
1

Scheduling quay cranes and yard trucks for unloading operations 1

in container ports 2

Lu Zhen1, Shucheng Yu1, Shuaian Wang2*, Zhuo Sun3 3

1 School of Management, Shanghai University, Shang Da Road 99, Shanghai 200444, China 4
2 Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 5

3 Transportation Management College, Dalian Maritime University, Dalian 116026, China. 6

Abstract: This paper studies an integrated optimization problem on quay crane and yard truck 7

scheduling in container terminals. A mixed-integer programming model is formulated. For the 8

model, we show the integrated scheduling problem is strongly NP-hard and investigate some 9

properties that can considerably reduce the computational complexity. For solving the proposed 10

model within a reasonable time, a particle swarm optimization based solution method is 11

developed. Numerical experiments are conducted to compare the proposed method with the 12

CPLEX solver and the genetic algorithm. The results validate the effectiveness of the proposed 13

model and the efficiency of the proposed solution method. 14

Keywords: OR in transportation; scheduling; container port operation; quay cranes; yard trucks. 15

1. Introduction16

During the past decades, the maritime container transportation has developed rapidly. Since 17

2001 the annual growth rate of the world container port throughput has been up to 10% on 18

average. Some forecasts suggest this trend will continue till 2020. In addition, size of vessels 19

becomes larger and larger. Some mega-vessels can carry up to 19,000 TEUs (Twenty-foot 20

Equivalent Units). Thus ports need to handle a larger number of containers during a limited 21

length of time than before. More and more challenges are brought to port operators for 22

improving the efficiency in their management of various resources and to decrease ship 23

turnaround times in ports, especially some mega-ports such as Shanghai, Singapore, Shenzhen 24

and Hong Kong. 25

*Corresponding author. Email: wangshuaian@gmail.com.

This is the Pre-Published Version.
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-
manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10479-016-2335-9

2

The container terminal operations can be decomposed into several types of sub-problems, such 1

as berth allocation, quay crane (QC) scheduling, yard truck (YT) scheduling, yard crane (YC) 2

scheduling and storage allocation. In fact, these sub-problems are tightly interconnected. 3

Optimizing only one type of sub-problems may not be an overall optimal operation. Therefore, 4

this study combines the QC scheduling problem and the YT scheduling problem as a whole. 5

From an operational point of view, the above two scheduling problems are intertwined. The QC 6

scheduling problem mainly determines the assignment of QCs to ships and the sequence of tasks 7

to be processed by each QC, respectively. The YT scheduling problem is mainly about the 8

transportation of containers between the QC side and the YC side, which significantly affects the 9

efficiency of the whole container terminal operations. The total make-span is highly influenced 10

by the synchronization of QC scheduling and YT scheduling. 11

This paper studies an integrated optimization problem on QCs and YTs synchronization 12

scheduling in container terminals, considering the coordination of the QCs scheduling and YTs 13

scheduling problem to reduce the idle time between performing two successive tasks. The QCs 14

are in charge of the process of loading and unloading containers; and the YTs are in charge of the 15

process of transporting these containers between quay side and yard side. A good integrated 16

optimization that combines the above two handling processes can avoid efficiency loss due to 17

waiting for each other. The contribution of this study mainly lies in consideration of the 18

following aspects: (1) determining each container’s throughput time in the QC scheduling stage 19

that considers precedence, temporal distance between adjacent QCs, non-crossing constraints and 20

some other realistic constraints; (2) the decision of routing and allocation problems about YTs; 21

(3) jointly scheduling the QCs handing, routing and allocation of YTs processes. Additionally, 22

some properties on parameters setting and symmetry issue are also discussed. Then these 23

properties are used to reduce the problem’s computational complexity and improve the efficiency 24

of the solving process. 25

The remainder of this paper is structured as follows: Section 2 reviews the related works. 26

Section 3 addresses the background of the integrated optimization problem, a mixed-integer 27

3

programming (MIP) model is proposed and meanwhile some propositions are discussed. Section 1

4 elaborates a particle swarm optimization (PSO) based solution method. Section 5 presents the 2

results of the computational experiments that compare the results obtained by the PSO with the 3

optimal results solved by the CPLEX directly as well as the results obtained by the genetic 4

algorithm (GA). Finally, conclusions and closing remarks are summarized in the last section. 5

2. Literature review 6

During the last two decades, the QC scheduling problem has received much attention from 7

academia and practitioners. The QC scheduling problem was first discussed by Daganzo (1989). 8

He proposed two algorithms to minimize all the ships’ aggregate cost of delay. Peterkofsky and 9

Daganzo (1990) extended the previous work to a feasible problem, which is allowed to solve 10

larger instances and multiple machines working simultaneously on a single task. An improved 11

branch and bound (B&B) method was proposed. Recently, the complete bay is considered. Liu et 12

al. (2006) proposed a mixed-integer programming (MIP) model to solve a large-scale QC 13

scheduling problem in container terminals, where inbound vessels have different ready times. 14

They divided the proposed model into two sub-models, one is a vessel related model and the 15

other is a berth related model. Two heuristic algorithms were developed to solve the two 16

sub-models. Kim and Park (2004) discussed the QC scheduling problem. A MIP model, which 17

considers various related constraints, was formulated. In that paper a greedy randomized 18

adaptive search procedure (GRASP) was proposed to overcome the computational difficulty of 19

the branch and bound (B&B) method. Tavakkoli-Moghaddam et al. (2009) developed a MIP 20

model for QC scheduling and assignment problem, namely QCSAP. A genetic algorithm (GA) is 21

used to solve the above-mentioned QCSAP for real-world instances. Lim et al. (2004) extended 22

the QC scheduling problem with three spatial and separation constraints: the non-crossing 23

constraint, the neighborhood constraint and the job-separation constraint. They provided three 24

algorithms to find an optimal crane-to-job matching, which could maximize throughput under 25

these constraints. Moreover, a squeaky wheel optimization method with a local search approach 26

4

was proposed to search high-quality results within short times. Guan et al. (2013) studied the QC 1

scheduling problem for vessels mooring in a terminal. They firstly developed a time-space 2

network flow formulation with non-crossing constraints for the problem. Then the Lagrangian 3

relaxation approach and two heuristics that based on the threshold policy and the worst case 4

bound policy are developed to solve the problem. Legato et al. (2012) considered the 5

unidirectional scheduling issue with a series of practical constraints, such as ready times, due 6

dates for QCs, precedence relations among container groups and crane-individual service rates. 7

They used a B&B scheme and a novel timed Petri net approach in the algorithm design. 8

Numerical experiments showed their proposed method obtained high-quality solutions. 9

The YT scheduling problem also plays an important role in container terminals. In reality, YT 10

acts as a bridge between QC side and YC side. The efficiency of YT schedule has a significant 11

influence on the performance of the whole container terminal operations. Kim and Kim (1999) 12

discussed a routing problem of straddle carriers during loading operations on export containers. 13

The routing problem was formulated as an integer programming model. Bish (2003) studied a 14

vehicle dispatching problem with considering the QC related activities. The objective is to 15

minimize the maximum time it takes to serve a given set of ships. Bish et al. (2005) extended the 16

vehicle dispatching issue in a mega container terminal in order to minimize the total time it takes 17

to serve a ship. Moreover, some easily implementable heuristic algorithms were developed in 18

this paper. Nguyen and Kim (2009) studied the automated lifting vehicle (ALV) scheduling 19

problem. A heuristic algorithm was developed to solve the model. The effect of dual cycle 20

operation was also analyzed in this paper. Hu et al. (2013) proposed a new automated container 21

terminal (ACT) system which utilizes multistory frame bridges and rail-mounted to transport 22

containers between the quay side and yard side. This new system is different from the traditional 23

equipment that uses YT and automated guided vehicles (AGV). Recently the fuel consumption 24

and emission issue attracted researchers’ interest intensively. Du et al. (2011) proposed an 25

elaborate model on berth allocation with considering fuel consumption and emission. Nielsen et 26

al. (2015) took the Singapore port as a case study to consider the emission reduction issue of 27

5

truck engines in ports. Their study suggested that port operators should schedule YTs’ arriving 1

time with an optimal way in order to reduce the YTs’ idling time and emotions. Additionally, Li 2

(2012), Wang (2013), Liu (2016) considered the ship and truck routing and scheduling problem. 3

The scheduling decision of port resources (such as QCs, YTs, YCs) are usually intertwined 4

(Pang et al., 2011; Talley and Ng, 2013; Tran and Haasis, 2015). However, it is a challenging 5

task to propose an integrated model on optimizing some of these intertwined resources. Even the 6

most advanced computer may not easily solve a model that integrates all the resources applied in 7

a large port such as Shanghai port. In recent years, some studies have integrated parts of these 8

terminal operations. For example, Chen et al. (2013) studied the interaction between QC 9

handling and YT transportation in a container terminal. They proposed a three-stage algorithm to 10

solve the YT scheduling problem. In their model a YT can be shared among different ships. This 11

sharing policy reduces empty YT trips in container terminals. He et al. (2015) also considered 12

the integrated scheduling problem that combined the QC scheduling, internal truck scheduling 13

and YC scheduling as a whole. In that paper a GA algorithm was used for global search and a 14

PSO algorithm was used for local search to optimize the total departure delay of all vessels and 15

the total transportation energy consumption of all tasks. Cao et al. (2010) developed a novel 16

integrated model for YT and YC scheduling. A general Benders decomposition based method 17

and a combinatorial Benders decomposition based method were designed to solve the model. Jin 18

et al. (2015) proposed an integrated model to solve the berths and yard spaces problem. Jiang et 19

al. (2012) gave us a framework strategy that integrated space reservation and workload 20

assignment as a whole. Kaveshgar and Huynh (2015) proposed a new mathematical model to 21

reduce vessels’ turn time. This paper combines the synergies between QC, YT and YC, which 22

captures the essential characteristic of marine container terminals. Tang et al. (2014) studied a 23

joint QC and YT scheduling problem in container terminals. They considered the coordination of 24

the two types of equipment to reduce the idle time both in the unidirectional and bidirectional 25

flow situations. An improved particle swarm optimization (PSO) algorithm and several valid 26

inequalities were proposed to solve the joint scheduling problem. There are also heuristic 27

6

approaches used to solve the port resource (such as QCs, YTs, YCs) scheduling problems. The 1

most popular meta-heuristics are GA and PSO algorithm. For example, Bruzzone and Signorile 2

(1998), Tavakkoli-Moghaddam et al. (2009), Yu et al. (2011), Nguyen et al. (2013), and Fu and 3

Tsai (2014) proposed some GA based solution methods in the port related scheduling problems. 4

For the PSO algorithm applied in the port related scheduling problems, we can refer to Wang et 5

al. (2012) , Guo et al. (2014), Yao et al. (2014), Han et al. (2015), etc. 6

This study developed a mathematical model that is based on the integrated scheduling on QCs 7

and YTs in container terminals. It extends the work of Tang et al. (2014) by enhancing the QC 8

interference constraints. Meanwhile, we improve the work of Kaveshgar and Huynh (2015) by 9

considering the issue that containers in the same bay should be unloaded by the same QC. This 10

study also considers some realistic factors such as QC interference, safety margin, and a 11

sufficiently large temporal distance between the processing of adjacent QCs. We also prove that 12

the integrated scheduling problem is strongly NP-hard. Based on the complexity of the research 13

problem, two proved properties are proposed to reduce the computational complexity and a PSO 14

based solution method is developed. 15

3. Problem description and model formulation 16

3.1 Problem description 17

This study supposes the vessels have ܮ bays, and ܰ tasks need to be handled. There are |ܳ| 18

QCs and |ܶ| YTs serving the vessels. The |ܶ| YTs are homogenous with respect to their 19

capacity. Figure 1 provides an example with two QCs and four YTs unloading six containers to 20

illustrate the integrated scheduling problem. The corresponding values of parameters are shown 21

in the right table.	 ௜ܲଵ	 denotes QC processing time of container	 ݅,	 	 ௜ܲଶ denotes the round 22

transportation time of container	 ݅ , ݈଴
௤ is the initial position of QC ݍ , 	 ௤݂ is the earliest 23

available time of QC ݍ, ݃ is the QC’s unit travel time per bay. The precedence constraint is that 24

container 2 must be handled before container 1. 25

7

As shown in Figure 1, we can observe the optimal solution is containers 1, 2, 3, 4 are allocated 1

to QC 1 and the handling sequence is 2→1→4→3; containers 5 and 6 are allocated to QC 2 and 2

the handling sequence is 5→6. We can also see the YTs scheduling plan through the vertical axis 3

direction, e.g., when the time is 100 there are three YTs that are working, which is less than the 4

number of available YTs in the example (i.e., four). By manual calculation, if we evenly 5

distribute the workload (i.e., assigning the first three tasks and two YTs to QC 1, the remaining 6

three task and two YTs to QC 2), the total processing time will be 206, which is much longer 7

than the optimal result shown in Figure 1 (i.e., 181). 8

9

Figure 1: Illustration of QCs and YTs schedule 10

We define the index bay 1 as the leftmost bay and the bay L as the rightmost bay. Tasks in the 11

same bay must considered the precedence constraint. In our proposed scheduling model, we are 12

given a set of tasks ߗ= {	 1,‥‥, ܰ}, a set of parallel identical QCs, ܳ ൌ ሼ1,2,‥‥, |ܳ|ሽ and 13

a set of YTs, ܶ ൌ ሼ1,2,‥‥, |ܶ|ሽ. At each stage each task has a certain processing time and the 14

processing time of task	 ݅ in stage ݐ)ݐ ൌ 1,2) is expressed as ݌௜௧. 15

In the previous literature, the objective function of the integrated QC and YT scheduling 16

problem is to minimize the make-span of the two sub-operations, i.e., minimize the sum of the 17

8

QC processing time and YT transportation time. However, the processing time of QCs is more 1

important than the transportation time of YTs in reality because the QCs are usually the 2

bottleneck for the port’s productivity. Therefore, this study uses a weighted sum of the QC 3

processing time and YT transportation time; and we set the weight of the former one to be 4

larger than the weight of the latter one. 5

3.2 Model formulation 6

Index and sets: 7

݅, ݆ tasks/containers index 8

	,set of tasks/containers to be performed ߗ ,‥‥,ሼ1=ߗ ܰሽ; two dummy tasks 0 and 9

	ܨ 	 with zero processing time are given to indicate the beginning and the end of 10

 whole schedule. Additionally,	 ଴ߗ ൌ ߗ ∪ ሼ0ሽ,	 ிߗ ൌ Ω ∪ ሼܨሽ,	 തߗ ൌ ߗ ∪ ሼ0, ሽ 11ܨ

݄ bay index 12

	;set of bays of the ship to be berthed ܧ ܧ ൌ ሼ1,2,‥‥, ሽ, the bays are numbered 13|ܧ|

sequentially along the quay in the same direction as for the QCs 14

 QC index 15 ݍ

ܳ set of QCs;	 ܳ ൌ ሼ1,2,‥‥, |ܳ|ሽ 16

݇ YT index 17

ܶ set of YTs,	 ܶ ൌ ሼ1,2,‥‥, |ܶ|ሽ 18

	set of task/container pairs ߔ ሺ݅, ݆ሻ in the same bay that	 	 ݅ must precede ݆ in unloading 19

process 20

 set of all task pairs that cannot be performed simultaneously with considering the 21 ߖ

 safety of QC margin constraint and task precedence constraint,	 ߔ ⊆ 22 ߖ

Input data: 23

λ a constant weight that belongs to (0,1) interval 24

௤݂ earliest available time of QC 25 ݍ

9

݃ QC’s unit travel time between bays 1

݈଴
௤ initial position (the position is pressed using the bay number) of QC 2 ݍ

	௜ bay in which containerܮ ݅	 is located,	 ௜ܮ ∈ 3 ܧ

 a sufficiently large positive number 4 ܯ

௝ܲଵ QC processing time needed to unload task/container ݆ 5

௝ܲଶ time for a YT to transport container	 ݆	 from the QC side to the container’s destination in 6

the yard and return 7

	௜௝ travel time of QC from the bay position of taskݐ 	 ݅	 	 to task	 ݆ 8

∆௜௝
௩௦ minimum time span to elapse between task	 ݅	 and task	 ݆, if the two tasks processed by 9

QC	 respectively 10 ,ݏ and ݒ

 set of all combinations of tasks and QCs that potentially lead to QC interference. 11 ߆

It is defined as	 ߆ ൌ ሼሺ݅, ݆, ,ݒ ሻݏ ∈ ଶߗ ൈ ܳଶ|݅ ൏ ݆	 ܽ݊݀	 ∆௜௝
௩௦൐ 0} 12

Decision variables: 13

௜ܹ௝ binary variable. It equals 1 if task/container 	 ݆	 starts after the completion of 14

task/container ݅ by QC, 0 otherwise 15

௜ܺ௝
௤ 	 binary variable. It equals 1 if QC 	 	ݍ performs task/container 	 ݅	 just before 16

task/container	 	 ݆, 0 otherwise 17

௜ܻ௞ binary variable. It equals 1 if container	 ݅ is allocated to YT ݇ for transporting, 0 18

otherwise	 19

௜ܻ௝
௞ binary variable. It equals 1 if YT k performs container	 	 ݅	 	 just before container	 ݆, 0 20

otherwise 21

ܼ௜௤ binary variable. It equals 1 if task/container	 	 ݅	 	 allocated to QC ݍ for unloading, 0 22

otherwise 23

 ௜ଵ complete time of unloading task/container ݅ 24ܥ

C௜ଶ complete time of the round trip for transporting container ݅ 25

Based on the above notations, we formulate the problem as the following mathematical model: 26

10

௜ଵܥ௜∈ఆሺݔܽ݉݁ݖ݅݉݅݊݅ܯ ൅ ௜ଶሻ (1) 1ܥߣ

subject to: 2

∑ ܺ0݆
ݍ 	 ൌ 1௝∈ఆಷ 	 	 ݍ ∈ ܳ 3

(2) 4

∑ ܨ݆ܺ
ݍ 	 ൌ 1௝∈ఆబ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ݍ ∈ ܳ 5

 (3) 6

∑ ௝ܺ௜
௤ െ ∑ ௜ܺ௝

௤ ൌ 0௝∈ఆಷ௝∈ఆబ 	 	 	 	 ݅ ∈ ,ߗ ݍ ∈ ܳ 7

(4) 8

ܼ௜௤ ൌ ∑ ௝ܺ௜
௤	௝∈ఆబ 	 	 ݅ ∈ ,ߗ ݍ ∈ ܳ (5) 9

∑ ܼ௜௤௤∈ொ ൌ 1 	 	 ݅ ∈ 10 ߗ

(6) 11

௜ଵܥ ൑ ௝ଵܥ െ ௝ܲଵ 	 ሺ݅, ݆ሻ ∈ 	ߔ 12

(7) 13

௜ܹ௝ ൅ ௝ܹ௜ ൌ 1 	 	 	 	 	 	 	 	 	 ሺ݅, ݆ሻ ∈14

߰	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (8) 15

௜ଵܥ ൅ ௝ܲଵ െ ௝ଵܥ ൑ ܯ ൈ ሺ1 െ ௜ܹ௝ሻ 	 	 ݅, ݆ ∈ Ω	 	 	 	 	 	 	 	 16

(9) 17

௝ଵܥ െ ௝ܲଵ െ ௜ଵܥ ൑ ܯ ൈ ௜ܹ௝ 	 	 ݅, ݆ ∈ 	ߗ 	 	 	 	 	 	 18

(10) 19

∑ ܺ௨௜
௩ 	 ൅ ∑ ܺ௨௝

௦
௨∈ஐబ ൑ 1 ൅ ௜ܹ௝ ൅ ௝ܹ௜௨∈ஐబ 	 	 ሺ݅, ݆, ,ݒ ሻݏ ∈ 	߆ 	 	 (11) 20

௜ଵܥ ൅ ∆௜௝
௩௦ ൅ ௝ܲଵ െ ௝ଵܥ ൑ ܯ ൈ ൫3 െ ௜ܹ௝ െ ∑ ܺ௨௜

௩
௨∈ஐబ െ ∑ ܺ௨௝

௦
௨∈ஐబ ൯	 ሺ݅, ݆, ,ݒ ሻݏ ∈ 	߆ (12) 21

௝ଵܥ ൅ ∆௝௜
௩௦ ൅ ௜ܲଵ െ ௜ଵܥ ൑ ܯ ൈ ൫3 െ ௝ܹ௜ െ ∑ ܺ௨௜

௩
௨∈ஐబ െ ∑ ܺ௨௝

௦
௨∈ஐబ ൯	 ሺ݅, ݆, ,ݒ ሻݏ ∈22

	߆ 	 	 	 	 	 	 	 	 	 	 (13) 23

௤݂ ൅ ݃ ൈ ห݈଴
௤ െ ௝หܮ ൅ ௝ܲଵ െ	 ௝ଵܥ ൑ ܯ ൈ ሺ1 െ ܺ଴௝

௤ ሻ	 	 	 ݆ ∈ ,ߗ ݍ ∈ ܳ	 (14) 24

11

௜ଵܥ ൅ ݃ ൈ หܮ௜ െ ௝หܮ ൅ ௝ܲଵ െ ௝ଵܥ ൑ ܯ ൈ ሺ1 െ ௜ܺ௝
௤ 	 ሻ	 	 	 ݅, ݆ ∈ ,ߗ ݍ ∈ ܳ (15) 1

௜ଵܥ ൅ ௜ܲଶ ൌ 	௜ଶܥ 	 	 ݅ ∈ 	ߗ 	 	 	 	 	 	 	 	 	 2

(16) 3

∑ ଴ܻ௝
௞ 	 ൌ 1௝∈ఆಷ 	 	 	 ݇ ∈ ܶ	 	 	 4

(17) 5

∑ ௝ܻி
௞ 	 ൌ 1௝∈ఆబ 	 	 	 ݇ ∈ ܶ	 6

(18) 7

∑ ௝ܻ௜
௞ െ ∑ ௜ܻ௝

௞ ൌ 0௝∈ஐಷ௝∈ஐబ 	 	 	 ݅ ∈ ,ߗ ݇ ∈ ܶ	 (19) 8

௜ܻ௞ ൌ ∑ ௝ܻ௜
௞	௝∈ఆబ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ݅ ∈ ,ߗ ݇ ∈ ܶ	 	 	 	 9

(20) 10

∑ ௜ܻ௞௞∈் ൌ 1 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ݅ ∈ Ω 11

(21) 12

௝ଵܥ ൅ ሺ1ܯ െ ௜ܻ௝
௞ሻ ൒ 	 ௜ଶܥ 	 ݅, ݆ ∈ ,ߗ ݇ ∈ ܶ 	 (22) 13

௜ܹ௝ ∈ ሼ0,1ሽ, ௜ܹ௜ ൌ 0 	 	 	 	 	 	 ݅, ݆ ∈ Ω 	 14

(23) 15

௜ܺ௝
௤ 	 , ௜ܻ௝

௞ ∈ ሼ0,1ሽ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ݅, ݆ ∈ ,തߗ ݍ ∈ ܳ, ݇ ∈ ܶ	 16

(24) 17

௜ܺ௜
௤ ൌ 0	 , ௜ܻ௜

௞ ൌ 0 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ݅ ∈ Ωഥ, ݍ ∈ ܳ, ݇ ∈ ܶ 18

(25) 19

Objective (1) is to minimize the combined processing time of the two sub-operations. Detail 20

reasons are described in section 3.1. The parameter ߣ is a fractional constant weight between 21

zero and one. Constraints (2) and (3) guarantee each QC have a dummy task 0 as its initial task 22

and a dummy task ܨ	 as its final task. Constraints (4) ensure the operation order of the tasks. 23

Each task (except the two dummy tasks) has only one task as its immediate predecessor and one 24

12

task as its immediate follower. Constraints (5) make sure if a container is unloaded by a QC, it 1

should be the initial task or there is another task before it. Constraints (6) require that each task 2

must be handled by exactly one QC. Constraints (7) guarantee that if task ݅	 and ݆ belong to the 3

set	 ,ሺ݅ߔ ݆ሻ in the same bay, task ݅ must precede task j in the unloading process. Constraints (8) 4

ensure if task ݅	 and ݆ belong to the set 	 ߰ሺ݅, ݆ሻ , the two tasks cannot be performed 5

simultaneously. Constraints (9) and Constraints (10) define the binary variable	 ௜ܹ௝. ௜ܹ௝ is 6

equal to 1 in the case that task ݆ must be handled after the operation of task	 ݅ and ௜ܹ௝ is equal 7

to 0 in the case that task ݅ started after the completion of task	 	 ݆. Constraints (11)-(13) consider 8

the non-crossing constraints and safety margin constraints, when QCs ݒ and ݏ are adjacent and 9

their processing tasks are ݅ and	 ݆, respectively. Constraints (11) guarantee that task ݅ and task 10

݆ are not handled simultaneously by QCs	 	 respectively. If both assignments ݅ and ݆ 11 ,ݏ and ݒ

take place in that way, the left side value is two that is greater than the right side value one. In 12

other words, if QCs ݒ and ݏ are adjacent, either ௜ܹ௝ ൌ 1 or ௝ܹ௜ ൌ 1 . Constraints (12) 13

prescribe a proper temporal distance calculated by equation (27) which explained later. It applies 14

to the starting time of task ݅ and the completion time of task ݆ if 	 ௜ܹ௝ ൌ 1 . Similarly, 15

Constraints (13) work in the same manner as constraints (12) but for the case ௝ܹ௜ ൌ 1. 16

Constraints (14) use the processing time of the first task to define the earliest starting operation 17

time of each QC. Constraints (15) define the completion time of each task handled by QC, which 18

equals the completion time of the adjacent tasks (the two tasks handled by the same QC) plus the 19

QC travel time between these two tasks as well as their processing time. Constraints (16) define 20

the relationship between the completion time of unloading and the completion time of 21

transportation. Constraints (16) connect the two types of activities by QC and YT. Constraints 22

(17)-(19) have the same function for YTs as the Constraints (2)-(4) for QCs. Constraints (20) 23

ensure that if container ݅ is transported by a YT, it is either the initial task or there is another 24

task transported just before it. Constraints (21) require that each container should be transported 25

by one YT and only one YT. Constraints (22) ensure that if both container ݅ and ݆ are 26

transported by the same YT and container ݅ is handled first, the completion time of task ݆ 27

13

handled by QC should be no earlier than the completion time of task	 	 ݅. Note that in order to 1

understand Constraints (22) one should connect with Constraints (16). Constraints (23)-(25) 2

define the decision variables. 3

Objective (1) is hard to solve as we should optimize the ݔܽ݉݁ݖ݅݉݅݊݅ܯ௜∈ఆሺܥ௜ଵ ൅ ௜ଶሻ, i.e., 4ܥߣ

we first optimize ݔܽܯሺܥ௜ଵ ൅ ,௜ଶሻܥߣ ݅ ∈ ௜ଵܥሺݔܽܯ and then optimize the minimization of ,ߗ ൅5

,௜ଶሻܥߣ ݅ ∈ To address the difficulty, we formulate an auxiliary decision variable Λ as an 6 .ߗ

intermediate variable. The auxiliary decision variable Λ is defined as an upper bound 7

of	 	 ௜ଵܥ௜∈ఆሺݔܽ݉ ൅ ௜ଶሻ, i.e. 8ܥߣ

௜ଵܥ௜∈ఆሺݔܽ݉ ൅ ௜ଶሻܥߣ ൑ Λ (26) 9

Then the objective (1) turns to min Λ, subjects to constraints:	 Λ൒ሺܥ௜ଵ ൅ ,௜ଶሻܥߣ ݅ ∈ 10 ߗ

The parameter ∆௜௝
௩௦	 is defined as the minimum temporal distance. It is inserted into the 11

processing time slots of two tasks ݅ and	 	 ݆, which handled by QCs ݒ and	 	 respectively. 12 ,ݏ

The definition of ∆௜௝
௩௦ was proposed by Bierwirth and Meisel (2009) as follows: 13

∆௜௝
௩௦ൌ ቐ

൫݈௜ െ ௝݈ ൅ ௩௦൯ߜ ൉ ݃	 	 	 	 ݂݅	 ݒ ൏ ,ݏ ݅ ് ݆, ݈௜ ൐ ௝݈ െ ௩௦ߜ
൫ ௝݈ െ ݈௜ ൅ ௩௦൯ߜ ൉ ݃	 	 	 	 ݂݅	 ݒ ൐ ,ݏ ݅ ് ݆, ݈௜ ൏ ௝݈ ൅ ௩௦ߜ
0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ݁ݏ݅ݓݎ݄݁ݐ݋

 14

(27) 15

Where	 	 ݈௜	 	 is the bay position of taks ݅, the parameter ߜ௩௦ is the safety margin that must be 16

maintained between the adjacent QCs ݒ	 and 	 ,ݏ ௩௦ߜ ൌ ሺߜ ൅ 1ሻ ൉ ݒ| െ17

	|ݏ 	ߜ) is	 a	 contant, example 18

the	 value	 of	 	 	ߜ 	 can	 be	 2). The set ߆ is defined as follows 19

߆ ൌ ሼሺ݅, ݆, ,ݒ ଶߗሻϵݏ ൈ ܳଶ|݅ ൏ ݆, ∆௜௝
௩௦൐ 0ሽ (28) 20

The set Θ defines the combination that the QCs and tasks may lead to potential interference. 21

Proposition 1: Finding an optimal solution for the model is strongly NP-hard. 22

Proof: See Appendix A ■ 23

In the traditional model formulation, ܯ is set as a sufficiently large positive number, such as 24

10,000 or even larger. In the process of model solving, the value of ܯ influences the efficiency 25

14

of the solving process. Li et al. (1996) and Junior and Lins (2005) have investigated the issue of 1

setting the value of ܯ, and found that a proper value of ܯ could not only reduce the difficulty 2

of understanding the problem but also improve the computational efficiency. Moreover, different 3

problem backgrounds may need different methods to set a proper ܯ value. In this study, we 4

focus on this issue and try to set a proper upper bound value of M for different scale problems. 5

Specifically, we assume there is only one QC (the first QC in the set) and one YT to handle all 6

the tasks. The QC moves from one side to the next, the containers are labeled such that container 7

1 can be unloaded first, container 2 can be unloaded second, etc. Then we can calculate the time 8

required to complete all of the tasks. So a valid value for M can be equal to the above time. We 9

can see that for different-scale problems the M value is not the same. A proposition about this is 10

stated as follows: 11

Proposition 2: A formula used to calculate a proper value of ܯ about the integrated QC and 12

YT scheduling problem is as follows: 13

ܤܷܯ ൌ ݍ݂ ൅ ݃ൈ ห݈0
ݍ െ 1หܮ ൅ ܲ11 ൅ ∑ ,൛ܲ݅െ1,2ݔܽ݉ ݃ ൈ ݅ܮ| െ |െ1݅ܮ ൅ ܲ݅1ൟ݅∈ߗ\ሼ1ሽ ൅ 14 (29) 2|ߗ|ܲ

Proof: See Appendix B ■ 15

In realistic port operation, a port operator usually assigns a given set of YTs to each QC. 16

However, it usually will lead to QCs and YTs wait for each other, because these two types of 17

machines lack coordination. Such as if a container is handled by a QC and all the YTs allocated 18

to the QC are occupied, the QC has to hold the container till an empty YT coming. On the 19

contrary, YT sometime needs to wait for the QC that the YT assigned. These waiting activities 20

on the sides of QC and YT reduce the handling efficiency of the port operation. For example, 21

there are two QCs allocated to bay 4 and bay 6. YTs 1, 2 and 3 are allocated to QC 1, and YTs 4, 22

5 and 6 are allocated to QC 2. The YT 1 is fully loaded, while YTs 2 and 3 are waiting in a 23

queue for QC 1. Meanwhile, YTs 4, 5 and 6 are busy. According to the usual practice, QC 2 24

needs to hold container and wait for YTs. Based on the above problems, this study considers the 25

YTs sharing among QCs. Then a YT may be dispatched from bay 4 to bay 6. However, as these 26

YTs are homogeneous, dispatching YT 2 to bay 6 has the same effect as dispatching YT 3 to bay 27

15

6. In fact, their effects are the same. We call this phenomenon a symmetry problem. When we 1

use mixed-integer linear programming software to solve the scheduling problem, the solver may 2

not distinguish the symmetry phenomenon. A lot of solved solutions have the same effect and the 3

symmetry problem may lead to a time-consuming solving process. 4

Proposition 3: To reduce the influence of symmetry phenomenon, we propose the following 5

method as follows: 6

∑ ݆. ܻ0݆
݇ ൑ ∑ ݆. ܻ0݆

݇൅1
௝∈ఆಷ௝∈ఆಷ ݇ ∈ ܶ/ሼ|ܶ|ሽ (30) 7

Proof: See Appendix C ■ 8

4. Solution method 9

For small-scale problem instances, the proposed model can be solved directly by the CPLEX 10

solver. However, the CPLEX solver cannot solve large-scale problem instances within a 11

reasonable period of time. Therefore, we have to consider heuristic algorithms. Particle Swarm 12

Optimization (PSO) was first introduced by Eberhart and Kennedy (1995). Compared with the 13

traditional GA algorithm, the PSO algorithm needs fewer parameters to adjust. Nowadays the 14

PSO algorithm has been widely used for solving port optimization problems. Wang et al. (2012) 15

used an improved discrete PSO algorithm to solve a QC scheduling problem in order to reduce 16

the turnaround time of a ship. Ting et al. (2014) used it to solve a berth allocation problem. Guo 17

et al. (2014) also applied the PSO algorithm to optimize a QC scheduling problem. These results 18

demonstrate the PSO algorithm can effectively solve port optimization problems. Thus this study 19

designs a PSO based solution method for solving the integrated QC and YT scheduling problem. 20

The PSO algorithm is a population-based algorithm that is initialized with a group of random 21

particles. Each particle represents a solution method that has a given position and velocity. The 22

particles search for optimal solutions through updating generations. In each generation, each 23

particle is updated by a new position and velocity. The position reflects the search quality, and 24

velocity determines the direction where the particle would move in the next iteration. The 25

updating formula of velocity and position are presented as follows: 26

16

௠௜ݒ
௡ାଵ ൌ ௠௜ݒ

௡ ൅ ܿଵ݀݊ݎଵሺ݈ݐݏ݁ܤ݌௠௜
௡ െ ݈௠௜

௡ ሻ ൅ ܿଶ݀݊ݎଶሺ݈݃ݐݏ݁ܤ௠௡ െ ݈௠௜
௡ ሻ (31) 1

݈௠௜
௡ାଵ ൌ ݈௠௜

௡ ൅ ௠௜ݒ
௡ (32) 2

In Eqs. (31) and (32),	 ௠௜ݒ
௡ାଵand ݒ௠௜

௡ 	 represent the current velocity and the previous velocity of 3

particle ݅ on dimension	 	 ݉, respectively; ݈ݐݏ݁ܤ݌௠௜
௡ denotes the best position of particle ݅ on 4

dimension ݉ up to iteration n; ݈݃ݐݏ݁ܤ௠௡ denotes the best position of the whole swarm on 5

dimension ݉ until iteration ݊;	 ݈௠௜
௡ାଵ	 and ݈௠௜

௡ denote the current and previous position of 6

particle ݅ on dimension	 ݉, respectively. Both ܿଵ	 and	 	 ܿଶ	 are acceleration weights, and they 7

determine whether the particle fly to the best position it has reached so far or the best position of 8

the whole swarm. ݀݊ݎଵ	 and ݀݊ݎଶ	 are two positive random numbers generated within the 9

interval [0, 1]. 10

The standard PSO algorithm may lead the particles to grow unlimitedly, which influences the 11

particles’ convergence to the optimal solution. To overcome this problem Shi and Eberhart (1998) 12

proposed a new velocity updating formula which imposes the velocity of particle ݅ an inertia 13

coefficient. The updating formula is as follows: 14

௠௜ݒ
௡ାଵ ൌ ௠௜ݒ௡ݓ

௡ ൅ ܿଵ݀݊ݎଵሺ݈ݐݏ݁ܤ݌௠௜
௡ െ ݈௠௜

௡ ሻ ൅ ܿଶ݀݊ݎଶሺ݈݃ݐݏ݁ܤ௠௡ െ ݈௠௜
௡ ሻ (33) 15

In Eq. (33), the inertia coefficient ݓ௡ is expressed as: 16

௡ݓ ൌ ఊ೘ೌೣష೙

ఊ೘ೌೣ
ሺߚ௠௔௫ െ ௠௜௡ሻߚ ൅ 	௠௜௡ߚ (34) 17

In Eq. (34), ߚ௠௔௫ and ߚ௠௜௡ represent the maximum and the minimum values of the inertia 18

weight coefficients, respectively. ߛ௠௔௫ is the maximum number of iteration. 19

4.1. Solution representation 20

 In this study, the integrated optimization model solves two problems: one is to allocate the 21

tasks to QC and YT, the other is to identify the handling sequence of QC and YT. Thus, the first 22

stage is to find a suitable mapping between the two decision problems and particles. We encode 23

the particles in terms of the QC allocation and the handling sequence of containers, and then 24

decode them to get solutions. Let a 2ܰ-dimensional vector (ࢄ ൌ ሼ ଵܺ,⋯ , ௜ܺ, ⋯ , ܺଶேሽ) represent 25

a solution (ܰ ൌ ሻ. The first ܰ dimensions in the front part of the vector indicate the QC 26|ߗ|

17

allocation. And the value of each dimension is a real number (i.e., 	 ௜ܺ) within the 1

interval	 ሾ0, |ܳ|ሿ, where	 |ܳ| is the number of QCs. The value ڿ ௜ܺۀ denotes the index of the QC 2

allocated for Task	 ݅. Here ڿ ௜ܺۀ is the smallest upper integer bound of	 	 	ܺ ௜. The remaining ܰ 3

dimensions in the vector represent the handling sequence of each QC. The value in the 4

dimension 	 ܰ ൅ ݅	 is also a real number (i.e., 	 ܺேା௜) within the interval 	 ሾ0, ܰሿ , and 5

ܺேା௜	 determines the unloading sequence of container ݅. The unloading sequence for a certain 6

QC is decided by the ascending order of the values in those dimensions corresponding to the 7

containers allocated to the QC. It should be mentioned that we allocate containers to YT in terms 8

of the ascending order of the QC scheduling sequence. Here we give an example to illustrate it. 9

The example encoding of the solution contains two QCs and five tasks. Table 1 shows the 10

encoding results of this instance. 11

Table 1: The encoding of the solution 12

Task No. ௜ܺ ௜ܺାே
1 0.32 2.77
2 0.65 5.99
3 1.40 4.99
4 1.71 2.41
5 1.36 3.87

In Table 1， ଵܺ ൌ 0.32 ൏ ܺଶ ൌ 0.65 ൏ 1, ڿ ଵܺۀ ൌ ۀଶܺڿ ൌ 1. So Task 1 and Task 2 are handled 13

by QC 1. Task 2 is handled later than Task 1, because	 ܺଶାே ൌ 5.99 ൐ ଵܺାே ൌ 2.77.	 	 ۀଷܺڿ ൌ14

ۀସܺڿ ൌ ۀହܺڿ ൌ 2, so Task 3, Task 4 and Task 5 are handled by QC 2. As for	 ܺସାே ൌ 2.41 ൏15

ܺହାே ൌ 3.87 ൏ ܺଷାே ൌ 4.99, and the handling sequence is Task 4, Task 5 and Task 3. The 16

corresponding solution after decoding is in Table 2. 17

 18

 19

Table 2: The decoding of the solution 20

Task No. Quay crane No. Sequence
1 1 1
2 1 2

18

3 2 3
4 2 1
5 2 2

4.2 The PSO procedure 1

 Based on the above components, the completed PSO procedure for solving the integrated QC 2

and YT scheduling problem is as follows. 3

Step 1: Initialize ܭ particles as a swarm to obtain the QC allocation and the handling 4

sequence by each QC. Set iteration	 	 ݊ =1. 5

Step 2: For ݅ ൌ1, 2,‥‥,ܭ, update particles with the probability ߝ, re-initialize the particles 6

and their best positions (ݐݏ݁ܤ݌). 7

Step 3: For ݅ ൌ1, 2,‥‥,ܭ, ensure that containers in the same bay must be handled by the 8

same QC and precedence constraints must be satisfied in the initial solutions. A 9

sub-procedure 	 ሺ࢚࢙࢛݉࢐ࢊ࡭) is performed to revise the initial particles. Details of the 10

sub-procedure	 ሺ݉) are addressed in Appendix D. 11࢚࢙࢛࢐ࢊ࡭

Step 4: For ݅ ൌ1, 2,‥‥,	 allocate containers to YTs in terms of the ascending order of the 12 ,ܭ

QC scheduling sequence, which determined by the value of ܺேା௜ that described in section 4.1. 13

Step 4.1: For each QC, sort out all the containers based on the ascending order of their 14

completion time. 15

Step 4.2: Allocate the containers to YTs with the earliest available time criterion and check it. 16

Calculate the completion time of the containers on the allocated YTs. Meanwhile, record the 17

earliest available time of the YTs. Repeat this process until all containers are allocated by YTs. 18

Step 5: For ݅ ൌ1, 2,‥‥,ܭ, calculate the fitness value. 19

Step 6: Update the best position of each particle, 20 .ݐݏ݁ܤ݌

Step 7: Update the best position of the swarm, 21 .ݐݏ݁ܤ݃

Step 8: Update the velocity and the position of each particle. 22

Step 9: If ݊ reaches the preset maximum iteration, stop; otherwise set ݊=	 ݊ ൅ 1 and go to 23

19

step 2. 1

4.3 Modifying the generated particles at each iteration 2

The initial particles are generated randomly for ensuring the diversity of particles. In this study, 3

we set containers that belong to the same bay must be handled by the same QC. In addition, the 4

containers in the same bay should be followed some certain handling precedence relationship. 5

However, some randomly generated particles may not satisfy these requirements. Thus 6

modifications should be made for these infeasible particles so that they can satisfy the practical 7

constraints. Thus we propose a method as below to modify the infeasible dimension values. 8

Suppose two containers ݅ and ݆ in the same bay. If their QC allocations disobey the constraints 9

in the randomly generated particle process, i.e., the value in dimension	 	 ݅ and	 	 ݆, ڿ ௜ܺۀ ് ඃ ௝ܺඇ. 10

We will revise the integer part of ௝ܺ so that the revised value of ௝ܺ satisfy	 ڿ ௜ܺۀ ൌ ඃ ௝ܺඇ. If two 11

containers ݅ and ݆ in the same bay, and container ݅ must be handled before container	 	 ݆. But 12

the values of ܺேା௜ and ܺேା௝ violate the precedence constraints, we would exchange the two 13

values. Table 3 and Table 4 demonstrate an example to modify the random generated particles. 14

In the example, there is a precedence relationship that requires Task 2 must be handled before 15

Task 3. Table 3 shows the modification of the ܰ dimensions in the front part of the vector. 16

Table 4 shows the modification of the ܰ dimensions in the rear part of the vector. 17

Table 3: An example of modifying an initially generated solution (Part 1) 18

Task No. Bay No. Original ௜ܺ Modified ௜ܺ
1 1 0.32 0.32
2 2 0.65 0.65
3 2 1.40 0.40
4 3 1.71 1.71
5 5 1.36 1.36

 19

Table 4: An example of modifying an initially generated solution (Part 2) 20

Task No. Bay No. Original ௜ܺାே Modified ௜ܺାே
1 1 2.77 2.77

20

2 2 5.99 4.99
3 2 4.99 5.99
4 3 2.41 2.41
5 5 3.87 3.87

4.4 Re-updating the particles at each iteration 1

A demerit of the PSO algorithm is that the solutions may easily fall into the local optima. 2

Though we impose an inertia weight coefficient to balance it, the particles prefer to fly towards 3

the best position that it has ever reached. In order to avoid falling into local optima quickly, we 4

use some randomly generated particles to replace the original particles at each iteration. The 5

probability of replacing the particles by some new ones is set as	 	 	ߝ ሺ0 ൏ ߝ ൏ 1ሻ. 6

5. Computational experiments 7

We conduct experiments to assess the solution quality and efficiency of our algorithm. All 8

experiments are performed by CPLEX 11.0 with technology of C# (VS2012) on a PC (Intel Core 9

i3, 2.4 GHz; Memory, 2G). 10

To validate the performance of the proposed propositions, we compare the results obtained by 11

CPLEX solver (the existing model in which the value of ܯ is set to 10,000) with CPLEX-M 12

(the existing model in which the value of ܯ is set based on Proposition 2) solver and CPLEX-S 13

(the existing model with Proposition 3) solver. For evaluating the performance of the proposed 14

PSO based algorithm. In small-scale problems, the PSO algorithm is compared with the optimal 15

solution obtained by CPLEX-S-M (the existing model with both Proposition 2 and Proposition 3) 16

solver. In large-scale instances, the PSO algorithm is compared with the widely used genetic 17

algorithm (GA). In this paper, the GA is similar to Lee et al. (2008). Some details about the GA 18

we can refer to Golberg (1989) Hartmann (2001), Alp et al. (2003). The chromosome of GA 19

coded and decoded the sequence of containers are the same way as the proposed PSO algorithm, 20

which described in sub-section 4.1. In the GA used in the following experiments, a roulette 21

wheel approach is used as the selection procedure, the chromosomes probability of crossover, the 22

chromosomes mutation probability are set as 0.4 and 1/2	 ܰ(2	 ܰ is the number of genes). The 23

21

size of the population is 20, and the algorithm will be stop iterated until the pre-specified 1

generation number 50 is reached. For the PSO algorithm, the procedure termination condition 2

and the population size are set as the same as the GA in this study. Based on the results of test 3

runs, we set the two acceleration weights ܿଵ and ܿଶ as ܿଵ=1, ܿଶ=1;	 the maximum value of the 4

inertia weight coefficient ߚ௠௔௫ ൌ 1.2, the minimum value of the inertia weight coefficient 5

௠௜௡ߚ ൌ 0.7, and the probability of replacing the particles by some new one is set as ߝ ൌ 0.01. 6

The constant weight ߣ is set as 0.4. The experiment data is randomly generated as follows: (1) 7

the time that a QC unloads a container is generated by following a uniform interval [150,190] 8

(including the picking up time, dropping off time and traveling time by QC); (2) the roundtrip 9

time that a YT transports a container is generated by following a uniform interval [50, 90]. 10

5.1 Performance evaluation of Proposition 2 11

For evaluating the performance of the proposed Proposition 2 that calculate a proper value 12

of	 	 we compare the results obtained by the existing model with Proposition 2 (CPLEX-M) 13 ,ܯ

with the optimal results solved by CPLEX solver (CPLEX). The experiment results are listed in 14

Table 5. 15

From Table 5, we can observe the CPLEX solver and CPLEX-M solver obtain the same 16

objective results. However, Proposition 2 helps the CPLEX-M solver reduce the computational 17

time significantly. As shown in Table 5, the average computational time required by CPLEX is 18

515.93(s). While the average computational time of the model with Proposition 2 (CPLEX-M) is 19

269.44(s), which is 52.22% of the time of the CPLEX solver. We can observe that in most cases 20

of Table 5 (e.g., cases 9, 14 and 16), the CPLEX-M solver considerably outperforms the CPLEX 21

solver. 22

 23

Table 5: Comparison between the CPLEX solver and the CPLEX-M solver 24

 Instance CPLEX CPLEX-M Time(s)
Gap ID # OBJ Time(s) OBJ Time(s)

1 5-2-2 816 1.82 816 1.44 20.88%

22

2 5-3-3 676.5 1.43 676.5 1.43 0.00%
3 6-2-2 927 5.06 927 3.36 33.60%
4 6-3-3 681 1.74 681 1.73 0.57%
5 8-2-4 1137 13.64 1137 14.68 -7.62%
6 8-3-6 879 16.63 879 10.01 39.81%
7 10-2-4 1437 90.50 1437 94.79 -4.74%
8 10-3-6 1176 39.37 1176 27.29 30.68%
9 11-2-4 1599 357.65 1599 166.49 53.45%
10 11-3-6 1386 55.21 1386 69.09 -25.14%
11 11-4-8 1383 150.06 1383 154.25 -2.79%
12 12-2-4 1650 726.81 1650 468.61 35.53%
13 12-3-6 1416 172.41 1416 115.76 32.86%
14 12-4-8 1413 389.69 1413 167.48 57.02%
15 13-3-6 1431 258.07 1431 152.25 41.00%
16 13-4-8 1428 1748.61 1428 416.33 76.19%
17 14-3-6 1431 1138.54 1431 1019.49 10.46%
18 14-4-8 1428 4119.57 1428 1958.32 52.46%

Average(s) 1222.18 515.93 1222.18 269.44 47.78%

Notes: (1) Instance # denotes No. of tasks - No. of QCs - No. of YTs. 1

 (2)Gap= (Time (CPLEX)െ Time (CPLEX-M)) / Time (CPLEX)	 ൈ	 100%. 2

5.2 Performance evaluation of Proposition 3 3

In order to evaluate the performance of Proposition 3, we compare the results obtained by the 4

existing model adds the Proposition 3 (CPLEX-S) with the optimal results solved by the CPLEX 5

solver. Table 6 reports the best solutions found by the CPLEX-S solver, the CPLEX solver and 6

the average improvement. 7

From the results presented by Table 6, we can observe the CPLEX solver and CPLEX-S 8

solver obtained the same objective results. The last column in the table shows the gap of the 9

CPLEX and CPLEX-S solvers with respect to their computation time. It shows the average 10

improvement rate of the CPU time by using Proposition 3 is 3.91%. The results indicate the 11

existing model with Proposition 3 (CPLEX-S) outperforms the existing model solved by the 12

CPLEX solver. 13

Table 6: Comparison between the CPLEX solver and the CPLEX-S solver 14

 Instance CPLEX CPLEX-S Time(s)
Gap ID # OBJ Time(s) OBJ Time(s)

23

1 5-2-2 816 1.82 816 1.45 20.33%
2 5-3-3 676.5 1.43 676.5 1.39 2.80%
3 6-2-2 927 5.06 927 4.91 2.96%
4 6-3-3 681 1.74 681 1.73 -0.57%
5 8-2-4 1137 13.64 1137 13.66 -0.15%
6 8-3-6 879 16.63 879 16.33 1.80%
7 10-2-4 1437 90.50 1437 90.04 0.51%
8 10-3-6 1176 39.37 1176 39.48 -0.28%
9 11-2-4 1599 357.65 1599 344.12 3.78%
10 11-3-6 1386 55.21 1386 55.05 0.29%
11 11-4-8 1383 150.06 1383 148.37 1.13%
12 12-2-4 1650 726.81 1650 191.29 4.89%
13 12-3-6 1416 172.41 1416 170.82 0.29%
14 12-4-8 1413 389.69 1413 385.29 1.13%
15 13-3-6 1431 258.07 1431 263.25 -2.01%
16 13-4-8 1428 1748.61 1428 1647.73 5.77%
17 14-3-6 1431 1138.54 1431 1114.61 2.10%
18 14-4-8 1428 4119.57 1428 3933.95 4.51%

Average(s) 1222.18 515.93 1222.18 495.75 3.91 %

Notes: (1) Instance # denotes No. of tasks - No. of QCs - No. of YTs. 1

 (2)Gap= (Time (CPLEX) െ Time (CPLEX-S)) / Time (CPLEX)	 ൈ	 100%. 2

5.3 Performance of the proposed solution methods 3

In order to validate the performance of the proposed PSO based solution methods. For small 4

scale problems we compare the results obtained by the PSO based solution methods with the 5

optimal results obtained by CPLEX-S-M (the existing model with both Proposition 2 and 6

Proposition 3) solver. The objective value results obtained by the two methods and their 7

computation time (in seconds) are presented in Table 7. 8

From Table 7, we can observe the objective value obtained by the PSO based algorithm is 9

close to the optimal results solved by CPLEX-M-S solver. The average optimality gap of the 10

PSO is about 2.23%. Moreover, for some large instances, the CPLEX-M-S solver cannot solve 11

the integrated model directly within a reasonable time, while the PSO based algorithm can solve 12

it within a reasonable time. The results demonstrate the proposed PSO based algorithm is 13

effective and efficient to solve the integrated optimization model. 14

24

Table 7: Comparison between the PSO and the CPLEX-M-S for small-scale instances 1

 Instance CPLEX-S-M PSO OBJ
Gap ID # OBJ Time(s) OBJ(s) Time(s)

1 8-2-4 1137 13.51 1152 1 68.86 1.31%
2 8-3-6 879 9.76 879 184.87 0.00%
3 10-2-4 1437 91.05 1437 127.55 0.00%
4 10-3-6 1176 27.52 1182 233.57 0.51%
5 11-2-4 1599 240.17 1629 151.83 1.88%
6 11-4-8 1383 151.89 1398 260.24 1.08%
7 12-2-4 1650 548.43 1704 225.88 3.27%
8 12-4-8 1413 166.43 1458 588.93 3.18%
9 13-2-4 1428 1438.09 1434 612.73 1.49%
10 13-4-8 N.A. N.A. 2160 554.41 N.A.
11 14-2-4 1428 1121.64 1539 868.39 7.78%
12 14-4-8 N.A. N.A. 2164.5 342.63 N.A.
13 16-2-4 N.A. N.A. 1752 1529.41 N.A.
14 16-4-8 N.A. N.A. 2458.5 426.37 N.A.
15 18-2-4 N.A. N.A. 1929 1344.37 N.A.
16 18-4-8 N.A. N.A. 2755.5 724.87 N.A.

Average(s) 2.23%

Notes: (1) Instance # denotes No. of tasks - No. of QCs - No. of YTs. 2

 (2)Gap= (OBJ (CPLEX-M-S) െ OBJ (PSO)) / OBJ (CPLEX-M-S)	 ൈ	 100%. 3

To further evaluate the effectiveness of the proposed PSO based algorithm in large scale 4

instances. We compare the PSO based algorithm with the widely used genetic algorithm (GA). 5

The results are listed in Table 8. 6

Based on the above results, we can observe that the proposed PSO based algorithm 7

outperforms the widely used GA algorithm for the cases in Table 8. In the process of 8

experiments, the computational time of the GA algorithm significantly increases as the problem 9

size growing. For some large-scale problems such as cases 10-18, the GA based algorithm 10

cannot solve the model within 10,000 seconds, while the proposed PSO based algorithm can 11

solve the model within a reasonable time. Moreover, the average improvement rate of the 12

proposed PSO based algorithm with respect to the objective values is about 14.35% by 13

comparing with the GA based algorithm. 14

Table 8: Comparison between the PSO and the GA under large-scale instances 15

25

 Instance PSO GA OBJ
Gap ID # OBJ Time(s) OBJ Time(s)

1 14-4-8 1689 868.39 1911 1221.99 11.62%
2 16-2-4 2164.5 342.63 2634 717.08 17.82%
3 16-4-8 1752 1579.41 1978.5 1952.23 11.45%
4 18-2-4 2458.5 426.37 2736 888.28 10.14%
5 18-4-8 1929 1344.77 2277 3083.41 15.28%
6 20-2-4 2755.5 724.87 3163.5 1030.49 12.90%
7 20-4-8 2167.5 1975.37 2514 2316.47 13.78%
8 22-2-4 2985 599.86 3483 1240.93 14.30%
9 22-3-6 2493 1202.62 3190.5 2683.70 21.86%
10 22-4-8 2452.5 3088.36 N.A. >10,000 N.A.
11 24-2-4 3318 1650.27 N.A. >10,000 N.A.
12 24-3-6 2905.5 1868.55 N.A. >10,000 N.A.
13 24-4-8 2704.5 4366.14 N.A. >10,000 N.A.
14 26-2-4 3970.5 1022.08 N.A. >10,000 N.A.
15 26-3-6 2952 2709.38 N.A. >10,000 N.A.
16 26-4-8 2884.5 3051.63 N.A. >10,000 N.A.
17 28-2-4 4180.5 1044.94 N.A. >10,000 N.A.
18 28-3-6 3219 3135.18 N.A. >10,000 N.A.

Average 14.35%

Notes: (1) Instance # denotes No. of tasks - No. of QCs - No. of YTs. 1

 (2)Gap= (OBJ (GA) െ OBJ (PSO)) / OBJ (GA)	 ൈ	 100%. 2

It should be noted that the above results cannot rigorously prove the PSO is better than GA in 3

universal context because the above experiments are conducted for some specific problem cases 4

and under some certain parameter settings of PSO and GA. At the same time, the results indeed 5

demonstrate that the proposed PSO based algorithm could be a proper solution method for 6

solving the integrated QC and YT scheduling problem. 7

6. Conclusions 8

This paper studies an integrated QC and YT optimization scheduling problem with 9

unidirectional flow in container terminals, a MIP model is formulated. This integrated scheduling 10

problem is proved to be strongly NP-hard. A method is proposed to calculate a proper value of 11

big number	 Moreover, we make some attempts to mitigate the influence of the symmetry 12 .ܯ

26

issue and a proposition about this is proposed. Computational experiments validate the efficiency 1

of the proposition. A PSO based solution method is developed to solve the problem. Numerical 2

experiments show the relative gap of the objective value obtained by the PSO based solution 3

method from the optimal objective value is 2.23% on average in small scale problems. Some 4

experiments on the large scale instances are also conducted; and results show that the PSO based 5

solution method could be a proper solution method for solving the integrated QC and YT 6

scheduling problem. 7

For practitioners, the proposed model and method in this study can provide some quantitative 8

decision tools for the decision makers (yard resource planners) to further improve the efficiency 9

of the schedules on trucks and QCs. More specifically, the proposed model and methods can be 10

inbuilt in a TOS (terminal operating system), and be further developed as a DSS (decision 11

support system) for the planners in various departments. The DSS with our proposed technique 12

embedded in its kernel may be much faster than a DSS with the normal CPLEX solver embedded, 13

according to the experimental result that the proposed technique on average can save 47.78% 14

computational time compared with the direct solving mode of the CPLEX solver. In all, the 15

proposed model and method in this study can be potentially useful for enriching the database of 16

the algorithms embedded in some TOSs of the port operators. 17

This study also contains limitations. For example, the congestions of the vehicles in yard 18

(Zhen, 2016) and some stochastic factors (Zhen, 2015) have not been taken into account. In 19

future research, stochastic influences such as the YT congestion and productivity rate 20

fluctuations for QCs and YTs should be further explored. 21

 22

27

Appendices 1

Appendix A. Proof of Proposition 1 2

Proposition 1: Finding an optimal solution for the model is strongly NP-hard. 3

Proof: We can prove the proposition by reducing the problem in polynomial time to the 4

3-Partition Problem (Garey and Johnson (1979), Liu and Tang (2008)), which is well-known to 5

be strongly NP-hard. Given 3݄ items, ܪ ൌ ሼ1,2,⋯ ,3݄ሽ, each item ݆ ∈ has a positive integer 6 ܪ

size ௝ܽ satisfying ܽ/4 ൏ ܽ௝ ൏ ܽ/2, and ∑ ௝ܽ
ଷ௛
௝ୀଵ ൌ ݄ܽ, for some integer ܽ. The 3-Partition 7

Problem asks whether there are ݄ disjoint subsets ܪଵ, ܪଶ, |௜ܪ| such that ܪ ௛ ofܪ,⋯ ൌ 3 and 8

∑ ௝ܽ௝∈ு೔ ൌ ܽ, ݅ ൌ 1,2,⋯ , ݄. 9

Given any instance of a 3-Partition Problem, consider the following instance that we construct 10

for our problem: number of tasks:	 ܰ ൌ 3݄, number of QCs:	 ܭ ൌ ݄, processing time:	 ௝ݐ ൌ11

௝ܲଵ ൅ ௝ܲଶ ൌ ௝ܽ , ݆ ൌ 1,2,⋯3݄. We will show that there exists a solution to the 3-Partition 12

Problem if and only if there is a feasible solution to our integrated QC and YT scheduling 13

problem. (i) The “only-if” direction: Given a solution to the 3-Partition Problem, ܪଵ, ܪଶ, ௛, 14ܪ,⋯

we can simply let tasks in set ௝ܵ correspond to the elements of ܪ௝, 1 ൏ ݆ ൏ ݄, and construct a 15

schedule to our integrated QC and YT scheduling problem. (ii) The “if” direction: Suppose there 16

exists a schedule for the constructed instance of our integrated QC and YT scheduling problem. 17

Since the total processing time of all tasks is ∑ ௝ܽ
ଷ௛
௝ୀଵ ൌ ݄ܽ, a total of ݄ QCs are fully utilized 18

and the completion time of each QC is ܽ. So we know the schedule contains exactly ݄ sets, the 19

total processing time of tasks in each set ௝ܵ is ܽ. A partition for the set ܪ is obtained by 20

mapping the elements corresponding to the tasks in set ௝ܵ to the elements in the sub-set ܪ௝, 21

1 ൏ ݆ ൏ ݄. Then ∑ ௝ܽ௝∈ு೔ ൌ ܽ, and |ܪ௜| ൌ 3 because ܽ/4 ൏ ܽ௝ ൏ ܽ/2. 22

It can be thus seen that our integrated QC and YT scheduling problem has a feasible solution if 23

and only if there exists a solution to the 3-Partition Problem. The reduction of the integrated QC 24

and YT scheduling problem to the 3-Partition Problem can be done in polynomial time. 25

Therefore, finding an optimal solution for the model is strongly NP-hard. ■ 26

28

Appendix B. Proof of Proposition 2 1

Proposition 2: A formula used to calculate a proper value of ܯ about the integrated QC and 2

YT scheduling problem is as follows: 3

ܤܷܯ ൌ ݍ݂ ൅ ݃ൈ ห݈0
ݍ െ 1หܮ ൅ ܲ11 ൅ ∑ ,൛ܲ݅െ1,2ݔܽ݉ ݃ ൈ ݅ܮ| െ |െ1݅ܮ ൅ ܲ݅1ൟ݅∈ߗ\ሼ1ሽ ൅ 4 2|ߗ|ܲ

Proof: Suppose that (I) there is only one QC (the first QC in the set	 ܳ) and one YT; (II) the 5

QC moves from one side to the next; (III) the containers are labeled such that container 1 can be 6

unloaded first, container 2 can be unloaded second, etc. Then we can calculate the time required 7

to complete all of the tasks, i.e.,	 ௜ଶ as the formula (29). 8ܥ௜∈ఆݔܽ݉

 In formula (29), ݍ ൌ 1. The first term is the ready time of the QC. The second term is the 9

moving time of the QC from the initial position to the first task. The third term is the QC time for 10

the first task. In the fourth term, the YT can receive task ݅ from the QC if (I) the YT has 11

completed task ݅ െ 1	 (the component	 ௜ܲିଵ,ଶ), and (II) the QC has moved to the bay where task 12

݅ is located and has unloaded task ݅	 (the component	 ݃ ൈ ௜ܮ| െ |௜ିଵܮ ൅ ௜ܲଵ). The fifth term is 13

the transportation time of the last task. Through this formula a valid value for ܯ can be equal to 14

the above time. We can see that for different-scale problems the corresponding data ܯ is not the 15

same. When the problem size is increasing, the value of ܯ is increasing. Compared with the 16

traditional data ܯ that usually is a single and sufficiently large value, the value of ܯ that we 17

calculated by the proposed formula is more reasonable. In our model there are seven constraints 18

that use the value of	 	 19 ܯ including Constraints (9), (10), (12)-(15), (22). A proper value of ,ܯ

can improve the computational efficiency. Through the computational experiments we can also 20

confirmed the validity of the proposed proposition.■ 21

Appendix C. Proof of Proposition 3 22

Proposition 3: To reduce the influence of symmetry, we propose the following method as 23

follows: ∑ ݆. ܻ0݆
݇ ൑ ∑ ݆. ܻ0݆

݇൅1
௝∈ఆಷ௝∈ఆಷ , ݇ ∈ ܶ/ሼ|ܶ|ሽ .	 24

Proof: We prove in the following that the above constraint removes some feasible solutions 25

and optimal solutions, but at least one optimal solution is not removed. We prove it in two steps. 26

29

(i) Evidently, the problem has optimal solutions. We let 	 ൛ ௜ܻ௝
௞∗ൟ, ሺ݅, ݆ ∈ ,ܨߗ ݇ ∈ ܶሻ be an 1

optimal solution that does not satisfy Constraint (30). 2

Then at least ∃ 	 ഥܭ ∈ ܶ,	 such that ∑ ݆. ܻ0݆
ഥ݇

௝∈ఆಷ ് 0. 	 Through the solution 	 ൛ ௜ܻ௝
௞∗ൟ	 , ሺ݅, ݆ ∈3

,ிߗ ݇ ∈ ܶሻ, we will construct a new optimal solution satisfying Constraint (30) below. 4

Firstly we define a parameter	 	 ௞ߨ ൌ ∑ ݆ ∙ ଴ܻ௝
௞∗

ܨߗ∋݆ , ݇ ∈ ܶ.	 	 	݇ߨ denotes the ID of the first task 5

that YT	 	 ݇ transports. Note that if YT	 ݇ is not used, then	 	 ௞ߨ ൌ 0. And then define a 6

function	 ሼߠሺ݅ሻሽ:	7

ሼߠሺ݅ሻሽ ൌ ൛1,2,‥‥|ܶ|ൟ	 , ݅ ൌ 1,2‥‥|ܶ|,	 and ߨఏሺଵሻ ൑ ఏሺଶሻߨ ൑ ‥‥ఏሺଷሻߨ ൑ ఏሺ|்|ሻ. 8ߨ

That is, we sort the first task’s ID in ascending order and	 	 	ሺ݅ሻߠ denotes the ID of the YT whose 9

first task is the ݅	 th smallest. 10

 Let us give an example to illustrate. If YT 1 transports tasks 3, 5, and 9, YT 2 transports task 8, 11

and YT 3 transports tasks 1, 2, 4, 6 and 7, then	 	 ଵߨ ൌ 3, 	 	 ଶߨ ൌ 8, 	 	 ଷߨ ൌ 1 and ߠሺ1ሻ ൌ12

3, ሺ2ሻߠ ൌ 1, ሺ3ሻߠ ൌ 2. Thus，we have	 	 ఏሺଵሻߨ ൌ 1 ൑ 	 ఏሺଶሻߨ ൌ 3 ൑ 	 ఏሺଷሻߨ ൌ 8. Now a new 13

solution 14

൛ തܻ௜௝
௞ൟ ൌ ቄ ௜ܻ௝

ఏሺ௞ሻ∗ቅ , ሺ݅, ݆ ∈ ,ிߗ ݇ ∈ ܶሻ 15

is defined. We can observe the new solution ൛ തܻ௜௝
௞ൟ is also a feasible solution with the same 16

objective function value as	 	 ቄ ௜ܻ௝
ఏሺ௞ሻ∗ቅ, and satisfy Constraint (30). Therefore, there exists at least 17

one optimal solution that satisfies Constraint (30). 18

(ii) Now we would prove Proposition 3 could remove a part of the optimal solutions. Suppose 19

൛ തܻ௜௝
௞ൟ is an optimal solution and satisfies Constraint (30). Define ݇ : 20

∑൛݊݅݉݃ݎܽ=݇ തܻ
଴௝
௞ ൐ 0௝ ൟ, ݇ ∈ ܶ, ݆ ∈ ி 21ߗ

If ݇ ൏ |ܶ|, we exchange ݇	 and	 ݇ ൅ 1, and then a new optimal solution to the original model 22

that does not satisfy Constraint (30) is generated. If ݇ ൌ |ܶ|, we exchange ݇ and ݇ െ 1, then a 23

new optimal solution that does not satisfy Constraint (30) is generated. In sum, Proposition 3 24

removes some optimal solutions to the original model. 25

30

Proposition 3 can remove some feasible solutions and a part of optimal solutions but do not 1

remove all the optimal solutions. In this way we can reduce the influence of symmetry. ■2

31

Appendix D. The sub-procedure	 Adjustሺmሻin in the PSO based method 1

The sub-procedure ࢚࢙࢛࢐ࢊ࡭ሺ݉)

For all the ݅, ݆, ݅, ݆ ∈ ߗ

For all the	 	 ݍ ,ݍ ∈ ܳ

 Define a particle ܴܽ݊݀݊݋݅ݐ݅ݏ݋݌݉݋ሾ	 ሿ // Each particle has 2 ൈ dimensions |ߗ|

 Define a set ݊݋݅ݐ݈݈ܿ݁݋ܥ௜௤ // This set is used to denote the number of

containers that handled by QC ݍ

 For all	 ݉,	 ݊, ݉	 and	 ݊	 are in the front of |ߗ|	 dimensional elements

of ܴܽ݊݀݊݋݅ݐ݅ݏ݋݌݉݋	 ሾ݅ሿ

 If (݉, ݊)	 ∈ ߔ

If ܴܽ݊݀݊݋݅ݐ݅ݏ݋݌݉݋	 ሾ݉ሿ ൐ 	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽ ሾ݊ሿ	 ,Then

݌݉݁ݐ ൌ 	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽ ሾ݉ሿ // the temp is a transit variable

 	 	 	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽ ሾ݉ሿ ൌ 	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽ ሾ݊ሿ

	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽ ሾ݊ሿ ൌ 	 According to Constraint (7) // ݌݉݁ݐ

 End If

 End If

 End For

For all	 ,ݑ 	,ݒ 	ݑ and	 	ݒ are the rear part of	 	 	|ߗ| dimensional elements

of ܴܽ݊݀݊݋݅ݐ݅ݏ݋݌݉݋	 ሾ݅ሿ

 If ܺ௨௩
௤ ൌ 1

 If ݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽڿ	 ሾݑሿۀ ് 	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽڿ ሾݒሿۀ, Then

	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽ ሾݒሿ ൌ 	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽہ ሾݑሿۂ+	 	݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽ ሾݒሿ

 െ݊݋݅ݐ݅ݏ݋݌݉݋ܴ݀݊ܽہ	 ሾݒሿۂ // According to Constraint (5)

 End If

 End If

End For

End For

End For

 2

 3

 4

32

Appendix E. The pseudo code of PSO algorithm 1

PSO algorithm pseudo code 2

//*Initialization*// Initialize each particle’s position and velocity 3

 Parameter setting:݊ݎܽܲ݉ݑ ≔ 20, ݐ ≔ ݌݁ݐܵݔܽ݉,1 ≔ 200, ܿଵ: ൌ 1.0, ܿଶ ≔ 1.0, ௠௔௫ݓ ൌ4

	 	 	 	 1.2, ௠௜௡ݓ ≔ 0.7, ߝ ≔ 0.01, ݐݏܾ݁ܩݐ݊ݑ݋ܿ ≔ 0, ݐ݊ݑ݋ܿ ≔ 0 5
 For i = 1 to 150 do 6

Generate a particle ݈௠௜
௡ randomly 7

// the value of dimension:݈௠௜
଴ ሾݐሿ ∈ ሾ0, |ܳ|ሻ, ݐ ∈ ሾ1, ܰሿ; ݈௠௜

଴ ሾݐሿ ∈ ሾ0, |ܰ|ሻ, ݐ ∈ ሾܰ ൅ 1,2ܰሿ 8

If (Constraints	 ሺ5ሻ&&	 	ሺ7ሻݏݐ݊݅ܽݎݐݏ݊݋ܥ satisfy) then 9

 Add Particle ݈௠௜
௡ to the set of particles ࣪ 10

 If (number of particles࣪ ൒ numPar) then 11
 Obtain the initial swarm, and Jump out the For loop 12
 End If 13
End If 14

 End For 15
 For j = 1 to 20 do 16
 Initialize Particle’s velocity randomly 17

Calculate Particle ݈௠௝
௡ ’s fitness value	 ݂൫݈௠௝

௡ ൯, find out the best particle ݈௠௝
௡ , and Set 18

	 	 	 	 	 	 	 	 	 	 ଴ݐݏܾ݁ܲ ൌ ݈௠௝
௡ , ௉݂௕௘௦௧

଴ ൌ 	 ݂ቀ݈௠௝ᇲ
௡ ቁ	 	 	 ݐݏܾ݁ܩ ൌ ݈௠௝ᇲ

௡ , ݂ீ ௕௘௦௧ ൌ 	 ݂ቀ݈௠௝ᇲ
௡ ቁ 19

End For 20
While (ݐ	 ൑ do // Evaluation Loop 21 (݌݁ݐܵݔܽ݉

ݐݏܾ݁ܩݐ݊ݑ݋ܿ ൌ ݂ீ ௕௘௦௧ 22

For ݅݅ ൌ 1 to 20 do 23

 Update the velocity and position of Particle ݈௠௜௜
௡ according to Formula (33) and (32), 24

replace the original particles at the probability of 25 ߝ

 Calculate Particle݈௠௜௜
௡ ’s fitness value݂ሺ݈௠௜௜

௡ ሻ 26

 If (݂ሺ݈௠௜௜
௡ ሻ ൏ ௉݂௕௘௦௧

௧ିଵ) then Set ܾܲ݁ݐݏ௧ ൌ ݈௠௜௜
௡ ,	 	 	 	 ௉݂௕௘௦௧

௧ ൌ ݂ሺ݈௠௜௜
௡ ሻ 27

 If (f୔ୠୣୱ୲
୲ ൏ fୋୠୣୱ୲) then ݐݏܾ݁ܩ ൌ ,௧ݐݏܾ݁ܲ ݂ீ ௕௘௦௧ ൌ 	 ௉݂௕௘௦௧

௧ 28

 End If 29
End If 30

End For 31
Set ݐ ൌ ݐ ൅ 1 //Termination condition 32
Global optimal solution unchanged in 10 consecutive iterations, jump out the loop 33

If (݂ீ ௕௘௦௧ ൌൌ then 34 (ݐݏܾ݁ܩݐ݊ݑ݋ܿ

ݐ݊ݑ݋ܿ ൌ ݐ݊ݑ݋ܿ ൅ 1 35
 Else 36

ݐ݊ݑ݋ܿ ൌ 0 37
End If 38
If (ܿݐ݊ݑ݋ ൒ 10) then Jump out While loop 39

End If 40
End While 41

The global optimal particle and fitness is Gbest and݂ீ ௕௘௦௧, respectively. 42

33

Appendix F. The pseudo code of GA algorithm 1

GA algorithm pseudo code 2
// Initialize each individual 3

Parameter setting: ݊݉ݑூ௡ௗ௜௩ ≔ 20, ݐ ≔ ݌݁ݐܵݔܽ݉,1 ≔ 200, ௣௥௢௕݊݋݅ݐܽݐݑ݉ ≔ 1/ܰ, 4

௣௥௢௕ݎ݁ݒ݋ݏݏ݋ݎܿ ≔ 0.40, ݐݏܾ݁ܩݐ݊ݑ݋ܿ ≔ ݐ݊ݑ݋ܿ ,0 ≔ 0 5

For i = 1 to 150 do Generate one individual ݈௠௜
଴ 	 randomly 6

// the value of dimension: ݈௠௜
଴ ሾݐሿ ∈ ሾ0, |ܳ|ሻ, ݐ ∈ ሾ1, ܰሿ; ݈௠௜

଴ ሾݐሿ ∈ ሾ0, |ܰ|ሻ, ݐ ∈ ሾܰ ൅ 1,2ܰሿ 7

If (Constraints (5) && Constraints (7) satisfy) then 8

 Add individual ݈௠௜
଴ to the set of Individuals ࣪ 9

 Evaluate the fitness of each individual	 ௜ܨ
଴. Find out the best individual ݈ܤ௠଴ , and the 10

best fitness ܨ௕௘௦௧
଴ 11

 If (number of individuals ൒ then 12 (ݒ݅݀݊ܫ_݉ݑ݊

 Obtain the initial population, and Jump out the For loop 13

 End If 14

End If 15

End For //Evaluation Loop 16

While (ݐ	 ൑ ݐݏܾ݁ܩݐ݊ݑ݋ܿ do (݌݁ݐܵݔܽ݉ ൌ ௕௘௦௧ܨ
଴ 17

For ݆ ൌ 1 to 20 do 18

If (rand()<crossover୮୰୭ୠ) Select two parents individuals 1݌௝
௧ ,	 2௝݌

௧ randomly 19

Generate one crossover point p, 2݌௝
௧ሾ݅ሿ copy to 1݈݄݀݅ܥ௝

௧ሾ݅ሿ ; 1݌௝
௧ copy to 2݈݄݀݅ܥ௝

௧ሾ݅ሿ 20

For ݅=1 to p do 1݌௝
௧ሾ݅ሿ copy to 2݈݄݀݅ܥ௝

௧ሾ݅ሿ; 2݌௝
௧ሾ݅ሿ copy to 1݈݄݀݅ܥ௝

௧ሾ݅ሿ 21

End For 22

For ݅= p +1 to 2N do 1݌௝
௧ሾ݅ሿ copy to 1݈݄݀݅ܥ௝

௧ሾ݅ሿ; 2݌௝
௧ሾ݅ሿ copy to 2݈݄݀݅ܥ௝

௧ሾ݅ሿ 23

End For 24

End if 25

For	 to 2N do 26 1= ࢏

If rand () <	 27 ࢈࢕࢘࢖࢔࢕࢏࢚ࢇ࢚࢛࢓

do ࢐࢖
	= ሿ࢏ሾ࢚ ࢐࢖

ሾ݅ሿ݁݊݁ܩݔሿ+ ሺ݉ܽ࢏ሾ࢚ െ ሾ݅ሿሻ݁݊݁ܩ݊݅݉ ∗ ࢐ࢊ࢒࢏ࢎ࡯ ,ሺሻ݀݊ܽݎ
࢐࢖=ሿ࢏ሾ࢚

 ሿ 28࢏ሾ࢚

 End If 29

End For 30

End for 31

Set ݐ ൌ ݐ ൅ 1 // Termination condition 32

If (࢚࢙ࢋ࢈ࡳࢌ ൌൌ ݐ݊ݑ݋ܿ then (ݐݏܾ݁ܩݐ݊ݑ݋ܿ ൌ ݐ݊ݑ݋ܿ ൅ 1 33

 Else ܿݐ݊ݑ݋ ൌ 0 34

End If 35

If (ܿݐ݊ݑ݋ ൒ 10) then Jump out While loop 36

End If 37

End While 38

34

Acknowledgements 1

The authors would like to thank the editors and three anonymous reviewers for their valuable 2

comments and constructive suggestions, which have greatly improved the quality of this paper. 3

This research is supported by the National Natural Science Foundation of China (71422007), 4

Shanghai Social Science Research Program (2014BGL006). 5

References 6

Alp, O., Erkut, E., & Drezner, Z. (2003). An efficient genetic algorithm for the p-median 7

problem. Annals of Operations research, 122(1-4), 21-42. 8

Bierwirth, C. and Meisel, F. (2009). A fast heuristic for quay crane scheduling with interference 9

constraints. Journal of Scheduling 12, 345-360. 10

Bish, E. K. (2003). A multiple-crane-constrained scheduling problem in a container terminal. 11

European Journal of Operational Research 144, 83-107. 12

Bish, E. K., Chen, F. Y., Leong, Y. T., Nelson, B. L., Ng, J. W. C. and Simchi-Levi, D. (2005). 13

Dispatching vehicles in a mega container terminal. OR Spectrum 27, 491-506. 14

Bruzzone, A. and Signorile, R. (1998). Simulation and genetic algorithms for ship planning and 15

shipyard layout. Simulation, 71, 74-83. 16

Cao, J. X., Lee, D. H., Chen, J. H. and Shi, Q. (2010). The integrated yard truck and yard crane 17

scheduling problem: Benders’ decomposition-based methods. Transportation Research Part 18

E 46, 344-353. 19

Chen, L., Bostel, N., Dejax, P., Cai, J. and Xi, L. (2007). A tabu search algorithm for the 20

integrated scheduling problem of container handling systems in a maritime terminal. 21

European Journal of Operational Research 181, 40-58. 22

Chen, L., Langevin, A. and Lu, Z. (2013). Integrated scheduling of crane handling and truck 23

transportation in a maritime container terminal. European Journal of Operational Research 24

225, 142-152. 25

35

Chipperfield, A., Fleming, P. and Pohlheim, H. (1994) . Genetic Algorithm Toolbox: For Use 1

with MATLAB; User's Guide (version1.2). University of Sheffield, Department of 2

Automatic Control and Systems Engineering. 3

Daganzo, C. F. (1989). The crane scheduling problem. Transportation Research Part B 23, 4

159-175. 5

Du, Y., Chen, Q., Quan, X., Long, L. and Fung, R. Y. (2011). Berth allocation considering fuel 6

consumption and vessel emissions. Transportation Research Part E 47, 1021-1037. 7

Eberhart, R. C. and Kennedy, J. (1995). A new optimizer using particle swarm theory. 8

Proceedings of the Sixth International Symposium on Micro Machine and Human Science 1, 9

39-43. 10

Fu, Y. M., Diabat, A., and Tsai, I. T. (2014). A multi-vessel quay crane assignment and 11

scheduling problem: Formulation and heuristic solution approach. Expert Systems with 12

Applications, 41, 6959-6965. 13

Garey, M.R. and Johnson, D.S. (1979). Computers and intractability: a guide to the theory of 14

NP-completeness. W.H. Freeman, New York. 15

Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. MA: 16

Addion- wesley, 1989, 102. 17

Guan, Y., Yang, K. H. and Zhou, Z. (2013). The crane scheduling problem: models and solution 18

approaches. Annals of Operations Research, 203, 119-139. 19

Guo, P., Cheng, W. and Wang, Y. (2014). A modified generalized extremal optimization 20

algorithm for the quay crane scheduling problem with interference constraints. 21

Engineering Optimization 46, 1411-1429. 22

Han, X., Gong, X. and Jo, J. (2015). A new continuous berth allocation and quay crane 23

assignment model in container terminal. Computers & Industrial Engineering, 89, 15-22. 24

Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of 25

Operations Research, 102(1-4), 111-135. 26

He, J., Huang, Y., Yan, W. and Wang, S. (2015). Integrated internal truck, yard crane and quay 27

crane scheduling in a container terminal considering energy consumption. Expert Systems 28

with Applications 42, 2464-2487. 29

36

Hu, H., Lee, B. K., Huang, Y., Lee, L. H. and Chew, E. P. (2013). Performance analysis on 1

transfer platforms in frame bridge based automated container terminals. Mathematical 2

Problems in Engineering. 3

Jiang, X., Lee, L. H., Chew, E. P., Han, Y. and Tan, K. C. (2012). A container yard storage 4

strategy for improving land utilization and operation efficiency in a transshipment hub 5

port. European Journal of Operational Research 221, 64-73. 6

Jin, J. G., Lee, D. H. and Hu, H. (2015). Tactical berth and yard template design at container 7

transshipment terminals: A column generation based approach. Transportation Research 8

Part E 73, 168-184. 9

Jung, S. H. and Kim, K. H. (2006). Load scheduling for multiple quay cranes in port container 10

terminals. Journal of Intelligent Manufacturing 17, 479-492. 11

Junior, H. V. and Lins, M. P. E. (2005). An improved initial basis for the simplex algorithm. 12

Computers & Operations Research 32, 1983-1993. 13

Kaveshgar, N. and Huynh, N. (2015). Integrated quay crane and yard truck scheduling for 14

unloading inbound containers. International Journal of Production Economics 159, 15

168-177. 16

Kim, K. H. and Park, Y. M. (2004). A crane scheduling method for port container terminals. 17

European Journal of Operational Research 156, 752-768. 18

Kim, K. Y. and Kim, K. H. (1999). A routing algorithm for a single straddle carrier to load 19

export containers onto a containership. International Journal of Production Economics 59, 20

425-433. 21

Lee, D. H., Wang, H. Q. and Miao, L. (2008). Quay crane scheduling with non-interference 22

constraints in port container terminals. Transportation Research Part E 44, 124-135. 23

Legato, P., Trunfio, R. and Meisel, F. (2012) Modeling and solving rich quay crane scheduling 24

problems. Computers & Operations Research 39, 2063-2078. 25

Li, H. L. (1996). An efficient method for solving linear goal programming problems. Journal of 26

Optimization Theory and Applications 90, 465-469. 27

Lim, A., Rodrigues, B., Xiao, F. and Zhu, Y. (2004). Crane scheduling with spatial constraints. 28

Naval Research Logistics 51, 386-406. 29

37

Li, F., Gao, Z., Li, K., & Wang, D. Z. (2012). Train routing model and algorithm combined with 1

train scheduling. Journal of Transportation Engineering, 139(1), 81-91. 2

Liu, J., Wan, Y. W. and Wang, L. (2006). Quay crane scheduling at container terminals to 3

minimize the maximum relative tardiness of vessel departures. Naval Research Logistics 53, 4

60-74. 5

Liu, P.and Tang, L. (2008). The refining scheduling problem with crane non-collision constraint 6

in steelmaking process. In Automation and Logistics, 2008, IEEE International Conference 7

on, IEEE 536-541. 8

Liu, Z., Wang, S., Chen, W., & Zheng, Y. (2016). Willingness to board: A novel concept for 9

modeling queuing up passengers. Transportation Research Part B, 90, 70-82. 10

Nguyen, V. D. and Kim, K. H. (2009). A dispatching method for automated lifting vehicles in 11

automated port container terminals. Computers & Industrial Engineering 56, 1002-1020. 12

Nguyen, S., Zhang, M., Johnston, M. and Tan, K. C. (2013). Hybrid evolutionary computation 13

methods for quay crane scheduling problems. Computers & Operations Research, 40, 14

2083-2093. 15

Nielsen, I. E., Do, N. A. D., Nguyen, V. D., Nielsen, P. and Michna, Z. (2015). Reducing truck 16

emissions in import operations at container terminal—a case study in a Singaporean port. 17

Technology Management for Sustainable Production and Logistics, Springer Berlin 18

Heidelberg, 133-151. 19

Pang, K.-W., Xu, Z. and Li, C.-L. (2011). Ship routing problem with berthing time clash 20

avoidance constraints. International Journal of Production Economics 131, 752-762. 21

Peterkofsky, R. I. and Daganzo, C. F. (1990). A branch and bound solution method for the crane 22

scheduling problem. Transportation Research Part B 24, 159-172. 23

Sammarra, M., Cordeau, J., Laporte, G.and Monaco, M. (2007). A tabu search heuristic for the 24

quay crane scheduling problem. Journal of Scheduling 10, 327-336. 25

Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer. IEEE World Congress on 26

Computational Intelligence 69-73. 27

Stahlbock, R. and Voß, S. (2008). Operations research at container terminals: a literature update. 28

OR Spectrum 30, 1-52. 29

38

Talley, W.K. and Ng, M.W. (2013). Maritime transport chain choice by carriers, ports and 1

shippers. International Journal of Production Economics 142, 311-316. 2

Tang, L., Zhao, J. and Liu, J. (2014). Modeling and solution of the joint quay crane and truck 3

scheduling problem. European Journal of Operational Research 236, 978-990. 4

Tran, N.K. and Haasis, H.-D. (2015). An empirical study of fleet expansion and growth of ship 5

size in container liner shipping. International Journal Production Economics 159, 241-253. 6

Tavakkoli-Moghaddam, R., Makui, A., Salahi, S., Bazzazi, M. and Taheri, F. (2009). An 7

efficient algorithm for solving a new mathematical model for a quay crane scheduling 8

problem in container ports. Computers & Industrial Engineering 56, 241-248. 9

Ting, C. J., Wu, K. C. and Chou, H. (2014). Particle swarm optimization algorithm for the berth 10

allocation problem. Expert Systems with Applications 41, 1543-1550. 11

Wang, S., Zheng, J., Zheng, K., Guo, J. and Liu, X. (2012). Multi resource scheduling problem 12

based on an improved discrete particle swarm optimization. Physics Procedia 25, 576-582. 13

Wang, S., Meng, Q., & Liu, Z. (2013). Containership scheduling with transit-time-sensitive 14

container shipment demand. Transportation Research Part B, 54, 68-83. 15

Yao, B., Yu, B., Hu, P., Gao, J. and Zhang, M. (2014). An improved particle swarm optimization 16

for carton heterogeneous vehicle routing problem with a collection depot. Annals of 17

Operations Research, 1-18. 18

Yu, B., Yang, Z., Sun, X., Yao, B., Zeng, Q. and Jeppesen, E. (2011). Parallel genetic algorithm 19

in bus route headway optimization. Applied Soft Computing, 11, 5081-5091. 20

Zhen, L. (2015) Tactical berth allocation under uncertainty. European Journal of Operational 21

Research, 247: 928-944. 22

Zhen, L. (2016) Modeling of yard congestion and optimization of yard template in container 23

ports. Transportation Research Part B, 90: 83-104. 24

