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Abstract This paper addresses the management of a sugarcane harvest over a multi-year
planning period. A methodology to assist the harvest planning of the sugarcane is proposed
in order to improve the production of POL (a measure of the amount of sucrose contained in
a sugar solution) and the quality of the raw material, considering the constraints imposed by
the mill such as the demand per period. An extended goal programming model is proposed
for optimizing the harvest plan of the sugarcane so the harvesting point is as close as possible
to the ideal, considering the constrained nature of the problem. A genetic algorithm (GA)
is developed to tackle the problem in order to solve realistically large problems within an
appropriate computational time.A comparative analysis between theGAand an exactmethod
for small instances is also given in order to validate the performance of the developed model
and methods. Computational results for medium and large farm instances using GA are also
presented in order to demonstrate the capability of the developed method. The computational
results illustrate the trade-off between satisfying the conflicting goals of harvesting as closely
as possible to the ideal and making optimum use of harvesting equipment with a minimum
of movement between farms. They also demonstrate that, whilst harvesting plans for small
scale farms can be generated by the exact method, a meta-heuristic GA method is currently
required in order to devise plans for medium and large farms.
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1 Introduction

In recent years, the increased production of sugarcane in tropical countries has led to a
corresponding increase in the size and complexity of the decision problems associated with
sugarcanemills. The challenges caused by this accelerated growth have caused difficulties for
managers of companies in this sector. Thus, any tool to support decision making, to optimize
managerial plans and to obtain estimations of the quality of the harvest will be of benefit to
the sector. As a particular country example, Brazil has prominence in the world market for
sugar and alcohol. According to the United States Department of Agriculture, USDA (2015),
Brazil is the world’s largest producer and exporter of sugar; is the second largest producer
of ethanol in the world (Worldwatch institute 2015); and is the world’s largest sugarcane
producer (Conab 2016). The sugar-alcohol sector contributed 1.85% of the Brazilian GDP
and 29% of the Brazilian agricultural GDP in 2015, and employs approximately 4.4 million
people (Florentino et al. 2015).

Based on Brazilian Ministry of Agriculture and Livestock statistics, in the 2015/2016
season Brazil produced around 658 million tonnes of sugarcane. Ninety-three percent of this
production came from the Brazilian Center-South region (Conab 2016). This region produces
93% of Brazilian total ethanol and sugar (Conab 2016).

As sugarcane makes a significant contribution to the Brazilian economy, several studies
have been undertaken to improve the quality of the sugarcane and to assist in understanding
its production cycle (Florentino et al. 2015; Higgins and Postma 2004). In contrast to many
crops, the production cycle of the sugarcane starts with its planting in the first year. Annual
harvesting of the sugarcane can in principle take place at least four times before it needs
to be replanted (renewal). However, there is no guarantee that good quality sugarcane will
be produced using a plantation that has already been harvested multiple times (Calija et al.
2001; Magalhães and Braunbeck 2014).

The periodwhen the sugarcane should can be harvested is known as the period of industrial
utilization (PIU). Generally, in Brazil the PIU starts from 2months before the maximum
sugarcane maturation point and finishes 2months after. The sugarcane should be harvested
as closely as possible to this maturation date, taking into account the technical limitations
and the ongoing demands of the mill. However, the dimensions and the complexity of the
current sugarcane fields make the achievement of the above goal very difficult. This is in
part, due to the limited amount of machinery for harvesting, processing and transporting the
sugarcane and in part due to the sheer size of the operation in terms of land area and hence
sugar to be harvested. Therefore, optimal harvest planning is one of the most important tasks
if a good production of sugarcane is to be achieved. To assist decision makers in determining
the optimal harvesting plan, in this paper we propose a model and an appropriate solution
method to optimize the sugarcane harvesting plan.

The optimized planning of a sugarcane crop should improve agricultural and industrial
practices so that all of the relevant stakeholders (the farm owners, employees and the onward
supply chain) gain maximal benefit from the process. The sugarcane should be harvested
when it reaches the maximum content of sucrose (pol% cane), which occurs in the peak
period of maturation. This period is dependent on the system of cultivation adopted, the
sugarcane variety, the region and other factors that influence the quality of the raw material
obtained (López-Milán and Plà-Aragonés 2014; Ramesch and Mahadevaswamy 2000).

In Brazil a further climatic restriction is that the recommended period for harvesting
sugarcane is from April to December (Yirsaw et al. 2000). According to Florentino and
Pato (2014) and López-Milán and Plà-Aragonés (2013), several kinds of adversities could
potentially occur (e.g., climate related, administrative, social, or economic problems), but
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the planning process should incorporate mitigation actions or sufficient flexibility in order to
prevent serious deviations from the goal of harvesting at the peak of the sugarcanematuration.

In da Silva et al. (2015), a goal programming model is proposed for sugarcane harvest
planning which aims to simulate several scenarios that involve uncertain parameters and
hence minimize agro-industrial costs. The authors in Paiva and Morabito (2008) present an
optimization model to support decision making in the aggregated production planning of
sugar and ethanol companies based on industrial process selection and production lot-sizing
models. Their model aims to select industrial processes used to produce sugar, ethanol and
molasses and hence determine an optimal logistical configuration. A linear optimization
model for sugarcane cultivation and harvest planning is proposed in Supsomboon and Niem-
sakul (2014) in order to maximize commercially recoverable sugar content by set of Thai
farms.

In Sharma et al. (2003), the optimalmix of sugarcane fertilizer is found using lexicographic
goal programming with a quadratic distance measure. A case study arising from Indian
sugarcane farms is used to illustrate the methodology. The majority of other recent works
that use goal programming for harvest planning are related to the forestry sector. Bagdon
et al. (2016), Demirci and Bettinger (2015), Gómez et al. (2011), Martins et al. (2014),
Weintraub and Murray (2006) and Zengin et al. (2015) all fall into this category and contain
a range of goals relating to the sustainability and effective management of forests. In Baraku
et al. (2015), production planning across a set of eight agricultural farms is optimized via
goal programming. In Prišenk and Turk (2015) and Prišenk et al. (2014), the weighted goal
programming is used to treat the crop rotation problem in organic farms in Slovakia.

Given the above successful track record of goal programming inmodeling harvest planning
problems, together with the goal based nature of the requirement to harvest as closely as
possible to maturation, a goal programming methodology is chosen to model the sugar cane
harvesting problem in this paper. Furthermore, as the balance between the average and worst
case deviations from the maturation goals amongst the set of plots to be harvested is also of
interest, the extended goal programming variant is chosen for this purpose.

The above discussion demonstrates that whilst there are literature examples relating to
the optimal planning and harvesting of sugarcane, the literature focusses on cost reduction,
mill capacity planning and transportation logistics. It is hence concluded that a work aimed
at sugarcane harvest planning considering the quality of the cane harvested, operational
constraints andmill demandswould provide a novel and relevant contribution to the literature.
Hence, this paper proposes to develop:

(i) a mathematical model to obtain an optimal sugarcane harvest plan using goal program-
ming in order to maximize the sucrose and sugarcane production whilst respecting the
constraints imposed by the mill, and

(ii) an efficient solution method for solving the above model. This will utilize genetic algo-
rithm (GA) methodology as the model is relatively hard to solve for the large-scale
problems occurring in modern farms.

The remainder of this article is divided into five sections. In Sect. 2, we present a discussion
of the factors relevant to the planting and harvesting of sugarcane that will inform the model
built in this paper. In Sect. 3, we formulate a new goal programming based model to optimize
the harvest schedule in order to minimize the sum of deviations from the maturation period
for each lot as well as to minimize the movement of machines between farms. In this way, the
harvest is always carried out close to the sugarcane maturation. In Sect. 4, a metaheuristic is
proposed—agenetic algorithmwhich includes four novel specialized heuristics—specifically
developed to solve the large size instances that occur in practice. The computational results
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from using an exact method (for small scale instances) and the GA (for all instances) are
presented in Sect. 5. In Sect. 6, some conclusions and future perspectives are detailed.

2 Factors in the timing of the sugarcane planting and harvesting lifecycle

The sugarcane can be used to produce ethanol in a sugar mill which is supplied by several
sugarcane farms. The number of sugarcane farms that supply a mill depends on the size
and demand of the company. In addition, it is also affected by the maximum amount of raw
material that can be harvested. In Brazil, the number of farms that serve a mill generally
varies between 1 and 40 with an average of 35 farms for large a company. Each farm is
divided into a set of smaller areas called plots. A flat plot is preferred with canes planted in
long lines to avoid a lot of machine maneuvers. In general, sugarcane fields are subdivided
according to soil topography and homogeneity where each field has an average of 10 to 20
hectares.

In tropical countries such as Brazil, when the sugarcane is planted in months from Jan-
uary to April, it should be harvested 18 months after planting. This is termed year-and-half
sugarcane, (t∗ = 18, PIU period is t0 + 18 ± 2). This sugarcane presents a minimal growth
rate betweenMay and September, when the weather is relatively cold. The next development
phase of the sugarcane occurs fromOctober to April with December being the best period for
the sugarcane due to higher rainfall, longer daylight hours and a higher average temperature.
When the sugarcane is planted in September and October, it should be harvested 12 months
after planting. This is termed year sugarcane (t∗ = 12, PIU period is t0 + 12 ± 2). The next
development phase of the sugarcane occurs from November to April, when the growth of
the sugarcane starts to reduce due to the weather conditions characterized by a lack of rain
and lower average temperatures. Sugarcane planted from May to August is called winter
sugarcane, where irrigation is needed and the harvest also takes place 12 months after it has
been planted (Picoli et al. 2014; Rudorff et al. 2010). In general, the period (in months) for
harvesting (t1) is calculated by t1 = t0 + t∗ ±d , where t0 is the month in which the sugarcane
was planted, t∗ is the number of periods (months) required for the sugarcane tomature (which
is dependent on t0) and d is a deviation between the ideal and the actual harvesting points.
In other words, if d = 0, the sugarcane is harvested at the point of maximum maturation. If
d ∈ [−2, 2] the sugarcane is in the PIU.

The setting of the time for renewal of a sugarcane plantation is related to the sugarcane
productivity due to the age of the crop. At some stage renewal needs to be considered in order
to increase the productivity at the expense of a larger initial cost. The sugarcane after the first
cut is called ratoon sugarcane. After the cut, the sprouting of stumps and the beginning of a
new stage of cutting occur.With the increase of the number of stages of cutting, a gradual loss
occurs in agricultural productivity (Higgins 1999). The cutting stages of the ratoon sugarcane
are repeated yearly until the crop is no longer economically profitable. When this happens
the culture needs to be reformed and the cycle restarts with the planting of new seedlings
(Landers 2007). The productivity of a year-and-half sugarcane appears to be higher than
its counterpart, year sugarcane, due to the longer time that the sugarcane remains in the
field. The productivity of the first cutting of the year sugarcane is approximately equal to the
productivity of the second cutting of the year-and-half sugarcane (Higgins 1999).

In Brazil the sugarcane is harvested from April to December (Hofsetz and Silva 2012).
More specifically, in the Brazilian SouthWest region, the sugarcanematuration period occurs
from April or May to its peak in September due to the climatic conditions prevailing in this
period. The gradual decrease in the temperature and the decrease in rainfall are crucial for
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the maturation process (Cardozo and Sentelhas 2013; López-Milán and Plà-Aragonés 2013;
Vianna and Sentelhas 2014) in the different production environment of the Center-South
region of Brazil.

The determination of the maturation of sugarcane is directly linked to the sucrose content,
presence of flowering, genetics, climate, soil, management, age of the sugarcane and other
factors. A further important factor is the variety of sugarcane used.

Sugarcane varieties are classified as early variety, when they have a POL content above
13% (at the beginning of May), intermediate variety when they reach maturity in July, and
late variety when the peak of maturation occurs in August or September, assuming the same
date of planting or cutting for each variety (Landers 2007).

3 Mathematical model

3.1 Notations and assumptions

In this section, a mathematical model is developed to optimize the sugarcane harvesting plan
in an area containing different varieties with different maturation periods. An agricultural
area consists of F farms where each farm is divided into several plots. In total there are k
plots, and each plot is planted with one sugarcane variety.

There are n different possible sugarcane varieties to select fromeach plot. It is assumed that
the variety planted for each plot ( j) is known, and the date (t0 j )when this variety was planted
is also fixed j = 1, . . . , k. The problem is to determine the harvesting plan of this sugarcane
during the planning horizon in order to satisfy all demand (Di ) in establishedmonths (Ti ) and
to harvest the sugarcane for each month (t j ) in the PIU, (t j = t0 j + t∗ + d j ). The preferred
harvest time is in the period as close as possible to themaximummaturation period (t0 j +t∗) of
the sugarcane. The pol constraints demand imposed by the mill, i = 1, . . . ,m; j = 1, . . . , k,
should also be considered.

There are multiple objectives to be considered in this problem. The first one aims to
minimize the sum of deviations from the optimal maturation in all lots to be harvested.
Due to the high cost of machinery, we also want to minimize the number of farms being
harvested in the same period. However, these objectives are conflicting, i.e., the opti-
mization of one leads a worsening of the other, and vice-versa, because if we try the
minimize the deviations from the optimal maturity, then the model chooses to harvest
several farms in the same period. On the other hand, if the machinery is limited to a
lower number of farms in the same period, then the tendency of generating delays in
the sugarcane harvesting is evident. The two conflicting objectives have different pref-
erence structures. The harvest plan must be achieved as closely as possible, considering
both the average and worst case deviations, whereas the number of farms visited should
be kept within a reasonable level. Hence, a plan which harvests as closely as possible
to the ideal, whilst keeping the number of farms visited to a reasonable level, should be
devised.

Hence, a new mathematical model is developed to tackle the harvest problem in the
presence of multiple conflicting goals and the need to balance deviations as follows.

Consider k plots and F farms (Farm 1 with r1 plots, farm 2 with r2 plots,…, farm F with
rF plots), where the sets of plots within farm f ( f = 1, . . . , F), denoted by J f , are defined
as J1 = {1, . . . , r1}, J2 = {r1 + 1, . . . , r1 + r2},…, JF = {rF−1 + 1, . . . , rF−1 + rF } and
r1 + ... + rF = k, and are illustrated in Fig. 1.

The following indices, parameters and variables will be used in the optimization model:
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Farm 1 (r1 = 6) Farm 2 (r2 = 5) Farm 3 (r3 = 4)

1 2

3 4

5 6

7 8

9 10 11

12
13

14
15

k = 15, F = 3, J1 = {1, ..., 6}, J2 = {7, ..., 11}, J3 = {12, ..., 15}

Fig. 1 Illustration of data with 3 farms consisting of 15 plots

Indices:

i is associated with the period (months) to harvest and to satisfy the demand;
j is associated with the plots;
f is associated with the farms.

Parameters:

k is the number of the plots that can be harvested;
m is the number of the months for harvesting sugarcane;
F is the number of farms;
Ti is the i-th demand period (in month);
t0 j is the month when the planting or last harvesting of the sugarcane has occurred in plot j ;
t∗j is set equal to 12 if the sugarcane planted in plot j is a year-and-half sugarcane and 18

otherwise;
α is the parameter that controls the mix of objective weights, 0 ≤ α ≤ 1;
Pj is the productivity of the sugarcane planted in plot j ;
L j is the size of plot j ;
Di is the demand in the i-th month;
J f is the set of plots within farm f , where J1 = {1, . . . , r1}, J2 = {r1 + 1, . . . , r1 + r2}, ...,

JF = {rF−1 + 1, . . . , rF−1 + rF } with rF−1 + rF = k.

Decision variables:

xi j binary integer (= 1, if there exists some plot of the farm f that is harvested in month i ,
and 0 otherwise) for all i = 1, 2, . . . ,m; j = 1, 2, . . . , k;

yi f binary integer (= 1, if there exists some plot of the farm f that is harvested in month i ,
and 0 otherwise) for all i = 1, 2, . . . ,m; f = 1, 2, . . . , F ;

Ni is related to the farms harvested in month i ;
t j is the decision variable associated with the best month for the harvesting the sugarcane

in plot j ;
d+
j is the deviational variable associated with positive deviation in plot j ;

d−
j is the deviational variable associated with negative deviation in plot j ;
θ is the maximum deviation among all plots.

3.2 Multiobjective model

We propose a new multiobjective model presented below, where the objective (1) is to mini-
mize the sum of deviations from t j , (t j = t0 j + t∗j + d+

j − d−
j ), for harvesting the sugarcane

in each plot j ( j = 1, . . . , k) that satisfies the i-th demand of the mill (Di ).
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minimize z1 =
k∑

j=1

d+
j + d−

j (1)

minimize z2 = θ (2)

minimize z3 =
m∑

i=1

Ni (3)

subject to t j − t0 j − t∗j − d+
j + d−

j = 0, j = 1, . . . , k, (4)

t j =
m∑

i=1

Ti · xi j , j = 1, . . . , k, (5)

m∑

i=1

xi j = 1, j = 1, . . . , k, (6)

k∑

j=1

Pj · L j · xi j ≥ Di , i = 1, . . . ,m, (7)

d+
j + d−

j ≤ θ, j = 1, . . . , k, (8)

xi j ≤ yi f , i = 1, . . . ,m, j ∈ J f , f = 1, . . . , F, (9)

Ni =
∑

f ∈J f

yi f , i = 1, . . . ,m, (10)

yi f ∈ {0, 1}, xi j ∈ {0, 1}, d+
j ≥ 0, d−

j ≥ 0,

i = 1, . . . ,m, j = 1, . . . , k, f = 1, . . . , F. (11)

This period t j should be chosen as close as possible to the period of the maximum matu-
ration (t0 j + t∗), i.e., the objective is to minimize the sum of the deviations from this value
across all plots. The objective (2) minimizes the maximal deviation from amongst the set of
deviations of all plots. The objective (3) minimizes the total number of different farms to
be harvested in the planning horizon, in order to avoid excessive movements of harvesting
machinery, with will hence minimize subsequent soil compaction and machine travel costs.

The goal set (4) defines the period for harvesting sugarcane. Equation set (5) ensures that
the harvesting is made within the demand period. Equation set (6) imposes the constraint that
each plot is only harvested once. Equation set (7) guarantees that the all demands are met.
Constraints (8) impose an upper bound on the deviations. The equation set (9) links variables
xi j and yi f . Equation set (10) defines the number of the farms harvested in month i . Sign
restriction set (11) defines the binary and non-negative variables.

In order to solve the binary linear multiobjective model (1)–(11) an achievement (scalar-
ization) function and objective bound set are proposed by Eqs. (12) and (13) respectively.
The objective in (12) is composed of objectives (1) and (2):

minimize z4 = α ·
k∑

j=1

(
d+
j + d−

j

)
+ (1 − α) · θ, (12)

where α ∈ [0, 1]. In fact, the objective (12) and the constraints (4)–(11) form an extended
goal programming model according to González-Pachón and Romero (2001) and Romero
(2004). The constraints (13) considers the feasible upper bound G, where G is the maximum
number of farms to be harvested in each month. This leads to the following replacement of
objective (3) by the upper objective bound set (13), thus reducing the tri-objective model
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(1)–(11) to a more pragmatic extended goal programming model, (4)–(13) that is also in
accord with the preferential reasoning of the mill owner to achieve the set of harvesting goals
as closely as possible whilst limiting the movement between farms to a reasonable level,

Ni ≤ G, i = 1, . . . ,m. (13)

In Sect. 4 a genetic algorithm to solve the model (1)–(11) is proposed.

4 A genetic algorithm

In order to solve this problem for the large instances that occur in practice, a metaheuristic
method based on genetic algorithms (GA) is developed to obtain good quality solutionswithin
a reasonable computing time. The use of GA is justified because an exact method (in this
study the CPLEX solver using state-of-the-art integer programming solution techniques) is
not able to solve large instances of the problem in reasonable time. This will be demonstrated
by the computational results, where CPLEX was not able to solve instances with more than
50 lots for objective (3), which in reality corresponds to the smallest mill sizes. The choice of
GA is linked with its simplicity of implementation, low computational cost, and good results
solving in combinatorial multiobjective problems according to Deb (2001) and Jones et al.
(2002), because it works with a set of solutions instead of a single one.

The steps of this method are described in the following subsections.

4.1 Codification

A solution for the harvest problem is treated as an individual, which is defined as a vector
X ∈ N

k , where each component x j ∈ {1, . . . ,m} denotes the period in which plot j is
harvested. This encoding has the advantage of simplicity and providing all the information
needed for the proposed problem.

4.2 Initial population

The initial population of the GA is carefully generated in order to ensure the required level
of variability and feasibility in the population so that the process will be able to sufficiently
explore the search space. This particular way of generating the initial population, with dif-
ferent characteristics via multiple procedures is bespoke for the sugarcane harvesting model
considered in this paper, but hopefully has sufficient generic aspects to be considered a
contribution to the wider multiobjective GA initial population construction literature. The
well-established genetic principle behind the process is based on the fact that a heterogeneous
and high genetic variability population has a greater chance to develop and generate more
promising and distinct descendants.

This population is constructed by four constructive algorithms defined below. This is
necessary because the deviations and demand constraints compete in opposite directions.
A heuristic solution that satisfies the demand has high deviations, whereas, a low deviation
solution tends not to satisfy the demand.

The n individuals in the population were created as follows1:

– n
3 individuals by the Procedure 1.

1 A non-uniform distribution of each algorithm was used, because Procedures 1 and 3 have a high compu-
tational cost.
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– n
6 individuals by the Procedure 2.

– n
3 individuals by the Procedure 3.

– n
6 individuals by the Procedure 4.

The four procedures, each with different constructive characteristics, are defined in the
following subsections.

4.2.1 Procedure 1

This procedure constructs vector X by assigning a random number between 1 andm for each
component j , with a normal distribution with mean t0 j + t∗ and variance generated between
0.1 and 5. The idea of this procedure is to build a harvest calendar where lot j is harvested
as close to its optimum maturation period so a smaller variance will be generated. The
advantages of this algorithm include its simplicity, variability of solutions and the relatively
low sum of deviations; whereas the drawback is that the solutions may not be feasible with
respect to the demand constraints.

The pseudocode of this algorithm is shown below.

Algorithm 4.1 Procedure 1
1: Input: data of the problem
2: X = ∅

3: for j = 1, . . . , k do
4: Generate randomly a value for variance σ 2 ∈ [0.1, 5]
5: Pick randomly value x j in between 1 and m using normal distribution with mean t0 j + t∗j and variance

σ 2

6: X = X ∪ {x j }
7: end for
8: Output: X

4.2.2 Procedure 2

This procedure generates a feasible solution with respect to the demand constraints, without
taking the deviations into account. Initially, the Procedure 1 is called to build a solution to
the problem. Let X be the solution. Then, we calculate a residue vector R whose component
i formulated as follows:

Ri =
∑

j :X j=i

Pj · L j − Di , i = 1, . . . ,m.

If Ri ≥ 0, in period i the demand is satisfied, otherwise i is not. Set I = {i : Ri < 0}.
If I = ∅, then the generated solution is feasible with respect to the required demand in all
periods, otherwise it is infeasible. When the solution is infeasible, the following procedure
will transform the solution into a feasible solution. Analyze each element j of X in position,
whose period already satisfies the demand. The idea is to put into this position j the amount
that the period lacks in demand. By making this change, the residual associated with this new
solution is analyzed. If it remains positive in the position where it was excluded from that
period, then the exchange is continued until the demand of period i is satisfied. Otherwise,
the change is undone and a new permutation of lots to be analyzed is performed. The process
ends when all components of the set I are checked.
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Example 1 Consider the following data: m = 3 periods, j = 4 lots, P = (110, 120, 140,
160)T , L = (20, 17, 16, 14)T and D = (2000, 2300, 2200)T . Suppose the following solution
has beenobtainedby theProcedure1: X = (3, 1, 2, 1)T , indicating that the lots j = 1, 2, 3, 4
are harvested in periods 3,1,2,1 respectively.

Suppose that the order of the lots to be harvested is 1, 3, 4 and 2. This scheme gives a
residue R = (2280,−60, 0)T , indicating that in period i = 2 there is a lack of 60 units
of sugar. To obtain a feasible solution, assign some component of X to period i = 2 while
satisfying the demand in periods 1 and 3.

– Starting with j = 1, assign the harvest period in this lot to period i = 2. The new solution
will be X ′ = (2, 1, 2, 1), where the residue R = (2280, 2140,−2200)T , meaning that
the new solution is still infeasible and the original solution will still be used.

– For the second iteration, analyze the third lot. The harvest period in this lot can not be
changed since x3 = 2 already, which signifies a shortfall in the production period.

– The next lot to be analyzed is j = 4, the new solution X ′ = (3, 1, 2, 2)T . Its residue
is R = (40, 2180, 0)T , indicating that this solution is feasible. Therefore, the procedure
terminates.

The pseudocode for this procedure is given below.

Algorithm 4.2 Procedure 2
1: Input: data of the problem
2: Build a solution X by the Procedure 1
3: Calculate Ri = ∑

j :X j=i Pj · L j − Di for all i = 1, . . . ,m

4: Calculate I = {i : Ri < 0}
5: for i ∈ I do
6: Let p a random permutation of the {1, . . . , k}
7: for j ∈ p do
8: if p j �= i then
9: xp j ← i
10: Calculate Rp j and Rpi
11: if Rp j < 0 then
12: Undo the change of periods in the position p j
13: end if
14: if Rpi ≥ 0 then
15: BREAK
16: end if
17: end if
18: end for
19: end for
20: Output: optimized solution X

4.2.3 Procedure 3

Note that Procedure 2 only considers the feasibility of the solution which may generate a
harvest schedule with relatively high deviations. This procedure seeks a feasible solutionwith
minimal deviations without violating the demand constraints which is described as follows.
First, compute vector d deviations of the solution X by using the following expression:

d = |TX − (
t0 + t∗

) |,
where TX = Tx j , j = 1, . . . , k is the harvest period of lot j . Then we analyze all indexes
J = { j : d j > 0} to examine the possibility of changing the harvest periods of each
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lot to reduce the corresponding deviation without violating the demand constraints. For
each lot j ∈ J , we calculate the production Pj · L j and the residue in the harvest period
which is allocated for this lot, i.e., Rx j . If Pj · L j ≤ Rx j and meets the demand constraint,
then the zero deviation period can be attributed to this lot, which can be written as x j =
max{t0 j + t∗j − (

min j {Tj } − 1
)
, 1}. Otherwise, any change in the period for this lot will

make the residue smaller than 0. The vector R is then updated, and the procedure continues
for the other components ofJ . Upon completion, it is expected to produce a feasible solution
with respect to the demand constraints, with a reasonably low sum of deviations.

Example 2 Consider the same data given in Example 4.1 and t0 = (8, 9, 7, 5)T , t∗ =
(12, 12, 18, 18)T and T = (22, 23, 24)T . The deviation of the feasible solution X =
(3, 1, 2, 2)T is d = (4, 1, 2, 2)T , so J = {1, 2, 3, 4} and R = (40, 2280, 0)T .

– j = 1. P1 · L1 = 2200 > 0 = Rx1 , then changing to this lot is not allowed.
– j = 2. P2 · L2 = 2040 > 40 = Rx2 , then changing of this lot is not allowed.
– j = 3. P3 · L3 = 2240 < 2280 = Rx3 , then changing to this lot is allowed. The period

allocated for this lot is the one which generates the lowest possible deviation, i.e., x3 = 3.
Then, X = (3, 1, 3, 2)T and R = (40, 40, 2140).

– j = 4. P4 · L4 = 2240 > 40 = Rx4 , then changing to this lot is not allowed.

Thus, the new feasible solution produces deviations whose sum is
∑

i di = 8.

The pseudocode of this procedure is given below.

Algorithm 4.3 Procedure 3
1: Input: data problem and a feasible solution X
2: Calculate d = |TX − (t0 + t∗)|
3: Calculate J = { j : d j > 0}
4: for j ∈ J do
5: if Pj · L j ≤ Rx j then
6: x j ← max{t0 j + t∗j − (min{T } − 1) , 1}
7: Update R
8: end if
9: end for
10: Output: solution X

4.2.4 Procedure 4

The procedure developed in this subsection is a matheuristic (hybridization of an exact
method and heuristic algorithm) which aims to build, deterministically, a feasible solution
to the problem. In the first step, a heuristic technique is used where a feasible solution is
heuristically generated that satisfies only a subset I ⊂ {1, . . . ,m} of the demand constraints.
For each element i ∈ I, a lot is selected to meet the demand and provide the smallest
deviation. From this initial stage, there is a solution X , an undefined harvest period for each
lot in set J . A mathematical model which can be solved by an exact method is proposed to
obtain the harvest period for each lot in order to minimize the total sum of deviations. The
formulation of the model is given as follows:

minimize z1 =
∑

j∈J
d+
j + d−

j (14)
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subject to t j − t0 j − t∗j − d+
j + d−

j = 0, j ∈ J , (15)

t j =
m∑

i=1

Tj · xi j , j ∈ J , (16)

m∑

i=1

xi j = 1, j ∈ J , (17)

∑

j∈J
Pj · L j · xi j ≥ Di , i ∈ {1, . . . ,m} − I, (18)

xi j ∈ {0, 1}, d+
j ≥ 0, d−

j ≥ 0,

i = {1, . . . ,m} − I, j ∈ J . (19)

The idea of this procedure is to generate a partial solution heuristically in order to satisfy
the demand, then the exact method is used to obtain a feasible solution with a minimum total
deviation. As the cardinality of I increases, the problem (14)–(19) has fewer variables and
constraints, and does not require as much computational effort, since in its formulation only
includes the variables xi j . The variability of solutions is achieved by assigning different I.
Then, the resulting solution will be the union of the heuristic and exact steps.

The pseudocode for this algorithm is given below.

Algorithm 4.4 Procedure 4
1: Input: data of the problem and I, with |I| < m

%Step 1
2: for i ∈ I do
3: while Demand for the period i is not satisfied do
4: Determine the set lotsLi , in ascending order of deviation and who have not had their defined harvests,

to be harvested in the period i
5: xLi

← i
6: Update set Li
7: end while
8: end for

%Step 2
9: Determine J , the lots that have not yet been scheduled
10: Solve the problem (14–19)
11: Allocate in X in the positions j ∈ J the periods determined by the Step 2
12: output: solution X

When the cardinality I increases, the problem of minimizing the deviations is easier to
solve, however, the final solution is found to have a higher deviation. On the other hand, when
|I| is small, smaller total deviations are obtained but this require more effort to optimize the
problem (14–19). In order to maintain a compromise between these goals, |I| is set to the
value 2 in Step 1.

4.3 Fitness

The fitness (evaluation) of each solution X in the population, is given by z, defined as

z = zi + β1 · v1 + β2 · v2, (20)
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where zi is the i-th objective being minimized (i = 1, . . . , 4), β1 and β2 are constants
that penalize the violations v1 and v2 with respect to demand constraints (7) and maximum
number of farms in period (13), respectively, which are calculated by

v1 = −
m∑

i=1

min {0, Ri } (21)

and

v2 = −
m∑

i=1

min

⎧
⎨

⎩0,G −
F∑

f =1

φi f

⎫
⎬

⎭ , (22)

where

φi f =
{
1, if

∑r f
j=r f −1+1 Y j f > 0

0, otherwise,

r0 = 0 and Y j f = 1 if the farm f is harvested in plot j or 0 otherwise. If a solution is feasible,
the values of v1 and v2 are zero and the fitness is given by the objective function value of the
solution.

4.4 Selection

The process of selecting λ1 · n (where λ1 is the selection rate) individuals to perform the
remaining steps of theGA is conducted by tournament selection, i.e., two different individuals
are selected and the one that has a better fitness is chosen and is introduced to be in the
crossover process which is the next operator of GA.

4.5 Crossover

The aim of this operator is to construct subsequent generations with the good characteristics
that the population has, through building mechanisms of new elements based on the original
population. The crossover is performed between two distinct individuals (a father and a
mother), and generates two distinct individuals (child 1 and child 2). Each couple is randomly
chosen from the population where a vector of dimension m is generated with each element
consisting of a 0 or 1 value. For the first child if the component of this vector is 0, the genetic
information comes from the first parent, otherwise the second parent. For the second child the
process works in the opposite way. This type of crossover is called uniform. It is relatively
easy to implement and may attain different solutions in order to exploit the search space
efficiently.

The Fig. 2 schematically illustrates this operator.
The crossing of two feasible solutions may produce in an infeasible solution (with respect

to demand constraints). To avoid generatingmany infeasible solutions, each child is tested for
its feasibility. If a child is infeasible, the repair algorithm Procedure 2 is applied to transform
it into a feasible one. This ensures the method is very efficient in finding the feasible solutions
in the search space.

4.6 Mutation

Themutation takes theλ2·n (whereλ2 is themutation rate)worst individuals in the population.
This is done to preserve the best individuals and maintain the convergence of the algorithm.
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3 5 6 1 2 4 3 6

2 5 4 2 3 1 6 4

3 5 6 2 3 4 3 4

2 5 4 1 2 1 6 6

(0 1 0 1 1 0 0 1)

parent 1

parent 2

child 1

child 2

Fig. 2 Illustration of the uniform crossover

Each selected individual has a probability of 0.5 to alter its gene to its opposite value.
However, this operator may remove the feasibility of a solution. In the case this happens, will
be recovered by implementing repair algorithm Procedure 2.

The mutation occurs in the population with the following probability

1

1 + e−10gen/g
(23)

where gen is the current generation. This means the probability of the mutation increases
with the number of generations. In the early generations, there is little mutation, whereas
at the end the probability to mutate will be close to 1. This is conduced in order to prevent
the GA prematurely converging to poor quality local optima. This artificial mechanism is
developed in order to ensure the most promising regions in the search space are explored.

4.7 Migration

Similar to the mutation process, the migration process aims to avoid premature convergence
of theGA.An additionalmechanism for inserting new elements in the population is proposed.
This process is to address the trend of the search starting to stagnate at a specific location. In
the migration process λ3 ·n (where λ3 is the migration rate) randomly chosen individuals are
replaced by the same number of individuals using Procedure 4. Here, the inserted solutions
are always feasible solutions. Note that themigration only occurs in three generations, namely
generations 0.5·g, 0.7·g and 0.9·g, where g is themaximum allowed number of generations.

4.8 Updating and elitism

The update process is the stage where all solutions (parents+children) are evaluated based on
their objective function values (20). The best n solutions are taken forward to the subsequent
generation. The elitism is also applied to prevent the best solution E being alterd by the
GA operators (selection, crossover, mutation and migration). Hence this solution is always
transferred to the next generation. In this study, the stopping criteria are themaximumnumber
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of generations (g) generated and 0.5 · g generations without improvement in the fitness of
the E .

Due to the computational complexity of the problem, and the desire of the decisionmakers
(mill owners) to select from a small set of solutions, the presented algorithms aim to produce
a limited number of representative Pareto efficient solutions rather than a detailed represen-
tation of the Pareto set. The setting of the harvesting goals at their ideal level ensures that
the GA meta-heuristic will aim to find solutions that are close to the (unknown) exact Pareto
efficient solutions via the underlying goal programming model (Jones and Tamiz 2010).

There are different ways to generate specific efficient solutions, such as Weighted Sum,
Metric Tchebycheff (Bowman 1976), ε-Constrained (Ehrgott and Ruzika 2008; Haimes et al.
1971), Benson (1978), and specific algorithms for integer problems developed by Sylva and
Crema (2004, 2007).

In the following section we discuss some computational results to assess the proposed
solution methodology.

Algorithm 4.5 The proposed GA for the harvest plan problem
1: Input: problem data, λ1, λ2, λ3, β1, β2 and g
2: Build P , the initial population
3: gen = 0 and h = 0
4: while gen ≤ g ∨ h ≤ 0.5 · g do
5: Evaluate the individuals P and separate E
6: Apply the selection in P − {E}. Let S the λ1 · n be selected elements
7: Apply the crossover with the elements of S. Let F the children. Apply Procedure 2 to the infeasible

elements of F
8: Evaluate F and separate the best child, Ē
9: if If the fitness of the Ē is better than fitness of the E then
10: E ← Ē
11: h = 0
12: else
13: h = h + 1
14: end if
15: Apply mutation in λ2 · n elements of the (P ∪ F) − {E} with probability given by (23). If there was

mutation, apply the Procedure 2 in the mutated elements
16: Apply migration in λ3 · n elements of the (P ∪ F) − {E} if gen = {0.5 · g, 0.7 · g, 0.9 · g}
17: If there was migration, evaluate the new individuals and rank them in the population
18: Update P with the n best elements P ∪ F
19: gen = gen + 1
20: end while
21: Output: E

5 Computational results

Computational experiments on this problem are performed, for smaller instances, using an
exact method (via CPLEX) and, for all instances, the proposed GA. For smaller instances, the
results obtained from the exact method will be used to assess the quality of solutions attained
by the heuristic approach. The tests were run on a laptop with an Intel Core i7 with 8GB
of memory RAM. The GA algorithm was coded in the MATLAB software 2012 (MATLAB
2010).

In this paper, in linewith the extended goal programming philosophy, we obtain a selection
of points the Pareto frontier, representing a mixture from optimization to balance of the
objectives. This is achieved by firstly optimizing singly the two meta-objectives (1), (2),
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Table 1 Total area per instance (in ha.) demand of the sugarcane in each month for the instances

I-Plots-farms Sugarcane demand (Ton.)

I-16-1 I-50-4 I-300-15 I-500-25 I-1000-35

April 2000 17,500 69,010 141,000 200,000

May 2000 11,200 96,110 149,000 290,000

June 10,000 12,845 76,216 128,000 190,000

July 6000 7000 58,700 100,000 269,005

August 7000 24,500 95,259 170,000 270,000

September 6000 11,200 77,350 159,000 260,000

October 10,000 31,500 78,268 131,000 300,000

November 2000 27,230 82,000 140,000 300,200

December 6000 18,500 79,100 120,000 290,000

Total area 332 1014 5987.8 9984.76 19,715.16

(3) and then by combining the meta-objectives (1) with (3) by using the equal weight point
[α = 0.5 in equation (12)]. Our intention is to compare these three solutions for each scenario.

Five instances (I-16-1, I-50-4, I-300-15, I-500-25, I-1000-35) are used to assess our solu-
tion method with the number of plots set to 16, 50, 300, 500 and 1000 plots respectively.
Each instance has a different number of farms, representing small, medium and large mills.
The details of the instances can be seen in Table 1.

The parameter values of the instances were randomly generated within a possible range.
For example, the harvesting must be performed between April to December with the demand
given by Table 1. Also, we provide the total area per instance (in ha.).

5.1 Experiments using the exact method (CPLEX)

Table 2 presents the computational results on all instances based on the proposed scenarios.
The optimal harvesting plans for each objective are shown in Figs. 3 and 4 (for instances

I-16-1).
Figures 5, 6, 7 and 8, for instances I-50-4, show that for relatively small instances, the

model is able to determine optimal harvest plan of the sugarcane and meet demand using
various objectives. Interesting solutions are also found in the presence of different maturation
stages of sugarcane and different number of plots.

According to Table 2, minimizing objective (2) increases the sum of absolute deviations,
however the harvest can be performed in the correct period (PIU) (t j = t0 j + t∗). In all
plots, the deviation will be less than 3 (d j ≤ 3). When minimizing objective (3), a smaller
number of different farms being harvested in the same month is obtained at the expense
of a large deviation of the harvest period from the PIU in many plots. Moreover, a longer
computational2 time is needed when compared to other cases and the exact method is also
not able to solve relatively large problems. Minimizing the combination of objectives (1) and
(3) can reduce the number of the different farms being harvested in the same month, however
some plots still have large deviations.

Table 3 shows the experimental results when the minimizing objective (12) problem is
solvedwith the presence of constraint (13). It can be observed that a small number of different

2 “–”: CPLEX could solve the problem.
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Fig. 3 Optimal harvesting
planning of the instance I-16-1
using the objective (1)

Harvest months

Ap. May Jun. Jul. Sep. Oct.Aug. Nov.Dec.

10 13 4 6 9 1 3 11 2

14 7 15 2 5

816

Fig. 4 Optimal harvesting
planning of the instance I-16-1
using the objective (2)

Harvest months

Ap. May Jun. Jul. Sep. Oct.Aug. Nov.Dec.

7 10 14 6 9 3 2 11 1

4 15 16 5

12

8

13

Fig. 5 Optimal harvesting
planning of the instance I-50-4
using the objective (1)

Farm 1
1− 8

Farm 2
9− 21

Farm 3
22− 44

Farm 4
35− 50

Harvest months

Ap. May Jun. Jul. Sep. Oct.Aug. Nov.Dec.

6 14 4 16 9 25 1 17 2

7 30 31 33 18 32 11 21 3

10 36 35 38 27 39 12 23 5

13 37 45 34 41 20 26 8

15 47 46 22 40 19

43 48 24 42

44 28 49

29

50

farms being harvested in the same month is obtained. Based on the table, the harvesting is
also conduced in the PIU or close to this period. However, for this scenario, the exact method
is not able to deal with the large problems that represent medium to large Brazilian farms.
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Fig. 6 Optimal harvesting
planning of the instance I-50-4
using the objective (2)

Farm 1
1− 8

Farm 2
9− 21

Farm 3
22− 44

Farm 4
45− 50

Harvest months

Ap. May Jun. Jul. Sep. Oct.Aug. Nov.Dec.

7 13 1 10 9 3 18 5 2

4 14 6 43 29 12 22 8 19

15 31 37 48 34 16 24 11 20

27 33 38 35 25 17 40

30 47 28 21 42

50 32 23

41 26

46

49

36

44

45

39

Fig. 7 Optimal harvesting
planning of the instance I-50-4
using the objective (3)

Farm 1
1− 8

Farm 2
9− 21

Farm 3
22− 44

Farm 4
45− 50

Harvest months

Ap. May Jun. Jul. Sep. Oct.Aug. Nov.Dec.

45 10 24 33 22 9 1 23 14

47 11 36 35 28 12 2 25 15

48 13 38 44 30 18 3 26 16

49 17 31

21

4 27 19

50 34 5 29 20

37 6 32

7 39

8

42

43

46

40

41

5.2 Experiments using the GA

In previous experiments the exact method was used to generate an optimal harvest schedule
for this problem. For minimizing objective (1), the exact method is able to solve all instances
in a relatively short time. However, the exact method cannot solve minimizing the objective
(3) problem due to memory issue. Therefore, the GA is proposed to overcome the limitations
of the exactmethod. This section presents the experiments of theGAusing the same instances
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Fig. 8 Optimal harvesting
planning of the instance I-50-4
using the objective (12)

Table 3 The absolute deviation, the maximum the of the absolute deviation, the number of the absolute
deviation greater than 2; sum of the absolute deviation and CPU time spent to solve the proposed model, using
the objective (12) and constraint (13)

Instances G value Average Maximum % plots with Sum of Average of the CPU
I-Plots |deviation| |deviation| |deviation| > 2 |deviation| number of farms time (s)
farms harvested per month

I-16-1 1 1.5 3 12.50% 24 1 0.19

I-50-4 3 0.38 3 4.0% 19 2.4 0.61

I-300-15 8 – – – – – –

I-500-25 15 – – – – – –

I-1000-35 20 – – – – – –

Table 4 Parameters used in GA n g λ1 λ2 λ3 β1 β2

120 100 0.80 0.05 0.20 100 100

used in previous experiments. The parameters used in the GA for all instances are presented
by Table 4.

To assess the consistency of the proposed heuristic method, for each instance, the GAwas
executed 20 times with the average results are presented in Table 5. The structure of the table
is similar to the one of Table 2

Based on the results, it can be noted that GA produces good solutions for all instances in
an acceptable computational time. The computational time increases linearly with k. When
k is set to 1000 lots (a large farm), the GA requires less than 20min to solve the problem.
On the other hand, the exact method runs faster than the GA in solving the problems solely
minimizing the sumof deviations. However, the exactmethod experiences difficulties solving
the minimizing objective z2 problem. For k = 50, for example, the exact method took almost
3h to solve the problem. Furthermore, the exact method was not able to solve instances with
k > 50.
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Fig. 9 Optimal harvesting
planning of the instance I-50-4
using the GA and the the
objective (3)

Farm 1
1− 8

Farm 2
9− 21

Farm 3
22− 44

Farm 4
45− 50

Harvest months

Ap. May Jun. Jul. Sep. Oct.Aug. Nov.Dec.

4 36 25 46 9 1 11 12 2

6 45 27 47 15 7 16 13 3

37 48 35 18 10 17 14 5

39 49 31 24 20 8

44 32 28 21 19

34 29 22

33 23

41

38

43

26

30

40

42

50

Another aspect to be highlighted is that a good quality of heuristic solutions is found,
mainly due to the initial solution generated using the four constructive procedures. When
only objective z1 is taken into account, the GA yields an error of 0.90, 43.1, 13.8, 20.8 and
7.0% for instances with k = 16, 50, 300, 500 and 1000 plots respectively.

Based on the best solutions over the 20 runs, GA produces an error of 0.52, 10.1, 5.2, 6.9
and 4.1% for the same instances. In general the method provides good results and runs fast,
thus demonstrating the value of a meta-heuristic for this type of hard to solve problem.

TheGAalgorithmwas also able to provide feasible solutions to the problem ofminimizing
the movement of the machines for the instances with k > 50 in a reasonable computing time.
In terms of the quality of the solutions, the solution obtained from the GA for k = 50 can be
compared to the optimal one. In this case, the results of the GA are as follows. Based on the
average results, 1.8 farms are harvested in a period with the sum of the deviations equal to
86.7, whereas based on the best results, 1.1 farms must be harvested in a month (as seen in
Fig. 6) with the sum of deviations equal to 132.

This shows that the GA has a little difficulty in producing solutions with a small z2 as
the constructive heuristics focus on minimizing the sum o deviations. An example solution
with a small value of z2 obtained by GA is presented in Fig. 9, where the average number of
farms to be harvested per period is 1.7 with the sum of deviations is equal to 69.

With respect to the problem of minimizing objective (12), good solutions are obtained
using the heuristic method. It can be noted that the average solutions of the GA are relatively
close to the optimal ones. For example, when k = 50, the average deviation obtained by
the exact method and the GA is 0.38 and 0.49, respectively whereas the number of plots it
deviations larger than 2 is 4 and 1.4% respectively. It is also highlighted that in the optimal
solution for this instance, there are 2.4 farms harvested in the same period whereas the GA
produces 2.5.
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Table 6 The absolute deviation, the maximum the of the absolute deviation, the number of the absolute
deviation greater than 2; sum of the absolute deviation and CPU time spent to solve the proposed model, using
the objective (12) and constraint (13) by using the genetic algorithm

Instances G value Average Maximum % plots with Sum of Average of the CPU
I-Plots |deviation| |deviation| |deviation| >

2 (%)
|deviation| number of farms time (s)

farms harvested per
month

I-16-1 1 1.5 3.1 12.6 24.2 1 5.3

I-50-4 3 0.49 4.0 5.4 24.8 2.5 161.2

I-300-15 8 0.62 5.6 4.2 169.8 7.5 286.4

I-500-25 15 0.20 4.2 1.4 104.6 14.6 502.9

I-1000-35 20 0.22 5.1 3.6 235.2 19.3 1085.1

For instances with k = 300, 500 and 1000 the GA produces a relatively small deviations,
which are on average less than one month. The small percentage of the number of plots with
deviations greater than 2months is also obtained whilst satisfying all the constraints (13).

6 Conclusions and perspectives

This paper proposes a multiobjective sugarcane harvest scheduling model and solution algo-
rithm that allowsmill owners to effectively and efficientlymanage their harvesting operations
over amulti-year planning horizon. Themethodology ensures at the same time that the harvest
of each plot is as close as possible to its optimal maturation period and reduces the handling
of machines. As noted, these goals are conflicting with each other, i.e., the enhancement of
a goal entails a worsening of the other and vice-versa. These objectives can be balanced,
and hence an intermediate solution for minimizing both goals can be achieved. This paper
demostrates application of this model on real data, and indicates the current limitation of
exact optimization techniques to small scale farms. This can be explained by the complex
nature of the mathematical model for this problem that involves many binary variables and
has a very loose linear relaxation (Table 6).

To overcome this drawback, and to solve the actual large size instances, a genetic algorithm
based on four constructive heuristics is developed, implemented and compared with an exact
method solution. The four constructive heuristics have different underlying philosophies of
construction in order to enhance the subsequent search process over the generations. The
results are quite favorable, since this procedure can obtain feasible solutions that are very
close to the optimum problem and solve instances where it was not possible to determine any
viable solution in a timely manner with the exact method. Furthermore, the algorithm has a
very low computational cost, and can provide workable solutions for instances of 1000 lots
in less than 20min of computing time. In summary, the proposed model and solution method
are applicable in realistic cases, hence helping farm managers in their decision making for
this key agricultural product that has importance for the Brazilian economy.

For future research, it isworthwhile investigating other constructive heuristics to determine
the Pareto frontier for this problem (e.g. Non-dominated Sorting Genetic Algorithm—
NSGA). The enhancement of this model can also be considered by calculating the deviations
based on the area where a plot is located. Moreover, applications to harvesting other crops
may be performed by using the ideas and procedures presented in this work.
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