∣T > k

}
≥
[
(1− ε)(I−1 log γ)

1
q

]m
PAk
{
T − k ≥ (1− ε)(I−1 log γ)

1
q

∣∣∣T > k
}

≥
[
(1− ε)m(I−1 log γ)m/q

]
(1 + o(1)), as γ −→∞,

(39)

where the residual term does not depend on T . Since we can arbitrarily choose ε ∈ (0, 1)
such that the (39) holds, so we have (38), which completes the proof.

Proof (Proof of Lemma 1) Rewrite TCS(b) as

TCS(b) = inf

{
t : max

0≤k<t

N∏
n=1

(
1− p0 + p0 exp(λn,k,t)

)
≥ eb

}
(40)

and define TSR(b) an extended Shiryaev-Roberts (SR) procedure as follows:

TSR(b) = inf
{
t : Rt ≥ eb

}
, (41)

where

Rt =

t−1∑
k=1

N∏
n=1

(
1− p0 + p0 exp(λn,k,t)

)
, t = 1, 2, . . . ;R0 = 0.

Clearly, TCS(b) ≥ TSR(b). Therefore, it is sufficient to show that TSR(b) ∈ C(γ) if b ≥ log γ.
Noticing the martingale properties of the likelihood ratios, we have

E∞
{

exp(λn,k,t)
∣∣Ft−1

}
= 1 (42)

for all n = 1, 2, . . . , N , t > 0 and 0 ≤ k < t. Moreover, noticing that

Rt =

t−2∑
k=1

N∏
n=1

(
1− p0 + p0 exp(λn,k,t−1 + λn,t−1,t)

)
+

N∏
n=1

(1− p0 + p0 exp(λn,t−1,t)) ,

(43)
then combining (42) we have for all t > 0,

E∞ {Rt|Ft−1} =

t−2∑
k=1

N∏
n=1

(
1− p0 + p0 exp(λn,k,t−1) · 1

)
+ 1

=Rt−1 + 1.

(44)

Therefore, the statistic {Rt − t}t>0 is a (P∞,Ft)-martingale with zero mean. If E∞ {TSR(b)} =
∞ then the theorem is naturally correct, so we only suppose that E∞ {TSR(b)} < ∞ and
thus E∞

{
RTSR(b) − TSR(b)

}
exists. Next, since 0 ≤ Rt < eb on the event {TSR(b) > t}, we

have

lim inf
t→∞

∫
{TSR(b)>t}

|Rt − t| dP∞ = 0.

Now we can apply the optional sampling theorem to have E∞
{
RTSR(b)

}
= E∞ {TSR(b)}. By

the definition of stopping time TSR(b), we have RTSR(b) > eb. Thus, we have E∞ {TCS(b)} ≥
E∞ {TSR(b)} > eb, which shows that E∞ {TCS(b)} > γ if b ≥ log γ.

Proof (Proof of Theorem 4) First, we notice that if b ≥ log γ

E∞
{
T̃CS(b)

}
≥ E∞ {TCS(b)} ≥ γ.

Therefore, by Theorem 3, it is sufficient to show that if b ≥ log γ and b = O(log γ), then

ESMAm(TCS(b)) ≤
(

log γ

IA

)m/q
(1 + o(1)) as γ →∞. (45)
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Equivalently, it is sufficient to prove that

ESMAm(TCS(b)) ≤
(
b

IA

)m/q
(1 + o(1)) as b→∞. (46)

To start with, we consider a special case when p0 = 1 in TCS and denote it by

TCS2(b) = inf

{
t > 0 : max

0≤k<t

N∑
n=1

λn,k,t ≥ b
}
.

Next, we will prove an asymptotical upper bound for the detection delay of TCS2(b).
Let

Gb =

⌊(
b

IA(1− ε)

)1/q
⌋
, (47)

and then (Gb)
q ≤ b/[IA(1 − ε)]. Noticing that under PAk , we have

∑N
n=1 λn,k,t = λA,k,t

almost surely since the the log-likelihood ratios are 0 for the sensors that are not affected.
Therefore, by (21) we can have that for any ε ∈ (0, 1), t ≥ 0 and some sufficiently large b,

sup
0≤k<t

esssup PAk

{
N∑
n=1

λn,k,k+Gb < (Gb)
qIA(1− ε)

∣∣∣∣∣Fk
}

≤ sup
0≤k<t

esssup PAk
{
λA,k,k+Gb < (Gb)

qIA(1− ε)
∣∣Fk}

≤ sup
0≤k<t

esssup PAk
{
λA,k,k+Gb < b

∣∣Fk} ≤ ε.
(48)

Then, for any k ≥ 0 and integer l ≥ 1, we can use (48) l times by conditioning on(
Xn,1, . . . , Xn,k+(l0−1)Gb

)
, n = 1, 2, . . . , N for l0 = l, l − 1, . . . , 1 in succession (see [7])

to have

esssup PAk {TCS2(b)− k > lGb|Fk}

≤ esssup PAk

{
N∑
n=1

λn,k+(l0−1)Gb+1,k+l0Gb
, l0 = 1, . . . , l

∣∣∣∣∣Fk
}
≤ εl.

(49)

Therefore, for sufficiently large b and any ε ∈ (0, 1), we have

ESMm(TCS2(b)) ≤
∞∑
l=0

{[(l + 1)Gb]
m − (lGb)

m} ·

sup
0≤k<∞

esssup Pk
{

[(TCS2 − k)+]m > (lGb)
m
∣∣Fk}

≤ (Gb)
m
∞∑
l=0

[(l + 1)m − lm]εl

= (Gb)
m(1 + o(1)) as b→∞,

(50)

where the first inequality can be known directly from the geometric interpretation of ex-
pectation of discrete nonnegative random variables and the last equality holds since for any
given m ≥ 1, [(l+ 1)m − lm]1/l → 1 as l→∞ so that the radius of convergence is 1. Using
the fact that (Gb)

m ≤ [b/I(1− ε)]m/q we prove (46) for the case p0 = 1.
Next, we will deal with the case when p0 ∈ (0, 1). Rewrite TCS2(b) as

TCS2(b) = inf

{
t : max

0≤k<t

(
N log p0 +

N∑
n=1

λkn,t

)
> b+N log p0

}
,

then

TCS2(b−N log p0) = inf

{
t : max

0≤k<t

(
N log p0 +

N∑
n=1

λkn,t

)
> b

}
.

Clearly, ESMAm(TCS(b)) ≤ ESMAm(TCS2(b−N log p0)), and thus

ESMAm(TCS(b)) ≤
(
b−N log p0

IA

)m/q
(1 + o(1)). (51)

Therefore, we can claim that (46) holds for any fixed p0 ∈ (0, 1] since N and p0 are constants.
If b ≥ log γ and b = O(log γ), TCS(b) belongs to C(γ) and ESMAm(TCS) achieves its lower
bound.
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Proof (Proof of Corollary 1)
The main steps are almost the same with that in the proof of Theorem 4. The only

different thing is that we need the condition wγ ≥ Gb (defined in (47)) in order to make
(49) be correct for any k ≥ 0 and any integer l ≥ 1. And the additional assumption (22)
ensures this.

Proof (Proof of Lemma 2) Consider testing problem (1), then for any k ≥ 0 and j ≥ 1,

λA,k,k+j =
∑
n∈A

1

σ2
n

k+j∑
i=k+1

{
cn(i− k)(yn,i − µj)−

c2n(i− k)2

2

}
.

We define, for each n ∈ A and for all l = 1, . . . , j,

X
(k)
n,l =

1

σ2
n

{
cnl(yn,l+k − µj)−

c2nl
2

2

}
.

Then we have

λA,k,k+j =

j∑
l=1

∑
n∈A

X
(k)
n,l =

j∑
l=1

X
(k)
A,l,

where we define X
(k)
A,l =

∑
n∈AX

(k)
n,l .

Under probability measure PAk , we easily know that (X
(k)
A,l)

j
l=1 are independent variables

which follow normal distribution N((l2/2)
∑
n∈A c

2
n, l

2
∑
n∈A c

2
n). Other simple computa-

tion tells us that
EAk
{

(X
(k)
A,l)

2
}
<∞, ∀l = 1, . . . , j,

and under probability measure PAk ,

∞∑
l=1

Var

X
(k)
A,l

l3

 <∞,

where Var(X) denotes the variance of random variable X. Therefore, combining Kroneckers
lemma with the Kolmogorov convergence criteria, we have immediately a strong law of large
numbers which tells us that

1

j3
λA,k,k+j

a.s.−−−−→
j→∞

∑
n∈A

c2n
6σ2
n

.

Finally, we complete the proof by using the fact that all the observations are independent.

Proof (Proof of Lemma 3) First, define ykn,t =
∑t
i=k+1(yn,i−µj)

σj
∑t
i=k+1

(i−k)2 , then

P∞
{
T̃2(b) > t0

}
≥ P∞

{
max

0<t≤t0
max

max(0,t−mγ)≤k<t0

N∑
n=1

(ykn,t0 )2

2
< b

}
≥ [P∞{Y < 2b}]wγt0 ,

(52)

where Y is a random variable with χ2
N distribution. Then, since T̃2(b) is a non-negative

discrete random variable, we have

E∞
{
T̃2(b)

}
=
∞∑
t0=0

P∞
{
T̃2(b) > t0

}

≥
∞∑
t0=0

[P∞{Y < 2b}]wγt0 =
1

1− [P∞{Y < 2b}]wγ
.

(53)

Then if we can choose some b so that

P∞{Y ≥ 2b} ≤ 1−
(

1−
1

γ

)1/mγ

,

we can claim that E∞
{
T̃2(b)

}
≥ γ and thus T̃2(b) ∈ C(γ). To choose appropriate threshold

b, we need use the tail bound for the χ2
N distribution. Since χ2

1 is sub-exponential with

parameter (2
√
N, 4), it is well known that P∞{Y ≥ 2b} ≤ exp(− 2b−N

8
) if b ≥ N . If we set

b ≥
N

2
− 4 log

[
1−

(
1−

1

γ

)1/mγ
]

then T̃1(b) ∈ C(γ).
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Proof (Proof of Theorem 5)
By Lemma 2, we can use Theorem 3 to obtain a lower bound for the detection delays

of arbitrary procedures in C(γ). Specifically, for all m ≥ 1,

lim inf
γ→∞

inf
T∈C(γ)

ESMAm(T ) ≥ lim inf
γ→∞

inf
T∈C(γ)

SMAm(T ) ≥
(

log γ

IA

)m/q
. (54)

(i) Since T1(b) is a specified mixture CUSUM procedure for testing problem (1) and the
observations are independent, the optimality is an immediate corollary from Theorem 4.

(ii) Since T̃1(b) is a specified window-limited mixture CUSUM procedure for testing
problem (1) and the observations are independent, the optimality is an immediate result
from Corollary 1.

(iii) The assumption that logwγ = o(log γ) ensures that b ≥ N
2
−4 log

[
1−

(
1− 1

γ

)1/mγ ]
and b = O(log γ) can be satisfied simultaneously. Since the observations are independent,

then ESMA1 (T̃2(b)) = SMA1 (T̃2(b)) = EA0 [T̃2(b)]. The optimality of T̃2(b) is an immediate
result from Lemma 3 and the first order approximation of the detection delays in (32).
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