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Abstract The interest in bicycling and its determining factors is growing within the public health, trans-
portation and geography communities. Ownership is one factor affecting bicycle usage, but work is still
ongoing to not only quantify its effects but also to understand patterns in its growth and influence. In
recent work, we mined and discovered patterns in global bicycle ownership that showed the existence of
four characteristic country groups and their trends. Building on these results, we show in this paper that
the ownership dataset can be modeled as a network. First, we observe mixing tendencies that indicate
neighboring countries are more likely to be in the same ownership group and we map the likelihoods for
cross-group mixings. Further, we define the strength of connections between countries by their proximity
in ownership levels. We then determine the weighted degree assortative coefficient for the network and for
each group relative to the network. We find that while the weighted degree assortativity of the owner-
ship network is statistically insignificant, the highest and lowest ownership groups exhibit disassortative
behavior with respect to the entire network. The second and third ranked groups, however, are strongly
assortative. Our model serves as a step toward further work in studying the relationship between proximity
and bicycle ownership among nations and unearthing possible patterns of influence. Considering further
developments, this work can inform policy-relevant recommendations toward regional planning. This effort
also contributes to expanding research in assortativity analyses, especially in weighted networks.

Keywords Bicycle ownership · Spatial associations · Networks · Assortativity

1 Introduction

As efforts are being renewed toward sustainable urban communities and safe and clean streets, a resurgence
in bicycle ownership and usage would be a welcome development (Jacobsen, 2013; Roseland, 2012; Midgley,
2011). In keeping with this pattern, policymakers are promoting schemes to further improve cycling con-
ditions in various locales (Dales and Jones, 2014; Vandenbulcke-Plasschaert, 2011). Some of these include
increasing the level of cycling infrastructure, investing in bicycle-sharing programs and raising awareness
toward bicycle safety (Vandenbulcke-Plasschaert, 2011). An important factor affecting the usage of bicycles
is availability. For many, especially in places where sharing programs are inaccessible, household ownership
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becomes a determining factor of bicycle access and activity. In the first undertaking of its kind on a global
scale, we mined household ownership data, discovering patterns in global bicycle ownership trends from
1989 to 2012 (Oke et al, 2015). While this work has laid an important foundation, more questions have
arisen, some of which revolve around the nature of the relationships between these patterns and other
possible contributing factors.

In this paper, we investigate spatial associations with regard to bicycle ownership among countries
building on our earlier work. This is the first time this has been in the academic literature, to the best of
our knowledge. We demonstrate here that a network model of the countries in our database can provide
further insight into geographic factors in household bicycle ownership patterns. Using graph theoretic
properties, we weight the proximity of neighboring countries by a measure of separation in ownership (as
given by prior cluster analyses, Oke et al (2015)) and observe assortative behavior. Our results indicate that
neighboring countries tend to share similar ownership levels. However, high ownership countries appear to
have a positive influence on their neighbors, as well. Our effort also contributes to the growing body of
work in assortativity, which would benefit from further investigation in the area of weighted networks
(Noldus and Van Mieghem, 2015).

Spatial analysis has proven to be an effective means of understanding and analyzing networks across
a wide variety of applications, namely: infrastructure (Vandenbulcke-Plasschaert, 2011; Páez and Scott,
2005), reliability modeling (Li et al, 2014), ecology (Szmyt, 2014), epidemiology (Dijkstra et al, 2013;
Caprarelli and Fletcher, 2014), social sciences (Darmofal, 2015), among many others. To these ends, a
variety of network models and approaches have been developed and the resulting associations have been
useful for predictions, simulations and other aspects of decision making. Zhukov and Stewart (2013) tested
various proximity criteria to infer an appropriate network structure to simulate the diffusion of political
ideology. In their work, they provide valuable insights into the choice of an appropriate network model.
Vieira et al (2010) employ a modified “small world” network model (Milgram, 1967) to analyze the spread
of HIV over time. Ma et al (2014) use a linear model to perform spatio-temporal investigations in scientific
cooperation between cities in China. As will be discussed, methods for analyzing these patterns in networks
were notably established by Newman (2002, 2003, 2004), among others.

The rest of the paper is organized as follows: In the next section (Section 2) we detail our previous efforts,
with attention given to the data mining tools we used in tracking global household bicycle ownership, as
they highlight the challenges of dealing with a sparse dataset. Section 3 motivates the network theory via a
brief background and then proceeds to describe our approach. We then present our results (Section 4) and
discuss their implications (Section 5). The paper is concluded by a summary and outline of future work
(Section 6).

2 Review of prior cluster analysis of household bicycle ownership

We collected household bicycle ownership data from various national, regional and international surveys,
spanning 1989 to 2012 and 150 countries. The unifying question of interest in all of the surveys was
whether the household owned at least one bicycle. The ownership data only amounted to 540 unique
country-years. We also obtained and estimated national household populations in the years of interest. The
dataset represented 1.25 billion households, and 42% household weighted ownership average indicates that
there at least half a billion bicycles in homes around the world.1 Details on the data collection process can
be found in (Oke et al, 2015).

Hierarchical agglomerative clustering (HAC) was the initial step in pattern discovery beyond geographi-
cal proximity. HAC is unsupervised (Jain et al, 1999; Tsui et al, 2006) but it requires a means for calculating
the separation between all the nodes at initialization. The HAC method of choice informs the rule governing
how the clusters are “grown,” ultimately to form a tree. The natural number of clusters in the dataset must
then be determined in order to truncate the tree at the proper height.

2.1 Dynamic time warping

Since ownership data were only available for a few different years in each country, finding a suitable
point pairing for each ownership vector in time was not a trivial task. Thus, in order to find the optimal
pairwise alignments, we applied the dynamic time warping (DTW) algorithm (Giorgino, 2009), which uses
the “average accumulated distortion” as the objective metric for finding the best matching path2. DTW

1 The data and supporting code are available at ce.jhu.edu/sauleh/obls-gbu .
2 The dynamic time warping algorithm was first introduced by (Bellman and Kalaba, 1959). Its application was subse-

quently furthered by (Sakoe and Chiba, 1978). See (Giorgino, 2009) for more on its execution in R

ce.jhu.edu/sauleh/obls-gbu
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computes a warping curve φ(k) with M elements, each mapped from a pair of time series A and B, each
with P and Q observations, respectively. Thus,

φ(k) = (φa(k), φb(k)) (2.1)

where the selection functions φa ∈ {1, ...,P} and φb ∈ {1, ...,Q} are constrained accordingly to preserve
continuity and monotonicity. The optimal alignment gives the minimum deformation D between pairwise
sets of observations:

D(A,B) = min
φ

dφ(A,B) (2.2)

where the distortion dφ is given by

dφ(A,B) =
1

C φ

M
∑

k=1

d(φa(k),φb(k))cφ(k), (2.3)

with cφ(k) the weighting coefficient in each step, Cφ the normalization constant, and d a distance metric
of choice (we used the Euclidean distance in this case). In the end we obtain a normalized dissimilarity
matrix DM .

2.2 Clustering procedure

The next step we took was finding the HAC method of choice that worked best for our data. We consid-
ered four candidates: the weighted pair-group method with arithmetic means (WPGMA), the unweighted
pair-group method with arithmetic means (UPGMA, also referred to as the method of averages), the
complete linkage method and the single linkage method. The fitness measure is the Euclidean norm (or
greatest singular value) λ of the difference matrix between the unclustered and clustered pairwise separa-
tions (Mérigot et al, 2010). The method of averages produced a λ value of 883.2, which was the smallest of
the four (see Table 1).

Table 1 Fitness test for agglomerative clustering. The test quantity λ is given by λ = ||DM − UM ||2, where DM is
the original dissimilarity matrix, while UM is the ultrametric (separation matrix) for each of the clustering structures
considered.

Method Greatest singular value λ

Single linkage 2723.7
Complete linkage 4551.8
UPGMA 883.2
WPGMA 966.1

The gap test (Tibshirani et al, 2001) provides a well-defined method for finding the optimal group
number in a dataset. The test quantity is defined as

Gapn(k) =
1

B

∑

b

log(W ∗
kb) − log(Wk), (2.4)

where Wk is the within-cluster sum of pair-wise distances. The first term on the right-hand side of
Equation 2.4 is the expectation of log(Wk), obtained by a Monte Carlo simulation of B samples on a
uniform distribution over each row of the pairwise separation matrix; this term can also be written as
E∗{log(Wk)}). The optimal number of clusters k̂ is chosen as the smallest k such that

Gap(k) ≥ Gap(k + 1) − εk+1 (2.5)

where εk+1 is the simulation error.3 The value of k̂ can therefore be formally given as:

k̂ = argmin
k

Gap(k) : Gap(k) ≥ Gap(k + 1) − εk+1 (2.6)

The intuition behind this method is as follows: If we assume the elements of the dataset are uniformly
separated, then the expectation of log(Wk) decreases at a rate of 2

p
log(k), where p is the dimensionality of

the dataset (Tibshirani et al, 2001). However, if a certain clustering method identifies well-defined groups,
log(Wk) must be observed to decrease at a much faster rate, up to the point of maximum separation.
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Fig. 1 This plot shows the expectation E∗{log(Wk)}, the observation log(Wk) and the gap statistic Gap(k) as functions
of the number of clusters obtained via the clustering method of best fit. The error bars on Gap(k) indicate the size of
the simulation error εk. As an indicator of how well-separated the clusters are, log(Wk) decreases more rapidly than its

expectation as the number of clusters chosen approaches optimality (k < k̂), while it decreases less rapidly beyond this

value (k > k̂). In this case, k̂ = 4.

Beyond this point, log(Wk) decreases at a slower rate than expected (see Figure 1). For our dataset, the
optimal cluster number k̂ is thus 4.

Table 2 summarizes the results of our cluster analyses. The group membership or rank of each country
is given in Table A1. Household bicycle ownership is concentrated among a few countries, as membership
increases with decreasing rank.4 In this paper, “group rank” precisely refers to the level of bicycle ownership
in the corresponding group. Group 1 therefore has the highest average rate of ownership, while Group 4
(the last group) has the lowest rate of ownership.

Table 2 Country groups ranked by weighted average percentage bike ownership PBO

Group PBO (%) Countries

1 81 9
2 60 34
3 40 45
4 20 62

3 A brief introduction to networks and assortativity analysis

3.1 Graphs and networks

Graph theory has developed a host of tools for describing groups and associations within groups. These
have been applied to problems such as route finding (shortest path algorithms), network flow problems (e.g.
cost-minimization, resource allocation) and matching. By correctly formulating the network representation
of a system, graph theoretic approaches can provide analyses for unearthing and understanding patterns
of association (Small, 1973; Newman, 2004), growth (Teichmann and Babu, 2004; Capocci et al, 2006),
selection (Steglich et al, 2010; Baerveldt et al, 2014) and many more, within the system.

A key motivation for this paper is that a better understanding of proximity contributions to bicycle
ownership would also contribute to efforts to encourage greater ownership and usage. The geographical
layout of the countries corresponds already presents a topology and since we were interested in studying
their associative patterns, a network or graph-based approach is advantageous. Wall et al (2011) used a
network model to investigate relationships “geographical embeddedness” and corporate activity between

3 The error term is given by εk =

√

(

1 + 1
B

)

1
B

∑

b

{

log(W ∗
k,b) − 1

B

∑

b log(W ∗
k,b)

}2
, where b is the index number of the

generated sample (Tibshirani et al, 2001).
4 For a complete discussion on the global and group trends, please refer to Oke et al (2015). Also, trends in bicycle

ownership for each country in the dataset set can be viewed in Appendix B (Ibid).
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nations. Zhukov and Stewart (2013) also took advantage of geographic topology to formulate their network
model for political diffusion.

Mathematically, a graph is set of nodes and edges. An edge is a line connecting a pair of nodes in a
graph. The degree of a node is number of edges incident from it, and this can be immediately seen as a
measure of the node’s connectedness in the graph. A pair of nodes is said to be adjacent if the nodes are
connected by one or more edges, i.e. one node is at the tail, while the other is at the head of the connecting
edge. For a given node, the set of its adjacent nodes are its neighbors.

Notation Given a graph G(V , E), with nodes u, v ∈ V and edges euv ∈ E. The tail node of an edge euv

is u and its head node is v. The set of neighboring nodes is denoted by N(u) for a node u. A brief summary
of the relevant graph notation is given in Table 3.

Table 3 Basic graph notation (as used in this paper) and definitions

Symbol Description

Parameters

u, v node

du degree of node u

e edge

Sets

G(V ,E) graph

V nodes

E edges

N(u) adjacent nodes of u

D unique degree values

3.2 Mixing

Various properties can be of interest when a system is modeled as a network. Some of these include
patterns of growth and resilience, which are relevant for population networks and infrastructural systems,
respectively. Measures of influence of each node can also be important. This is especially true for social
networks (Anagnostopoulos et al, 2008). If the nodes already belong to certain groups, another property
of interest is mixing, which is concerned with nature of the connectedness of nodes by their groupings.
Mixing patterns can provide insight into the associational behaviors of entities in a network (Newman,
2002; Hens et al, 2009; Piraveenan et al, 2012).

To quantify the likelihood of nodes in various groups to be connected or cross-connected, a mixing
matrix E is defined such that each element Eij is given by

Eij =
∑

u∈I

∑

v∈J

Auv (3.1)

where Auv is the edge-incidence matrix of the network, and i, j are indicial bijections onto the groups
I ∈ I, J ∈ J , i.e. the index i in the matrix E represents the group I, and so forth. The matrix A

is constructed such that Auv = 1 if there is an edge connecting nodes u and v, and 0 otherwise. The
normalized mixing matrix e is then defined as5

eij =
Eij

∑|I|
i=1

∑|J|
j=1 Eij

(3.2)

The mixing coefficient (Newman, 2003), which measures the level of connectedness of nodes in the same
group, is defined by

rm =

∑

i
eii −

∑

i
a2

i

1 −
∑

i a2
i

(3.3)

where ai =
∑

j eij. The error of rm is evaluated by its standard deviation, which, as Newman has noted
(Newman, 2003) is similar to that of intraclass correlation measurements (Fleiss et al, 1969) and given by

σ(rm) =
1

M

∑

i
a2

i +
(
∑

i
ai

)2
− 2

∑

i
a3

i

1 −
∑

i a2
i

(3.4)

5 Subsequent summations over i or j are over the same ranges indicated in Equation 3.2.
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where M is the number of connections (edges) in the network. Our criteria for statistical significance is
given by6

rm

σ(rm)
≥ 5 (3.5)

To measure the likelihood of cross-group mixing, we define the conditional probability P as

P (k|i) =
eik

∑

j
eij

. (3.6)

Thus, given that a node is in group i, P is the likelihood that its neighbor is in group k.

3.3 Degree assortativity

Assortativity is a more general term that defines nodal associations based on a shared property in the
network. For the purposes of this paper, we consider the term “mixing” as specific to group association,
while “assortativity” is a generalization to other properties. The assortativity of a network based on the
degree of each node is an established metric, first formally defined by Newman (Newman, 2002, 2003).
When nodes of high degree have more connections with nodes of high degree, the network is said to be
assortative. If more connections appear between nodes of high degree to those of low degree, then the
network is said to be disassortative.

Various measures of assortativity have been defined. The Pearson correlation coefficient, however, is
typically used to measure the assortative strength in a network (Newman, 2003; Foster et al, 2010). Two
further definitions are needed before we describe the assortativity coefficient. First, ed

bc is the probability
that an edge chosen at random in the network connects nodes of degrees b and c. Second, the excess degrees
of two connected nodes are the degrees of each respective node without counting the edge connecting
them. The excess degree distribution is given by the probability qc for each degree c in the network. The
probability qc is therefore the probability that for a node chosen at random, the degree of all the other
attached edges except for the edge being considered is c:

qc =
∑

b∈D

e
d
bc (3.7)

The degree assortativity coefficient (Newman, 2003) for associations based on node degree is thus 7

rd =

∑

b,c∈D bc(ed
bc − qbqc)

σ2
q

(3.8)

where σq is the variance of the excess degree distribution qc given by (Newman, 2002):

σq =
∑

c

c
2
qc −

(

∑

c

kqc

)2

. (3.9)

The statistical significance of rd can be evaluated by its size relative to its standard deviation, which is
calculated according to the following (Newman, 2003):

σ(rd) =
1

M

∑

c q2
c +

(
∑

c qc

)2
− 2

∑

c q3
c

1 −
∑

c q2
c

(3.10)

where M is the number of edges in the network. For the purposes of this discussion, we will consider
weighted node degree assortativity as significant if the following condition is satisfied6:

rd

σ(rd)
≥ 5 (3.11)

Assortativity profiles can also be plotted to investigate the property of interest in a network (Piraveenan et al,
2010). They are useful for observing individual element contributions to the assortativity or disassortativity
of the network.

6 This threshold corresponds to the Z-score, for which 3σ or 2σ are commonly employed as the minimum value for
significance. Here, we use the more stringent 5σ threshold (Colquhoun, 2014; Foster et al, 2010; Newman, 2002).

7 Subsequent summations over b or c are on the same set D, except where otherwise noted.
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3.4 A simple network model for bicycle ownership

We consider the 150 countries in our dataset as nodes in an undirected graph whose edges represent the
land borders between adjacent countries. Data on node adjacency or borders can easily be read from a map,
but we obtained a compiled list from Visualign (2013). From this, we obtained the degree of each node,
which represents the number of unique land borders a country has. These values are shown in Table A1.

A key component of defining a network is defining the criteria for connections between nodes (and
their strength, in the case of a weighted network) (Zhukov and Stewart, 2013). Since we are investigating a
network structure with regard to bicycle ownership, we want the edges to be weighted as a measure of the
separation in bicycle ownership between adjacent countries. In this model, we simplify this calculation by
simply using the difference in group rank, with a maximum possible weight of 4 (closest) and a minimum
of 1 (furthest apart). We therefore define the edge weight w(e) or wuv as

wuv = 4 − |Gr(u) − Gr(v)| , (3.12)

where Gr(·) ∈ {1, 2, 3, 4} is the group rank. Thus, an edge connecting two nodes in the same group will
have a weight of 4, while the weight of the edge joining two nodes of maximum group separation will have
a weight of 4 − 3 = 1.

The degree of each node can therefore be weighted by the difference in group rank between the node
and each of its neighbors. Since there are no loops or multiple edges in this network, we can define the
weighted degree as follows.

Definition 1 (Weighted degree)
Given a node u, the weighted degree is given by dw as

d
w(u) =

∑

v∈N(u)

wuv. (3.13)

Following Equation 3.1, the mixing matrix elements for this network are given by

Eij =
∑

Gr(u)=i

∑

Gr(v)=j

Auv (3.14)

We will use the normalized mixing matrix and the corresponding conditional probabilities, as defined in
Equation 3.2 and Equation 3.6, to measure the group-mixing tendencies in the network. The group mixing
coefficient for this network (Equation 3.3) will indicate the overall strength of same-group mixing in the
network.

In Subsection 3.3, we described assortativity with respect to the degree distributions of the nodes.
For the purposes of this model, we will now consider the assortativity by weighted degree, as given by
Equation 3.13. We motivate this as follows: the degree of each node in network without considering bicycle
ownership groupings is simply a measure of the number of land borders the represented country has. This
value remains the same except political factors intervene in the creation or destruction of one or more
countries. By considering the weighted degree, the number of neighbors a country has can then be valued
by their group separation, which is the difference between the group numbers of the country and each of
its neighbors. (We recall from the definition in Equation 3.12 that the weight increases with decreasing
separation by group). For instance, given two countries A and B with the same number of neighbors: if
the weighted degree of A 16 and that of B is 8, then A is clearly more associated with countries whose
groups are closer to that of A, while the neighbors of B are further in separation by group. Based on
Equation 3.8, we now define the weighted degree assortativity coefficient, WDAC (Leung and Chau, 2007;
Noldus and Van Mieghem, 2015).

Definition 2 (Weighted degree assortativity coefficient, WDAC)
For a network with weighted degrees b, c ∈ Dw, where Dw is the set of all the weighted degree values that
exist in the network, the weighted degree assortativity coefficient is given by

rdw =

∑

bc∈Dw bc(edw

bc − qbqc)

σ2
q

(3.15)

The WDAC will indicate the strength of assortativity or disassortativity by the weighted degrees of each
node. We will also consider the value of rdw by the contribution of each group to investigate underlying
behavior.

Finally, we will use assortativity profiles to enable us to visualize the nature of the contribution of each
node to the overall assortativeness of the network. When assortativity is considered with respect to node
degree mixing, the average nearest neighbor degree (ANND) can be used to evaluate the assortativity by
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observing the trend of ANND as a function of the degree of each node (Serrano et al, 2007). As we are
dealing with the weighted degree in this case and definition of “neighbor” is equivalent to the “nearest
neighbor” for each node, we now define the average neighbor weighted degree (ANWD), which is computed
by taking the mean of the weighted degrees of the neighbors of a given node. Averaging the weighted
degrees in the neighbor set in our case also has the added benefit of allowing for some adjustment for the
number of borders a country has. This will be our function of interest for the assortativity profiles we use
here. (See Barrat et al (2004) for further background on this quantity.)

Definition 3 (Average neighbor weighted degree, ANWD)
For given node u with a neighbor set N(u), the average neighbor weighted degree is given by

d
w
N (u) =

1

|N(u)|

∑

v∈N(u)

wuv. (3.16)

The weighted degree and average neighbor weighted degree values for each country in the dataset are given
in Table A1.

We note here that we did not consider countries in our dataset with degree 0, i.e. those that do not share a
physical land border with any other country. These were Australia, Japan, New Zealand (Group 2) and the
Phillipines (Group 3). The countries with no ownership data were also excluded from this model. Thus, the
United Arab Emirates (Group 2), South Korea (Group 3) and Tunisia (Group 4) were not included in the
analyses, as they were bordered by countries for which data were not available. The 7 exclusions represent
only about 4.7% of the entire dataset.

4 Results

4.1 Mixing by group

The number of group pairings of neighboring countries is shown in Table 4. The number of connections
increases by group number, as expected. The table represents the symmetric mixing matrix E. The sum of
the elements in the upper triangle of E is 347, which is the number of unique land borders of the countries
in the network.

Table 4 Mixing matrix of the clusters in the bicycle ownership network

Group 1 2 3 4

1 14 12 8 2
2 12 50 36 14
3 8 36 52 49
4 2 14 49 110

The normalized mixing matrix e is derived from E (according to Equation 3.2) and evaluates to

e =









0.027 0.023 0.017 0.004
0.097 0.071 0.027

0.116 0.112
0.251









(4.1)

The group mixing coefficient rm is 0.204 and σ(rm) = 0.0139, a 15σ value. This indicates that, overall,
associations between members in the same group are more likely.

Finally, we compute the matrix of conditional probabilities that the neighbor of a given node is in Group
j given that the node is in Group i.

P =









0.378 0.324 0.243 0.054
0.106 0.442 0.327 0.124
0.055 0.226 0.366 0.354
0.010 0.069 0.284 0.637









(4.2)

This matrix indicates that Group 1 countries are more likely to be neighbors to other Group 1 countries.
However, the likelihood that Group 2 members are neighbors to those Group 1 is nearly just as likely, as
P12 = 0.324 and P11 = 0.374. A similar trend follows for each group in that their neighbors are most likely
to be members of the same group, while the next most likely neighbors occupy the nearest group. However,
the spread between these likelihoods is greatest for Group 4, indicating that its members are most closely
linked. To better illustrate these transitions, we plot a grayscale map of P (Figure 2).
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Fig. 2 Grayscale map of conditional probabilities of group mixing matrix given in Equation 4.2. The colors get darker as
the probabilities approach zero. The map shows that mixing is stronger between members of the same group (particularly
so for Group 4) and weakest for those that are furthest apart in bicycle ownership.

4.2 Weighted degree assortativity

We compute the weighted degree assortativity coefficient for the network, and also for each of the Groups
1 through 4. The results are shown in Table 5. For the entire network, the value rdw = 0.05 (≈ 4σ(rdw))
indicates a statistically insignificant (by Equation 3.11) weighted degree assortativity. However, when the
contributions are considered by group relative to the network, further details emerge. For Group 1, the
strength of disassortativity is quite small, but this is statistically significant. Group 4, however, is strongly
disassortative with respect to the entire network (rdw = −0.519 ≈ −41σ(rdw)). Thus, both Group 1 and
Group 4 member countries of high weighted degree significantly tend to be connected to countries of low
weighted degree (and vice versa). Groups 2 and 3 are assortative with respect to the entire network, a

Table 5 Weighted degree assortativity coefficients, with standard deviations and relative values

Group rdw σ(rw
d ) |rdw /σ(rw

d )|

1 −0.092 0.0157 5.9
2 0.383 0.0128 29.9
3 0.463 0.0129 35.9
4 −0.519 0.0126 41.1

All 0.050 0.0115 4.3

tendency that is stronger for Group 3. The members of these two groups are therefore more likely to be
connected with nodes of similar weighted degree.

4.3 Assortativity profiles based on average weighted degree of neighbors

We plot the assortativity profiles by average weighted neighbor degree for the entire network (Figure 3) and
also by the contribution of each group (Figure 4). The results support the coefficient values computed in
Subsection 4.2. While the profile of Group 1 does indicate a negative trend, the sparsity of points explains
why its disassortativity is weak. Group 3 shows the stronger assortative profile compared to Group 2
(Figure 4C and Figure 4B). The profile for Group 4 (Figure 4D) shows an accumulation of low weighted
degree points with much higher weighted degree neighbor averages. Outlying points in the group profiles
are labeled and discussed in Section 5.

5 Discussion

The mixing matrix and its associated conditional matrix P indicate that countries in the same group are
more likely to be found near each other than to those from other groups. This effect is most pronounced
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Fig. 3 Assortativity profile for the network (by average weighted neighbor degree) showing all groups.

for Group 4, indicating that many of them are geographically proximal. Furthermore, countries in Groups
1 and 3 are almost as likely to be found next to those in Groups 2 and 4. Thus, for Groups 1 and 3, there
is most likely to be a cluster separation of 0 or 1 in relation to their neighbors. For all the groups, member
countries are least likely to be proximally associated with those of widening separation by ownership group.

We consider assortativity with regard to weighted degree. Overall, the network is mildly assortative,
based on the value of the computed assortativity coefficient. Thus, for all nodes in the four groups, there
is a slight tendency for associations between nodes of similar weighted degree. This can be interpreted by
saying countries with increased connectivity (in terms of both the number of neighbors and the closeness of
group) are found adjacent to countries with similar characteristics. At the group level, this is not always the
case. For Groups 1 and 4, this behavior is opposite (i.e. disassortative) and more strongly so for Group 4. As
the connectivity of member countries increases, the average weighted neighbor degree reduces, which is a
result of the reduced likelihood that those neighbors are in the same group. The highest point in Figure 4D
represents Mongolia which, while having only 2 neighbors, is connected to countries, namely Russia and
China, with considerably more neighbors and higher bicycle ownership. The furthermost point along the
x-axis represents DR Congo, which has the largest number of land borders in Africa.

Group 1 in particular shows the opposite trend, but its seeming disassortativity is insignificant, as can
be inferred from the fact that there are far fewer countries in Group 1 compared to the other groups. In
Figure 4A, Burkina Faso is at the lowest point in the profile, indicating that it is surrounded by countries
with a greater degree of cluster separation. The furthest points, i.e. those with the highest weighted degree
(Austria and Germany) have an even greater number of neighbors. That they are higher up than Burkina
Faso indicates that they are surrounded by neighbors closer in ownership.

For Groups 2 and 3, there is a strong assortative trend. In Group 2, two countries are found well beyond
a weighted degree of 23: Brazil and China (Figure 4B). While China has the largest degree (number of
neighbors) in the set, its neighbors are further apart (in terms of ownership level), hence its position in the
profile. Brazil also has a large number of neighbors but they are more distantly separated by group, which
is why it is not further up in the profile. The points closest to the origin of the plot represent countries
with only 2, 1 or no neighbors (e.g. USA, Canada, Ireland, Indonesia), indicating their limited influence in
spite of their high ownership levels. Group 3 countries are more strongly assortative. As seen in Figure 4C,
Russia lies further up the x-axis than any other member of Group 3, as it has just as many land borders
as China (13) but its weighted degree is larger—a potential indicator of its influence.

6 Conclusion and outlook

We have presented a simple network model that enables us to further investigate how the level of ownership
in the countries considered is related to their neighbors. To do this, we defined a measure of connectivity
for each pair of countries based on the presence of a shared land border and the separation between the
ownership group occupied by each. We then apply principles of mixing and assortativity to describe patterns
in associations between the bicycle ownership groups defined in an earlier study (Oke et al, 2015). Mixing
is considered strictly on the basis of group, while assortativity is considered by the measure of connectivity
defined—the weighted degree.
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Fig. 4 Assortativity profiles for Groups 1 through 4 based on the average weighted neighbor degree. The size of the markers
indicates the actual degree of the node.

Our results show that countries with high ownership are generally likely to be neighbors to those
with similar ownership or just one step lower. The countries with the lowest ownership, however, are the
most isolated from other countries in terms of ownership separation. Furthermore, our weighted degree
assortativity analyses enable us to better understand how ownership and proximity are related between
countries and their neighbors in the four different groups. We observe that on the whole, weighted degree
assortativity within the ownership network is statistically insignificant. However, for the countries in Groups
2 and 3, assortativity is observed, indicating that high weighted degree countries are more connected with
those of equally high weighted degree. The opposite is the case for Groups 1 and 4, the latter exhibiting
stronger weighted degree disassortativity. The group assortativity profiles by average neighbor weighted
degree provide greater insight into individual country behavior and may serve as starting points for further
investigations into these countries.

This work is an initial step toward applying network analysis tools in an effort to not only understand
the factors influencing bicycle ownership, but also how the ownership levels in the countries themselves
indicate those of neighboring countries. While the nodes in this network are largely static with regard to
position (i.e. the degrees will largely remain the same), the levels of ownership can certainly change. For
policymakers trying to weigh options to improve the quality of life in their countries, regions or continents
by encouraging more ownership of bicycles, the analyses present a few approaches. For instance, if a regional
coalition is interested in improving the bicycle ownership in their member countries, initiatives might be
better piloted in the most connected country.

A dynamic model of how the nature of the network might evolve in time would be useful for policymakers
trying to weigh options to improve the quality of life in their countries, regions or continents by encouraging
more ownership of bicycles. In such an instance, knowledge of how countries have moved into higher-
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ownership group and their respective weighted connectivities can inform the selection of a pilot country in
which to launch targeted initiatives, whose benefits would hopefully influence its neighbors in time. With
more bicycle ownership data and future clustering analyses, perhaps more groups might also emerge. We
would also like to better define the nature of country-to-country influence by accounting for other factors,
such as climate, mobility, income, history (political and cultural) and topography. In our next round of
efforts, we plan to utilize readily available data on some on these features to further investigate the nature of
these relationships to whatever degree they exist. Further, with a more accurate and translatable network
representation, we can hopefully provide more insights for stakeholders and policymakers in sustainable
transit.
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A Country parameters

Table A1 lists the degree parameters for each country. The code (written in Python) and supporting data for this work are
available at ce.jhu.edu/sauleh/obls-spassoc/ .

Table A1: Degree, weighted degree, average neighbor weighted degree and group
membership of the countries in the dataset.

ISO Country Degree Group Weighted Degree Average Neighbor Weighted Degree

AFG Afghanistan 5 3 16 18
AGO Angola 4 4 15 23.5
ALB Albania 3 3 11 13.7
ARE United Arab Emirates 0 2 0 0
ARG Argentina 5 2 17 14.8
ARM Armenia 3 4 11 15.7
AUS Australia 0 2 0 0
AUT Austria 7 1 22 17.3
AZE Azerbaijan 4 4 14 21.3
BDI Burundi 3 4 11 24.7
BEL Belgium 4 2 14 17.5
BEN Benin 4 3 12 12.3
BFA Burkina Faso 6 1 10 12.7
BGD Bangladesh 2 4 5 18
BGR Bulgaria 5 4 14 16
BIH Bosnia and Herzegovina 3 3 11 17.3
BLR Belarus 5 3 19 23.8
BLZ Belize 2 2 5 8.5
BOL Bolivia 5 3 17 15.8
BRA Brazil 9 2 29 12
BTN Bhutan 2 4 5 27.5
BWA Botswana 4 4 15 20
CAF Central African Republic 6 4 24 24
CAN Canada 1 2 4 7
CHE Switzerland 4 2 14 22
CHL Chile 3 3 10 15.7
CHN China 13 2 36 15
CIV Cote d’Ivoire 5 3 15 13.4
CMR Cameroon 5 4 20 17.4
COD Congo DRC 9 4 33 20
COG Congo 5 4 20 20
COL Colombia 5 3 17 12.8
COM Comoros 0 4 0 0
CRI Costa Rica 2 2 5 6
CZE Czech Republic 4 2 14 23
DEU Germany 9 1 30 14.6
DJI Djibouti 3 4 12 17.3
DNK Denmark 1 1 4 30
DOM Dominican Republic 1 4 4 4
ECU Ecuador 2 2 5 15
EGY Egypt 2 4 7 16.5
ERI Eritrea 4 4 16 21.8
ESP Spain 3 3 10 9.7
EST Estonia 2 2 6 28
ETH Ethiopia 6 4 24 18.2
FIN Finland 3 1 10 19.7
FRA France 6 2 22 15.5
GAB Gabon 2 4 8 20
GBR United Kingdom 1 3 3 3
GEO Georgia 4 4 14 21.3
GHA Ghana 3 4 7 11.3
GIN Guinea 6 4 21 12.5

ce.jhu.edu/sauleh/obls-spassoc/
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Table A1: Degree, weighted degree, average neighbor weighted degree and group

membership of the countries in the dataset.

ISO Country Degree Group Weighted Degree Average Neighbor Weighted Degree

GMB Gambia 1 3 3 17
GNB Guinea-Bissau 2 3 6 19
GRC Greece 4 3 14 14
GTM Guatemala 3 4 8 6.7
GUY Guyana 3 2 10 15
HND Honduras 2 3 6 6.5
HRV Croatia 5 3 17 15.6
HTI Haiti 1 4 4 4
HUN Hungary 7 3 21 18.1
IDN Indonesia 1 2 3 6
IND India 6 3 19 13.2
IRL Ireland 1 2 3 3
IRQ Iraq 2 4 7 13
ISR Israel 3 3 9 5.7
ITA Italy 4 2 14 17.3
JOR Jordan 2 4 7 8
JPN Japan 0 2 0 0
KAZ Kazakhstan 5 4 17 24.2
KEN Kenya 5 4 18 21.2
KGZ Kyrgyzstan 4 4 14 21.3
KHM Cambodia 3 2 12 15.7
KOR Republic of Korea 0 3 0 0
LAO Laos 5 2 20 18.4
LBN Lebanon 1 4 3 9
LBR Liberia 3 4 11 14.7
LKA Sri Lanka 0 3 0 0
LSO Lesotho 1 4 4 24
LTU Lithuania 4 3 15 24.5
LUX Luxembourg 3 2 11 22
LVA Latvia 4 3 15 20.3
MAR Morocco 1 4 3 10
MDA Republic of Moldova 2 3 7 20
MDG Madagascar 0 4 0 0
MDV Maldives 0 3 0 0
MEX Mexico 3 3 9 6.7
MKD Macedonia 4 2 12 14.8
MLI Mali 6 3 18 14.2
MLT Malta 0 3 0 0
MMR Myanmar 5 2 17 19
MNE Montenegro 4 3 15 14.8
MNG Mongolia 2 4 5 38.5
MOZ Mozambique 6 4 21 18.5
MRT Mauritania 2 4 7 17.5
MUS Mauritius 0 2 0 0
MWI Malawi 3 3 11 24.7
MYS Malaysia 2 3 6 9
NAM Namibia 4 4 15 20
NER Niger 5 4 15 15
NGA Nigeria 4 4 15 16.8
NIC Nicaragua 2 4 5 5.5
NLD Netherlands 2 1 7 22
NOR Norway 3 1 10 19.7
NPL Nepal 2 4 5 27.5
NZL New Zealand 0 2 0 0
PAK Pakistan 3 3 11 23.7
PAN Panama 2 3 7 11
PER Peru 5 4 13 15.6
PHL Philippines 0 4 0 0
POL Poland 7 2 23 23
PRT Portugal 1 3 4 10
PRY Paraguay 3 3 10 21
ROM Romania 5 4 15 17.4
RUS Russia 13 3 41 16.1
RWA Rwanda 4 4 14 21.8
SDN Sudan 6 4 24 19.7
SEN Senegal 5 4 17 11
SLE Sierra Leone 2 4 8 16
SOM Somalia 3 4 12 18
SSD South Sudan 7 4 27 22.1
STP Sao Tome and Principe 0 4 0 0
SUR Suriname 2 3 6 19.5
SVK Slovakia 5 2 17 21
SVN Slovenia 4 1 11 18.5
SWE Sweden 2 1 8 10
SWZ Swaziland 2 4 8 22.5
TCD Chad 5 4 20 19.6
TGO Togo 3 3 9 9.7
THA Thailand 4 2 15 13.8
TJK Tajikistan 4 4 13 21.3
TKM Turkmenistan 3 4 11 17.3
TLS Timor-Leste 0 4 0 0
TTO Trinidad and Tobago 0 2 0 0
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Table A1: Degree, weighted degree, average neighbor weighted degree and group

membership of the countries in the dataset.

ISO Country Degree Group Weighted Degree Average Neighbor Weighted Degree

TUN Tunisia 0 3 0 0
TUR Turkey 6 3 19 12.3
TZA Tanzania 8 3 27 18.8
UGA Uganda 5 3 16 23.8
UKR Ukraine 7 3 25 20.4
URY Uruguay 2 2 8 23
USA United States 2 2 7 6.5
UZB Uzbekistan 5 4 19 14.2
VEN Venezuela 3 3 10 18.7
VNM Vietnam 3 2 12 22.7
VUT Vanuatu 0 4 0 0
YEM Yemen 0 4 0 0
ZAF South Africa 6 4 24 13
ZMB Zambia 8 3 26 19
ZWE Zimbabwe 4 4 15 21.5
ZZZX Serbia 7 2 20 15
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