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Abstract. In this paper we study the classical single machine schedul-
ing problem where the objective is to minimize the weighted number
of tardy jobs. Our analysis focuses on the case where one or more of
three natural parameters is either constant or is taken as a parameter in
the sense of parameterized complexity. These three parameters are the
number of different due dates, processing times, and weights in our set
of input jobs. We show that the problem belongs to the class of fixed
parameter tractable (FPT) problems when combining any two of these
three parameters. We also show that the problem is polynomial-time
solvable when the latter two parameters are constant, complementing
Karp’s result who showed that the problem is NP-hard already for a
single due date.

1 Introduction

In this paper, we analyze the tractability of the NP-hard problem of minimizing
the weighted number of tardy jobs on a single machine when one or more of
three natural parameters is either constant or is taken as a parameter in the
sense of parameterized complexity. This problem is formalized as follows: We
are given a set of n jobs J = {J1, ..., Jn} to be scheduled non preemptively on a
single machine. Associated with each job Jj ∈ J , are three non-negative integers
pj , dj and wj , which represent the processing time, due date and weight of Jj ,
respectively. A schedule (or a solution) to our problem is defined by an ordering,
π : F → {1, . . . , n}, of the jobs in J representing the sequence in which the jobs
are to be processed on the single machine. For a given schedule π of J , the set
of tardy jobs is the set of all jobs Jj whose completion time

∑

π(Ji)≤π(Jj)
pi is
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greater than their due date dj (the complementary set is commonly referred to
as the set of early jobs). Our objective is to compute a schedule that minimizes
the weighted number of tardy jobs. Following the standard three field notations
introduced by Graham et al. [14], we refer to our problem as the 1 ||ΣwjUj

problem, where Uj can be thought of as a binary indicator variable that is equal
to 1 iff Jj is tardy in a corresponding schedule.

The 1 ||ΣwjUj problem is a fundamental problem in the field of combinatorial
optimization in general and in scheduling theory in particular. The problem was
studied already in the late 60s [18], and perhaps even before that. Karp placed
the problem in the pantheon of combinatorial optimization problems by listing it
in his landmark paper from 1972 [16]. There it is shown that the problem is NP-
hard even if all due dates are equal, giving the first NP-hardness proof for any
scheduling problem. The reduction presented in [16] is from the 0-1 Knapsack
problem, and in fact, it is not difficult to show that this reduction works in
both ways. Thus, the 1 ||ΣwjUj problem is a generalization of the 0-1 Knapsack
problem where jobs may have arbitrary due dates.

Besides being the first scheduling problem which was shown to be NP-hard,
the 1 ||ΣwjUj problem also has a focal role in the history of algorithm develop-
ment. The classical algorithm of Lawler and Moore [18] is one of the earliest and
most prominent examples of dynamic programming, and of a pseudo-polynomial
time algorithm. Sahni [25] used the 1 ||ΣwjUj problem as one of the three first
examples to illustrate the important concept of fully polynomial time approx-
imation schemes (FPTAS’s) in the area of scheduling. To that effect, several
generalizations of the 1 ||ΣwjUj problem have been studied in the literature,
testing the limits to which these techniques can be applied [1].

Despite all this, there are not many papers that provide exact algorithms for
solving the 1 ||ΣwjUj problem. As mentioned above, Lawler and Moore [18] and
Sahni [25] provided dynamic programming procedures to solve the problem in
pseudo-polynomial time, showing that the problem is only weakly NP-hard. In
fact, their algorithms run in polynomial-time if either all weights, all processing
times, or all due dates are integer values that are bounded by a polynomial func-
tion in n. Exact algorithms based on a Branch-and-Bound procedure have been
presented by Villarreal and Bulfin [27], Tang [26] and M’Hallah and Bulfin [20].
Moreover, the problem is known to be polynomial-time solvable in a few spe-
cial cases: Moore [22] provided an O(n log n) time algorithm for solving the unit
weight 1 ||ΣUj problem, and Peha [24] presented an O(n logn) time algorithm
for the case where all jobs have equal processing time (see also [6]).

In the next subsection, we present the basic concepts of parameterized com-
plexity theory (for more details we refer the reader to Cygan et al. [8], Downey
and Fellows [10], Flum and Grohe [12], and Niedermeier [23]). This will enable
us to clearly present our research goals, in the subsection that follows. We con-
clude the introduction section by citing some related work, and by providing a
roadmap for the rest of the paper including details about the techniques that
will be used.
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1.1 Basic concepts in parameterized complexity theory

The main objective in parameterized complexity theory is to analyze the
tractability of NP-hard problems with respect to other natural problem parame-
ters, and not only with respect to their input length. For this, problem instances
are ordered pairs of the form (x, k) ∈ {0, 1}∗ × N, where x is a binary string
that denotes the actual input, and k is a numerical value that quantifies the
parameter (or set of parameters). The following definition is the central notion
of parameterized complexity theory.

Definition 1. A problem Π ⊆ {0, 1}∗ × N is fixed-parameter tractable and be-
longs to the complexity class (FPT) if there is an algorithm that can determine
whether any instance (x, k) ∈ {0, 1}∗ ×N is in Π in f(k) · |x|O(1) time, where f

is some computable function that solely depends on k.

The main issue here is to differentiate between those problems that require
f(k) · |x|O(1) time, and those that require |x|f(k) time. To exemplify this dis-
tinction, consider two classical graph theoretic problems Independent Set and
Vertex Cover (see e.g. [13] for formal definitions), both parameterized by the
cardinality of the solution. While there are algorithms for Vertex Cover that run
in O(2kn) time, and even better [23], we do not know any algorithm for Inde-
pendent Set that runs in no(k) time. In fact, parameterized complexity theory
provides convincing evidence that no such algorithm exists. The reader should
note that due to this, we are able to solve Vertex Cover instances with much
larger solution sizes in comparison to Independent Set instances; in particular,
instances with solution size O(lg n) can be solved in polynomial time.

1.2 Parameterized tractability of scheduling problems

Our paper can be considered as another attempt to facilitate the tools of pa-
rameterized complexity into the area of scheduling. Despite the rich amounts of
interesting NP-hard problems the latter area has, and the many successes of the
former in designing tractable algorithms for NP-hard problems, there has been
disappointingly little research in combining the two worlds.

Two early papers by Bodlaender and Fellows [5], and Fellows and Mc-
Cartin [11] studied scheduling problems with precedence constrains. Both these
papers obtain only hardness results for their respective problems under con-
sideration. The first to provide positive results for scheduling problems in the
perspective of parameterized complexity are Mnich and Wiese [21] who showed
that various classical scheduling problems on parallel machines, and on a single
machine with rejection are fixed-parameter tractable with respect to several nat-
ural parameters. Van Bevern et al. [3] study a fixed interval scheduling problem
where jobs are to be scheduled on a set of identical machines working in par-
allel, and show FPT results with respect to several combinations of interesting
structural parameters of the problem. Hermelin et al. [15] study several single
machine two agent scheduling problem, when the number of jobs belonging to
one of the agents is taken as a parameter.
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Additional papers that study the parameterized tractability of scheduling
problems are those by van Bevern et al. [2, 4], Cieliebak et al. [7], and Knop et
al. [17].

1.3 Our contribution

In this paper we present new exact algorithms for the 1 ||ΣwjUj problem. Since
the problem is already known to be pseudo-polynomial time solvable [18, 25], we
focus on the case where the input can contain arbitrary large (i.e., exponential)
integer values. Moreover, our interest will focus on the following three parameters
in our input instance:

– nud = The number of different due dates.
– nup = The number of different processing times.
– nuw = The number of different weights.

An example scenario where the first parameter is relevant is when delivery
costs are high and thus products are batched to only few shipments. In such a
case, each job may be assigned a due date by the marketing department according
to one of the planned delivery dates. An example for the second parameter is
when the number of job types that a manufacturer produces is limited, though
each job might have different importance and a different due date. The last
parameter corresponds to the case where customers are batched into few subsets
according to their importance, and all customers within the same subset are
similarly compensated in case of tardiness.

We consider restricted instances of the 1 ||ΣwjUj problem where one or more
of the above three parameters is relatively small in comparison to the total input
length. It is important to note that any of the parameters may be small even
if the actual due dates, processing times, or weights are large numbers. For
instance, all jobs can have the same processing time of 2n. The first result in
this context is the NP-hardness result mentioned above by Karp, who showed
the the 0-1 Knapsack problem reduces to the special case of 1 ||ΣwjUj where
all due dates are equal.

Theorem 1 ([16]). The 1 ||ΣwjUj problem is NP-hard even for the case where
nud = 1.

Theorem 1 rules out the possibility, under the P 6=NP hypothesis, that
1 ||ΣwjUj is fixed-parameter tractable with respect to nud. That is, we cannot
hope for an algorithm solving the problem with a running-time of f(nud) ·nO(1)

for any computable function f(). Our first result complements this fact. We
show that a fixed-parameter algorithm for 1 ||ΣwjUj is obtainable when com-
bining nud with any of the two remaining parameters nup or nuw. Moreover, we
show that the problem is also fixed-parameter tractable when parameterized by
nup + nuw, positively resolving all cases of parameter combinations.

Theorem 2. The 1 ||ΣwjUj problem is fixed-parameter tractable when param-
eterized by either nud + nup, nud + nuw, or nup + nuw.
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We also complement Theorem 1 in another way. Obviously, the theorem rules
out the possibility for a polynomial-time algorithm for the 1 ||ΣwjUj problem
with a constant number of due dates. Building upon the main idea of Moore [22],
we show that the problem is nevertheless solvable in time O(nnuw+1 lg n) or
O(nnup+1 lg n), showing that the problem is polynomial-time solvable in the case
where either the number of different weights or processing times is constant.

Theorem 3. The 1 ||ΣwjUj problem is polynomial-time solvable when either
nuw or nup is constant.

1.4 Roadmap and techniques

The paper is organized as follows: The proof of Theorem 2 is split into three
sections. In Section 2 we provide a fixed-parameter algorithm with respect to
parameter nud+nup. The algorithm is based on providing a mixed-integer convex
programming (MICP) formulation to the problem with a fixed number of integer
variables, and then applying Dadush et al. algorithm for solving MICPs with a
parameterized number of integer variables in FPT time [9]. We then show, in
Section 3, how our algorithm can be modified to handle parameter nud + nuw.
In Section 4 we apply the Dadush et al. algorithm in a different way to handle
parameter nup + nuw, by showing that a natural integer linear programming
formulation of the 1 ||ΣwjUj can be relaxed to an MILP with O(nup + nuw)
variables, and that a polynomial-time rounding procedure can lift solutions of
this MILP back to solutions for our original problem. The proof of Theorem 3
is given in Sections 5 and 6. Section 5 provides a polynomial-time algorithm
for constant values of nuw through a somewhat involved dynamic programming
procedure. As the main ideas are similar for parameter nup, we only give a sketch
of the algorithm for this parameter in Section 6.

2 An FPT algorithm for parameter nud + nup

In this section we prove the first part of Theorem 2, and show that the 1 ||ΣwjUj

problem is fixed-parameter tractable with respect to parameter k = nud + nup.
This is done by first providing an MICP formulation for the problem with O(k)
integer variables. The proof then follows directly from the result by Dadush et al.
[9] that show that the problem of solving an MICP is fixed-parameter tractable
with respect to the number of integer variables.

Recall that J denotes our input set of jobs. We begin by partitioning J into
k classes, S1, . . . ,Sk, such that all jobs in the same class have equal due dates
and processing times. We slightly abuse notation and use di and pi to denote
the due date and processing time of all jobs in Si, 1 ≤ i ≤ k. Moreover, we let
ni = |Si| denote the number of jobs in each Si.

We begin with two key observations that will be useful for formulating our
MICP. The first can be considered by now as folklore (see, e.g., [1]), while the
second follows from an easy pairwise interchange argument.
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Lemma 1. There exist an optimal schedule where the early jobs are scheduled
first in a non-decreasing order of their due-dates (i.e., according to the earliest
due date (EDD) rule), while the tardy jobs are scheduled last in an arbitrary
order.

Lemma 2. Suppose π is an optimal schedule which includes yi tardy jobs from
each Si, 1 ≤ i ≤ k. Then these tardy jobs are the yi least weighted jobs in Si.

Proof. By contradiction, consider an optimal schedule π that does not follow
the lemma statement, i.e., in π there are two jobs Jℓ, Jm ∈ Si with wℓ < wm,
and Jm is tardy while Jℓ is not. Now, construct an alternative schedule π′ out
of π by interchanging the positions of jobs Jℓ and Jm. Since both jobs belong
to the same class Si, they share the same processing time and due date. Thus,
Jℓ is tardy in π′ while Jm is not. The fact that the completion time of all other
jobs remains unchanged, implies that ΣwjUj(π

′) − ΣwjUj(π) = wℓ − wm < 0,
contradicting our assumption that π is an optimal schedule.

Following Lemma 1, we may assume without loss of generality that the job
sets Si are indexed according to the EDD rule (i.e., that d1 ≤ d2 ≤ . . . ≤
dk). Moreover, adhering to Lemma 2, we order the jobs in each set Si in non-
decreasing order of weights. Thus, letting Ji,j denote the j’th job in Si, we have
wi,1 ≤ wi,2 ≤ . . . ≤ wi,ni

, for all i = 1, . . . , k.
We are now ready to present our MICP formulation. Let xi and yi be two

integer non-negative variables, respectively, representing the number of early
jobs and tardy jobs in job set Si, for each i = 1, . . . , k. To make sure that the
number of early and tardy jobs in each set is equal to the total number of jobs
in the set, we include the following constraint for each i = 1, . . . , k:

xi + yi = ni. (1)

Moreover, to make sure that indeed it is feasible to have xi early jobs in Si, we
add the following constraints as well for each i = 1, . . . , k:

i
∑

j=1

pjxj ≤ di. (2)

Note that any feasible solution with respect to the k constraints of type (1)
and the k constraints of type (2) corresponds to a feasible schedule where indeed
xi and yi jobs are scheduled prior and after di in each Si. Now, let zi be a new
non-negative (and non-integer) variable representing the total weight of all tardy
jobs in Si. By Lemma 2 and the ordering of jobs within each set Si, we have
that zi =

∑yi

j=1 wi,j . Therefore, the objective of our MICP, corresponding to the
total weight Z of the set of tardy jobs is

Z =
k

∑

i=1

zi =
k
∑

i=1

yi
∑

j=1

wi,j . (3)
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Accordingly, our problem can be solved by solving formulation Π where we
need to minimize the objective in (3) subject to the set of linear constraints in
(1) and (2).

Lemma 3. The objective in (3) is a convex function.

Proof. As the sum of convex functions is a convex function, to prove that (3) is
indeed a convex function, it is enough to show that each zi = zi(yi) =

∑yi

j=1 wi,j

function (i = 1, ..., k) is a convex function. To do so, it is enough to show that
f(yi) = zi(yi + 1) + zi(yi − 1) − 2zi(yi) ≥ 0. It is easy to show that f(yi) =
wi,yi+1

− wi,yi
, which is indeed a non-negative value due to the fact that we

order the jobs in each Si such that wi,1 ≤ wi,2 ≤ . . . ≤ wi,ni
, for all i = 1, . . . , k.

Since formulation Π includes only O(k) integer variables, a set of linear
constraints and a convex objective function, we can use Dadush’s et al. algorithm
for MICPs with a parameterized number of integer variables [9], to solve our
problem in FPT time with respect to k. Thus, we complete the proof of the first
part of Theorem 2.

We next show that there is an equivalent mixed integer linear programming
(MILP) formulation to formulation Π . This will enable us to use an alternative
FPT algorithm for our problem by applying Lenstra’s classical FPT algorithm
for solving MILPs with a parameterized number of integer variables [19]. Since
the set of constraints in (1) and (2) are linear, we need only to deal with the
non-linearity of the objective function. To overcome this difficulty we replace
the objective function in (3) by a linear objective function of minimizing Z =
∑k

i=1 zi. Then, correspond to each set Si (i = 1, ..., k), we include a set of ni

linear constraints. These constraints enforce stricter and stricter lower bounds on
the values of zi, where the largest of these ensures that zi gets its intended value.
Accordingly, for each i = 1, . . . , k, we add the following set of ni constraints:

zi ≥ (yi − j + 1)wi,j +

j−1
∑

ℓ=1

wi,ℓ for all j = 1, . . . , ni. (4)

Consider now the problem Π ′ where we wish to minimize the linear function
∑k

i=1 zi subject to the constraints of type (1),(2), and (4). The following lemma
shows that indeed an optimal solution for Π ′ satisfies our intended meaning for
each variable zi, which further implies that Π and Π ′ are equivalent.

Lemma 4. In an optimal solution for Π we have zi =
∑yi

j=1 wi,j for each i =
1, . . . , k.

Proof. Consider first the set of ni constraints of type (4) for some fixed i ∈
{1, . . . , k}. Due to the fact that the jobs in Si are ordered in non-decreasing
order of weights, we know that for each j ∈ {1, . . . , yi} we have

(yi − j + 1)wij +

j−1
∑

ℓ=1

wi,ℓ ≤ (yi − j)wi,j+1 +

j
∑

ℓ=1

wi,ℓ,
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and for each j ∈ {yi + 1, . . . , ni} we have

(yi − j + 1)wij +

j−1
∑

ℓ=1

wi,ℓ ≥ (yi − j)wi,j+1 +

j
∑

ℓ=1

wi,ℓ.

The fact that both inequalities above hold leads to the conclusion that the
maximal value of the right side of all ni constraints of type (4) corresponding
to Si is when either j = yi or j = yi + 1. Note that in both cases this term is
equal to

∑yi

j=1 wi,j , and so we have zi ≥
∑yi

j=1 wi,j . Since zi does not appear
in any other constraint, and since the objective in Π is to minimize

∑

i zi, this
inequality holds in equality in any optimal solution for Π .

The fact that Π ′ is a MILP which is equivalent to Π implies that we can
also use Lenstra’s FPT algorithm for MILPs with a parameterized number of
integer variables [19], as a tool to solve our problem in FPT time.

3 An FPT algorithm for parameter nud + nuw

In this section we prove the second part of Theorem 2 by providing a fixed-
parameter algorithm with respect to k = nud + nuw. Our algorithm for this pa-
rameter is very similar to the nud+nup case. Again, we show that the 1 ||ΣwjUj

problem can be formalized as an MICP with O(k) integer variables, and apply
Dadush’s et al. FPT algorithm for MICPs with a parameterized number of vari-
ables [9].

Partition the set of input jobs J into k classes, S1, . . . ,Sk, such that all jobs
belonging to Si have the same due date di and same weight wi. Let ni = |Si|
for each i = 1, . . . , k. To formulate our MICP, we use Lemma 1 along with the
observation below:

Lemma 5. Consider an optimal schedule that follows the structure in Lemma 1
and includes yi tardy jobs from each Si, 1 ≤ i ≤ k. Then there is an optimal
schedule that follows Lemma 1 such that for each i, 1 ≤ i ≤ k, the set of tardy
jobs includes the yi jobs in Si with the largest processing time.

Proof. Consider an optimal schedule π that follows the structure in Lemma 1,
and does not follow the structure in the above lemma. That is, π includes at
least one pair of jobs Jℓ, Jm ∈ Si with pℓ < pm, and Jm is early in π while Jℓ
is not. Now, construct an alternative schedule π′ from π by interchanging the
positions of jobs Jℓ and Jm. The fact that pℓ < pm implies that Jℓ is completed
in π′ prior to the completion time of Jm in π, and that the completion time of
Jm in π′ is equal to the completion time of Jℓ in π. As both jobs share the same
due date and weight, and the completion time of each of the other jobs in π′

is not later then its completion time in π, we can conclude that schedule π′ is
optimal as well. By performing a similar pairwise interchange on any such pair
of jobs, we end up with a schedule as in the statement of the lemma.
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Following Lemma 1, we may assume without loss of generality that d1 ≤
d2 ≤ . . . ≤ dk. Following Lemma 5, we sort each Si in non-decreasing order of
processing times, so that if Ji,j is the j’th job in Si, then pi,1 ≤ pi,2 ≤ . . . ≤ pi,ni

,
for each i = 1, . . . , k.

As in Section 2, let xi and yi, respectively, be non-negative integer variables
that represent the number of early jobs and tardy jobs in Si, for i = 1, . . . , k.
The objective of our MICP is given by

Z =

k
∑

i=1

wiyi. (5)

Again, we add the k constraints of type (1) to ensure that the pairs xi, yi sum
up appropriately. Moreover, we add k new non-negative non-integer variables
z1, . . . , zk, where zi represents the total processing time of the early jobs in Si.
To ensure that indeed it is feasible to have xi early jobs in each set Si, the
following constraint is included for each i = 1, . . . , k:

i
∑

j=1

zj ≤ di. (6)

According to Lemma 5 and the ordering of each Si (i = 1, ..., k), we have
that

zi =

xi
∑

j=1

pi,j . (7)

Accordingly, our problem can be solved by solving formulation Π where we
need to minimize the linear objective in (5) subject to the set of linear constraints
in (1) and (6), and the set of constraints in (7).

Lemma 6. Each of the k constraints in (7) is a convex function.

Proof. Let zi = zi(xi) =
∑xi

j=1 pi,j (i = 1, ..., k). To prove that zi(xi) is a convex
function, it is enough to show that f(xi) = zi(xi+1)+zi(xi−1)−2zi(xi) ≥ 0. It is
easy to show that f(xi) = pi,xi+1

−pi,xi
, which is indeed a non-negative value due

to the fact that we order the jobs in each Si such that pi,1 ≤ pi,2 ≤ . . . ≤ pi,ni
.

Following Lemma 6; the fact that all other functions in Π are linear; and
that Π includes O(k) integer variables leads to the the conclusion that we can
use Dadush’s et al FPT algorithm for MICPs with a parameterized number of
integer variables [9] to solve our problem, completing the proof of the second
part of Theorem 2.

Here as well, we can provide an equivalent MILP formulation (denoted by
Π ′) to formulation Π . This enables us to use an alternative FPT algorithm for
our problem by applying Lenstra’s classical FPT algorithm for solving MILPs
with a parameterized number of integer variables. Since the objective in (5) and
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the constraints in (1) and (6) are all linear, we need only to deal with the non-
linearity of the set of constraints in (7). To overcome this difficulty, for each
i = 1, ..., k we replace the convex constraint in (7) by the following set of linear
constraints:

zi ≥ (xi − j + 1)pi,j +

j−1
∑

ℓ=1

pi,ℓ for all j = 1, . . . , ni. (8)

Accordingly, in problem Π ′ our goal is to minimize the objective in (5) sub-
ject to the set of linear constraints in (1), (6) and (8). Therefore, Π ′ is an MILP
formulation. The following lemma complete the proof that Π ′ is indeed equiva-
lent to Π (the proof of the following lemma is very similar to that of Lemma 4,
and is therefore left to the reader).

Lemma 7. In an optimal solution for Π we have zi =
∑xi

j=1 pi,j, for each
i = 1, . . . , k.

The fact that Π ′ is an MILP which is equivalent to Π and includes only
O(k) integer variables, implies that we can use also Lenstra’s FPT algorithm for
MILPs with a parameterized number of integer variables [19], as a tool to solve
our problem in FPT time.

4 An FPT algorithm for parameter nup + nuw

Next we consider the third and final part of Theorem 2 concerning parameter
k = nup + nuw. Our algorithm for this case will be slightly different from the
previous two cases. We again use the powerful tool of MILPs, but this time in an
alternative manner. First we will formulate the problem as an integer linear pro-
gram (ILP) that has O(n+k) integer variables. Then we by relaxing the a subset
of the integer variables we obtain a MILP relaxation of the original formulation
with O(k) integer variables. Finally, we prove that any optimal solution to the
MILP relaxation can be rounded in linear time to a feasible solution for the ILP
without any lose in the objective value.

Similar to previous sections, we begin by partitioning J into k subsets,
S1, . . . , Sk, such that all jobs belonging to set Si have the same processing time
pi, and weight wi. Moreover, let ni = |Si| for i = 1, . . . , k as usual. Our ILP
formulation is based on exploiting the following lemma:

Lemma 8. If xi is the optimal number of early jobs in Si then there exists an
optimal solution in which the xi jobs with the latest due date in Si are early.

Proof. Consider an optimal schedule π that includes at least one pair of jobs
Jℓ, Jm ∈ Si with dℓ < dm, and Jm is tardy in π while Jℓ is not. Note that
in π, job Jℓ is scheduled prior to Jm, as otherwise Jℓ is tardy as well. Now,
construct an alternative schedule π′ from π by interchanging the positions of
jobs Jℓ and Jm. The fact that pℓ = pm implies that Jℓ is completed in π′ at the
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completion time of Jm in π, and that the completion time of Jm in π′ is equal
to the completion time of Jℓ in π. Thus, based on the fact that dℓ < dm, we can
conclude that Jm is early while Jℓ is late in π′. The fact that both jobs share
the same weight, and that the completion time of each of the other jobs remains
unchanged leads to the conclusion that π′ is optimal as well. By preforming a
similar pairwise interchange on any such pair of jobs, we end up with a schedule
that satisfies the lemma above.

Let d1, . . . , dnd
be set of due dates in our input job set J , and assume without

loss of generality that d1 ≤ d2 ≤ . . . ≤ dnd
. Moreover, let δi,j be the number

of jobs in Si having a due date of dj , for i = 1, . . . , k and j = 1, . . . , nd. We
present an ILP formulation for the 1 ||ΣwjUj problem, denoted by Π1, which
has O(n + k) integer variables. For this, define first a set of k non-negative
integer variables y1, . . . , yk representing the number of tardy jobs in each Si.
The objective function of Π1 is to minimize the total weighted number of tardy
jobs given by Z =

∑k

i=1 wiyi.
For i ∈ {1, . . . , k} and j ∈ {1, . . . , nd}, let xi,j be an integer variable repre-

senting the number of early jobs in Si that have a due date of dj . By definition,
we have that

xi,j ≤ δi,j for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , nd}, (9)

and that

ni −
nd
∑

j=1

xi,j = yi for all i ∈ {1, . . . , k}. (10)

Finally, to make sure that each early job is completed not later then its corre-
sponding due date, we include the following set of constraints:

k
∑

i=1

ℓ
∑

j=1

pixi,j ≤ dℓ for all ℓ ∈ {1, . . . , nd}. (11)

Thus, Π1 is the problem of minimizing Z =
∑

iwiyi subject to all constraints
of type (9),(10), and (11). Note that Π1 is indeed an ILP formulation for the
1 ||ΣwjUj problem. However it has too many integer variables to apply either
Dadush’s et al. or Lenstra’s algorithm directly. To circumvent this, we define
an MILP Π2 where we relax that constraint that all the xi,j ’s must be integer,
and only require that they have to be non-negative. In this way, Π2 is an MILP
relaxation of Π1 with O(k) integer variables, and we can compute an optimal
solution for Π2 in FPT time with respect to k using either Dadush’s et al. or
Lenstra’s algorithm.

Let (x∗, y∗), where x∗ = (x∗
i,j) and y∗ = (y∗i ) for i ∈ {1, . . . , k} and

j ∈ {1, . . . , ℓ}, be an optimal solution for Π2, and let x∗
i =

∑nd

j=1 x
∗
i,j for

i ∈ {1, . . . , k}. Note that x∗
i is an integer value for i ∈ {1, . . . , k} due to (10)

and the fact that both ni and yi are integer values. Now, if (x∗, y∗) is a feasible
solution for Π1 (i.e., all x∗

i,j are assigned integer values), then (x∗, y∗) is also
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an optimal solution for Π1. Otherwise, the value of some of the x∗
i,j variables is

not integer. In this case, we use the following rounding procedure to obtain an
alternative optimal solution (x̃, y∗) for Π2 which will be feasible also for Π1:

Rounding Procedure: For each i = 1, . . . , k, let ri be the integer satisfying

nd
∑

j=ri+1

δi,j ≤ x∗
i <

nd
∑

j=ri

δi,j .

Define

x̃i,j =











0 for j = 1, . . . , ri − 1,

x∗
i −

∑nd

j=ri+1 δi,j for j = ri,

δi,j for j = ri + 1, . . . , nd.

Lemma 9. (x̃, y∗) is an optimal solution for Π1.

Proof. Note that (x̃, y∗) and (x∗, y∗) have the same objective value in Π2. Thus,
to show that (x̃, y∗) is an optimal solution for Π1, it is enough to show that it
is feasible in Π1.

First, observe that the values of all variables in (x̃, y∗) is integer, since the
value of each x̃∗

i,j is defined by the integer variable x∗
i and the integers δi,j for

j = 1, . . . , nd. Thus, it remains to argue that (x̃, y∗) satisfies all constraints of
type (9), (10), and (11). Note that by definition of x̃, we have x̃i,j ≤ δi,j for each
i ∈ {1, ..., k} and j ∈ {1, ..., nd}, and so (x̃, y∗) satisfies all constraints of type
(9). Thus, the only interesting cases to consider are constraints of type (10) and
of type (11).

Consider an optimal solution (x∗, y∗) for Π2. By definition of x̃, we have for
each i = 1, . . . , k:

x̃i =

nd
∑

j=1

x̃i,j =
∑ri−1

j=1 x̃i,j + x̃i,ri +
∑nd

j=ri+1 x̃i,j =

0 + (x∗
i −

∑nd

j=ri+1 δi,j) +
∑nd

j=ri+1 δi,j = x∗
i =

nd
∑

j=1

x∗
i,j .

Thus,
∑nd

j=1 x̃i,j =
∑nd

j=1 x
∗
i,j . Since (x∗, y∗) satisfies all constraints of type (10),

we have

ni −
nd
∑

j=1

x̃i,j = ni −
nd
∑

j=1

x∗
i,j = y∗i

for each i = 1 . . . , k, and so (x̃, y∗) also satisfies all constrains of type (10).

Next, observe that the vector of variables x̃ minimizes the value of
∑j

ℓ=1 xi,ℓ

for each j = 1, ..., nd, subject to the restriction that
∑nd

j=1 xi,j = x∗
i and xi,j ≤

δi,j for all i = 1, . . . , k and j = 1, . . . , nd. Therefore, since x∗ is also subject to
these restrictions, we have

k
∑

i=1

j
∑

ℓ=1

pix̃i,ℓ ≤
k

∑

i=1

j
∑

ℓ=1

pix
∗
i,ℓ ≤ dj ,
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and so (x̃, y∗) satisfies all constraints of type (11) as well.

5 A polynomial-time algorithm for constant nuw

In this section we provide an O(nnuw+1 lgn) time dynamic programming al-
gorithm for the 1 ||ΣwjUj problem, proving the first part of Theorem 3. Let
w1, . . . , wnuw

denote the set of all different weights of J . We say that job
Jj ∈ J is of type i if its weight is wi. Furthermore, we assume that the
jobs in J = {J1, . . . , Jn} are ordered according to the EDD rule, and so
d1 ≤ d2 ≤ . . . ≤ dn.

Throughout the section we will only be concerned with schedules that satisfy
the properties of Lemma 1. That is, schedules where all early jobs are scheduled
first in an EDD order followed by the tardy jobs which are scheduled arbi-
trarily. Consider such a schedule πj : Jj → {1, . . . , j} for the set of jobs Jj =
{J1, . . . , Jj}, for some j < n. We say that a schedule πj+1 : Jj+1 → {1, . . . , j+1}
is an extension of πj if πj+1(Ji) = πj(Ji) for every early job Ji in πj . For a pair
of schedules π1

j , π
2
j : Jj → {1, . . . , j}, we say that π1

j dominates π2
j if an optimal

extension of π1
j has an objective value not greater than an optimal extension of

π2
j . We have the following elimination property:

Lemma 10. Let π1
j and π2

j be two schedules for Jj, both with ei early jobs of type
i for each i = 1, . . . , nuw. Moreover, let P1 and P2 denote the total processing
time of the e =

∑nuw

i=1 ei early jobs of π1
j and π2

j , respectively. If P1 ≤ P2, then

π1
j dominates π2

j .

Proof. First note that the two schedules have the same partial objective value
of Σnuw

i=1 wi(ni,j − ei), where ni,j is the number of jobs of type i in job set Jj =
{J1, ..., Jj}. Consider now an optimal extension of π2

j to a schedule π2
j+1. Then

π2
j+1(Jj+1) ≥ e + 1 by the structure of Lemma 1. Let π1

j+1 be an extension of

π1
j obtained by setting π1(Jj+1) = e + 1. The fact that P1 ≤ P2 implies that if

Jj+1 is early in π2
j+1, it is also early in π1

j+1. Therefore, π
1
j+1 has an objective

value not greater than that of π2
j+1.

Let us say that a schedule π is of category (e1, . . . , enuw
) ∈ {1, . . . , n}nuw ,

if there are exactly ei early jobs of type i in π, for each i = 1, . . . , nuw. Based
on Lemma 10, we next present a dynamic programming algorithm that con-
structs the set of all schedules that dominate all other schedules in their cat-
egory, for each category (e1, . . . , enuw

) and each subset of jobs Jj . To do so,
let Pj(e1, . . . , enuw

) denote the minimum total processing time of the early jobs
among all schedules for Jj of category (e1, . . . , enuw

).
To compute the values Pj(e1, . . . , enuw

), we maintain data structures that
allow us some bookkeeping. For each job index j and category (e1, . . . , enuw

), we
maintain a heap Hi,j(e1, . . . , enuw

) that contains the processing times of ei early
jobs of type i. These processing times will be kept as small as possible throughout
the computation, so that they correspond to the minimum total processing times
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of type i early jobs in any schedule for Jj of category (e1, . . . , enuw
). A standard

implementation of Hi,j(e1, . . . , enuw
) allows us to insert or remove an element

from Hi,j(e1, . . . , enuw
) in O(lg n) time, as well as obtain the maximum value

hi,j(e1, . . . , enuw
) of Hi,j(e1, . . . , enuw

) in O(1) time.
Our dynamic program computes the values Pj(e1, . . . , enuw

) in increasing j

and e1, . . . , enuw
, using the maximum values of the heaps computed in previous

steps. Assume that job Jj is of type i. We consider the following two cases to
compute Pj(e1 . . . , enuw

) :

– Pj−1(e1, . . . , ei − 1, . . . , enuw
) + pj > dj : In this case we can only use Jj to

replace the early job of type i with the maximum processing time in a sched-
ule of the same category for Jj−1. Accordingly, we set

Pj(e1 . . . , enuw
) = Pj−1(e1, . . . , enuw

) + min{0, pj − hi,j−1(e1, . . . , enuw
)}.

We construct the set of k heaps corresponding to this value in the natural
manner. We first set Hi0,j(e1 . . . , enuw

) = Hi0,j−1(e1 . . . , enuw
) for all

i0 = 1, . . . , k. Then, if pj < hi,j(e1 . . . , enuw
), we remove hi,j(e1 . . . , enuw

)
from Hi,j(e1 . . . , enuw

), and add pj instead.

– Pj−1(e1, . . . , ei − 1, . . . , enuw
) + pj ≤ dj : In this case, we can also safely add

Jj to set of early jobs of the schedule corresponding to Pj−1(e1, . . . , ei −
1, . . . , enuw

), placing him last among all early jobs. Therefore, we have

Pj(e1 . . . , enuw
) = min

{

Pj−1(e1, . . . , enuw
) + min{0, pj − hi,j−1(e1, . . . , enuw

)},

Pj−1(e1, . . . , ei − 1, . . . , enuw
) + pj .

In the first case of this recursion, we construct the set of k heaps as above.
In the second case, we first set Hi0,j(e1, . . . , enuw

) = Hi0,j(e1, . . . , ei −
1, . . . , enuw

) for all i0 = 1, . . . , k. We then add pj to Hi,j(e1, . . . , enuw
).

We implement the above recursion and update the heaps accordingly for all
j ∈ {0, . . . , n} and ei ∈ {0, . . . , ni,j}, where ni,j is the number of jobs of type i

in Jj . The base cases of the recursion are given by

P0(e1 . . . , enuw
) =

{

0 : e1 = e2 = · · · = enuw
= 0,

∞ : otherwise.

The heaps are initialized by Hi,0(0, . . . , 0) = ∅ for all i ∈ {1, . . . , nuw}. At the
end of the dynamic programming implementation, the optimal solution value is

Z∗ = min

{

nuw
∑

i=1

wi(ni − ei) : Pn(e1, e2, . . . , enuw
) < ∞

}

.

This completes the description of our algorithm. The next three lemmas
prove its correctness. In the first we show that each entry Pj(e1, . . . , enuw

) 6= ∞
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corresponds to an actual schedule of Jj of category (e1, . . . , enuw
), and in the

second we show that this schedule has minimum total processing time of early
jobs among all schedules for Jj of the same category. The last lemma shows that
if the entry equals ∞, then there is no schedule for Jj within that category.

Lemma 11. Each entry Pj(e1, . . . , enuw
) 6= ∞ computed by the algorithm cor-

responds to a schedule for Jj of category (e1, . . . , enuw
) where the total processing

time of early jobs equals Pj(e1, . . . , enuw
). Moreover, for each i0 ∈ {1, . . . , nuw},

the values in Hi0,j(e1, . . . , enuw
) correspond to the processing times of the ei0

early jobs of type i0 in this schedule.

Proof. The proof is by induction on j. The base case of j = 0 is immediate, so
assume that j > 0, and that the lemma holds for j − 1. Let (e1, . . . , enuw

) be
some category, and let i be the type of job Jj . Furthermore, let Pj , P

1
j−1 and

P 2
j−1 be shorthand notation for Pj(e1, . . . , enuw

), Pj−1(e1, . . . , ei − 1, . . . , enuw
)

and Pj−1(e1, . . . , enuw
), respectively. Then our inductive hypothesis holds for

both P 1
j−1 and P 2

j−1, and so let π1
j−1 and π2

j−1 respectively denote the two
corresponding schedules promised by this hypothesis. We show how to construct
a schedule πj corresponding to Pj from both π1

j−1 and π2
j−1. Let J ∈ Si ∩ Jj−1

denote the job with the maximum processing time among all early jobs of type
i in π1

j−1, and let p and d respectively denote its processing time and due date.
By induction, we know that p = hi,j−1(e1, . . . , ei − 1, . . . , enuw

), and since Jj is
ordered according to the EDD rule, we also know that d ≤ dj . We now consider
both cases of the recursion.

Suppose P 1
j−1+pj > dj . If p ≤ pj , then Pj = P 2

j−1 by the above recursion, and

so in this case we construct πj by setting πj(Jℓ) = π2
j−1(Jℓ) for all ℓ = 1, . . . , j−1,

and πj(Jj) = j. Clearly, πj is of category (e1, . . . , enuw
), the total processing

time of early jobs in πj equals Pj , and each heap Hi0,j(e1, . . . , enuw
) contains

the correct values corresponding to πj . If p > pj , then Pj = P 2
j−1 + p − pj. In

this case, πj schedules all early jobs in π2
j−1 apart from J first, maintaining their

order in π2
j−1, then it schedules Jj , and then all remaining jobs (the tardy jobs in

π2
j−1 and J) are scheduled in an arbitrary order. As pj ≤ p and dj ≥ d, we know

that Jj is early in πj , and so πj is also of category (e1, . . . , enuw
). Thus, the total

processing time of early jobs in πj equals Pj , and each heap Hi0,j(e1, . . . , enuw
)

contains the correct values corresponding to πj in this case as well.
Suppose P 1

j−1 + pj ≤ dj . If Pj = P 2
j−1 +min{0, pj − p}, then we construct πj

as above. Otherwise, Pj = P 1
j−1 + pj . In this case we construct πj from π1

j−1 by

scheduling Jj immediately after all early jobs in π1
j−1, followed by all tardy jobs

in π1
j−1. Clearly all early jobs in π1

j−1 are also early in πj , and as P 1
j−1+pj ≤ dj ,

so is Jj . Thus, πj satisfies the requirement of the lemma.

Lemma 12. The schedule corresponding to each entry Pj(e1, . . . , enuw
) 6= ∞ in

Lemma 11 dominates all schedules for Jj in its category.

Proof. According to Lemma 10, it is enough to show that the schedule corre-
sponding to each entry Pj(e1, . . . , enuw

) 6= ∞ has minimum total processing time
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of early jobs among all schedules for Jj of the same category. We prove this by
induction on j. The base case j = 0 is trivial, so we assume that j > 0 and
that the lemma holds for j− 1. Let (e1, . . . , enuw

) be some category, and let i be
the type of job Jj . Furthermore, let Pj , P

1
j−1 and P 2

j−1 be shorthand notation
for Pj(e1, . . . , enuw

), Pj−1(e1, . . . , ei − 1, . . . , enuw
) and Pj−1(e1, . . . , enuw

), re-
spectively, and π∗

j denote a schedule for Jj of category (e1, . . . , enuw
) with total

processing time of early jobs P ∗
j which is minimal among all schedules for Jj in

its category. To complete the proof we argue that Pj ≤ P ∗
j .

Let π∗
j−1 be the schedule for Jj−1 obtained by removing Jj from π∗

j and
maintaining the order among all remaining jobs, and let P ∗

j−1 denote the total
processing time of early jobs in this schedule. Suppose first that Jj is tardy in
π∗
j . Then π∗

j−1 is of category (e1, . . . , enuw
), and so P 2

j−1 ≤ P ∗
j−1 = P ∗

j by our

inductive hypothesis on P 2
j−1. Since Pj ≤ P 2

j−1 holds in the above recursion,
we have Pj ≤ P ∗

j . If Jj is early in π∗
j , then P ∗

j−1 is of category (e1, . . . , ei −

1, . . . , enuw
), and so P 1

j−1 ≤ P ∗
j−1. By the recursive formula we have Pj ≤ P 1

j−1+

pj , and so Pj ≤ P 1
j−1 + pj ≤ P ∗

j−1 + pj = P ∗
j .

Lemma 13. If Pj(e1, . . . , enuw
) = ∞ then there is no schedule of category

(e1, . . . , enuw
) for the job set Jj.

Proof. Suppose that the lemma is false. Let Pj(e1, . . . , enuw
) be an entry which

is a counter example with minimum j, and let π∗
j be a schedule for Jj of category

(e1, . . . , enuw
). Clearly j > 0, and by the minimality of j there is no schedule

for Jj−1 of the same category. Thus, Jj must be early in π∗
j . Let π∗

j−1 be the
schedule for Jj−1 that is obtained from π∗

j by omitting Jj . Then if Jj is of type
i, the schedule π∗

j−1 is of category (e1, . . . , ei − 1, . . . , enuw
). By minimality of

j, we have Pj−1(e1, . . . , ei − 1, . . . , enuw
) 6= ∞, and so by Lemma 11 and 12 our

algorithm computes a schedule πj−1 for Jj−1 of category (e1, . . . , ei−1, . . . , enuw
)

which dominates π∗
j−1. But this is a contradiction since π∗

j−1 can be extended
to a schedule with a better objective function than any extension of πj−1.

Note that running time of our algorithm is dominated by the dynamic pro-
gram implementation. There are O(nnuw+1) different Pj(e1, e2, . . . , enuw

) entries
to compute. Each entry requires O(lg n) time, assuming we reuse the heaps for
Jj−1 of the same category. Thus, the total running time of our algorithm can
be bounded by O(nnuw+1 lgn), and the first part of Theorem 3 holds.

6 A polynomial-time algorithm for constant nup

In this section we show how to modify the algorithm of Section 5 to handle
parameter nup. Due to space constraints, we only give a brief sketch. In the case
of parameter nup, we have nup types of jobs, and jobs of the same type have
the same processing time. As usual, we start by renumbering the jobs according
to the EDD rule, and so we can assume d1 ≤ d2 ≤ . . . ≤ dn. The eliminating
property we use in this case is as follows (proof omitted):
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Lemma 14. Let π1
j and π2

j be two schedules of the same category for Jj, and let

W1 and W2 denote the total weight of the early jobs in π1
j and π2

j , respectively.

If W1 ≥ W2, then π1
j dominates π2

j .

Accordingly, we compute for each j = 1, . . . , n and category (e1, . . . , enup
)

the value Wj(e1, . . . , enup
), which represents the maximum total weight of the

early jobs among all schedules of category (e1, . . . , enup
) for Jj . For this, we

maintain nup heaps for each entry, where heap Hi,j(e1, . . . , enup
) contains the

weights of ei early jobs of type i. These weights will be kept as large as possible
throughout the computation, and hi,j(e1, . . . , enup

) denotes the minimum value
in the heap. The two cases of the recursion are very similar to the previous
section:

–
∑nup

i=1 piei > dj : In this case, we compute

Wj(e1, . . . , enup
) = Wj−1(e1, . . . , enup

) + max{0, wj − hi,j−1(e1, . . . , enup
)}.

–
∑nup

i=1 piei ≤ dj : In this case, we set

Wj(e1, . . . , enup
) = max

{

Wj−1(e1, . . . , enup
) + max{0, wj − hi,j−1(e1, . . . , enup

)},

Wj−1(e1, . . . , ei − 1, . . . , enup
) + wj .

The heaps in both cases are updated in the natural manner. Moreover, the
base cases are identical to the previous section, except that we use −∞ instead
of ∞ to indicate that no schedule is possible. The proof of correctness of and
runtime analysis of our algorithm can be done in the same manner as for the case
of parameter nuw, which leads to the proof of the second part of Theorem 3.

7 Summary and future work

In this paper we analyze the tractability of the classical classical NP -hard single
machine scheduling problem with the objective of minimizing the total weighted
number of tardy jobs, when a subset of its parameters is of a limited size. We
focus on different combinations of the following three parameters. The first is
the number of different due dates; the second is the number of different weights;
and the third is the number of different processing times. We show that the
problem belongs to the FPT set for any combination of two parameters. We
also explain why the problem is W [1]-hard for the first parameter and prove
that the problem is solvable in polynomial time when either one of the two last
parameters is constant.

The most important questions that were left open are to determine whether
the studied scheduling problem belongs to the FPT set with respect to (i) the
number of different weights; and (ii) the number of different processing time.
Moreover, since there are only few available results on the parameterized com-
plexity of scheduling problems, future work may focus on other classical hard
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scheduling problems, such that of minimizing the total tardiness on a single
machine, or minimizing the makespan in a three machine flow shop system.
Moreover, an extension of the studied problem for the case of arbitrary release
dates and/or parallel machine setting may also be a possible direction for future
research.
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