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Abstract. We consider a family of Rich Vehicle Routing Problems (RVRP) which have the particularity

to combine a heterogeneous fleet with other attributes, such as backhauls, multiple depots, split deliveries,

site dependency, open routes, duration limits, and time windows. To efficiently solve these problems, we

propose a hybrid metaheuristic which combines an iterated local search with variable neighborhood descent,

for solution improvement, and a set partitioning formulation, to exploit the memory of the past search.

Moreover, we investigate a class of combined neighborhoods which jointly modify the sequences of visits and

perform either heuristic or optimal reassignments of vehicles to routes. To the best of our knowledge, this

is the first unified approach for a large class of heterogeneous fleet RVRPs, capable of solving more than 12

problem variants. The efficiency of the algorithm is evaluated on 643 well-known benchmark instances, and

71.70% of the best known solutions are either retrieved or improved. Moreover, the proposed metaheuristic,

which can be considered as a matheuristic, produces high quality solutions with low standard deviation

in comparison with previous methods. Finally, we observe that the use of combined neighborhoods does

not lead to significant quality gains. Contrary to intuition, the computational effort seems better spent on

more intensive route optimization rather than on more intelligent and frequent fleet re-assignments.

Keywords. Rich Vehicle Routing, Heterogeneous Fleet, Matheuristics, Iterated Local Search, Set Partitioning.

1

ar
X

iv
:1

80
3.

01
93

0v
1 

 [
m

at
h.

O
C

] 
 5

 M
ar

 2
01

8



1 Introduction

The capacitated Vehicle Routing Problem (VRP) is one of the most studied problems in the field of combi-

natorial optimization. Since the seminal work of Dantzig and Ramser (1959), many additional constraints,

objectives and decision subsets, called problem attributes, have been combined with the classical version

of the problem. Such attributes include multiple depots, pickup and delivery, backhauls, heterogeneous

fleets, time windows, among others. The reader is referred to Vidal et al (2013a) for a recent survey and

classification on the most common attributes adopted in the VRP literature. Several variants that con-

sider each of these attributes individually received a lot of attention over the past few years. However, in

practical applications, many attributes tend to appear together, thus increasing the resolution challenges.

Several recent articles have attempted to cope with this increasing variety of problems. The term rich,

in particular, has being widely adopted to describe VRP versions composed of multiple attributes. Given

the importance of solving real-world problems, unified solution methods capable of tackling many VRP

variants are of high importance. This explains the recent trend in the development of this type of approach

(Røpke and Pisinger, 2006, Subramanian et al, 2013, Derigs and Vogel, 2014, Vidal et al, 2014b).

One important aspect of practical VRP applications is the frequent use of a heterogeneous fleet of

vehicles (Hoff et al, 2010), with different capacities and operational costs. This type of VRPs was excluded

from most unified frameworks available in the literature. For example, the framework of Vidal et al (2014b)

considered VRPs with heterogeneous fleet, but only in the case where the fleet is unlimited (fleet size and

mix VRP – FSMVRP).

The contributions of this work are as follows.

• We propose the first unified algorithm designed to solve a broad class of Heterogeneous Fleet RVRPs

(HFRVRPs), thus filling the methodological gap of previous works and extending the range of appli-

cations to richer and more challenging variants.

• Our algorithm is capable of dealing with at least 10 distinct and well-known attributes, such as mul-

tiple depots, time windows, (mixed) backhauls, site dependency, and split deliveries. The attributes

may be considered one at a time (classical variants) or simultaneously (rich variants), leading to a

wide gamut of problems. In practice, hundreds of variants could be formed with those attributes.

Obviously, for comparison purposes, we have decided to test our algorithm only on those variants

where there has been substantial research and publicly available instances.

• The algorithm generalizes the ILS-RVND-SP matheuristic of Subramanian et al (2013), originally

designed for vehicle routing problems with homogeneous fleet, and the alternative version of this

matheuristic (Subramanian et al, 2012) that was developed for classical Heterogeneous Fleet VRPs

(HFVRPs). ILS-RVND-SP combines an Iterated Local Search (ILS – Lourenço et al 2010) with

Randomized Variable Neighborhood Decent (RVND) and an integer programming-based optimization

over a Set Partitioning (SP) formulation. The routes generated by the ILS-RVND heuristic (Penna

et al, 2013) are used to create a pool of promising routes for the SP. The SP problem is then solved by

a Mixed Integer Programming (MIP) solver, which interacts with the ILS-RVND during its execution.

• The generalization includes, among other features, the addition of alternative constructive procedures,

neighborhood structures and perturbation mechanisms in order to cope with attributes that were not

considered in Subramanian et al (2013). We also introduce a novel perturbation scheme that exploits

the heterogeneous characteristic of the fleet. Moreover, in contrast to Subramanian et al (2012,
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2013), the proposed generalized algorithm now accepts infeasible solutions, which seem to be crucial

for obtaining high quality solutions when dealing variants with time windows (Vidal et al, 2013a,b).

In addition, move evaluations for this class of variants are now performed via the efficient approach

presented in Vidal et al (2014b). Overall, this led to a successful algorithm, which produces solutions

of high quality, and sometimes new best solutions, for 12 difficult VRP variants with heterogeneous

fleet, 20 sets of benchmark instances and overall 643 test problems.

• Finally, we followed the reasonable belief that optimality gaps could be related to errors in fleet

assignment rather than errors in routing. For this reason, we tested more advanced neighborhoods

with combine moves on the sequence of visits with a re-optimization (either heuristic or exact) of

the fleet assignment decisions. From our experiments, this approach did not lead to significant

improvements. As this (negative) result seems very counter-intuitive at first glance, we believe that

it deserves some discussion in the present paper.

The remainder of this paper is structured as follows. Section 2 describes the problems under study and

Section 3 reviews the main works related to RVRP and heterogeneous fleet variants. Section 4 describes the

proposed matheuristic as well as the combined neighborhoods with joint routing and assignment optimiza-

tion. Section 5 reports the computational results and establishes a comparison with the current literature.

Section 6 finally concludes.

2 Class of Problems Considered

In what follows, we provide a formal description of the classical HFVRPs as well as of the main attributes

considered in this work.

The HFVRP can be defined as follows: let G = (V,A) be a directed graph where V = {0, 1, . . . , n} is

a set composed of n + 1 vertices, and A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs. Vertex 0 denotes the

depot, where the vehicle fleet is located, while the set V ′ = V \ {0} includes the remaining vertices which

represent the n customers. Each customer i ∈ V ′ has a non-negative demand qi. The fleet is composed

by K different types of vehicles, with M = {1, . . . ,K}. For each k ∈ M , there are mk available vehicles,

each with a capacity Qk. Every vehicle type is also associated with a fixed cost denoted by fk. Finally,

each arc (i, j) ∈ A has a length dij and its traversal cost for vehicle type k is ckij = dij × rk, where rk is

a cost per distance unit, also called dependent cost or variable cost in the literature. The objective is to

determine a fleet composition as well as a set of routes, Rk = (i1, i2, . . . , i|R|), that minimize the sum of

fixed and travel costs in such a way that: (a) every route Rk starts and ends at the depot (i1 = i|R| = 0 and

{i2, . . . , i|R|−1 ⊆ V ′}) and is associated with a vehicle type k ∈ M ; (b) each customer belongs to exactly

one route; (c) vehicle capacity is not exceeded; (d) for each vehicle type k, the number of vehicles actually

used does not exceed mk.

The HFVRP is NP-hard since it includes the classical VRP as a special case when all vehicles are

identical. The problem was introduced by Golden et al (1984) under the name Fleet Size and Mix (FSM),

which is a variant that assumes an unlimited number of vehicles of each type, i.e., mk = +∞,∀k ∈ M .

Fifteen years later, Taillard (1999) proposed the Heterogeneous Fixed Fleet VRP (HFFVRP), a variant in

which the number of vehicles of each type is limited.

Since the seminal works of Golden et al (1984) and Taillard (1999), several HFVRP extensions consid-

ering well-known real-life VRP attributes were presented in the literature. We were able to deal with the
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following ones:

• Asymmetry (A): the costs of two opposite arcs may differ, i.e., cij is not necessarily equal to cji,

for i ∈ V and j ∈ V . Although this is the case in cities with one-way streets, a vast majority of VRP

articles consider undirected networks which lead to simpler local search procedures.

• Open (O) routes: in open VRPs, the vehicle does not need not return to the depot after visiting

the last customer, i.e., ci0 = 0 for all i ∈ V .

• Multiple depots (MD): more than one depot is available, but each vehicle must start and end at

the same depot in a route. The number of vehicles per depot is usually limited.

• Multiple trips (MT): each vehicle may perform a sequence of successive trips called multitrip,

often limited by a maximum length or duration.

• Backhauls (B): two different types of customers are considered, more precisely, linehaul and back-

haul. The first type includes the customers with delivery demands, while the second one includes

those with pickup demands. In this case, backhaul customers can only be visited after the last line-

haul customer, and a route cannot be only composed of backhaul customers. The vehicle leaves the

depot with a load that is equal to the sum of the delivery demands (lineheauls) in the route, and

returns to the depot with a load that is equal to the sum of the pickup demands (backhauls).

• Mixed Backhauls (MB): similar to the previous case, but there are no constraints on the order

in which linehaul and backhaul customers should be visited. The load of a vehicle may increase or

decrease along its route.

• Site dependency (SDep): some customers can only be visited by a subset of the existing vehi-

cles. This usually happens when a customer site limits its access to vehicles with some particular

characteristics.

• Split Deliveries (SD): customers can be visited more than once and their demands can be split

among different vehicles. In this case, it is necessary to decide on the amount of goods to be delivered

to each customer by each vehicle.

• Time Windows (TW): a time window [ai, bi] and a service time si are defined for each vertex

i ∈ V . The service of a customer should start within its time window and a vehicle is allowed to

arrive at customer i before ai, but not after bi. Note that waiting times are allowed.

• Route Duration (RD) constraints: there exists a limit D on the duration of a route in terms of

distance or time.

3 Related Works

The classical HFVRP has been widely studied in the literature, as can be observed in the surveys of

Baldacci et al (2008), Hoff et al (2010), Irnich et al (2014) and Koç et al (2016). RVRPs have also been an

object of active research interest. The reader is referred to Cáceres-Cruz et al (2014a), Derigs and Vogel

(2014) and Lahyani et al (2015) for a comprehensive literature review on this topic. In this section we

review some of the main works and milestones for the HFRVRPs.

As in most vehicle routing problems, the progress on solution methods went through several phases: from

early constructive methods, towards local search-based heuristics, metaheuristics, and hybrid methods.

First, Golden et al (1984) developed several heuristics for the FSMVRP, while Taillard (1999) presented

a column generation heuristic for the HFFVRP. In the following years, nearly all classical metaheuristic
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frameworks have been considered:

• Tabu Search (TS) in Gendreau et al (1999), Wassan and Osman (2002), Lee et al (2008), Brandão

(2009) and Brandão (2011);

• Variable Neighborhood Search (VNS) in Imran et al (2009);

• Iterated Local Search (ILS) in Penna et al (2013) and a hybrid ILS in Subramanian et al (2013);

• Threshold Accepting (TA) in Tarantilis et al (2003, 2004);

• Record-to-Record (RTR) in Li et al (2007);

• Adaptive Memory Programming (AMP) in Rochat and Taillard (1995), Li et al (2010);

• Multi-Start (MS) / Evolutionary Local Search (ELS) in Duhamel et al (2011, 2013);

• Hybrid Genetic Algorithms (HGA) in Ochi et al (1998a,b), Lima et al (2004), Prins (2009), Liu et al

(2009) and Vidal et al (2014b).

Not all these methods were equally successful, and their relative performance can even vary between

different benchmark sets. After years of research on metaheuristics for the HFVRP, it was impossible

to conclude on a more suitable metaheuristic framework. The common viewpoint remains that success

cannot be attributed to one method’s name, but rather to its specific components, efficient neighborhood

structures, a proper balance between intensification and diversification strategies (Blum and Roli, 2003,

Vidal et al, 2013a), as well as a good distributions of the search effort dedicated to the sequencing and

customer-to-vehicle assignment decision sets. Finally, the research on exact methods has also progressed

over the last few years. The current state-of-the-art approaches (Choi and Tcha, 2007, Pessoa et al, 2009,

Baldacci et al, 2009, 2010a,b) can consistently solve instances with 75 customers in a few minutes, as well

as some instances of a few 100 customers. However, this performance is still insufficient for many practical

applications.

Rich variants of the HFVRP can include a large variety of attributes. From early works on separate

problems, which tends to reduce our ability to compare method performances, the literature has evolved

towards unified solution frameworks with the potential to be applied and compared on a wide gamut of

problems. With this aim, some of the most successful algorithms include the Unified Tabu Search (UTS)

of Cordeau et al (2001), the Adaptive Large Neighborhood Search (ALNS) of Pisinger and Røpke (2007),

the Iterated Local Search (ILS) of Subramanian et al (2013) and the Unified Hybrid Genetic Algorithm

(UHGS) of Vidal et al (2014b). The success of UTS can be mainly explained by very simple neighborhoods

and diversity mechanisms. To achieve high quality solutions for a variety of problems, ALNS uses a family

or destruction and reconstruction procedures, along with an adaptive selection strategy. ILS exploits again

simple neighborhoods along with mathematical programming over a set partitioning formulation. Finally,

UHGS relies on generic route evaluation operators, a giant-tour solution representation (see Prins et al 2014

for a survey on VRP algorithms based on this representation), as well as advanced diversity management

mechanisms that promote different and good solutions for survival.

Table 1 summarizes a large variety of works related to rich HFVRPs. The table is organized by method

family (constructive heuristic or local search; neighborhood-centered; population-based; mathematical pro-

gramming). The first column, Authors, shows the authors names. The second, named Approach list

the method used by the authors to solve the problem. Next, columns Fleet and Costs present the main

attributes of HFVRP, the fleet size and the associated vehicles costs, respectively. Finally, the last set

of columns, Additional Attributes, shows the multi-attributes characteristic of variant studied by the
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authors, where MD, TW, RD, SDep, SD, MT, Op and Others are, respectively, Multi-Depot, Time

Windows, Route Duration, Site Dependency, Split Delivery Multi-Trip, Open and others attributes.

In general, most research emphasis has been focused, in recent years, on metaheuristic principles and

new problems rather than studies on neighborhoods and elementary building blocks of the methods. We

aim to contribute to this latter point, in order to progress towards unified methods and simple concepts

which can be efficiently applied to a good variety of HFRVRPs. Finally, even after nearly a hundred articles

dealing with HFVRPs, some important questions remain open:

• What is a good neighborhood for HFFVRP?

• Is it beneficial or not to revise frequently vehicle-to-route assignments during computations?

This is a second gap in the literature on which we aim to contribute.

4 HILS-RVRP Algorithm

The proposed unified hybrid heuristic, called HILS-RVRP, extends the algorithms of Penna et al (2013) and

Subramanian et al (2012, 2013). It combines a multi-start ILS (Lourenço et al, 2010) with mathematical

programming over a SP formulation.

Algorithm 1 presents the pseudocode of HILS-RVRP. This matheuristic performs IMS restarts

(Lines 6–12). At each restart, an ILS-RVND heuristic is responsible for improving an initial solution

(Lines 7–8), as well as populating a pool of routes (rpool) associated with locally optimal solutions. The

pool is then used to build a restricted SP model, which is solved by a MIP solver. Two strategies are

proposed to exploit the SP model. If the instance is considered to be of sufficient size (n ≥ nlarge), then

the algorithm calls the SP approach after each restart (Line 10). Otherwise, if the problem is of smaller

size, then the SP model is solved only once at the end of the last restart. As in Subramanian et al (2013),

we have assumed that nlarge = 150.

Algorithm 1: HILS-RVRP(IMS , IILS , Tmax, nlarge, RGapmax)

1 begin
2 Initialize fleet
3 v ← total number of vehicles
4 f(s∗)←∞
5 rpool ← ∅
6 for i← 1 to IMS do
7 s← GenerateInitialSolution(v)
8 [s∗′, rpool]← ILS-RVND(s, IILS , rpool)
9 if (n ≥ nlarge or i = IMS) then

10 [s∗′, rpool]← SolveSP(rpool, s
∗′, IILS , Tmax, RGapmax)

11 if (f(s∗′) < f(s∗)) then
12 s∗ ← s∗′

13 return s∗

14 end

The pseudocode of the ILS-RVND sub-procedure is depicted in Algorithm 2. This heuristic iteratively

performs local search and perturbation operations until a maximum number of consecutive iterations

without improvements of the best current solution (IILS) is achieved (lines 5–12). The pool of routes is
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Table 1: HFRVRP related works and attributes

Fleet Costs Additional Attributes

Authors Approach(es) U L F V FV MD RD TW SDep SD MT Op Others

Liu and Shen (1999) CH X X X

Dell’Amico et al (2007) CH+RR X X X

Dondo and Cerdá (2007) CH X X X X

Cáceres-Cruz et al (2013) CH X X X X X A

Cáceres-Cruz et al (2014b) CH X X X X

Prins (2002) CH+LS/TS X X X X

Salhi and Sari (1997) LS X X X

Cordeau and Laporte (2001) TS X X X

Cordeau et al (2004) TS X X X X

Paraskevopoulos et al (2008) TS X X X

Li et al (2012) TS+AMP X X X

Yousefikhoshbakht et al (2014) TS X X X

Cordeau and Maischberger (2012) ILS+TS X X X X

Tavakkoli-Moghaddam et al (2007) SA X X X

Bräysy et al (2008) SA X X X

Bräysy et al (2009) TA+GLS X X X

Pisinger and Røpke (2007) ALNS X X X

Amorim et al (2014) ALNS X X X X GI

Mancini (2016) ALNS X X X X X P,PI

Repoussis and Tarantilis (2010) AMP X X X

Tütüncü (2010) GRASP+AMP X X B

Duhamel et al (2011) GRASP+ELS X X

Duhamel et al (2013) GRASP+ ELS X X

Mar-Ortiz et al (2013) GRASP X X X X X X

Goel and Gruhn (2008) VNS/LNS X X X X PD,MC

Salhi et al (2014) VNS X X X

Armas et al (2015) VNS X X X X X CPr

Armas and Melián-Batista (2015) VNS X X X X X CPr,DR

Dominguez et al (2016) MS X X 2L

Cruz Reyes et al (2007) ACO X X X X X VS

Pellegrini et al (2007) ACO X X X X P

Belmecheri et al (2013) ACO/PSO X X X MB

Belfiore and Yoshizaki (2009) SS X X X X

Vidal et al (2014b) GA X X X X X X

Berghida and Boukra (2015) EA X X X MB

Koç et al (2015) EA X X X X

Yao et al (2016) PSO X X X CD

Ceselli et al (2009) CG X X X X X X X WT,EC,PI

Goel (2010) CG X X X X PD,MC

Bettinelli et al (2011) BCP/CG X X X X X

Ozfirat and Ozkarahan (2010) CP X X X X

Rieck and Zimmermann (2010) Math. Model X X X SPD,WT,D

Salhi et al (2013) Math. Model/LS X X B

HILS-RVRP (this work) ILS+SP X X X X X X X X X X X X B, MB

2L: Two-dimensional Loading; A: Asymmetric; B: Backhauls; CD: Collection Depot; Cpr: Customer Priority; D: Docking;

DR: Dynamic Request; EC: External Courier; MB: Mixed Backhauls; MC: Multi-Dimensional Capacity; P: Periodic; PD: Pickup and Delivery;

PI: Products Incompatibility; SPD: Simultaneous Pickup and Delivery; VS: Vehicle Scheduling; WT: Working Time Regulations.
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updated after each call to the local search procedure (Lines 3 and 8). In order to avoid rpool to grow

arbitrarily large, the algorithm only adds to the pool those routes associated with solutions whose gap

with respect to the best current solution is relatively small, as described in Subramanian et al (2013).

Algorithm 2: ILS-RVND(s, IILS , rpool)

1 begin
2 s∗′ ← LocalSearch(s)
3 AddTemporaryRoutes(rpool, s

∗′, f(s∗))
4 iterILS ← 0
5 while (iterILS ≤ IILS) do
6 s′ ← Perturbation(s∗′)
7 s′′ ← LocalSearch(s′)
8 AddTemporaryRoutes(rpool, s

′′, f(s∗))
9 if (f(s′′) < f(s∗′)) then

10 s∗′ ← s′′

11 iterILS ← 0

12 iterILS ← iterILS + 1

13 return [s∗′, rpool]

14 end

Algorithm 3 describes the SolveSP procedure. The routes associated with the local optima of each

iteration are permanently stored in the pool (Lines 2 and 9), while the remaining ones are treated as

temporary routes that are removed at each iteration (Line 12). A time limit Tmax is imposed to the solver

to avoid prohibitively large CPU time. During the resolution of the SP, the solver may find a new best

integer solution. In that case, it calls the ILS-RVND to improve it (Line 6). If this improvement leads to a

solution whose value is better than the current lower bound of the SP model, then the solver execution is

naturally interrupted, otherwise the value of the solution is used as a cut-off bound. Finally, when solving

FSM variants, this model can be further modified in case the gap between the linear relaxation of the the

root node and the incumbent solution exceeds a given input value (RGapmax). As thoroughly detailed

in Subramanian et al (2012), the modification consists of adding constraints to forbid the vehicle fleet

associated with the best current solution to be changed. This may remove potential improved solutions

from the integer linear program, but decreases the root gap and lets the model be more computationally

tractable.

Our HILS-RVND also significantly differs from the previously cited works, as it has been extended to a

much wider family of VRP variants with heterogeneous fleet and integrates several key improvements: (i)

the ability of handling infeasible solutions with respect to time constraints; (ii) the incorporation of new

neighborhoods and perturbations to manage multiple-depots, backhauls, split and time-windows attributes;

and (iii) the addition of pre-processing phases and auxiliary data structures for efficient move evaluations.

We finally investigate, within this method, a class of large neighborhoods which aim to jointly change the

sequence of visits and optimize the assignment of vehicles to routes. The next subsections now provide a

detailed description of each component of the method.
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Algorithm 3: SolveSP(rpool, s
∗, IILS , Tmax, RGapmax)

1 begin
2 AddPermanentRoutes(rpool, s

∗)
3 improvement← true
4 while (improvement) do
5 SPmodel ← CreateSPModel(rpool, v)
6 s′ ← MIPSolver(SPmodel, s

∗, Tmax, RGapmax, ILS-RVND(s∗, IILS , rpool))
7 if (f(s′) < f(s∗)) then
8 s∗ ← s′

9 AddPermanentRoutes(rpool, s
∗)

10 else
11 improvement← false

12 RemoveTemporaryRoutes(rpool)
13 return [s∗, rpool]

14 end

4.1 Constructive Procedure

Initial solutions are generated via a simple insertion heuristic. Firstly, each route is filled with a random

customer, and the remaining ones are inserted either according to (i) a nearest insertion criterion, or (ii)

a modified cheapest insertion criterion which promotes the insertion of customers located far from the

depot. At each restart, one of these criteria is randomly selected. Infeasible solutions are incorporated and

penalized in accordance with the characteristics of the problem as follows:

Fixed Fleet. When it is no longer possible to perform a feasible insertion of an unrouted customer due

to fleet capacity, an extra vehicle with large fixed/dependent costs and capacity is added to the partial

solution to accommodate the remaining customers. The routes associated with this extra vehicle tend to be

emptied during the local search, leading to a feasible solution. Once this happens, this additional vehicle

is eliminated from the solution.

Unlimited fleet. In this case, it is always possible to generate feasible solutions with respect to the

vehicle capacity because there is no limit on the number of vehicles of each type. Once a complete initial

solution is generated, a vehicle associated with each type is added to the solution so as to allow for a

possible fleet resizing during the local search.

Multiple Depots. The same rationale as in the previous cases is used when multiple-depots are consid-

ered, but an extra vehicle is added for each depot.

Backhauls. As specified by the problem, infeasible solutions are avoided by not allowing backhaul cus-

tomers to be inserted before linehaul customers in the route. The insertion of backhaul customers in empty

routes is also forbidden. This is done via a simple modification of the distance matrix, by setting a large

cost to those arcs which connect the depot to one backhaul customer, or a backhaul customer to a linehaul

customer.
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Site-Dependencies. Customers are only allowed to be inserted in compatible routes. The cheapest

insertion criterion also takes into account vehicle restrictions of the customers by including an insertion

incentive that is inversely proportional to the number of vehicle types that a customer can be visited by.

Moreover, a similar policy as the one used for the fixed fleet case is adopted when feasible insertions are

no longer possible. In this case, the extra vehicle does not consider site-dependency constraints.

Split Deliveries. Splits are not allowed during the construction phase.

Time Windows. Time-window constraints are ignored during the construction phase.

4.2 Local Search

The local search is performed by a procedure based on Randomized Variable Neighborhood Descent

(RVND). Inter-route neighborhood classes are explored in random order as in a VND (Hansen et al,

2010). Intra-route neighborhoods are further applied to those routes that have been modified by one of

the inter-route neighborhoods.

4.2.1 Inter-Route Neighborhood Structures

The method relies on several inter-route neighborhoods, described in the following. As indicated below, a

few neighborhood structures are only applied for some specific attributes.

General neighborhoods. A set of seven inter-route neighborhood structures were adopted for all vari-

ants, namely: (i) Shift(1,0); (ii) Shift(2,0); (iii) Swap(1,1); (iv) Swap(2,1); (v) Swap(2,2); (vi)

2-opt*; and (vii) k-Shift. The first two consists of transferring one and two customers, respectively, from

one route to another one. Neighborhoods (iii), (iv) and (v) consists of interchanging customers between two

routes. For example, Swap(2,1) interchanges two consecutive customers from one route with one customer

from another one. Neighborhood (vi) is an inter-route version of the classical 2-opt neighborhood. Finally,

neighborhood (vii) consists of moving k consecutive customers from one route to the end of another one.

Multi-depot neighborhoods. In the presence of multiple depots, two additional neighborhoods are

considered: ShiftDepot and SwapDepot. The first one transfers an entire route from one depot to

another one, whereas the second interchanges routes between two different depots.

Split-delivery neighborhoods. When customer demands are allowed to be split, four additional

neighborhoods are included in the RVND, namely: (i) Swap(1,1)*; (ii) Swap(2,1)*; (iii) RouteAd-

dition; and (iv) k-Split. The first two were proposed by Boudia et al (2007), and they generalize the

neighborhoods Swap(1,1) and Swap(2,1) by changing the quantities to be delivered to the customers

that are moved. The third one was proposed by Dror and Trudeau (1990). It consists in adding an extra

route by combining the segments of two routes that contain a customer that is visited more than once.

The last neighborhood removes a customer from the solution and inserts it back using a procedure called

SplitReinsertion (Boudia et al, 2007). A detailed description of these four neighborhoods can be found

in Silva et al (2015).
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All neighborhoods are examined in an exhaustive fashion, that is, all possible moves are evaluated and

the best improving move is applied.

4.2.2 Intra-Route Neighborhood Structures

Five well-known intra-route neighborhood structures were adopted, namely: Reinsertion, Or-opt (with

two and three adjacent customers), 2-opt and Exchange. Such neighborhoods were also implemented

using a RVND procedure, and they are called every time a solution is modified during the intra-route

search.

4.3 Perturbation Mechanisms

Five perturbation mechanisms were adopted. They may generate infeasible solutions, but only with re-

spect to time window constraints. Three of them are used in all variants, namely, Multiple-Swap(1,1),

Multiple-Shift(1,1) and Split. The first two consists of applying random Swap(1,1) and Shift(1,1)

moves consecutively, respectively. Note that the Shift(1,1) operator moves one customer from route R1

to route R2 and vice-versa, but not necessarily interchanging their positions as in Swap(1,1). The third

perturbation divides a route into smaller ones as described in Penna et al (2013).

The fourth mechanism is only applied when the deliveries are allowed to be split. Such mechanism,

called Multiple-k-Split, was proposed by Silva et al (2015) and consists in applying the k-Split operator

several times at random. The last Merge operator, introduced in this work, selects a route whose capacity

is smaller than the largest one and attempts to merge it with another route that is selected using a criterion

similar to classical savings heuristics of Clarke and Wright (1964).

4.4 Efficient Move Evaluations

One important component of any local search based heuristic is the ability to efficiently perform move

evaluations. This evaluation can be done in O(1) time for most VRPs, e.g., when the objective function is

to minimize the total distance (or travel time) and also when penalties due to constraint violations are not

incurred, that is, only feasible solutions are considered during the search. In our case, since we accept and

penalize infeasible solutions with respect to time windows (Vidal et al, 2013b, 2015), a more sophisticated

approach must be adopted to compute the cost of moves in constant time.

To evaluate moves in the presence of time-window infeasible solutions, we apply the methodology of

Vidal et al (2013b). This technique has been designed for a specific relaxation where one is penalized for

a return in time (time warp) rather than for a late arrival (Nagata et al, 2010). Any classical move (e.g.,

Swap or Shift) produces a pair of routes which result from the concatenation of a bounded number of se-

quences of consecutive visits from the incumbent solution. By preprocessing and updating some meaningful

information on sequences of the incumbent solution, it is possible to speed-up the subsequent evaluation

of the moves. In our context, any sequence σ will be characterized by six values: distance DIST (σ),

demand Q(σ), duration D(σ), earliest visit E(σ), latest visit L(σ), and return in time TW (σ). For a

sequence σ0 containing only one customer i, DIST (σ0) = Q(σ0) = TW (σ0) = 0, D(σ0) = si, E(σ0) = ai,

and L(σ0) = bi. Let σ1 = (σ1(i), . . . , σ1(j)) and σ2 = (σ2(i), . . . , σ2(j)) be two sequences, then the sequence

corresponding to the concatenation of σ1 ⊕ σ2 (where the first customer of σ2 is visited immediately after
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the last customer of σ1) can be evaluated as:

DIST (σ1 ⊕ σ2) = DIST (σ1) + dσ1(|σ1|)σ2(1) +DIST (σ2) (1)

Q(σ1 ⊕ σ2) = Q(σ1) +Q(σ2) (2)

D(σ1 ⊕ σ2) = D(σ1) + dσ1(|σ1|)σ2(1) +D(σ2) + ∆WT (3)

E(σ1 ⊕ σ2) = max{E(σ2)−∆, E(σ1)} −∆WT (4)

L(σ1 ⊕ σ2) = min{L(σ2)−∆, L(σ1))}+ ∆TW (5)

TW (σ1 ⊕ σ2) = TW (σ1) + TW (σ2) + ∆TW , (6)

with ∆ = D(σ1)− TW (σ1) + dσ1(|σ1|)σ2(1) (7)

∆WT = max{E(σ2)−∆− L(σ1), 0} (8)

∆TW = max{E(σ1) + ∆− L(σ2), 0}. (9)

By using Eqs. (3)–(9) one can obtain in O(1) time the penalized cost of a new route σ issued from a

move and assigned to a vehicle k, which is formally expressed in Eq. (10).

F (σ, k) = fk + rk ×DIST (σ) + ω × TW (σ) (10)

The term fk + rk × DIST (σ) corresponds to the total distance of the route σ when using the vehicle of

type k. The term ω × TW (σ) computes the penalty due to time windows violations existing in route σ,

where ω is parameter that controls the level of intensity of such penalty. Note that if all customers are

served within their time windows, then the total TW (σ) violation equals zero. It is finally worth mentioning

that the partial loads on sequences are used during the search, as in Penna et al (2013), to filter subsets of

moves that are known in advance to be infeasible with respect to the vehicle capacity.

4.5 Compound Neighborhood Structures

In most methods from the literature, the number of feasible moves is limited by the fleet composition,

i.e., the current vehicle type associated with each route. In an attempt to perform more systematic fleet

optimization along with route improvements, we designed a generalized version of our local search, that

we will reference as combined neighborhood search (CNS). In the proposed approach, the same inter-route

neighborhoods (Swap, Shift, 2-Opt* etc...) are generalized with a combined optimization of route-to-

vehicle assignments during the move evaluations. This means that a generalized Swap move, for example,

is evaluated by jointly swapping the visits and determining the best assignment of vehicle types to each

route in the newly created solution. Besides this change, the overall local search scheme and exploration

strategy remains the same as described in Section 4.2.

To optimize fleet-assignment decisions we tested two approaches. The first uses an exact method

based on the Primal-Dual Algorithm to solve the Assignment Problem (AP) and finds the optimal fleet

composition according to the neighborhood tested. Although very slow, this procedure should be viewed

as a benchmark, to evaluate what can be gained by means of optimal assignment decisions with each

move. The second approach uses a simple reassignment heuristic, considering only the vehicles that are

still unemployed.
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Primal-Dual Algorithm For a given solution, the optimal fleet composition and assignment to routes

can be found by solving an Assignment Problem (AP) expressed in Equations (11-14). Let R be the set

of routes and P be the set of available vehicles. The model relies on binary decision variables xij , which

take value 1 if and only if route i is associated to vehicle j. For each route i, let qi be the load and di the

distance associated to the route. For each vehicle k, let Qk be the capacity, Fk the fixed cost and Uk the

cost per distance unit. The cost of an assignment of a vehicle j ∈ P to a route i ∈ R is given by cij , where

cij = Fj + Uj × di if qi ≤ Qj , otherwise cij =∞.

Min
∑
i∈R

∑
j∈P

cijxij (11)

subject to ∑
j∈P

xij = 1 ∀i ∈ R (12)

∑
i∈R

xij = 1 ∀j ∈ P (13)

xij ∈ {0, 1} ∀i ∈ R,∀j ∈ P. (14)

The objective function (11) minimizes the sum of the costs by choosing the best assignment of routes

to vehicles. Constraints (12) state that a single route from the set R is associated to only one vehicle

j ∈ P. Constraints (13) requires that a single vehicle from the set P is assigned to only one route i ∈ R.

Constraints (14) define the domain of the decision variables. Note that AP requires |R| = |P|, if |R| < |P|
some dummy routes are created and assigned to vehicles with null costs. This AP is solved in O(|R|3)

operations using the primal-dual algorithm (PDA) of McGinnis (1983).

Simple Fleet Reassignment The previously-described PDA is exact but computationally expensive.

Thus, we developed an alternative heuristic, called Simple Fleet Reassignment (SFR), which takes into

account only the vehicles that are still available (i.e., not assigned to a route) and the routes involved in

the move. First, a list with all available vehicles LV is created. Next, for routes r1 and r2 associated with

the move, sequentially, the method finds in LV the vehicle type that best fits, i.e., the vehicle that meets

the demands of the customers of the route with the least associated cost. If a better vehicle is found for

these routes, the vehicle type assigned to routes r1 and r2 is updated and the solution cost is returned.

5 Computational Experiments

HILS-RVRP was coded in C++ (g++ 4.8.2) and executed in an Intel Core i7 Processor 2.93 GHz with

8 GB of RAM running Ubuntu Linux 14.04 (Kernel 3.10 – 64 bits). A single thread was used for all

tests. The SP models were solved using CPLEX 12.5.1. The proposed algorithm was tested on well-known

benchmark instances, available in the literature for each variant considered.

The values of most of the parameters are the same as in Subramanian et al (2012), that is, IMS = 30,

Tmax = 30 seconds and RGapmax = 0.02. The maximum number of iterations per ILS was set to IILS =

n + 5 × v (n and v being the number of customers and vehicles, respectively) as in Penna et al (2013).
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Infeasibility can occur when an extra vehicle is used while building an initial solution for the fixed fleet

variants. In this case, the extra vehicle has the following penalty values: f|M |+1 = 10 × f|M |, r|M |+1 =

100× r|M | and Q|M | =
∑n
i=1 qi (w.l.o.g., the set of vehicle types M is in increasing order of costs and the

vehicle type |M | is the one with the largest cost). When the fleet is non-correlated (see Subsection 5.2),

we assume that |M | is the vehicle type associated with the largest fixed cost (or with the largest variable

cost in case there are no fixed costs in the problem).

Since Subramanian et al (2012) and Penna et al (2013) did not consider HFVRPs with time windows

or infeasible solutions, the value of the time-window penalty ω, in Eq. (10), could not be inherited from

these works. Therefore, we conducted a series of experiments with different values of ω on 168 challenging

instances of the FSMTW (138), SDepVRPTW (10) and HFFVRPMBTW (20) to calibrate the value of

ω. We ran our algorithm ten times for each instance and for ω ∈ {1, 10, 100, 1000}. The idea behind this

experiment is to determine a value of ω for which all runs yield feasible solutions. Table 2 reports the

results of the experiments. The value ω is the only one to lead to feasible solutions on all test instances,

this value has thus been used in our computational experiments.

Table 2: Percentage of feasible runs for each value of ω on time windows variants

ω FSMTW (duration) FSMTW (distance) HFFVRPMBTW SDepVRPTW Average

1 21.30 17.97 66.50 40.00 36.44

10 59.86 39.28 91.00 74.00 66.04

100 77.25 61.30 97.50 93.00 82.26

1000 100.00 100.00 100.00 100.00 100.00

The next set of computational experiments aims to compare the proposed algorithm with the current

state-of-the-art methods on a wide range of VRP variants with heterogeneous fleet. The benchmark

instances used in those tests are described in Table 3. In this table, Authors and Acr. indicate the name

and the acronym of the authors who proposed the instances, respectively. #Inst. represents the number

of instances of the dataset. Variant denotes the name of the VRP variant, while n is the number of

customers and m the number of vehicles types. Costs corresponds to the types of costs considered, that

is, fixed, variable, or both fixed and variable. Fleet represents the fleet size, i.e., limited (L) or unlimited

(U), while Depots is the number of depots and RD indicates if the instances of the referred benchmark

impose route duration constraints (Y=yes and N=no). Letters F, V and FV in problem names indicate

whether fixed costs, variable costs or both are tackled.

The algorithm was executed 10 times on each instance with different random seeds, and a summary

of the results is presented in Table 4. Detailed results, for each instance, are provided in Appendix. A

comparison was performed with the best known algorithms reported in the literature.

5.1 Comparison with state-of-the-art methods for HFRVRPs

Table 4 describes the results obtained by HILS-RVRP. In this table, Variant denotes the HFVRP variant

name, Bench. denotes the benchmark set name, n is the number of customers, Authors represents the

authors of state-of-the-art methods reported in the literature, Best Gap indicates the average gap between

the best solution found by HILS-RVRP and the best known solution, Avg. Gap corresponds to the gap
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Table 3: List of benchmark instances

Authors Acr. #Inst. Variant n m Costs Fleet Depots RD

Golden et al (1984) G84 12 FSMVRP-F [20-100] [3-6] F U 1 N

HFFVRPSD

Taillard (1999) T99 12 FSMVRP-V [20-100] [3-6] V/FV L/U 1 N

FSMVRP-FV

HFFVRP-V

HFFVRP-FV

HFFOVRP

Brandão (2011) B11 5 FSMVRP-V [100-199] [4-6] V L/U 1 N

HFFVRP-V

Li et al (2007) LGW07 5 HFFVRP-V [200-360] [5-6] V L 1 N

Duhamel et al (2011) DLP11 96 HFFVRP-FV [20-256] [2-8] FV L 1 N

Salhi and Sari (1997) SS97 23 MDFSMVRP [50-360] 5 FV U [2-9] N/Y

Tütüncü (2010) T10 18 HFFVRPB [50-100] [3-5] V L 1 N

Salhi et al (2013) SNM13 36 FSMVRPB [20-100] [3-6] F U 1 N

Cordeau and Laporte (2001) CL01 35 SDepVRP [27-1008] [2-6] - L 1 N/Y

20 SDepVRPTW [48-1008]

Liu and Shen (1999) LS99a 168 FSMVRPTW 100 [3-6] F U 1 N

Min. duration

Liu and Shen (1999) LS99b 168 FSMVRPTW 100 [3-6] F U 1 N

Min. distance

Belmecheri et al (2013) BPYA13 56 HFFVRPMBTW 100 5 V L 1 N
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between the average solution found by HILS-RVRP and the best known solution, #Sol. found represents

the number of best known solutions found, Avg. T indicates the average CPU time in seconds for each

CPU model, scaled for our 2.93 GHz PC using the performance factors listed in Dongarra (2010). The

best algorithms, according to the Best Gap, are highlighted in boldface.

The algorithm was tested on 13 HFRVRP variants using 12 well-known benchmark datasets with up

to 1008 customers. The table is divided into 3 groups of results. The first group describes the results on a

classical version of the HFFVRP. The second group presents the results for HFRVRP variants that involves

heterogeneous vehicles and another attribute, while the third group displays the results for more complex

HFRVRP variants, adding time windows attributes to previously described HFRVRP versions.

For classical HFVRP variants (group 1), a total of 106 benchmark instances were considered, and

they were divided into three different datasets (LGW07, B11, DLP11) containing 5, 5 and 96 instances

respectively. HILS-RVRP was capable of obtaining 68 new solutions and equaling 26 of them, meaning that

the proposed algorithm found or improved the BKS in 88.7% of the instances. The gap between the best

solution found by HILS-RVRP and the BKS varied from -0.14% to -0.02%. Note that LGW07 contains

larger instances than B11, involving up to 360 customers, and HILS-RVRP was capable of obtaining three

new best solutions for this dataset. The DLP11 instances, that are based on real distances from French

cities, the HILS-RVND found 61 new solutions.

The second group includes six variants, each with a different set of instances, leading to a total 125

test-problems involving up to 1008 customers. From Table 4, we observe that the proposed algorithm

always found an average gap lower or equal than 0.76%, except for the SDepVRP variant, for which HILS-

RVRP obtained a value of 1.44%. One possible reason for not achieving improved solutions for this latter

problem is that we did not implement any particular neighborhood structure or perturbation mechanism

for this case. Furthermore, several improved solutions were found for problems HHFFOVRP, HFFVRPB

and FSMVRPB. Regarding the CPU times, HILS-RVRP appears to be in many cases faster than other

algorithms from the literature, such as those of Salhi et al (2013) and Yousefikhoshbakht et al (2014).

Finally, the third group considers four variants with time-window constraints. HILS-RVRP has been

tested on three benchmark datasets, also considering two cases for the FSMVRPTW: either minimizing

the sum of the durations, or the total travel distance. Overall, we considered a total of 392 instances

involving up to 288 customers. The proposed heuristic found average gaps always smaller than 1% and

many improved solutions were obtained, even for problem FSMVRPTW, which is the most well-studied

variant after the classical ones. Variant HFFVRPMBTW is the one that combines the most attributes,

and an average improvement of 20% was achieved, thus suggesting that HILS-RVRP is robust enough to

cope with problems that consider several attributes at once. Moreover, the proposed algorithm appears to

be competitive in terms of CPU time, except for problem SDepVRPTW, where HILS-RVRP was slower

than the state-of-the-art method of Vidal et al (2014b).

5.2 Sensitivity Analysis – Combined Neighborhoods

The impact of the CNS was investigated on two instance sets of the classical HFVRP. The first set, including

T99 and B11 benchmark problems, involves correlated vehicle costs and capacities, i.e., if vehicle types

are considered in ascending order of capacities, the fixed costs and variable costs also increase (Fig. 1(a)).

This situation is the rule when one considers vehicle with the same age and technology. The second set,

named DLP11, is based on road distances between major cities in different districts of France. The fleet
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Table 4: Summary of the results

State-of-the-art methods

Best Avg. Avg. T #Sol. CPU

Variant Bench. n Authors Gap Gap (s) found (GHz)

Brandão (2011) 0.35 – – 5/5 P4 2.6

HFFVRP-V B11 [100 - 199] Subramanian et al (2012) 0.00 0.39 53.59 5/5 I7 2.93

HILS-RVRP -0.05 0.20 42.25 5/5 I7 2.93

Brandão (2011) 0.09 – 1246.28 2/5 P4 2.6

HFFVRP-V LGW07 [200 - 360] Subramanian et al (2012) 0.92 2.15 302.77 1/5 I7 2.93

HILS-RVRP -0.02 1.42 549.41 4/5 I7 2.93

Duhamel et al (2011) 0.86 – 468.57 7/96 P 2.2

HFFVRP-FV DLP11 [20 - 256] HILS-RVRP -0.14 0.26 203.84 85/96 I7 2.93

Yousefikhoshbakht et al (2014) 0.00 – 116.72 1/8 P4 3.0

HFFOVRP T99 [50 - 100] HILS-RVRP -6.24 -6.15 6.31 7/8 I7 2.93

Salhi et al (2014) 1.52 – 247.30 12/23 P4-M

MDFSMVRP SS97 [50 - 360] Vidal et al (2014a) 0.05 0.07 715.07 21/23 Xe 2.93

HILS-RVRP 0.06 0.76 91.43 17/23 I7 2.93

Tütüncü (2010) 0.00 – – 16/16 P4 2.66

HFFVRPB T10 [50 - 100] HILS-RVRP -10.41 -9.76 3.26 11/11 I7 2.93

Salhi et al (2013) 1.24 – 668.66 21/36 P4 3.0

FSMVRPB SNM13 [50 - 100] HILS-RVRP -1.42 -0.77 5.06 33/36 I7 2.93

Pisinger and Røpke (2007) 0.24 0.84 186.82 19/35 P4 3

SDepVRP CL01 [27 - 1008] Cordeau and Maischberger (2012) 0.04 – – 33/35 X7 2.93

HILS-RVRP 0.31 1.44 451.51 22/35 I7 2.93

Ozfirat and Ozkarahan (2010) 0.00 – 259.42 12/12 P4 3

HFFVRPSD G84 [20 - 100] HILS-RVRP∗ -1.80 -1.53 278.44 12/12 I7 2.93

FSMVRPTW LS99a [100] Vidal et al (2014b) 0.24 0.32 304.90 120/168 Opt 2.2

Min. duration Koç et al (2015) 0.36 – 326.51 29/168 Xe 2.6

HILS-RVRP 0.26 0.70 122.02 91/168 I7 2.93

FSMVRPTW LS99b [100] Vidal et al (2014b) 0.10 0.22 282.88 124/168 Opt 2.2

Min. distance Koç et al (2015) 0.07 – 266.42 118/168 Xe 2.6

HILS-RVRP 0.10 0.39 142.19 110/168 I7 2.93

Belmecheri et al (2013) 6.96 – – 15/56 –

HFFVRPMBTW BPYA13 [100] Berghida and Boukra (2015) 2.86 – – 23/56 i7 2.20

HILS-RVRP -20.02 -19.37 103.46 55/56 I7 2.93

Cordeau and Maischberger (2012) 0.56 – – 6/20 X7 2.93

SDepVRPTW CL01 [48 - 288] Vidal et al (2013b) 0.10 0.36 328.95 11/20 Xe 2.93

HILS-RVRP 0.34 0.97 1424.57 8/20 I7 2.93

∗: HILS-RVRP without the SP module.
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composition is uncorrelated in most problems, see Fig. 1(b), for instance the larger fixed cost of a hybrid

vehicle is compensated by a smaller operating cost. Figure 1 shows the route cost per distance for each

vehicle type for one instance of each set. In Figure 1(b), a route with a customer demand of 100 can be

associated to vehicle type B, C or D. If the distance is smaller than 20 it is better use vehicle C. Otherwise,

if the route distance is greater than 50, then vehicle D leads to smaller costs. This threshold effect does

not happen when fleet capacity and costs are correlated.

(a) Instance #17 (T99) (b) Instance #06 (DLP11)

Figure 1: Correlated and uncorrelated Instances

We implemented three versions of the algorithm to study the impact of the CNS:

• HILS-RVRP: The HILS-RVRP without the CNS;

• HILS-RVRP-SFR: The HILS-RVRP with CNS based on the Simple Fleet Reassignment procedure;

• HILS-RVRP-PDA: The HILS-RVRP with CNS based on the Primal-Dual procedure.

These three method variants have been tested with and without the Merge (P (4)) neighborhood, leading

to overall six versions of the proposed algorithm. Each version was executed 10 times for each instance and

the number of multi-start iterations of the HILS-RVRP parameter was set to 100. The results are presented

in Tables 5 and 6. In these two tables, Gap denotes the gap between the average solution, on 10 runs,

found by each version of the algorithm and the best known solution of the literature. Time corresponds

to the average time, in seconds, of these runs. The best average gap for each version is highlighted in

boldface.

Table 5 displays the results on the 8 HFFVRP-D and HFFVRP-FD benchmark instances T99, and

the HFFVRP-D instances B11. All versions achieved a very similar performance in terms of average gap,

but the version HILS-RVRP-PDA without the Merge perturbation slightly outperformed the others. In

this set of instances, the use of the Merge procedure also generated slightly worse solutions. This can be

related to the structure of the instances, since this perturbation drives the search towards fewer routes,

associated to vehicles with larger capacities, and consequently higher costs. Still, these differences of

performance remain very limited. In terms of the average CPU time, using the Merge leads to a time

reduction of 3.42%, while the CNS displays larger CPU times due to the resolution of vehicle-to-route

assignment problems.

Table 6 describes the results on the more realistic HFFVRP-FD benchmark instances of Duhamel et al
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Table 5: Comparative results for all versions of the algorithm on correlated instances

P (1) + P (2) + P (3) P (1) + P (2) + P (3) + P (4)

Problem type n MS-ILS MS-ILS+SFR MS-ILS+PDA MS-ILS MS-ILS+SFR MS-ILS+PDA

Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

HFFVRP-FD1 50 – 100 0.37 30.54 0.35 32.02 0.34 1639.91 0.34 27.36 0.36 39.51 0.39 1448.92

HFFVRP-D1 50 – 100 0.30 30.19 0.29 30.96 0.28 1900.57 0.30 26.37 0.29 38.06 0.31 1621.06

HFFVRP-D2 100 – 199 0.21 271.40 0.21 384.50 0.21 50779.58 0.21 267.04 0.21 389.86 0.32 51331.29

Average 0.29 110.71 0.28 149.16 0.27 18106.69 0.28 106.92 0.29 155.81 0.34 18133.76

1: T99; 2: B11.

Table 6: Comparative results for all versions of the algorithm on uncorrelated Instances (Duhamel et al,
2011)

P (1) + P (2) + P (3) P (1) + P (2) + P (3) + P (4)

Problem type n MS-ILS MS-ILS+SFR MS-ILS+PDA MS-ILS MS-ILS+SFR MS-ILS+PDA

Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

HFFVRP-FD 20 – 95 0.18 30.52 0.58 40.95 0.57 23579.44 0.19 29.22 0.17 42.37 0.18 23064.81

HFFVRP-FD 102 – 147 0.58 164.04 0.98 255.80 – – 0.55 169.19 0.53 252.49 – –

HFFVRP-FD 152 – 196 0.65 542.13 0.84 820.84 – – 0.67 538.01 0.64 772.70 – –

HFFVRP-FD 203 – 256 0.25 1352.96 0.95 2197.56 – – 0.21 1244.18 0.19 1935.74 – –

Average 0.42 522.41 0.84 828.79 – – 0.41 495.15 0.38 750.83 – –

(2011). This set contains 96 instances, ranging from 20 to 256 customers, and with 3 to 8 types of vehicles.

This set of instances is divided into four subsets, a “small” subset containing 15 instances with less than

100 customers, 38 instances with 100 to 150 customers, 31 instances with 150 to 200 customers, and finally

12 instances and with more than 200 customers. Due the CPU time requirements of the CNS with PDA, it

was only possible to test it on the “small” instance subset. On this benchmark, HILS-RVRP-SFR with the

Merge perturbation slightly outperforms the other versions in terms of average solution gap, but at the

expense of a higher CPU time. Several new best known solutions have also been generated during these

tests for DLP11 benchmark instances. These solutions are presented in the Appendix, and a comparison is

established with the best-known solutions obtained by different versions of the GRASPxELS of Duhamel

et al (2011, 2013).

The conclusion of this experiment is quite counterintuitive. In many previous works on the HFVRP, we

commonly assumed that the inherent difficulty of HFVRPs comes from more complex vehicle assignment

decisions. However, our attempts to optimize more systematically this decision set, in combination with

changes of sequences, did not lead to large solution improvements as they drove the search towards shorter

routes. In this context, the CPU effort may be better distributed on a more intensive search on classical

neighborhoods, rather than on an extensive search for alternative fleet assignment choices. For this reason,

we kept the simpler version of the algorithm, without combined neighborhoods, for the complete tests on

all HFVRP variants, and we hope that future research can help to point out efficient strategies for joint

assignment and sequencing optimization.
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6 Conclusions and Perspectives

In this work we proposed an ILS+SP based heuristic algorithm capable of addressing a broad class of VRPs

with heterogeneous fleet. We considered variants with asymmetric costs, simultaneous pickup and delivery

operations, backhauls, multiple depots, site dependency, split deliveries, and time windows. Computational

experiments were carried out in hundreds of instances involving up to 1008 customers from more than 10

benchmark datasets. We compared the results found by HILS-RVRP with those obtained by state-of-

the-art heuristics in 12 different variants that include at least one of the aforementioned attributes. The

proposed heuristic was capable of equaling or improving 71.70% of the best known solutions and to achieve,

in almost all cases, an average gap between the average solutions and the best known solutions below 1%.

The results suggest that HILS-RVRP is a robust and flexible heuristic algorithm that, despite its generality,

is still quite competitive with problem-specific algorithm both in terms of solution quality and CPU time.

We finally investigated a larger neighborhood which considers joint changes in the sequences and a

systematic optimization of route-to-vehicle assignment decisions. Even if this neighborhood opened the

way to a larger class of possible solution refinements, we also observed that it tended to drive the search

towards shorter routes and missed high-quality solutions built with longer routes. For future works, the

interaction between assignment and sequencing decisions still deserve attention, and other neighborhood

and guidance techniques, which aim to better integrate the two decision classes while circumventing the

previously-mentioned issues, should be more thoroughly investigated.
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A Appendix – Detailed Results

In Tables 7–30, Inst. denotes the instance identifier, n is the number of customers, BKS represents the

value of the best-known solution reported in the literature, Sol. indicates the value of the solution reported

for a single run, Best Sol. and Avg. Sol. correspond to the value of the best and average solution,

respectively, T denotes the CPU time in seconds for a single run, Avg. T represents the average CPU

time in seconds, Gap denotes either the gap between the values of the best solution found by a given

algorithm and the BKS, or the mean of the gaps between the values of the best solutions and the BKS.

The last line (Average) presents the average gap between the values of the solutions and the BKS values

and the average CPU time in seconds (a dash “–”, indicates that the time is not available). Finally, the

best results are highlighted in boldface and new improved solutions found by HILS-RVRP are italicized.

A.1 HFFVRP-V

Detailed results obtained for the HFFVRP-V instances of: (i) (Brandão, 2011, B11), compared with the

TSA of (Brandão, 2011, B11) and the ILS-RVND-SP of (Subramanian et al, 2012, SPUO12) (Table 7);

and (ii) (Li et al, 2007, LGW07), compared with (Brandão, 2011, B11) and (Subramanian et al, 2012,

SPUO12) (Table 8).

Table 7: Results for the HFFVRP-V (Brandão, 2011, B11).

TSA ILS-RVND-SP HILS-RVRP
B11 SPUO12

Inst. n BKS Sol. T (s) Best Sol. Avg. Ta (s) Best Sol. Gap (%) Avg. Sol. Avg. Ta (s) Avg. Gap (%)

N1 150 2235.87 2243.76 – 2235.87 51.50 2234.13 -0.43 2241.91 39.10 -0.08
N2 199 2864.83 2874.13 – 2864.83 102.77 2859.82 -0.50 2881.54 102.25 0.26
N3 120 2378.99 2386.90 – 2378.99 51.71 2378.99 -0.33 2381.97 21.89 -0.21
N4 100 1839.22 1839.22 – 1839.22 9.64 1839.22 0.00 1839.22 10.24 0.00
N5 134 2047.81 2062.48 – 2047.81 52.33 2047.81 -0.71 2047.81 37.78 -0.71

Average 0.35 – 0.00 53.59 -0.05 42.25 0.20

Table 8: Results for the HFFVRP-V (Li et al, 2007, LGW07).

TSA ILS-RVND-SP HILS-RVRP
B11 SPUO12

Inst. n BKS Sol. T (s) Best Sol. Avg. Tb (s) Best Sol. Gap (%) Avg. Sol.b Avg. Tb (s) Avg. Gapb (%)

H1 200 12050.08 12050.08 1395 12050.08 72.10 12050.08 0.00 12061.45 91.38 0.09
H2 240 10208.321 10226.17 3650 10329.15 176.43 10207.48 -0.01 10349.17 282.37 1.38
H3 280 16223.391 16230.21 2822 16282.41 259.61 16193.48 -0.18 16317.62 364.01 0.58
H4 320 17458.65 17458.65 8734 17743.68 384.52 17490.00 0.18 17842.46 741.72 2.20
H5 360 23166.561 23220.72 13321 23493.87 621.17 23151.55 -0.06 23822.40 1267.57 2.83

Average 0.09 1246.28 0.92 302.77 -0.02 549.41 1.42

1: Obtained by TSA with a different parameter tuning.
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A.2 HFFVRP-FV

Detailed results obtained for the HFFVRP instances of (Duhamel et al, 2011, DLP11), compared with

the sequential version of the GRASPxELS of (Duhamel et al, 2013, DLP13). Column BKS in Tables

9-12 indicates the best results considering all versions of the GRASPxELS (sequential or parallel). The

instances were divided into four sets:

• DLP11–set 1: [20 – 95] customers (Table 9);

• DLP11–set 2: [102 – 147] customers (Table 10);

• DLP11–set 3: [152 – 196] customers (Table 11);

• DLP11–set 4: [203 – 256] customers (Table 12).

Table 9: Results for HFFVRP-FV (Duhamel et al, 2011, DLP11–set 1)

GRASPxELS HILS-RVRP
DLP13

Inst. n BKS Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

HVRP 01 DLP 92 9210.14 9210.14 52.29 9210.14 0.00 9213.71 44.49 0.04
HVRP 08 DLP 84 4591.75 4598.49 304.85 4591.75 0.00 4595.65 12.00 0.08
HVRP 10 DLP 69 2107.55 2107.55 24.83 2107.55 0.00 2107.83 12.06 0.01
HVRP 11 DLP 95 3367.41 3370.47 264.61 3367.41 0.00 3373.77 22.10 0.19
HVRP 36 DLP 85 5684.61 5759.34 104.39 5684.61 0.00 5700.14 29.75 0.27
HVRP 39 DLP 77 2923.72 2934.55 182.11 2921.40 -0.08 2932.75 19.51 0.31
HVRP 43 DLP 86 8737.02 8764.75 219.91 8737.02 0.00 8746.38 75.33 0.11
HVRP 52 DLP 59 4027.27 4029.42 39.97 4027.27 0.00 4030.44 16.08 0.08
HVRP 55 DLP 56 10244.34 10247.86 190.76 10244.34 0.00 10250.98 13.23 0.06
HVRP 70 DLP 78 6685.24 6689.61 120.60 6684.56 -0.01 6694.43 15.67 0.14
HVRP 75 DLP 20 452.85 452.85 0.02 452.85 0.00 452.85 1.15 0.00
HVRP 82 DLP 79 4766.74 4774.26 144.51 4766.74 0.00 4771.33 36.22 0.10
HVRP 92 DLP 35 564.39 564.39 20.63 564.39 0.00 564.65 4.52 0.05
HVRP 93 DLP 39 1036.99 1036.99 27.39 1036.99 0.00 1038.34 6.98 0.13
HVRP 94 DLP 46 1378.25 1378.66 15.68 1378.25 0.00 1378.25 31.37 0.00

Average 0.17 114.17 -0.01 19.17 0.10
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Table 10: Results for HFFVRP-FV (Duhamel et al, 2011, DLP11–set 2)

GRASPxELS HILS-RVRP
DLP13

Inst. n BKS Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

HVRP 03 DLP 124 10738.28 11320.58 512.1 10709.66 -0.27 10727.52 91.32 -0.10
HVRP 05 DLP 116 10903.63 10963.62 488.63 10876.48 -0.25 10897.93 26.59 -0.05
HVRP 06 DLP 121 11692.85 11792.94 367.91 11688.64 -0.04 11734.52 43.64 0.36
HVRP 07 DLP 108 8095.88 8130.50 306.09 8089.46 -0.08 8144.80 27.47 0.60
HVRP 12 DLP 112 3543.99 3543.99 71.46 3543.99 0.00 3547.92 57.60 0.11
HVRP 13 DLP 119 6696.43 6713.14 303.37 6696.43 0.00 6703.23 50.97 0.10
HVRP 16 DLP 129 4156.97 4161.61 180.91 4156.97 0.00 4164.03 68.70 0.17
HVRP 17 DLP 105 5362.83 5370.05 172.82 5362.83 0.00 5367.76 42.09 0.09
HVRP 2A DLP 113 7793.16 7885.93 298.92 7793.16 0.00 7796.54 43.38 0.04
HVRP 2B DLP 107 8464.69 8537.31 303.14 8462.56 -0.03 8499.95 54.40 0.42
HVRP 21 DLP 126 5141.49 5154.38 330.23 5139.84 -0.03 5166.11 47.20 0.48
HVRP 25 DLP 143 7206.64 7228.54 518.28 7209.29 0.04 7230.50 123.79 0.33
HVRP 26 DLP 126 6446.31 6481.93 350.71 6433.21 -0.20 6461.05 149.06 0.23
HVRP 28 DLP 141 5531.06 5542.76 343.06 5530.55 -0.01 5542.80 101.82 0.21
HVRP 30 DLP 112 6313.39 6321.69 201.39 6315.70 0.04 6342.42 82.91 0.46
HVRP 31 DLP 131 4091.52 4103.88 308.39 4091.52 0.00 4112.64 102.25 0.52
HVRP 34 DLP 136 5758.09 5800.12 405.62 5747.25 -0.19 5785.59 65.57 0.48
HVRP 40 DLP 132 11123.56 11172.98 614.92 11118.57 -0.04 11171.17 90.62 0.43
HVRP 41 DLP 135 7616.17 7679.32 325.80 7597.27 -0.25 7672.27 68.18 0.74
HVRP 47 DLP 111 16206.14 16222.94 333.85 16156.12 -0.31 16247.77 41.18 0.26
HVRP 48 DLP 111 21318.04 21413.92 371.30 21309.94 -0.04 21391.58 45.75 0.34
HVRP 51 DLP 129 7721.47 7780.88 315.60 7721.47 0.00 7787.85 58.47 0.86
HVRP 53 DLP 115 6434.83 6470.49 418.17 6434.83 0.00 6454.77 36.09 0.31
HVRP 60 DLP 137 17037.39 17067.85 444.32 17036.59 0.00 17055.35 73.38 0.11
HVRP 61 DLP 111 7295.67 7300.10 108.21 7292.03 -0.05 7302.40 37.38 0.09
HVRP 66 DLP 150 12830.82 13319.73 442.89 12783.94 -0.37 12922.52 113.74 0.71
HVRP 68 DLP 125 8976.53 9135.23 269.63 8970.63 -0.07 9123.03 67.86 1.63
HVRP 73 DLP 137 10195.33 10243.66 598.34 10195.33 0.00 10195.36 73.57 0.00
HVRP 74 DLP 125 11586.87 11732.54 246.66 11586.58 0.00 11591.23 82.46 0.04
HVRP 79 DLP 147 7259.54 7314.89 473.69 7259.54 0.00 7289.26 122.29 0.41
HVRP 81 DLP 106 10700.47 10715.28 83.71 10686.31 -0.13 10700.27 58.03 0.00
HVRP 83 DLP 124 10019.15 10019.83 332.47 10020.07 0.01 10048.17 72.48 0.29
HVRP 84 DLP 105 7227.88 7269.55 206.41 7227.88 0.00 7237.93 54.37 0.14
HVRP 85 DLP 146 8779.76 8874.31 382.98 8773.08 -0.08 8818.55 91.21 0.44
HVRP 87 DLP 108 3753.87 3753.87 104.11 3753.87 0.00 3756.97 31.41 0.08
HVRP 88 DLP 127 12402.85 12443.41 632.22 12388.23 -0.12 12405.80 46.52 0.02
HVRP 89 DLP 134 7106.84 7135.36 245.63 7086.36 -0.29 7102.98 76.51 -0.05
HVRP 90 DLP 102 2346.13 2360.83 15.36 2346.43 0.01 2356.31 47.78 0.43

Average 0.71 327.09 -0.07 67.59 0.31
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Table 11: Results for HFFVRP-FV (Duhamel et al, 2011, DLP11–set 3)

GRASPxELS HILS-RVRP
DLP13

Inst. n BKS Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

HVRP 02 DLP 181 11678.44 11678.44 689.81 11675.26 -0.03 11695.78 187.92 0.15
HVRP 04 DLP 183 10808.31 11030.42 667.11 10748.17 -0.56 10775.93 171.66 -0.30
HVRP 09 DLP 167 7619.19 7654.45 319.39 7603.38 -0.21 7630.55 232.55 0.15
HVRP 14 DLP 176 5644.92 5676.98 361.72 5657.62 0.22 5697.17 357.30 0.93
HVRP 15 DLP 188 8236.40 8367.71 905.21 8220.64 -0.19 8285.79 158.34 0.60
HVRP 24 DLP 163 9101.47 9186.30 443.10 9119.92 0.20 9189.22 163.77 0.96
HVRP 29 DLP 164 9143.69 9176.51 122.02 9142.86 -0.01 9149.12 232.18 0.06
HVRP 33 DLP 189 9421.01 9563.18 606.39 9410.99 -0.11 9471.26 344.96 0.53
HVRP 35 DLP 168 9574.71 9817.94 811.07 9555.92 -0.20 9585.91 144.06 0.12
HVRP 37 DLP 161 6858.23 6963.61 571.37 6850.77 -0.11 6875.28 245.33 0.25
HVRP 42 DLP 178 10902.84 11118.66 966.84 10817.90 -0.78 10995.75 246.34 0.85
HVRP 44 DLP 172 12197.46 12351.49 744.39 12191.48 -0.05 12314.24 159.25 0.96
HVRP 45 DLP 170 10484.23 10546.69 415.02 10476.25 -0.08 10614.48 147.07 1.24
HVRP 50 DLP 187 12374.04 12538.63 365.46 12370.94 -0.03 12430.18 374.43 0.45
HVRP 54 DLP 172 10393.23 10426.98 565.12 10351.97 -0.40 10435.58 203.19 0.41
HVRP 56 DLP 153 31090.71 31292.64 339.08 31030.19 -0.19 31144.98 260.09 0.17
HVRP 57 DLP 163 44818.18 45112.39 471.94 44781.64 -0.08 44899.36 250.64 0.18
HVRP 59 DLP 193 14282.59 14367.47 476.61 14304.46 0.15 14357.81 312.23 0.53
HVRP 63 DLP 174 19951.76 20513.10 253.10 20022.94 0.36 20281.49 213.10 1.89
HVRP 64 DLP 161 17157.37 17157.37 70.38 17135.16 -0.13 17157.79 106.02 0.00
HVRP 67 DLP 172 10937.67 11090.66 506.65 10884.91 -0.48 10945.00 275.36 0.07
HVRP 69 DLP 152 9162.78 9241.75 205.32 9147.54 -0.17 9190.46 117.84 0.30
HVRP 71 DLP 186 9870.22 9936.35 389.13 9834.40 -0.36 9915.73 108.20 0.46
HVRP 72 DLP 186 5905.58 5948.99 458.28 5903.81 -0.03 5949.29 225.19 0.74
HVRP 76 DLP 152 12018.26 12086.57 426.51 11994.40 -0.20 12040.78 138.37 0.19
HVRP 77 DLP 190 6930.44 7004.97 278.69 6916.01 -0.21 6974.86 271.78 0.64
HVRP 78 DLP 190 7035.01 7066.17 439.70 7053.62 0.26 7122.27 524.00 1.24
HVRP 80 DLP 171 6816.89 6864.75 410.38 6819.71 0.04 6843.88 211.74 0.40
HVRP 86 DLP 153 9030.68 9085.66 440.02 9027.84 -0.03 9048.94 252.05 0.20
HVRP 91 DLP 196 6377.48 6419.23 672.65 6374.27 -0.05 6403.29 423.12 0.40
HVRP 95 DLP 183 6181.60 6237.61 206.09 6175.62 -0.10 6232.75 554.50 0.83

Average 0.98 470.92 -0.11 245.57 0.50
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Table 12: Results for HFFVRP-FV (Duhamel et al, 2011, DLP11–set 4)

GRASPxELS HILS-RVRP
DLP13

Inst. n BKS Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

HVRP 18 DLP 256 9702.75 9797.61 1216.10 9652.74 -0.52 9688.96 885.35 -0.14
HVRP 19 DLP 224 11702.77 11805.34 1009.87 11686.39 -0.14 11745.69 274.81 0.37
HVRP 22 DLP 239 13068.03 13162.90 835.87 13091.16 0.18 13134.19 765.90 0.51
HVRP 23 DLP 203 7750.27 7809.20 802.30 7741.01 -0.12 7782.68 383.48 0.44
HVRP 27 DLP 220 8469.19 8520.74 995.85 8422.92 -0.55 8442.97 372.15 -0.32
HVRP 32 DLP 244 9417.62 9537.48 1131.44 9382.60 -0.37 9436.70 511.89 0.20
HVRP 38 DLP 205 11242.95 11439.58 421.50 11194.68 -0.43 11254.27 531.13 0.10
HVRP 46 DLP 250 24674.26 24805.27 1475.05 24566.23 -0.44 24698.60 495.57 0.10
HVRP 49 DLP 246 16377.69 16417.30 990.34 16181.17 -1.20 16322.51 650.74 -0.34
HVRP 58 DLP 220 23397.76 23530.10 1028.25 23370.42 -0.12 23641.18 294.93 1.04
HVRP 62 DLP 225 23149.61 23434.56 828.76 23010.35 -0.60 23097.54 342.94 -0.22
HVRP 65 DLP 223 13053.80 13077.63 635.64 13043.54 -0.08 13063.89 288.39 0.08

Average 0.81 947.58 -0.37 483.11 0.15

A.3 HFFOVRP

Detailed results obtained for the instances of (Taillard, 1999, T99) as considered in (Yousefikhoshbakht

et al, 2014, YDR14). The results obtained by HILS-RVRP were compared with those found by the BRMTS

heuristic of the referred authors. Moreover, although Yousefikhoshbakht et al (2014) mentioned that they

used fixed and variant vehicle costs, it appears, according to our testing, that they only used variable costs.

Table 13 presents the results involving only variable costs, while Table 14 reports the results involving both

fixed and variable costs.

Table 13: Results for the HFFOVRP-V
BRMTS HILS-RVRP
YDR14

Inst. n BKS Best Sol. Avg. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

13 50 981.32 981.32 45.63 914.12 -6.85 914.12 2.56 -6.85
14 50 448.25 448.25 38.72 436.32 -2.66 436.32 1.82 -2.66
15 50 703.69 703.69 50.93 681.46 -3.16 681.71 2.01 -3.12
16 50 788.12 788.12 60.34 769.46 -2.37 770.37 2.26 -2.25
17 75 815.05 815.05 102.61 762.64 -6.43 763.60 5.63 -6.31
18 75 1596.45 1596.45 159.54 1297.92 -18.70 1299.87 6.73 -18.58
19 100 956.62 956.62 208.84 851.94 -10.94 853.89 14.48 -10.74
20 100 1031.94 1031.94 267.14 1044.55 1.22 1045.69 15.02 1.33

Average 0.00 116.72 -6.24 6.31 -6.15

A.4 Results for the MDFSMVRP

Detailed results obtained for the MDFSMVRP instances of (Salhi and Sari, 1997, SS97), compared with

those found by the VNS2 of (Salhi et al, 2014, SIW14) and the HGSADC of (Vidal et al, 2014a, VCGP14)

(Table 15). Column RD in Table 15 indicates the instances with route duration.
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Table 14: Results for the HFFOVRP-FV
HILS-RVRP

Inst. n BKS Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

13 50 2588.65 2588.65 0.00 2589.09 4.26 0.02
14 50 9961.81 9961.81 0.00 9968.21 3.74 0.06
15 50 2731.46 2731.46 0.00 2731.78 30.39 0.01
16 50 2929.78 2929.78 0.00 2962.68 29.06 1.12
17 75 1792.20 1792.20 0.00 1796.87 14.39 0.26
18 75 3228.14 3228.14 0.00 3236.72 31.99 0.27
19 100 10179.70 10179.70 0.00 10188.56 44.94 0.09
20 100 4344.55 4344.55 0.00 4351.39 42.39 0.16

Average 0.00 25.15 0.25

Table 15: Results for the MDFSMVRP
VNS2 HGSADC HILS-RVRP
SIW14 VCGP14

Inst. n t m RD BKS Sol. T (s) Best Sol. Avg. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

p01 50 5 4 – 1477.73 1499.30 12.0 1477.73 112.2 1477.73 0.00 1494.76 4.31 1.15
p02 50 5 4 – 957.73 984.50 12.0 957.73 146.4 957.73 0.00 966.81 4.12 0.95
p03 75 5 5 – 1569.67 1588.40 30.0 1569.67 202.2 1569.67 0.00 1585.29 9.82 0.99
p04 100 5 2 – 2292.64 2313.70 84.0 2292.64 278.4 2292.64 0.00 2313.42 25.41 0.91
p05 100 5 2 – 1453.64 1466.90 108.0 1453.64 445.2 1453.64 0.00 1471.05 16.65 1.20
p06 100 5 3 – 2208.66 2246.90 60.0 2208.66 320.4 2208.66 0.00 2229.31 25.29 0.93
p07 100 5 4 – 2198.91 2256.40 66.0 2198.91 311.4 2198.91 0.00 2227.96 26.61 1.32
p08 249 5 2 310 6441.36 6696.00 822.0 6441.36 1200.0 6448.93 0.12 6525.14 165.05 1.30
p09 249 5 3 311 5998.70 6068.80 438.0 5998.70 1200.0 6011.85 0.22 6074.65 171.76 1.27
p10 249 5 4 312 5807.53 6043.00 372.0 5807.53 1200.0 5826.61 0.33 5868.29 173.56 1.05
p11 249 5 5 313 5770.42 5882.80 384.0 5770.42 1184.4 5779.64 0.16 5843.27 181.71 1.26
p12 80 5 2 – 2072.18 2076.20 72.0 2072.18 216.0 2072.18 0.00 2075.22 6.96 0.15
p13 80 5 2 200 2096.39 2096.40 66.0 2096.39 213.6 2096.39 0.00 2096.63 3.48 0.01
p14 80 5 2 180 2139.30 2139.30 66.0 2160.12 250.8 2160.12 0.97 2169.66 2.89 1.42
p15 160 5 4 – 3973.47 4024.90 162.0 3973.47 576.6 3973.47 0.00 3991.43 51.51 0.45
p16 160 5 4 200 4119.76 4148.70 162.0 4119.76 595.8 4119.76 0.00 4128.48 23.31 0.21
p17 160 5 4 180 4309.09 4338.20 198.0 4309.09 837.0 4309.09 0.00 4327.05 20.12 0.42
p18 240 5 6 – 5887.43 5970.50 288.0 5887.43 1188.0 5887.43 0.00 5917.18 166.19 0.51
p19 240 5 6 200 6130.36 6196.30 306.0 6130.36 1168.2 6130.36 0.00 6164.98 66.08 0.56
p20 240 5 6 180 6469.21 6567.10 318.0 6469.21 1200.0 6458.07 -0.17 6486.35 56.60 0.26
p21 360 5 9 – 8709.26 8883.10 654.0 8709.26 1200.0 8709.26 0.00 8738.45 513.06 0.34
p22 360 5 9 200 9151.64 9294.80 468.0 9151.64 1200.0 9151.91 0.00 9209.14 210.11 0.63
p23 360 5 9 180 9706.60 9887.70 540.0 9714.41 1200.0 9678.75 -0.29 9732.10 178.21 0.26

Average 1.52 247.30 0.05 715.07 0.06 91.43 0.76
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A.5 HFFVRPB

Detailed results obtained for the HFFVRPB instances of (Tütüncü, 2010, T10), compared with those found

by the GRAMPS and ADVISER heuristics from the referred authors (Table 16 describes the results found).

Note that we did not report the results for some instances because, according to the values suggested by

the authors, they are infeasible.

Table 16: Results for the HFFVRPB
GRAMPS ADVISER HILS-RVRP

Inst. n LH BH BKS Best Sol. T (s) Best Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

1 50 25 25 1056.44 1111.67 – 1056.44 – 874.60 -17.21 874.76 0.89 -17.20
2 50 34 16 982.86 1067.28 – 982.86 – 911.20 -7.29 913.30 0.81 -7.08
3 50 40 10 998.22 1124.14 – 998.22 – – – – – –
4 50 25 25 1070.06 1094.08 – 1070.06 – 1050.60 -1.82 1051.11 0.93 -1.77
5 50 34 16 1127.97 1135.21 – 1127.97 – 1051.30 -6.80 1052.00 0.83 -6.74
6 50 40 10 1183.36 1200.58 – 1183.36 – – – – – –
7 75 37 38 1190.63 1190.63 – 1190.63 – 1073.90 -9.80 1096.80 3.13 -7.88
8 75 50 25 1182.66 1211.28 – 1182.66 – – – – – –
9 75 60 15 1203.09 1222.66 – 1203.09 – 1003.20 -16.61 1013.97 2.35 -15.72

10 75 37 38 1781.50 1845.75 – 1781.50 – 1553.00 -12.83 1557.28 2.74 -12.59
11 75 50 25 1941.74 2035.39 – 1941.74 – 1659.80 -14.52 1667.85 3.19 -14.11
12 75 60 15 1917.54 1945.35 – 1917.54 – – – – – –
13 100 50 50 1227.81 1228.24 – 1227.81 – 1181.70 -3.76 1195.00 7.98 -2.67
14 100 67 33 1109.02 1136.87 – 1109.02 – – – – – –
15 100 80 20 1216.65 1228.56 – 1216.65 – 1114.90 -8.36 1135.00 6.27 -6.71
16 100 50 50 1555.35 1629.47 – 1555.35 – 1314.50 -15.49 1323.97 6.71 -14.88

Average 3.31 0.00 -10.41 3.26 -9.76

A.6 FSMB

Detailed results obtained for the FSMB instances of (Salhi et al, 2013, SWH13), compared with those

found by Framework-2 from the same authors (Table 17).
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Table 17: Results for the FSMB
Framework-2 HILS-RVRP
SWH13

Inst. n LH BH BKS Sol. T (s) Best Sol. Gap (%) Avg. Sol.b Avg. Tb(s) Avg. Gapb (%)

HWS1 20 10 10 720.57 1 726.48 0.61 720.57 0.00 720.57 0.12 0.00
HWS2 20 13 7 818.12 1 818.12 1.09 818.12 0.00 818.12 0.14 0.00
HWS3 20 16 4 848.23 1 848.59 1.64 848.32 0.01 848.32 0.10 0.01
HWS4 20 10 10 4342.48 1 4350.65 0.91 4342.48 0.00 4342.48 0.12 0.00
HWS5 20 13 7 5357.98 1 5366.39 2.75 5357.98 0.00 5361.47 0.12 0.07
HWS6 20 16 4 5421.65 1 5875.23 3.44 5421.65 0.00 5560.13 0.14 2.55
HWS7 20 10 10 729.50 1 767.93 0.58 729.50 0.00 729.50 0.14 0.00
HWS8 20 13 7 838.11 1 872.97 1.39 838.11 0.00 838.20 0.16 0.01
HWS9 20 16 4 890.76 1 903.18 2.09 890.76 0.00 890.76 0.13 0.00
HWS10 20 10 10 4349.12 1 4365.44 0.88 4349.12 0.00 4349.12 0.12 0.00
HWS11 20 13 7 5363.58 1 5414.50 2.72 5363.58 0.00 5380.38 0.15 0.31
HWS12 20 16 4 5497.98 1 5928.78 4.94 5497.98 0.00 5751.82 0.15 4.62
HWS13 50 25 25 1625.70 1625.70 17.88 1590.47 -2.17 1593.28 1.67 -1.99
HWS14 50 33 17 1811.63 1811.63 26.19 1771.53 -2.21 1778.19 1.37 -1.85
HWS15 50 40 10 2018.93 2018.93 38.42 1999.05 -0.98 2004.69 1.21 -0.71
HWS16 50 25 25 5561.67 5561.67 330.34 5551.19 -0.19 5551.34 1.53 -0.19
HWS17 50 33 17 6570.39 6570.39 996.55 6547.93 -0.34 6547.93 2.29 -0.34
HWS18 50 40 10 7599.08 7599.08 1120.50 7120.52 -6.30 7523.17 2.86 -1.00
HWS19 50 25 25 1704.41 1704.41 39.81 1616.21 -5.17 1627.49 1.46 -4.51
HWS20 50 33 17 2037.23 2037.23 84.95 2015.67 -1.06 2018.79 2.32 -0.91
HWS21 50 40 10 2340.09 2340.09 103.52 2295.57 -1.90 2304.64 2.67 -1.51
HWS22 50 25 25 1774.71 1774.71 18.41 1717.60 -3.22 1722.60 1.79 -2.94
HWS23 50 33 17 2166.52 2166.52 64.77 2096.10 -3.25 2127.37 1.93 -1.81
HWS24 50 40 10 2430.88 2430.88 49.72 2401.04 -1.23 2407.88 1.39 -0.95
HWS25 75 37 38 1332.02 1332.02 1006.28 1285.86 -3.47 1292.21 5.66 -2.99
HWS26 75 50 25 1421.04 1421.04 1779.88 1399.36 -1.53 1401.82 5.19 -1.35
HWS27 75 60 15 1534.65 1534.65 1996.59 1513.10 -1.40 1524.69 4.60 -0.65
HWS28 75 37 38 1617.85 1617.85 1351.92 1572.38 -2.81 1574.08 5.24 -2.71
HWS29 75 50 25 1799.76 1799.76 1513.30 1760.95 -2.16 1761.04 4.45 -2.15
HWS30 75 60 15 1990.46 1990.46 2662.15 1950.99 -1.98 1951.30 3.80 -1.97
HWS31 100 50 50 4943.29 5201.81 4257.41 4963.08 0.40 4966.57 12.66 0.47
HWS32 100 66 34 6035.96 - - 5993.30 -0.71 5993.91 36.35 -0.70
HWS33 100 80 20 7601.09 - - 7097.81 -6.62 7330.43 32.22 -3.56
HWS34 100 50 50 2465.41 2646.52 2871.74 2494.95 1.20 2522.53 17.35 2.32
HWS35 100 66 34 2971.98 2971.98 651.80 2927.20 -1.51 2931.90 15.01 -1.35
HWS36 100 80 20 3533.90 3533.90 1729.30 3450.73 -2.35 3458.24 15.40 -2.14

Average 1.24 668.66 -1.42 5.06 -0.77

1: Optimality proven.
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A.7 SDepVRP

Detailed results obtained for the SDepVRP instances of (Cordeau and Laporte, 2001, CL01), compared

with those found by the ALNS 50k of (Pisinger and Røpke, 2007, PR07) and the ITS of (Cordeau and

Maischberger, 2012, CM12) (Table 18, old instances without route duration and Table 19, new instances

with route duration).

Table 18: Results for the SDepVRP (old set)

ALNS 50k ITS HILS-RVRP
PR07 CM12

Inst. n t BKS Best Sol. Avg. T (s) Best Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

p01 55 3 640.32 640.32 20 640.32 – 640.32 0.00 640.53 1.00 0.03
p02 52 2 598.10 598.10 19 598.10 – 598.10 0.00 598.10 0.93 0.00
p03 80 3 954.32 957.04 40 954.32 – 954.32 0.00 956.37 4.26 0.22
p04 76 2 854.43 854.43 36 854.43 – 854.43 0.00 855.30 3.03 0.10
p05 103 3 1003.57 1003.57 68 1003.57 – 1003.57 0.00 1008.67 11.02 0.51
p06 104 2 1028.52 1028.52 69 1028.52 – 1028.52 0.00 1036.96 7.85 0.82
p07 27 3 391.30 391.30 8 391.30 – 391.30 0.00 391.30 0.11 0.00
p08 54 3 664.46 664.46 24 664.46 – 664.46 0.00 664.46 0.69 0.00
p09 81 3 948.23 948.23 47 948.23 – 948.23 0.00 948.23 4.19 0.00
p10 108 3 1218.75 1218.75 76 1218.75 – 1218.75 0.00 1231.41 11.21 1.04
p11 135 3 1448.17 1463.33 116 1448.17 – 1448.17 0.00 1482.58 49.62 2.55
p12 162 3 1665.55 1678.40 157 1665.55 – 1682.94 1.04 1708.05 64.58 2.55
p13 54 3 1194.18 1194.18 24 1194.18 – 1194.18 0.00 1196.12 0.93 0.16
p14 108 3 1959.96 1960.62 72 1959.96 – 1959.96 0.00 1960.90 7.59 0.05
p15 162 3 2685.09 2685.09 152 2685.09 – 2685.09 0.00 2701.85 33.21 0.62
p16 216 3 3393.55 3396.36 213 3393.55 – 3393.86 0.01 3431.81 83.85 1.13
p17 270 3 4066.15 4085.61 291 4066.15 – 4078.19 0.30 4147.14 260.77 1.99
p18 324 3 4751.27 4755.50 346 4751.27 – 4768.23 0.36 4910.04 505.80 3.34
p19 104 3 843.15 846.07 85 843.15 – 843.15 0.00 848.59 8.32 0.64
p20 156 3 1030.78 1030.78 168 1030.78 – 1030.78 0.00 1044.11 24.30 1.29
p21 209 3 1263.71 1271.75 217 1263.71 – 1260.01 -0.29 1278.05 61.59 1.13
p22 122 3 1008.71 1008.71 130 1008.71 – 1008.71 0.00 1009.09 14.02 0.04
p23 102 3 803.29 803.29 73 803.29 – 803.29 0.00 805.30 5.62 0.25

Average 0.16 106.57 0.00 0.06 89.22 0.80
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Table 19: Results for the SDepVRP (new instances)

ALNS 50k ITS HILS-RVRP
PR07 CM12

Inst. n t BKS Best Sol. Avg. T (s) Best Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

pr01 48 4 1380.77 1380.77 19 1380.77 – 1380.77 0.00 1408.22 0.62 1.99
pr02 96 4 2303.89 2311.54 63 2303.89 – 2303.89 0.00 2335.95 5.32 1.39
pr03 144 4 2575.36 2602.13 140 2575.36 – 2578.93 0.14 2598.95 16.16 0.92
pr04 192 4 3449.84 3474.01 191 3449.84 – 3454.85 0.15 3524.97 44.90 2.18
pr05 240 4 4377.35 4416.38 251 4377.35 – 4379.41 0.05 4481.48 77.01 2.38
pr06 288 4 4422.02 4444.52 314 4422.02 – 4451.34 0.66 4531.44 141.38 2.47
pr07 72 6 1889.82 1889.82 39 1889.82 – 1889.82 0.00 1935.09 2.53 2.40
pr08 144 6 2971.01 2977.50 135 2971.01 – 2973.26 0.08 3057.03 17.43 2.90
pr09 216 6 3536.20 3536.20 226 3536.20 – 3559.69 0.66 3624.11 64.06 2.49
pr10 288 6 4639.62 4648.76 322 4639.62 – 4663.38 0.51 4743.69 160.19 2.24
pr11 1008 4 12719.65 12719.65 847 12845.60 – 13091.91 2.93 13305.68 6775.12 4.61
pr12 720 6 9388.07 9388.07 658 9392.84 – 9612.09 2.39 9665.67 2872.05 2.96

Average 0.32 267.08 0.09 0.63 848.16 2.39

A.8 HFFVRPSD

Detailed results obtained for the FSM instances of (Golden et al, 1984, G84) and adapted for the

HFFVRPSD by (Ozfirat and Ozkarahan, 2010, OO10), compared with those found by the CP heuris-

tic of the same authors (Table 20). As HFFVRPSD allows visiting the customers more than once, the SP

procedure was not considered for this variant.

Table 20: Results for the HFFVRPSD
CP HILS-RVRP
OO10

Inst. n BKS Sol. T (s) Best Sol. Gap Avg. Sol. Avg. T Avg. Gap

3 20 970.53 970.53 104 943.12 -2.82 943.12 11.03 -2.82
4 20 6421.88 6421.88 45 6399.20 -0.35 6400.01 5.20 -0.34
5 20 998.74 998.74 84 970.77 -2.80 970.77 10.11 -2.80
6 20 6514.09 6514.09 137 6497.44 -0.26 6582.88 4.54 1.06

13 50 2440.78 2440.78 146 2374.03 -2.73 2376.20 198.26 -2.65
14 50 9138.25 9138.25 412 9114.07 -0.26 9203.83 90.81 0.72
15 50 2616.11 2616.11 298 2568.96 -1.80 2569.86 106.94 -1.77
16 50 2719.89 2719.89 302 2690.18 -1.09 2691.51 98.02 -1.04
17 75 1783.33 1783.33 317 1725.40 -3.25 1726.62 385.42 -3.18
18 75 2394.16 2394.16 486 2333.26 -2.54 2336.85 781.51 -2.39
19 100 8722.49 8722.49 506 8654.31 -0.78 8655.85 845.61 -0.76
20 100 4130.49 4130.49 396 4011.30 -2.89 4033.08 803.84 -2.36

Average 0.00 269.42 -1.80 278.44 -1.53
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A.9 FSMVRPTW – minimizing route duration

Detailed results obtained for the FSMVRPTW instances of (Liu and Shen, 1999, LS99), considering the

objective of minimizing the sum of the route durations, compared with those found by the UHGS of (Vidal

et al, 2014b, VCGP14) and the HEA of (Koç et al, 2015, KBJL15) (Tables 21-23).
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Table 21: Results for the FSMTW (minimize duration, fleet A)

VCGP14 KBJL15 HILS-RVRP

Inst. n BKS Best Sol. Avg. T (s) Best Sol. Avg. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

R101a 100 4536.40 4608.62 361.8 4541.70 315.6 4608.62 1.59 4616.92 62.56 1.77
R102a 100 4348.92 4369.74 382.8 4355.10 352.2 4368.70 0.45 4380.77 76.74 0.73
R103a 100 4119.04 4145.68 279.0 4131.23 251.4 4144.96 0.63 4152.64 77.66 0.82
R104a 100 3961.39 3961.39 313.8 3992.10 301.2 3962.87 0.04 3971.32 71.20 0.25
R105a 100 4209.84 4209.84 306.6 4232.54 283.8 4204.87 -0.12 4222.45 76.06 0.30
R106a 100 4109.08 4109.08 379.2 4138.30 307.8 4103.65 -0.13 4125.17 84.09 0.39
R107a 100 4007.87 4007.87 327.0 4034.32 324.0 4003.95 -0.10 4014.98 75.44 0.18
R108a 100 3934.48 3934.48 307.2 3966.10 286.8 3934.48 0.00 3946.40 69.80 0.30
R109a 100 4020.75 4020.75 303.6 4059.02 276.0 4022.90 0.05 4034.21 78.46 0.33
R110a 100 3965.88 3965.88 318.0 3996.31 250.2 3963.80 -0.05 3973.92 75.62 0.20
R111a 100 3985.68 3985.68 363.0 4020.10 298.8 3984.92 -0.02 3999.81 83.57 0.35
R112a 100 3918.88 3918.88 406.2 3957.60 346.8 3918.88 0.00 3927.38 68.16 0.22

C101a 100 7226.51 7226.51 191.4 7226.51 178.2 7226.51 0.00 7231.05 83.95 0.06
C102a 100 7119.35 7119.35 169.2 7145.65 186.0 7119.35 0.00 7119.35 90.42 0.00
C103a 100 7102.86 7102.86 147.6 7143.88 162.0 7102.86 0.00 7103.02 86.13 0.00
C104a 100 7081.50 7081.51 133.2 7082.92 120.6 7081.51 0.00 7081.51 73.36 0.00
C105a 100 7175.00 7196.06 204.0 7175.00 147.0 7196.06 0.29 7196.39 98.76 0.30
C106a 100 7163.32 7176.68 220.2 7163.32 180.6 7176.68 0.19 7180.15 98.72 0.23
C107a 100 7140.20 7144.49 191.4 7140.20 166.8 7144.49 0.06 7144.53 97.32 0.06
C108a 100 7111.23 7111.23 166.8 7120.98 147.0 7111.23 0.00 7111.23 87.48 0.00
C109a 100 7091.66 7091.66 143.4 7091.66 142.2 7091.66 0.00 7091.66 82.51 0.00

RC101a 100 5217.90 5217.90 301.8 5235.42 298.2 5213.66 -0.08 5227.92 61.18 0.19
RC102a 100 5018.47 5018.47 342.6 5029.69 338.4 5019.99 0.03 5042.64 66.00 0.48
RC103a 100 4822.21 4822.21 361.8 4870.00 308.4 4822.21 0.00 4859.48 66.50 0.77
RC104a 100 4737.00 4737.00 246.0 4769.30 298.2 4736.13 -0.02 4748.10 54.96 0.23
RC105a 100 5097.35 5097.35 336.6 5118.10 319.2 5096.66 -0.01 5111.72 70.68 0.28
RC106a 100 4935.91 4935.91 396.0 4958.62 360.6 4928.60 -0.15 4946.41 65.98 0.21
RC107a 100 4783.08 4783.08 319.2 4825.21 322.2 4783.08 0.00 4803.81 61.07 0.43
RC108a 100 4708.85 4708.85 310.2 4754.77 282.6 4708.98 0.00 4723.87 51.10 0.32

R201a 100 3753.42 3782.88 459.6 3760.43 538.2 3787.55 0.91 3838.10 265.18 2.26
R202a 100 3540.03 3540.03 802.2 3554.20 598.8 3540.59 0.02 3562.54 296.59 0.64
R203a 100 3311.35 3311.35 544.2 3315.50 525.6 3315.16 0.12 3318.61 288.80 0.22
R204a 100 3075.95 3075.95 532.2 3075.95 478.8 3075.95 0.00 3080.01 209.39 0.13
R205a 100 3334.27 3334.27 555.0 3334.27 507.0 3334.27 0.00 3361.92 217.21 0.83
R206a 100 3242.40 3242.40 540.6 3263.40 490.2 3242.40 0.00 3259.19 226.03 0.52
R207a 100 3145.08 3145.08 564.0 3152.29 557.4 3145.83 0.02 3157.37 210.22 0.39
R208a 100 3017.12 3017.12 484.2 3017.12 510.6 3017.12 0.00 3021.98 181.73 0.16
R209a 100 3183.36 3183.36 569.4 3194.28 562.2 3184.41 0.03 3190.30 174.19 0.22
R210a 100 3287.66 3287.66 612.6 3309.26 527.4 3288.46 0.02 3301.07 219.59 0.41
R211a 100 3019.93 3019.93 544.8 3020.56 479.4 3019.93 0.00 3022.14 155.30 0.07

C201a 100 5820.78 5878.54 310.2 5830.20 300.0 5853.90 0.57 5892.77 271.05 1.24
C202a 100 5776.88 5776.88 309.0 5776.88 310.2 5776.88 0.00 5776.88 242.04 0.00
C203a 100 5736.94 5741.12 343.2 5741.12 285.6 5741.12 0.07 5742.71 196.11 0.10
C204a 100 5680.46 5680.46 258.6 5680.46 252.6 5680.46 0.00 5680.46 180.73 0.00
C205a 100 5747.67 5781.15 393.6 5751.40 407.4 5781.15 0.58 5789.29 254.67 0.72
C206a 100 5738.09 5767.70 284.4 5741.30 258.0 5767.70 0.52 5771.59 213.11 0.58
C207a 100 5721.16 5731.44 308.4 5725.10 250.2 5731.44 0.18 5732.97 203.22 0.21
C208a 100 5725.03 5725.03 271.2 5725.03 312.6 5725.03 0.00 5727.22 171.01 0.04

RC201a 100 4701.88 4737.59 316.8 4707.80 270.0 4737.59 0.76 4747.24 107.41 0.96
RC202a 100 4487.48 4487.48 268.8 4519.40 280.2 4487.48 0.00 4487.57 125.19 0.00
RC203a 100 4305.49 4305.49 352.8 4319.10 316.2 4305.49 0.00 4314.27 137.30 0.20
RC204a 100 4137.93 4137.93 400.8 4155.77 311.4 4137.84 0.00 4142.65 124.05 0.11
RC205a 100 4585.20 4615.04 384.0 4595.67 413.4 4615.40 0.66 4634.25 125.16 1.07
RC206a 100 4405.16 4405.16 308.4 4434.30 301.8 4405.16 0.00 4420.53 116.34 0.35
RC207a 100 4290.14 4290.14 391.2 4315.90 376.2 4290.14 0.00 4301.27 123.83 0.26
RC208a 100 4075.04 4075.04 344.4 4081.37 310.2 4075.04 0.00 4075.96 112.59 0.02

Average 0.14 351.50 0.36 326.51 0.13 131.13 0.38
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Table 22: Results for the FSMTW (minimize duration, fleet B)

VCGP14 KBJL15 HILS-RVRP

Inst. n BKS Best Sol. Avg. T (s) Best Sol. Avg. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

R101b 100 2421.19 2486.77 233.40 2425.10 226.80 2486.77 2.71 2494.10 54.59 3.01
R102b 100 2209.50 2222.15 258.60 2212.37 238.20 2222.15 0.57 2226.88 59.11 0.79
R103b 100 1930.21 1930.21 250.80 1951.99 256.80 1930.69 0.02 1941.17 65.88 0.57
R104b 100 1688.12 1688.12 260.40 1714.86 240.60 1688.12 0.00 1710.55 65.13 1.33
R105b 100 2017.56 2017.56 229.80 2024.91 220.80 2017.56 0.00 2024.55 62.85 0.35
R106b 100 1913.84 1913.84 306.00 1922.10 251.40 1913.04 -0.04 1918.48 70.66 0.24
R107b 100 1774.50 1774.50 256.20 1783.20 318.00 1774.50 0.00 1785.81 66.61 0.64
R108b 100 1649.24 1654.68 349.80 1661.58 286.80 1654.78 0.34 1663.92 61.99 0.89
R109b 100 1818.15 1818.15 305.40 1829.10 294.60 1818.15 0.00 1829.18 65.23 0.61
R110b 100 1761.53 1761.53 346.20 1778.80 312.60 1764.64 0.18 1777.41 76.36 0.90
R111b 100 1751.10 1751.10 334.20 1775.24 286.80 1754.89 0.22 1773.07 77.50 1.25
R112b 100 1663.09 1663.09 379.80 1677.00 372.60 1661.97 -0.07 1672.61 58.08 0.57

C101b 100 2417.52 2417.52 123.60 2417.52 119.40 2417.52 0.00 2417.52 50.16 0.00
C102b 100 2350.54 2350.55 178.80 2350.54 147.00 2350.54 0.00 2350.54 70.56 0.00
C103b 100 2345.31 2345.31 241.20 2345.31 208.20 2345.31 0.00 2345.31 72.54 0.00
C104b 100 2325.78 2327.84 145.80 2330.59 185.40 2327.84 0.09 2327.98 77.14 0.09
C105b 100 2373.53 2373.53 201.00 2376.45 183.60 2373.53 0.00 2377.74 67.68 0.18
C106b 100 2381.14 2386.03 190.20 2386.43 177.00 2386.03 0.21 2390.56 66.59 0.40
C107b 100 2357.52 2364.21 186.00 2359.00 147.00 2364.21 0.28 2366.44 72.71 0.38
C108b 100 2346.38 2346.38 196.80 2348.15 167.40 2346.38 0.00 2347.66 68.35 0.05
C109b 100 2336.29 2336.29 156.00 2337.60 153.60 2336.29 0.00 2336.29 90.44 0.00

RC101b 100 2456.10 2456.10 281.40 2464.19 268.20 2456.10 0.00 2463.85 61.82 0.32
RC102b 100 2259.25 2259.25 254.40 2270.43 247.20 2259.25 0.00 2267.13 61.31 0.35
RC103b 100 2025.30 2025.30 284.40 2041.20 238.80 2025.30 0.00 2033.25 63.21 0.39
RC104b 100 1901.04 1901.04 262.20 1922.27 252.60 1901.04 0.00 1923.40 61.79 1.18
RC105b 100 2308.59 2329.14 285.60 2327.70 273.60 2329.14 0.89 2332.74 60.53 1.05
RC106b 100 2146.00 2146.00 220.80 2147.14 252.60 2140.94 -0.24 2151.26 64.45 0.25
RC107b 100 1989.34 1989.34 245.40 1996.09 251.40 1989.34 0.00 1998.37 60.63 0.45
RC108b 100 1898.96 1898.96 195.60 1908.89 186.60 1898.96 0.00 1908.89 54.64 0.52

R201b 100 1953.42 1973.43 383.40 1956.21 372.60 1980.60 1.39 1989.18 217.75 1.83
R202b 100 1740.03 1740.03 483.00 1752.40 480.00 1743.82 0.22 1775.69 258.74 2.05
R203b 100 1511.35 1511.35 386.40 1515.17 346.80 1515.08 0.25 1518.14 254.35 0.45
R204b 100 1275.95 1275.95 454.80 1279.57 413.40 1275.95 0.00 1279.16 190.43 0.25
R205b 100 1534.27 1534.27 387.00 1549.39 389.40 1542.47 0.53 1566.91 196.58 2.13
R206b 100 1441.35 1441.35 355.20 1450.37 312.60 1448.03 0.46 1464.74 193.32 1.62
R207b 100 1345.08 1345.08 418.20 1359.18 378.60 1346.18 0.08 1362.59 191.29 1.30
R208b 100 1217.12 1217.12 360.00 1220.36 328.20 1217.12 0.00 1220.92 168.08 0.31
R209b 100 1380.79 1380.79 465.00 1385.65 428.40 1384.42 0.26 1391.29 172.35 0.76
R210b 100 1485.65 1485.65 463.20 1495.75 415.80 1492.12 0.44 1507.17 205.78 1.45
R211b 100 1219.93 1219.93 441.60 1219.93 447.00 1219.93 0.00 1226.01 152.18 0.50

C201b 100 1816.14 1820.64 174.00 1820.64 186.60 1820.64 0.25 1820.64 194.23 0.25
C202b 100 1768.51 1768.51 313.20 1770.10 274.80 1768.51 0.00 1778.44 173.71 0.56
C203b 100 1733.63 1733.63 197.40 1733.63 191.40 1733.63 0.00 1733.63 159.40 0.00
C204b 100 1680.46 1680.46 198.00 1680.46 190.20 1680.46 0.00 1680.46 164.82 0.00
C205b 100 1747.68 1778.30 328.80 1756.54 312.60 1778.30 1.75 1784.42 193.49 2.10
C206b 100 1756.01 1767.70 230.40 1773.17 207.60 1767.70 0.67 1776.92 178.08 1.19
C207b 100 1729.39 1729.49 208.80 1729.39 178.20 1729.49 0.01 1733.41 167.76 0.23
C208b 100 1723.20 1724.20 204.00 1724.20 187.80 1724.20 0.06 1724.20 167.91 0.06

RC201b 100 2230.54 2329.59 260.40 2235.90 250.20 2331.14 4.51 2345.62 124.50 5.16
RC202b 100 2002.62 2057.66 401.40 2022.00 328.20 2057.66 2.75 2078.10 144.73 3.77
RC203b 100 1824.54 1824.54 319.80 1840.40 307.20 1824.88 0.02 1847.01 165.37 1.23
RC204b 100 1555.74 1555.75 330.00 1555.74 298.80 1555.75 0.00 1560.82 146.18 0.33
RC205b 100 2166.62 2174.74 325.80 2169.00 388.20 2174.74 0.37 2196.93 144.16 1.40
RC206b 100 1883.08 1883.08 259.80 1898.70 248.40 1883.08 0.00 1892.52 137.24 0.50
RC207b 100 1714.14 1714.14 339.00 1730.00 308.40 1714.14 0.00 1733.17 145.07 1.11
RC208b 100 1483.20 1483.20 288.00 1490.64 265.80 1483.20 0.00 1487.17 141.23 0.27

Average 0.29 288.15 0.46 271.48 0.34 118.83 0.85
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Table 23: Results for the FSMTW (minimize duration, fleet C)

VCGP14 KBJL15 HILS-RVRP

Inst. n BKS Best Sol. Avg. T(s) Best Sol. Avg. T(s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

R101c 100 2134.90 2199.79 202.80 2137.20 188.40 2199.79 3.04 2200.87 54.19 3.09
R102c 100 1913.37 1925.56 303.60 1914.87 372.60 1925.56 0.64 1927.82 62.85 0.76
R103c 100 1609.94 1615.38 217.20 1621.20 194.40 1615.38 0.34 1619.49 67.40 0.59
R104c 100 1363.26 1363.26 274.80 1375.60 268.20 1363.26 0.00 1373.84 66.13 0.78
R105c 100 1722.05 1722.05 216.00 1722.05 190.20 1722.05 0.00 1724.62 62.42 0.15
R106c 100 1599.04 1599.04 286.20 1610.40 244.80 1599.04 0.00 1605.26 69.50 0.39
R107c 100 1442.97 1442.97 223.20 1454.30 210.60 1442.97 0.00 1458.92 70.03 1.11
R108c 100 1321.68 1321.68 326.40 1329.92 319.80 1317.43 -0.32 1333.87 62.38 0.92
R109c 100 1506.59 1506.59 301.20 1507.10 283.80 1506.59 0.00 1511.26 68.29 0.31
R110c 100 1443.92 1443.92 343.80 1451.06 327.60 1443.33 -0.04 1457.89 76.92 0.97
R111c 100 1423.47 1423.47 419.40 1436.32 368.40 1425.18 0.12 1444.20 71.06 1.46
R112c 100 1329.07 1329.07 286.20 1341.10 250.20 1329.07 0.00 1346.41 65.15 1.30

C101c 100 1628.31 1628.94 109.80 1628.94 118.20 1628.94 0.04 1628.94 49.98 0.04
C102c 100 1610.96 1610.96 145.80 1610.96 151.80 1610.96 0.00 1610.96 63.04 0.00
C103c 100 1607.14 1607.14 166.20 1607.14 227.40 1607.14 0.00 1607.14 61.19 0.00
C104c 100 1598.50 1599.90 162.00 1599.21 173.40 1599.90 0.09 1599.90 62.97 0.09
C105c 100 1628.38 1628.94 112.80 1628.94 118.20 1628.94 0.03 1628.94 61.15 0.03
C106c 100 1628.94 1628.94 112.80 1628.94 120.60 1628.94 0.00 1628.94 56.94 0.00
C107c 100 1628.38 1628.94 117.60 1628.94 119.40 1628.94 0.03 1628.94 59.20 0.03
C108c 100 1622.89 1622.89 180.00 1625.00 147.00 1622.89 0.00 1627.13 58.86 0.26
C109c 100 1614.99 1615.93 217.20 1618.61 212.40 1614.99 0.00 1615.95 64.59 0.06

RC101c 100 2082.95 2082.95 294.60 2092.10 272.40 2082.95 0.00 2086.57 60.68 0.17
RC102c 100 1895.05 1895.05 256.80 1901.89 251.40 1895.56 0.03 1901.70 63.18 0.35
RC103c 100 1650.30 1650.30 238.80 1660.70 213.60 1650.30 0.00 1666.02 62.18 0.95
RC104c 100 1526.04 1526.04 214.20 1540.60 208.20 1526.04 0.00 1551.14 62.96 1.64
RC105c 100 1953.99 1957.14 282.60 1956.09 249.60 1957.14 0.16 1958.54 59.19 0.23
RC106c 100 1774.94 1774.94 228.00 1780.45 209.40 1774.94 0.00 1778.88 64.92 0.22
RC107c 100 1607.11 1607.11 229.80 1620.30 184.20 1607.11 0.00 1620.06 59.59 0.81
RC108c 100 1523.96 1523.96 202.80 1532.60 213.60 1523.96 0.00 1526.00 57.50 0.13

R201c 100 1716.02 1716.02 272.40 1731.20 406.80 1716.02 0.00 1720.65 200.64 0.27
R202c 100 1515.03 1515.03 530.40 1529.70 488.40 1519.41 0.29 1536.94 234.74 1.45
R203c 100 1286.35 1286.35 374.40 1296.72 390.00 1290.16 0.30 1297.61 266.88 0.87
R204c 100 1050.95 1050.95 457.20 1052.90 473.40 1050.95 0.00 1057.00 192.24 0.58
R205c 100 1309.27 1309.27 386.40 1315.20 402.60 1309.27 0.00 1317.49 183.91 0.63
R206c 100 1216.35 1216.35 320.40 1226.93 395.40 1223.07 0.55 1234.31 180.06 1.48
R207c 100 1120.08 1120.08 433.80 1125.50 418.80 1121.80 0.15 1137.13 201.30 1.52
R208c 100 992.12 992.12 360.60 997.97 352.20 992.12 0.00 1000.17 182.55 0.81
R209c 100 1155.79 1155.79 450.00 1164.31 428.40 1159.67 0.34 1168.88 170.29 1.13
R210c 100 1257.89 1257.89 392.40 1269.70 368.40 1264.38 0.52 1272.87 201.36 1.19
R211c 100 994.93 994.93 395.40 995.58 370.20 994.93 0.00 1000.99 156.78 0.61

C201c 100 1250.97 1269.41 171.60 1250.97 178.20 1269.41 1.47 1277.27 176.97 2.10
C202c 100 1239.54 1239.54 231.00 1240.86 212.40 1239.54 0.00 1242.29 165.61 0.22
C203c 100 1193.63 1193.63 181.80 1193.63 188.40 1193.63 0.00 1193.63 148.25 0.00
C204c 100 1176.52 1176.52 234.00 1176.52 220.20 1176.52 0.00 1176.52 161.86 0.00
C205c 100 1238.30 1238.30 261.60 1240.10 257.40 1238.30 0.00 1245.38 180.27 0.57
C206c 100 1229.23 1238.30 292.20 1229.23 262.80 1238.30 0.74 1241.36 163.15 0.99
C207c 100 1209.48 1209.49 180.00 1209.48 213.60 1209.49 0.00 1214.57 158.96 0.42
C208c 100 1204.20 1204.20 181.80 1204.20 180.60 1204.20 0.00 1204.20 158.52 0.00

RC201c 100 1915.42 1996.79 220.20 1917.90 279.00 1996.79 4.25 2010.99 127.73 4.99
RC202c 100 1677.62 1732.66 391.80 1680.00 366.00 1732.66 3.28 1753.28 150.22 4.51
RC203c 100 1496.11 1496.11 369.00 1500.20 376.20 1499.54 0.23 1515.94 168.38 1.33
RC204c 100 1220.75 1220.75 327.00 1222.16 328.20 1220.75 0.00 1229.53 146.27 0.72
RC205c 100 1822.07 1844.74 304.20 1823.00 317.40 1844.74 1.24 1866.61 161.43 2.44
RC206c 100 1553.65 1553.65 267.00 1564.30 282.00 1558.08 0.29 1572.54 138.66 1.22
RC207c 100 1377.52 1377.52 363.60 1381.71 340.20 1379.14 0.12 1393.87 153.51 1.19
RC208c 100 1140.10 1140.10 379.20 1151.40 310.20 1140.10 0.00 1148.27 143.06 0.72

Average 0.28 275.04 0.37 271.74 0.32 116.04 0.87
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A.10 FSMTW – minimizing total distance

Detailed results obtained for the FSMVRPTW instances of (Liu and Shen, 1999, LS99), considering the

objective of minimizing the sum of the total distance, compared with those found by the UHGS of (Vidal

et al, 2014b, VCGP14) and the HEA of (Koç et al, 2015, KBJL15) (Tables 24-26).
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Table 24: Results for the FSMTW (minimize distance, fleet A)

VCGP14 KBJL15 HILS-RVRP

Inst. n BKS Best Sol. Avg. T (s) Best Sol. Avg. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

R101 100 4314.36 4314.36 276.60 4317.52 248.40 4314.36 0.00 4325.76 120.56 0.26
R102 100 4166.28 4166.28 361.80 4173.84 358.80 4166.28 0.00 4181.25 124.45 0.36
R103 100 4027.36 4027.36 321.00 4031.40 312.60 4024.14 -0.08 4038.85 134.79 0.29
R104 100 3936.40 3936.40 288.60 3946.44 247.20 3936.55 0.00 3948.00 113.83 0.29
R105 100 4122.50 4122.50 389.40 4134.06 360.60 4122.50 0.00 4133.06 131.61 0.26
R106 100 4048.59 4048.59 334.20 4060.05 307.20 4050.17 0.04 4059.07 127.47 0.26
R107 100 3970.51 3970.51 333.60 3985.12 286.80 3976.40 0.15 3988.73 126.16 0.46
R108 100 3928.12 3928.12 280.80 3932.60 392.40 3928.12 0.00 3935.45 108.28 0.19
R109 100 4015.71 4015.71 288.00 4024.83 367.20 4015.71 0.00 4023.34 128.21 0.19
R110 100 3961.68 3961.68 389.40 3973.51 312.60 3961.68 0.00 3965.89 114.65 0.11
R111 100 3964.99 3964.99 316.80 3988.00 307.20 3971.90 0.17 3989.84 127.58 0.63
R112 100 3918.88 3918.88 295.20 3930.19 282.60 3917.88 -0.03 3927.20 105.96 0.21

C101 100 7093.45 7093.45 177.60 7093.45 148.20 7093.45 0.00 7093.59 167.56 0.00
C102 100 7080.17 7080.17 128.40 7080.17 159.00 7080.17 0.00 7080.17 134.68 0.00
C103 100 7079.21 7079.21 125.40 7079.21 120.60 7079.21 0.00 7079.21 119.00 0.00
C104 100 7075.06 7075.06 131.40 7075.06 118.20 7075.06 0.00 7075.06 101.36 0.00
C105 100 7093.45 7093.45 199.80 7093.45 159.00 7093.45 0.00 7093.60 154.47 0.00
C106 100 7083.87 7083.87 136.80 7083.87 130.20 7083.87 0.00 7083.87 140.25 0.00
C107 100 7084.61 7084.61 133.80 7084.61 143.40 7084.61 0.00 7084.61 142.94 0.00
C108 100 7079.66 7079.66 131.40 7079.66 118.20 7079.66 0.00 7079.66 124.35 0.00
C109 100 7077.30 7077.30 122.40 7077.30 131.40 7077.30 0.00 7077.30 107.98 0.00

RC101 100 5150.86 5150.86 312.60 5173.47 308.40 5150.86 0.00 5160.03 121.21 0.18
RC102 100 4987.24 4987.24 288.60 5018.83 255.60 4974.82 -0.25 4999.64 122.10 0.25
RC103 100 4804.61 4804.61 424.80 4850.20 388.20 4804.61 0.00 4837.40 122.75 0.68
RC104 100 4717.63 4717.63 318.00 4725.40 317.40 4721.44 0.08 4734.77 94.74 0.36
RC105 100 5035.35 5035.35 334.20 5048.86 286.80 5036.50 0.02 5047.72 119.73 0.25
RC106 100 4936.74 4936.74 337.80 4964.13 317.40 4921.13 -0.32 4941.27 118.48 0.09
RC107 100 4788.69 4788.69 304.80 4825.60 250.20 4787.59 -0.02 4807.65 107.49 0.40
RC108 100 4708.85 4708.85 286.80 4724.79 277.80 4711.31 0.05 4726.02 86.50 0.36

R201 100 3446.78 3446.78 390.60 3446.78 367.80 3446.78 0.00 3452.08 320.01 0.15
R202 100 3297.42 3308.16 460.80 3297.42 447.60 3308.16 0.33 3313.28 342.72 0.48
R203 100 3141.09 3141.09 339.00 3141.09 368.40 3141.09 0.00 3143.21 321.32 0.07
R204 100 3018.14 3018.14 417.60 3018.14 376.80 3018.14 0.00 3019.95 296.69 0.06
R205 100 3218.97 3218.97 384.00 3218.97 382.80 3218.97 0.00 3228.75 305.08 0.30
R206 100 3146.34 3146.34 618.00 3146.34 488.40 3147.41 0.03 3155.39 325.90 0.29
R207 100 3077.36 3077.58 522.00 3077.36 388.20 3077.58 0.01 3082.82 313.42 0.18
R208 100 2997.24 2997.24 322.20 2997.25 380.40 2997.24 0.00 2999.97 282.11 0.09
R209 100 3119.56 3122.42 382.20 3119.56 299.40 3122.42 0.09 3129.93 301.95 0.33
R210 100 3170.41 3174.85 415.80 3170.41 328.20 3174.31 0.12 3181.35 331.93 0.35
R211 100 3019.93 3019.93 546.00 3019.93 475.80 3019.93 0.00 3022.78 285.35 0.09

C201 100 5695.02 5695.02 222.60 5695.02 207.60 5695.02 0.00 5695.02 345.40 0.00
C202 100 5685.24 5685.24 226.80 5685.24 190.20 5685.24 0.00 5685.24 287.90 0.00
C203 100 5681.55 5681.55 252.60 5681.55 257.40 5681.55 0.00 5681.79 271.20 0.00
C204 100 5677.66 5677.66 256.20 5677.66 238.20 5677.66 0.00 5677.88 281.35 0.00
C205 100 5691.36 5691.36 238.80 5691.36 207.60 5691.36 0.00 5691.36 300.58 0.00
C206 100 5689.32 5689.32 229.20 5689.32 178.20 5689.32 0.00 5689.32 270.71 0.00
C207 100 5687.35 5687.35 254.40 5687.35 246.00 5687.35 0.00 5687.35 294.10 0.00
C208 100 5686.50 5686.50 231.60 5686.50 213.60 5686.50 0.00 5686.50 265.14 0.00

RC201 100 4374.09 4374.09 355.20 4376.82 308.40 4374.09 0.00 4380.07 193.35 0.14
RC202 100 4244.63 4244.63 277.80 4244.63 255.60 4244.63 0.00 4246.90 203.69 0.05
RC203 100 4170.17 4170.17 463.80 4170.17 368.40 4170.17 0.00 4177.62 196.96 0.18
RC204 100 4087.11 4087.11 347.40 4087.11 328.20 4087.11 0.00 4094.04 171.97 0.17
RC205 100 4291.93 4291.93 327.60 4293.73 251.40 4291.93 0.00 4294.56 197.21 0.06
RC206 100 4251.88 4251.88 307.20 4251.88 256.20 4251.88 0.00 4257.78 207.92 0.14
RC207 100 4182.44 4185.98 289.20 4182.44 338.40 4185.98 0.08 4188.14 192.60 0.14
RC208 100 4075.04 4075.04 244.80 4075.04 318.60 4075.04 0.00 4077.57 166.98 0.06

Average 0.01 305.24 0.13 283.60 0.01 193.26 0.17
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Table 25: Results for the FSMTW (minimize distance, fleet B)

VCGP14 KBJL15 HILS-RVRP

Inst. n BKS Best Sol. Avg. T (s) Best Sol. Avg. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

R101 100 2222.56 2228.67 303.00 2222.56 256.20 2228.67 0.27 2229.99 67.06 0.33
R102 100 2048.12 2073.63 215.40 2048.12 196.80 2071.90 1.16 2073.92 71.71 1.26
R103 100 1853.66 1853.66 274.20 1855.74 316.20 1853.66 0.00 1857.83 73.56 0.23
R104 100 1683.33 1683.33 322.20 1686.42 305.40 1685.49 0.13 1691.53 65.13 0.49
R105 100 1980.96 1988.86 198.00 1980.96 202.20 1988.86 0.40 1992.22 70.02 0.57
R106 100 1888.31 1888.31 278.40 1890.28 251.40 1888.31 0.00 1896.83 74.06 0.45
R107 100 1752.02 1753.35 249.00 1752.02 315.60 1753.35 0.08 1765.13 73.84 0.75
R108 100 1647.88 1647.88 272.40 1649.37 238.20 1647.88 0.00 1664.56 67.97 1.01
R109 100 1818.15 1818.15 219.60 1819.10 239.40 1818.15 0.00 1827.03 73.66 0.49
R110 100 1758.64 1758.64 306.60 1761.96 328.20 1762.39 0.21 1773.40 78.90 0.84
R111 100 1740.86 1740.86 319.20 1743.16 341.40 1743.16 0.13 1761.93 81.04 1.21
R112 100 1661.85 1661.85 321.60 1663.09 300.60 1663.09 0.07 1672.36 68.90 0.63

C101 100 2340.15 2340.15 187.20 2340.15 178.80 2340.15 0.00 2342.43 70.09 0.10
C102 100 2325.70 2325.70 156.60 2325.70 163.80 2325.70 0.00 2325.70 73.58 0.00
C103 100 2324.60 2324.60 181.80 2324.60 218.40 2324.60 0.00 2324.60 80.46 0.00
C104 100 2318.04 2318.04 146.40 2318.04 178.80 2318.04 0.00 2318.04 70.17 0.00
C105 100 2340.15 2340.15 180.00 2340.15 162.60 2340.15 0.00 2340.28 72.24 0.01
C106 100 2340.15 2340.15 207.60 2340.15 191.40 2340.15 0.00 2340.84 68.22 0.03
C107 100 2340.15 2340.15 192.00 2340.15 176.40 2340.15 0.00 2340.28 70.80 0.01
C108 100 2338.58 2338.58 190.80 2338.58 232.80 2338.58 0.00 2338.58 84.86 0.00
C109 100 2328.55 2328.55 163.20 2328.55 187.20 2328.55 0.00 2328.55 80.69 0.00

RC101 100 2407.43 2412.71 249.60 2407.43 207.60 2412.71 0.22 2416.42 67.53 0.37
RC102 100 2213.92 2213.92 351.60 2219.23 308.40 2213.92 0.00 2221.66 70.19 0.35
RC103 100 2015.55 2016.28 210.00 2015.55 221.40 2016.28 0.04 2022.06 75.49 0.32
RC104 100 1896.40 1897.04 244.20 1896.40 274.20 1907.56 0.59 1920.20 68.47 1.26
RC105 100 2274.28 2287.51 272.40 2274.28 341.40 2287.51 0.58 2299.23 65.91 1.10
RC106 100 2132.13 2140.86 237.00 2132.13 187.20 2139.36 0.34 2143.93 68.42 0.55
RC107 100 1984.67 1989.34 179.40 1984.67 147.00 1989.34 0.24 1997.33 63.66 0.64
RC108 100 1895.97 1898.96 234.60 1895.97 160.20 1898.96 0.16 1905.85 61.43 0.52

R201 100 1646.78 1646.78 357.60 1646.78 407.40 1646.78 0.00 1658.07 178.63 0.69
R202 100 1501.81 1508.16 549.00 1501.81 433.80 1510.25 0.56 1516.94 196.30 1.01
R203 100 1341.09 1341.09 225.00 1341.09 273.60 1341.09 0.00 1346.55 183.62 0.41
R204 100 1218.14 1218.14 306.60 1218.14 246.60 1218.14 0.00 1222.38 169.45 0.35
R205 100 1418.97 1418.97 436.80 1420.81 388.20 1418.97 0.00 1429.55 176.47 0.75
R206 100 1346.34 1346.34 433.80 1347.41 419.40 1349.12 0.21 1360.02 190.02 1.02
R207 100 1277.58 1277.58 376.80 1278.57 406.80 1277.58 0.00 1282.99 179.80 0.42
R208 100 1197.24 1197.24 259.80 1198.70 328.20 1197.24 0.00 1200.17 167.17 0.24
R209 100 1322.42 1322.42 369.00 1322.42 328.20 1322.42 0.00 1330.11 182.65 0.58
R210 100 1370.41 1374.31 418.20 1370.41 355.80 1376.40 0.44 1382.57 186.79 0.89
R211 100 1219.93 1219.93 407.40 1220.57 468.60 1219.93 0.00 1222.20 169.81 0.19

C201 100 1695.02 1695.02 178.20 1695.02 126.60 1695.02 0.00 1695.02 201.24 0.00
C202 100 1685.24 1685.24 169.80 1685.24 139.80 1685.24 0.00 1685.24 165.84 0.00
C203 100 1681.55 1681.55 201.60 1681.55 154.20 1681.55 0.00 1682.06 160.47 0.03
C204 100 1677.66 1677.66 208.20 1677.66 221.40 1677.66 0.00 1678.07 177.00 0.02
C205 100 1691.36 1691.36 192.60 1691.36 184.20 1691.36 0.00 1691.36 170.75 0.00
C206 100 1689.32 1689.32 179.40 1689.32 191.40 1689.32 0.00 1689.32 165.75 0.00
C207 100 1687.35 1687.35 206.40 1687.35 225.60 1687.35 0.00 1687.35 165.04 0.00
C208 100 1686.50 1686.50 194.40 1686.50 144.60 1686.50 0.00 1686.50 150.51 0.00

RC201 100 1938.36 1938.36 356.40 1941.16 418.80 1938.36 0.00 1943.46 131.74 0.26
RC202 100 1768.04 1772.81 355.20 1768.04 388.20 1772.49 0.25 1773.94 138.32 0.33
RC203 100 1603.55 1604.04 359.40 1603.55 369.00 1604.03 0.03 1622.55 153.21 1.18
RC204 100 1489.27 1490.25 256.80 1489.27 208.20 1490.25 0.07 1492.28 142.89 0.20
RC205 100 1832.53 1832.53 306.60 1833.34 238.80 1832.53 0.00 1836.37 139.21 0.21
RC206 100 1724.41 1725.44 347.40 1724.41 272.40 1725.44 0.06 1736.04 159.45 0.67
RC207 100 1646.37 1646.37 339.00 1650.23 300.60 1644.44 -0.12 1653.60 157.99 0.44
RC208 100 1481.74 1483.20 263.40 1481.74 244.80 1483.20 0.10 1486.01 156.95 0.29

Average 0.09 269.98 0.04 262.76 0.11 117.77 0.42
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Table 26: Results for the FSMTW (minimize distance, fleet C)

VCGP14 KBJL15 HILS-RVRP

Inst. n BKS Best Sol. Avg. T (s) Best Sol. Avg. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

R101 100 1937.38 1951.20 276.00 1937.38 250.20 1951.20 0.71 1951.64 65.13 0.74
R102 100 1762.22 1785.35 175.20 1762.22 193.80 1778.29 0.91 1782.92 70.67 1.17
R103 100 1546.98 1552.34 213.00 1546.98 221.40 1550.73 0.24 1552.81 82.77 0.38
R104 100 1352.37 1355.15 322.20 1352.37 310.20 1355.15 0.21 1366.54 72.12 1.05
R105 100 1681.44 1694.56 195.00 1681.44 247.80 1694.56 0.78 1696.65 69.18 0.90
R106 100 1583.17 1583.17 247.20 1585.65 220.20 1583.17 0.00 1590.23 78.15 0.45
R107 100 1424.37 1428.08 321.60 1424.37 358.80 1428.08 0.26 1444.99 77.80 1.45
R108 100 1314.88 1314.88 319.20 1318.44 286.80 1314.88 0.00 1330.05 71.87 1.15
R109 100 1506.59 1506.59 280.80 1507.10 246.60 1506.59 0.00 1511.16 71.68 0.30
R110 100 1443.37 1443.92 303.60 1443.37 286.80 1439.42 -0.27 1452.53 86.86 0.63
R111 100 1419.43 1420.15 334.80 1419.43 308.40 1423.41 0.28 1439.63 79.32 1.42
R112 100 1327.58 1327.58 298.20 1328.01 280.20 1328.47 0.07 1346.27 71.60 1.41

C101 100 1628.94 1628.94 127.20 1628.94 119.40 1628.94 0.00 1628.94 56.82 0.00
C102 100 1597.66 1597.66 141.00 1597.66 128.40 1597.66 0.00 1597.84 60.67 0.01
C103 100 1596.56 1596.56 172.80 1596.56 159.00 1596.56 0.00 1596.56 65.06 0.00
C104 100 1590.76 1590.76 139.20 1590.76 126.60 1590.76 0.00 1590.76 62.50 0.00
C105 100 1628.94 1628.94 117.60 1628.94 144.60 1628.94 0.00 1628.94 57.33 0.00
C106 100 1628.94 1628.94 123.00 1628.94 104.40 1628.94 0.00 1628.94 55.11 0.00
C107 100 1628.94 1628.94 130.20 1628.94 121.80 1628.94 0.00 1628.94 58.33 0.00
C108 100 1622.75 1622.75 192.00 1622.75 153.60 1622.75 0.00 1628.32 62.69 0.34
C109 100 1614.99 1615.93 232.80 1614.99 178.20 1614.99 0.00 1616.05 70.56 0.07

RC101 100 2033.89 2043.48 263.40 2033.89 249.60 2040.61 0.33 2046.28 63.45 0.61
RC102 100 1847.92 1847.92 246.00 1847.92 241.80 1847.92 0.00 1859.92 70.91 0.65
RC103 100 1646.35 1646.35 251.40 1646.35 250.20 1646.35 0.00 1656.22 77.59 0.60
RC104 100 1518.96 1522.04 338.40 1518.96 308.40 1522.04 0.20 1544.84 67.29 1.70
RC105 100 1884.92 1913.06 240.60 1884.92 274.20 1913.06 1.49 1926.98 64.25 2.23
RC106 100 1753.99 1770.95 226.20 1753.99 206.40 1770.95 0.97 1772.43 65.58 1.05
RC107 100 1601.12 1607.11 244.80 1601.12 208.20 1607.11 0.37 1614.00 63.87 0.80
RC108 100 1516.36 1523.96 201.00 1516.36 218.40 1523.96 0.50 1525.47 60.51 0.60

R201 100 1429.50 1443.41 294.00 1429.50 272.40 1421.78 -0.54 1431.20 176.19 0.12
R202 100 1273.11 1283.16 474.60 1273.11 427.20 1283.86 0.84 1291.28 189.45 1.43
R203 100 1116.09 1116.09 237.00 1116.09 274.80 1116.09 0.00 1119.58 178.95 0.31
R204 100 993.14 993.14 397.80 993.14 408.60 993.14 0.00 995.54 173.31 0.24
R205 100 1193.97 1193.97 439.80 1195.81 372.60 1193.97 0.00 1207.74 174.27 1.15
R206 100 1121.34 1121.34 360.00 1121.34 308.40 1123.43 0.19 1129.96 180.35 0.77
R207 100 1052.58 1052.58 418.20 1052.58 313.80 1055.45 0.27 1061.29 171.75 0.83
R208 100 969.90 969.90 346.80 973.70 328.20 969.90 0.00 974.31 170.43 0.45
R209 100 1094.97 1097.42 356.40 1094.97 338.40 1097.42 0.22 1105.09 175.98 0.92
R210 100 1145.48 1149.85 408.00 1145.48 370.20 1153.08 0.66 1157.78 187.50 1.07
R211 100 994.93 994.93 390.60 994.93 370.20 994.93 0.00 997.74 167.85 0.28

C201 100 1194.33 1194.33 289.20 1194.33 270.00 1194.33 0.00 1194.33 201.61 0.00
C202 100 1185.24 1185.24 154.20 1185.24 141.60 1185.24 0.00 1185.24 168.50 0.00
C203 100 1176.25 1176.25 216.00 1176.25 184.20 1176.25 0.00 1176.41 161.78 0.01
C204 100 1175.37 1175.37 259.20 1175.37 185.40 1175.37 0.00 1175.37 182.77 0.00
C205 100 1190.36 1190.36 267.60 1190.36 270.00 1190.36 0.00 1190.36 176.91 0.00
C206 100 1188.62 1188.62 240.60 1188.62 239.40 1188.62 0.00 1188.62 162.28 0.00
C207 100 1184.88 1184.88 219.60 1184.88 190.20 1184.88 0.00 1185.37 159.37 0.04
C208 100 1186.50 1186.50 179.40 1186.50 172.20 1186.50 0.00 1186.50 156.34 0.00

RC201 100 1623.36 1623.36 408.60 1625.71 360.60 1623.36 0.00 1627.62 125.38 0.26
RC202 100 1445.12 1447.27 317.40 1445.12 247.20 1447.27 0.15 1452.60 140.32 0.52
RC203 100 1273.55 1274.04 269.40 1273.55 220.20 1274.03 0.04 1291.12 152.44 1.38
RC204 100 1157.94 1159.00 360.60 1157.94 308.40 1159.00 0.09 1161.80 152.38 0.33
RC205 100 1512.53 1512.53 314.40 1515.34 300.60 1512.53 0.00 1517.15 136.56 0.31
RC206 100 1395.18 1395.18 235.20 1399.41 196.20 1400.44 0.38 1412.04 161.53 1.21
RC207 100 1314.44 1314.44 374.40 1317.50 328.20 1314.44 0.00 1324.55 154.91 0.77
RC208 100 1140.10 1140.10 408.60 1140.10 359.40 1140.10 0.00 1148.45 151.26 0.73

Average 0.19 273.43 0.03 252.91 0.17 115.54 0.59
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A.11 HFFVRPMBTW

Detailed results obtained for the HFFVRPMBTW instances of (Belmecheri et al, 2013, BPYA13), compared

with the results obtained by the PSO of the same authors and the EBBO of (Berghida and Boukra, 2015,

BB15) (Tables 27-29).

Table 27: Results for the HFFVRPMBTW (Type C)

PSO EBBO HILS-RVRP
BPYA13 BB15

Inst. n BKS Sol. T (s) Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

C101 100 2331.54 2560.02 – 2331.54 – 1348.34 -42.17 1348.34 79.32 -42.17
C102 100 2410.18 2615.32 – 2410.18 – 1344.72 -44.21 1344.72 77.69 -44.21
C103 100 2102.41 2405.30 – 2102.41 – 1343.33 -36.11 1343.33 72.41 -36.11
C104 100 2021.55 2333.95 – 2021.55 – 1332.78 -34.07 1333.68 78.20 -34.03
C105 100 1998.83 2055.90 – 1998.83 – 1348.10 -32.56 1348.10 80.27 -32.56
C106 100 2193.54 2366.05 – 2193.54 – 1348.34 -38.53 1348.34 91.37 -38.53
C107 100 1992.83 1992.83 – 2188.36 – 1348.10 -32.35 1348.10 82.29 -32.35
C108 100 1938.54 1938.54 – 1950.36 – 1348.10 -30.46 1348.10 76.58 -30.46
C109 100 1786.66 2234.79 – 1786.66 – 1342.30 -24.87 1342.30 60.48 -24.87

C201 100 1298.17 1420.62 – 1326.76 – 1172.71 -9.66 1174.37 99.42 -9.54
C202 100 1327.33 1590.20 – 1327.33 – 1172.71 -11.65 1174.06 99.10 -11.55
C203 100 1432.36 1823.84 – 1432.36 – 1160.29 -18.99 1167.44 105.78 -18.50
C204 100 1727.46 1856.26 – 1884.86 – 1162.24 -32.72 1162.24 119.88 -32.72
C205 100 1296.01 1504.98 – 1296.01 – 1167.88 -9.89 1168.89 103.38 -9.81
C206 100 1444.86 1528.31 – 1687.04 – 1163.11 -19.50 1168.35 97.39 -19.14
C207 100 1376.64 1391.91 – 1416.27 – 1166.22 -15.29 1166.32 91.84 -15.28
C208 100 1453.05 1626.96 – 1453.05 – 1166.78 -19.70 1169.48 96.51 -19.52

Average 10.76 2.43 -26.63 88.94 -26.55
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Table 28: Results for the HFFVRPMBTW (Type R)

PSO EBBO HILS-RVRP
BPYA13 BB15

Inst. n BKS Sol. T (s) Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

R101 100 2567.14 2632.13 – 2567.14 – 2239.53 -12.76 2247.28 99.69 -12.46
R102 100 2369.30 2375.41 – 2369.30 – 1988.11 -16.09 2000.44 107.87 -15.57
R103 100 2006.80 2006.80 – 2080.34 – 1658.71 -17.35 1680.60 86.95 -16.25
R104 100 1853.21 1853.21 – 1971.83 – 1444.76 -22.04 1461.90 82.12 -21.12
R105 100 2253.42 2253.42 – 2334.56 – 1873.51 -16.86 1881.50 98.75 -16.50
R106 100 2031.19 2031.19 – 2121.66 – 1699.09 -16.35 1714.60 110.12 -15.59
R107 100 1905.43 1928.90 – 1943.65 – 1546.98 -18.81 1567.01 102.49 -17.76
R108 100 1877.52 1877.52 – 2002.36 – 1392.10 -25.85 1416.40 80.96 -24.56
R109 100 2001.56 2001.56 – 2069.38 – 1621.53 -18.99 1641.62 101.90 -17.98
R110 100 1979.53 1983.98 – 2065.76 – 1551.83 -21.61 1576.86 99.14 -20.34
R111 100 1881.21 1896.70 – 1881.21 – 1524.55 -18.96 1551.63 93.69 -17.52
R112 100 1689.12 1895.77 – 1689.12 – 1404.26 -16.86 1423.15 86.35 -15.75

R201 100 1344.47 1990.47 – 1344.47 – 1637.34 21.78 1661.42 132.41 23.57
R202 100 1922.72 1932.74 – 1941.04 – 1573.33 -18.17 1596.65 157.32 -16.96
R203 100 1736.20 1745.37 – 1910.74 – 1419.67 -18.23 1430.72 141.93 -17.59
R204 100 1522.50 1522.50 – 1876.82 – 1260.50 -17.21 1275.06 154.38 -16.25
R205 100 1753.49 1885.75 – 1753.49 – 1474.12 -15.93 1505.58 138.98 -14.14
R206 100 1758.78 1813.48 – 1792.46 – 1425.15 -18.97 1444.85 153.72 -17.85
R207 100 1650.12 1654.84 – 1806.25 – 1333.60 -19.18 1353.71 141.27 -17.96
R208 100 1536.68 1589.42 – 1737.67 – 1244.82 -18.99 1256.92 155.73 -18.21
R209 100 1729.58 1729.58 – 1798.76 – 1375.12 -20.49 1415.13 136.16 -18.18
R210 100 1754.44 1754.44 – 1868.55 – 1396.01 -20.43 1430.41 125.22 -18.47
R211 100 1615.85 1699.39 – 1641.38 – 1267.12 -21.58 1282.46 117.58 -20.63

Average 3.74 4.58 -16.95 117.60 -15.83

Table 29: Results for the HFFVRPMBTW (Type RC)

PSO EBBO HILS-RVRP
BPYA13 BB15

Inst. n BKS Sol. T (s) Sol. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)

RC101 100 2387.96 2957.49 – 2387.96 – 2314.12 -3.09 2329.56 89.90 -2.45
RC102 100 2464.51 2464.51 – 2664.55 – 2069.34 -16.03 2076.25 84.58 -15.75
RC103 100 2426.88 2426.88 – 2553.62 – 1904.09 -21.54 1927.90 91.91 -20.56
RC104 100 2244.58 2244.58 – 2253.76 – 1691.27 -24.65 1708.22 81.14 -23.90
RC105 100 2385.27 2711.05 – 2385.27 – 2155.60 -9.63 2171.73 86.08 -8.95
RC106 100 2254.16 2495.57 – 2254.16 – 1968.21 -12.69 1987.42 90.58 -11.83
RC107 100 2414.86 2420.42 – 2420.42 – 1809.99 -25.05 1825.15 89.60 -24.42
RC108 100 2166.96 2381.45 – 2166.96 – 1670.53 -22.91 1694.15 70.62 -21.82

RC201 100 2401.11 2401.11 – 2571.17 – 1965.54 -18.14 1998.80 111.73 -16.76
RC202 100 2100.22 2251.39 – 2100.22 – 1782.27 -15.14 1800.03 122.01 -14.29
RC203 100 1931.69 2022.90 – 1941.74 – 1600.20 -17.16 1620.29 121.84 -16.12
RC204 100 1673.10 1827.48 – 1673.10 – 1422.68 -14.97 1428.31 136.25 -14.63
RC205 100 2226.16 2274.91 – 2304.21 – 1846.52 -17.05 1869.31 118.44 -16.03
RC206 100 1953.99 2123.08 – 1953.99 – 1779.05 -8.95 1793.24 131.24 -8.23
RC207 100 1867.97 2084.50 – 1867.97 – 1631.16 -12.68 1636.28 114.72 -12.40
RC208 100 1836.63 1836.63 – 1836.63 – 1396.52 -23.96 1406.85 120.99 -23.40

Average 6.37 1.57 -16.48 103.85 -15.72
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A.12 SDepVRPTW

Detailed results obtained for the SDepVRPTW instances of (Cordeau and Laporte, 2001, CL01), compared

with those found by the ITS1 of (Cordeau and Maischberger, 2012, CM12) and by the HGSADC of (Vidal

et al, 2013b, VCGP13) (Table 30).

Table 30: Results for the SDepVRPTW
ITS1 HGSADC HILS-RVRP
CM12 VCGP13

Inst. n BKS Best Sol. T (s) Best Sol. Avg. T (s) Best Sol. Gap (%) Avg. Sol. Avg. T(s) Avg. Gap (%)
p01a 48 1655.42 1655.42 – 1655.42 13.80 1655.42 0.00 1655.42 18.34 0.00
p02a 96 2904.13 2904.13 – 2904.13 42.00 2904.13 0.00 2906.01 134.18 0.06
p03a 144 3304.13 3317.33 – 3304.13 96.00 3304.91 0.02 3317.04 522.57 0.39
p04a 192 4427.25 4461.13 – 4427.25 351.00 4437.95 0.24 4488.39 1516.05 1.38
p05a 240 5626.42 5663.32 – 5647.76 698.40 5642.37 0.28 5729.89 2505.33 1.84
p06a 288 5627.82 5698.93 – 5637.48 760.80 5658.17 0.54 5710.12 4601.31 1.46
p07a 72 2166.88 2166.88 – 2166.88 25.20 2166.88 0.00 2166.88 64.52 0.00
p08a 144 3873.40 3880.58 – 3873.40 141.00 3873.40 0.00 3887.65 502.51 0.37
p09a 216 4772.55 4818.32 – 4777.61 336.00 4807.58 0.73 4834.70 1196.14 1.30
p10a 288 5817.28 5908.53 – 5858.82 694.80 5882.78 1.13 5926.17 3211.65 1.87
p01b 48 1429.35 1429.35 – 1429.35 13.20 1429.35 0.00 1429.35 16.58 0.00
p02b 96 2479.56 2479.56 – 2479.56 59.40 2479.56 0.00 2481.20 151.82 0.07
p03b 144 2774.30 2781.22 – 2775.61 136.80 2776.45 0.08 2786.42 499.96 0.44
p04b 192 3649.72 3674.53 – 3649.72 394.20 3658.71 0.25 3716.93 1553.47 1.84
p05b 240 4609.20 4613.58 – 4611.16 483.60 4613.45 0.09 4671.35 3276.20 1.35
p06b 288 4716.36 4788.39 – 4729.96 917.40 4780.56 1.36 4828.04 4148.33 2.37
p07b 72 1837.94 1837.94 – 1837.94 30.60 1837.94 0.00 1837.94 69.52 0.00
p08b 144 3144.91 3149.77 – 3149.77 129.00 3144.91 0.00 3153.64 446.55 0.28
p09b 216 3883.94 3937.53 – 3883.94 534.00 3900.17 0.42 3944.60 1191.17 1.56
p10b 288 4927.95 4996.72 – 4932.40 721.80 5007.57 1.62 5070.12 2865.22 2.88

Average 0.56 0.1 328.95 0.34 1424.57 0.97
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Cáceres-Cruz J, Arias P, Guimarans D, Riera D, Juan AA (2014a) Rich vehicle routing problem: Survey.

ACM Computing Surveys 47(2):1–28
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Arrañaga Cruz B, Delgado Orta J (2007) A distributed metaheuristic for solving a real-world scheduling-

routing-loading problem. In: Stojmenovic I, Thulasiram R, Yang L, Jia W, Guo M, de Mello R (eds)

Parallel and Distributed Processing and Applications, Lecture Notes in Computer Science, vol 4742, pp

68 – 77

43



Dantzig GB, Ramser JH (1959) The truck dispatching problem. Management Science 6:80–91

Dell’Amico M, Monaci M, Pagani C, Vigo D (2007) Heuristic approaches for the fleet size and mix vehicle

routing problem with time windows. Transportation Science 41(4):516–526

Derigs U, Vogel U (2014) Experience with a framework for developing heuristics for solving rich vehicle

routing problems. Journal of Heuristics 20(1):75–106

Dominguez O, Juan AA, Barrios B, Faulin J, Agustin A (2016) Using biased randomization for solving

the two-dimensional loading vehicle routing problem with heterogeneous fleet. Annals of Operations

Research 236(2):383–404
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