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Abstract

In several multiobjective decision problems Pairwise Comparison
Matrices (PCM) are applied to evaluate the decision variants. The
problem that arises very often is the inconsistency of a given PCM.
In such a situation it is important to approximate the PCM with a
consistent one. The most common way is to minimize the Euclidean
distance between the matrices. In the paper we consider the problem
of minimizing the maximum distance. After applying the logarithmic
transformation we are able to formulate the obtained subproblem as a
Shortest Path Problem and solve it more efficiently. We analyze and
completely characterize the form of the set of optimal solutions and
provide an algorithm that results in a unique, Pareto-efficient solution.
Keywords: Pairwise Comparisons, Shortest Path Problem, Network
Simplex Method, Pareto efficiency.

1 Introduction

One of the commonly used tools of multiobjective decision making is the
Analytic Hierarchy Process, introduced by Saaty (see e.g. [Saaty (1980)
Erkut and Tarimcilar (1991)]) and studied by numerous authors. During
the process, the Decision Maker compares pairwise the given decision vari-
ants. His preferences are defined using a so-called pairwise comparison ma-
trix A = [a;;], where the positive number a;; says how many times the
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variant ¢ is better than the variant j. In order to make the preferences con-
sistent, the values of a;;, i = 1,2,...,n, j = 1,2,...,n should satisfy the
following conditions:

1
aji = — for i,7=1,2,...,n, (1)
ij
aijajr = ag, for i,j,k=1,2,... n. (2)

The matrix A defining consistent preferences is also called consistent.
The condition () is usually satisfied, since one may ask the Decision Maker
to fill only the part of matrix over the diagonal and then calculate the re-
maining elements as the reciprocals of the introduced numbers. The condi-
tion (2)) is unfortunately more difficult to fulfill and is the usually the source
of the inconsistency.

It can be proved (see e.g. [Saaty (1980)]) that A is consistent if and only

if there exists a vector v = (v1,vg,...,v,) with positive entries such that
v; .
ajj =— for 4,7=1,2,...,n. (3)
Uy

The elements of v are interpreted as the weights expressing the priorities
of the decision variants. Finding their values is essential for analyzing the
preferences of the Decision Maker. Of course if some vector v satisfies (3],
then so does the vector Av for every A > 0.

2 Problem formulation

In the real life problems the matrix A is usually inconsistent, so it is impossi-
ble to find any vector v satisfying (3], as it does not exist. The goal is to find
the vector v that defines the matrix B of the entries v;/v; which is the closest
one to A in some sense. In addition to this approximation problem, we are
also interested in finding a (Pareto) efficient solution of the following vector
optimization problem (see e.g. [Blanquero, Carrizosa and Conde (2006)]):

i (o) g

There are many methods for solving the problem of approximating the
matrix A by a consistent matrix B generated by a suitable vector v of
weights. Saaty proposed the principal eigenvector of A for using as v. He




also introduced an inconsistency index based on the maximal eigenvalue.
See for the details.

Another approach is to minimize the average error of the approximation.
One of the most popular measures is the square mean calculated according
to the formula

1/2

GalA,v) = %izﬂ:@]—%f , (5)

i=1 j=1

and its minimization is equivalent to the Least Squares Method (LSM)
[Bozdki (2008), [Fiilop (2008)].

Beside the one proposed in [Saaty (1980)], further methods
of measuring the inconsistency were introduced and analyzed,
e.g., in |Chuetal. (1979), Koczkodaj (1993), |Anholcer et al.(2011)
Bozoki (2008), [Fiilop et al.(2010)), Bozoki and Rapcesék (2008)
Mogi and Shinohara (2009), [Brunelli and Fedrizzi (2014)].  For a posi-
tive matrix A, a statistical and axiomatic approach leading to the geometric
means solution were used in [Hovanov et al.(2008)]. Some simulation ex-
periments comparing different inconsistency measures have been performed
by |Mogi and Shinohara (2009)]. In the latter paper the authors also
considered the case of the general mean which can be defined, for p > 0, as

1/p
Gp(Ayv) = |-5D D |ais = (6)
n? £ £ vj
i=1 j=1
Beside the case p = 2 mentioned above, the cases p = 1 and p —

oo leading to the arithmetic mean and the maximum norm, respectively,
seem to be the most important, but further cases are also considered in
[Mogi and Shinohara (2009)].

A survey of the methods of deriving the priorities can be found in
[Choo and Wedley (2004)]. The authors compare the performance of al-
most 20 different methods. Also, a shorter survey can be found in
. Here the author studies in particular the preference weighted
least square (PWLS) method, which leads to a convex programming op-
timization problem (more general version of this method is also studied
in [Dopazo and Gonzélez-Pachén (2003)]). The convexity of the optimiza-
tion problems is not always guaranteed. For example, LSM may lead to




nonconvex problems, which makes the solving process more elaborate and
time-consuming. Standard global optimization methods were proposed in
[Carrizosa and Messine (2007)] and [Filop (2008)] for solving these difficult,
multi-modal problems. See also |[Bozoki (2008)] for another approach.

In [Blanquero, Carrizosa and Conde (2006)] a framework was presented
for testing the ability of the methods to provide a Pareto-optimal solution
for (). In particular it is shown that the principal eigenvector method is
not always effective, namely, in case of some PC matrices it results in a
solution which is not Pareto-optimal. See also [Bozdki (2014)| for further
achievements on this topic. In this paper we study a method that always
results in a Pareto-optimal solution.

Our method concerns the G, variant of the generalized mean, where,
for the sake of simplicity, we omit the constant 1/n? from the objective
function. In [Choo and Wedley (2004)] this measure and the corresponding
method is called as least worst absolute error (LWAE). To be more specific,
we want to solve the following problem:

- _ b
min G (A4,v) = 122]1;(” oy o (7)
V1 = 1, (8)
v; >0, j=12...n (9)

The constraint vy = 1 has been introduced in order to normalize the
vector v. If some v is the solution to the above problem, then so does Av is for
every A > 0, yielding the same objective function value. Other normalizing
constraints have been used in other papers, see e.g. [Anholcer et al.(2011)|
Bozoki (2008), [Filop (2008)].

In the form of ([@)-(@), the problem seems to be a difficult optimization
problem since the objective function is not convex, thus no local search
algorithm may be applied in order to find the global optimum. However,
some transformations allow us to solve this problem efficiently. In Section [3]
we provide a new solution method, using the logarithmic transformation on
the problem and a network algorithm, as well as a root finding algorithm. In
Section [4] we characterize the set of optimal solutions and give sufficient and
necessary conditions for the optimum to be unique. Moreover, we provide
and justify a method for comparing the optimal solutions, and provide an
algorithm that results in a unique solution. Although not every solution of
([@)-([@) must be efficient, we prove that in the set of optimal solutions there
is always a Pareto-optimal one, which is found by our method.

We finish the paper with computational experiments and conclusions.



3 New algorithm for the LWAE problem

A solution method to the problem ([7)-(@) was proposed in [Anholcer (2012)].
The problem has been reformulated as follows, using an additional variable
z replacing G (A, v):

min z (10)

Qi — :}}_; < ) Z)j = 1727 y 1 (11)
v = 1, (12)

(13)

’Uj>0, j=12,...,n.

Then the parametrization of z has been performed. The main algorithm
has the form of a bisection method on the variable z, while the subproblem
for given z, solved at every step, is the following linear programming prob-
lem. In |[Anholcer (2012)] the modified simplex method was used to solve
it. The problem under consideration was used to find any feasible solution
of the linear system

—vi+(ajj —2)u; <0, 1<i<j<m, (14)
i — <0, 1<i<j<n, (15)
aj; + 2
Vi

16

a,-j—i-z
(aji — 2)vi —v; <0, 1 <1< j<n, 7
18

19

(16)

(17)

v; >0, j=1,...,n, (18)
U1 = 17 ( )

or to determine that it has no solution. However, using the similar transfor-
mation as in [Fulop (2008)], we are able to find an instance of the Shortest



Path Problem that may be used for the same purpose. The problem (I4])-
([I9) can be then rewritten as follows:

B> (ay—2), 1<i<j<n, (20)
v
- 1
Y —.1<i<j<n (21)
Vj A jg z
: 1
% > L1<i<j<n, (22)
V; CLij-i-Z
%Z(aji—z),1§i<j§n, (23)
T
v; >0, j=1,...,n, (24)
1)1:1. (25)

We use the following substitution:
w; =Inv;, j=1,...,n. (26)

In this way we can reformulate (20-(25) as follows:

1

< ] s V=l 1<i<j<n, 27
wj —w; < —Inmax{a; Z(lji+z} ij, 1<i<g<n (27)
1
w; —wj < —Inmax{aj — 2, =1l 1<i<j<n, (28)
ij T2
’LU1:0. (29)

We consider the version of the Shortest Path Problem, where the lengths
of the arcs can be negative. Assume that the underlying network N = N(z)
is a complete digraph of the nodes {1,...,n}, the length of the arc (i,7) is
equal to I;; and we are looking for the shortest paths from the node 1 to all
the remaining nodes.

Proposition 3.1. Two following statements are true.

1. If there is no negative cycle in the network N, then let d; denote the
shortest distance from node 1 to node j. The vector of the components

wj:dj,jzl,...,n, (30)
is a solution to the system (27)-(29).

2. If there exists a negative cycle in N, then the system (27)-(29) is
tnconsistent.



Proof. Assume there is no negative cycle in N. Let dist(i,j) denote the
shortest distance between the nodes ¢ and j. From the triangle inequality
for the nodes 1, 4 and j we have

dist(1,4) + dist(i, 5) > dist(1, ).
But dist(1,i) = d; for every i and dist(i,j) < l;; for every 1, j, so
di +li; > d;

and analogously
d; +1lj; > d;.

Substituing ¢ with 1 in the triangle inequality we obtain
dy > dist(1,j) — dist(1,7) =0,

and on the other hand

di <l =0,
so all the constraints (27)-(29]) are satisfied.
Assume now there is a cycle (i1,42,...,1s,41) in N with length L < 0.

Consider the system of inequalities, being the subsystem of (27)-(29):

wig - wil S lil,iza
Wiz — Wiy < li27i37

Wiy — Wiy 4 < lig g,
Wiy — Wiy, < iy

Adding the inequalities we obtain
0<1L,
a contradiction. Thus in such a case the system (27)-(29) is inconsistent. [

A survey of the methods of finding negative cycles in networks can be
found in [Cherkassky and Goldberg (1999)]. The instance of Shortest Path
Problem discussed above will be solved with the special version of Network
Simplex Algorithm, described in [Ahuja, Magnanti and Orlin (1993)], pp.
425-430. The algorithm handles negative arc lengths, returns the distances
from source to all the nodes based on the node potentials and easily identifies
a negative cycle if such a cycle exists. Thus this method allows to identify
which part of the Proposition Bl is to be used.



Let us consider the length of the arc (7,7) in (27) as a function of z:

1
aj; + 2

1.

l;j(2) = — Inmax{a;; — z,

The following observation will be useful in our further considerations.

Proposition 3.2. For every i and j the function l;j(2) has the following
properties:

1. 1;j(2) is a strictly increasing continuous function of z over [0, 00).

2. If a;j <1, then
lij(2) = In(aji + 2)

is a strictly concave function over [0,00).

3. If a;; > 1, then at z = a;; — aj;, lij has a single inflexion point over
[0, 00),
lij(z) = — ln(aij — Z)
is strictly convex over [0, a;; — aji], and
lij(z) = ln(aji + Z)
is strictly concave over [a;; — aj;,0).

Proof. Observe that for z > 0 we have

I N —ln(aij — z), if 0 § z S aij — aji,
ij(Z) o — ln(ajil—l—z) = ln(aji + Z), if z> Qij — Qjg-

Obviously 1;;(z) is continuous on both intervals. Moreover, we have

lim lij(z) = lim lij(z) = lij(aij — aji) = ln(aij),
z—(aij—aj;)~ z—(aj—aj;)t

so the function is continuous over [0,00]. Assuming that z > 0, the first
derivative equals to

1 .

. o=z > 0, if z<a;—ay,

lij(): >0, if z>a; —ai
aji+z ’ 1] g

Moreover, we have

lim+ li;(2) € {ai, a3}, lim  :(2) = a;; >0, lim  I}:(2) = aj >0,

z—0 z—)(aij—aji)



s0 1;;(2) is increasing on whole interval [0, co]. Finally, the second derivative
equals to

1 . o
l{"(z) _ CFERE >0, if z<ay—aj,
Y — <0, if z> a;; — Qji,

and thus [;;(z) is convex for z < a;; — a;; and concave for z > a;; —aj;. O

For a cycle C, let lc(z) be the sum of the lengths of the edges of C.
From the Proposition BIlit follows that a cycle C' in N such that lo(z) < 0
exists if and only if the system (27])-(29]) is inconsistent. This property can
be exploited as follows. Assume that the optimal solution to the problem
([IO)-(T3]) lies in some interval [zmin, Zmax], Where (27))-(29) is inconsistent for
zmin and has a feasible solution for zpy.x. Then the following is true.

Proposition 3.3. Let [zmin, Zmax] be the actual interval of search, i.e. the
optimal solution to the problem (I0)-(13) lies in the interval [zmin, Zmax),
where (27)-(29) is inconsistent for zmin and has a feasible solution for zmax.
Let C be a cycle such that lo(zmin) < 0. Let Z € (Zmins Zmaz)- If lo(2) <0,
then the problem (27)-(29) is inconsistent for every z € [Zmin, Z).

Proof. As l;j(z) is strictly increasing for every arc (i,j) (Proposition B3.2]),
then also lc(z) is. So if Io(2) < 0 for some Z, then also l¢(z) < 0 for every
z < Z. Finally, by the Proposition [B.I] the system is inconsistent for every
z < Z. U

The immediate consequence of the above proposition is that we are able
to shorten the search interval in a very simple way. Assume that given a
cycle C' and a nonnegative real z, we have l¢(z) < 0. Since l¢ is a strictly
increasing function of z, it is easy to find a z > z such that I¢(z) = 0. Now
we can proceed in two ways.

First idea is to use the bisection method.

The second possibility is to check by solving a Shortest Path Problem
whether (27)-(29)) is consistent with z = z. If it is so, we are done: z = Z
is an optimal solution. Otherwise, the algorithm for solving SPP returns a
cycle C such that l7(Z) < 0, and we repeat the above process with z < z
and C « C.

We are going to describe both suggested methods in more formal way
(see Algorithms 2 and [3). Let us start with finding a value of z for which
le(z) =0.

In order to do that we will use a modified version of the false position
method. It is a known fact that the standard version of this procedure does



not perform well, in particular it can have the rate of convergence 2/3 in
the case when the function o (z) is strictly convex or strictly concave on
the search interval (in such a situation one of the endpoints of the interval
does not change). There are, however, its modifications. Probably the first
of them was the one called Illinois method, having overlinear convergence
rate, described in [Dowell and Jarratt (1971)]. Even better is the Anderson-
Bjorck method [Anderson and Bjorck (1973)], that we will apply here. A
comparison of various methods of this type can be found in [Ford (1995)].

The method adapted for our purposes is presented as Algorithm [ below.
Below we use the notation

le(z)) —lo(2)

Zj—ZZ'

hij =

and
hi = lC (Zz)

Algorithm 1 Anderson-Bjérck Method

Step 1: Assume accuracy level e. Set hy < lo(z1), hy < lo(22). Proceed to
step 2.

Step 2: If |29 — 21| < &, then STOP, Z = 2z9. Otherwise, go to step 3.

Step 3: Set h12 = h2_h1, 23 < 29 — l2/h12, and h3 — lc(Zg). If h2h3 > 0, then

20—21
hz—ho 29 4 21, ho h1h23/h12. Go to Step 4.

z3—z22’

set hog =

Step 4: If 290 < z3, set z1 « 29, h1 < hao, 29 + 23, ho + h3. Otherwise, set
21 < 23, h1 < h3. Go back to Step 2.

Finally, we are able to present two solution methods. We start with
the bisection method (Algorithm [2] see also [Anholcer (2012)]), where the
starting point is generated by the geometric means of rows of A.

We can easily prove the following proposition.

Proposition 3.4. After a finite number of iterations, Algorithm [2 termi-
nates by finding an e-optimal solution.

10



Algorithm 2 Main algorithm 1

1/n

Step 1: Assume the accuracy level ¢ > 0. Let v} = (H;L:1 aij> and v; =
vf vy for i = 1,2,...,n. Let 2 = Zpax = Goo(4,v) and zmin = 0.
Compute w; = Inwvj;, j = 1,...,n. Proceed to step 2.

Step 2: If 2 — zmin < €, then STOP. Compute v; = exp(w;), j = 1,...,n.
Vector v is the desired approximation of the optimal weight vector.
Otherwise, go to step 3.

Step 3: Set z := (Zmax + Zmin)/2. Construct network N(z). Apply the Network
Simplex Method to find the shortest distances in N from node 1 to
all the nodes. If there is a solution with distances equal to w;, j =
1,...,n, then go to step 4. Otherwise, go to step 5.

Step 4: Set zmax < 2. Go back to step 2.

Step 5: A negative cycle C has been found in the network. Set zpyi, + 2. Go
back to step 2.

Proof. In every step of Algorithm [2] the value of the difference zya: — Zmin
decreases to its half, so in a finite number of iterations we obtain the ap-
proximation of the optimal solution. More precisely, if z},,, denotes the ini-
tial value of z,45, then the algorithm will stop after at most logy [ 25,44 /€]
steps. O

We finish this section with the second proposed algorithm (Algorithm

3).

We can easily prove the following proposition.

Proposition 3.5. After a finite number of iterations, Algorithm [3 termi-
nates by finding an e-optimal solution.

Proof. The choice of the upper bound (i.e., z3) as the approximation of z
in Algorithm [I] assures that a negative cycle C' can appear only once in the
algorithm. Thus the number of steps is bounded from above by the number
of cycles in the complete digraph on n vertices, which is equal to

f: (Z)(k— ) < (n+1)!

k=2

11



Algorithm 3 Main algorithm 2

Step 1: Assume the accuracy level € > 0. Let z = 0. Proceed to step 2.

Step 2: Construct network N(z). Apply the Network Simplex Method to find
the shortest distances in N from node 1 to all the nodes. If there is
a solution with distances equal to wj;, 7 = 1,...,n, then STOP, the
entries v; = exp(w;), j = 1,...,n, form the desired approximation of
the optimal weight vector. Otherwise (if there is a negative cycle C' in
the network), go to step 3.

Step 3: Find an e-approximation Z of the root of l¢(z) = 0 using the Algorithm
[0 Set z + z. Go back to step 2.

4 Uniqueness of the solution

One of the nice features of an optimization problem is the fact that it has
a unique optimal solution. In such a case there is no need to introduce
additional rules in order to choose the final solution. Although the problem
([@)-@) does not have this property in general, we are going to characterize
the necessary conditions for the uniqueness of the solution.

In the case when the problem has more than one optimal solution, we are
going to characterize the set of optimal solutions exactly. We also propose a
way for deriving a unique optimal solution after introducing an additional,
rather obvious, criterion.

Let us consider the system (I4)-(I9). We can rewrite it in the following
way:

1
v; > max{a;; — z, ——}vj = L;j(2)vj,1 <i < j <mn, (31)
aji + 2
1
vj; > max{aj; — z, Yvi = Lji(2)v;,1 <i<j<n, (32)
a;; + 2
v >0=1,....n, (33)
v = 1. (34)

Obviously, the functions L;;(-) are strictly decreasing and continuous for
z > 0 (it follows directly from the fact that L;j(z) = exp(—l;;(2)) for every
z > 0 and from the Proposition B.2]). Moreover, the following is true.

Observation 4.1. For every 1 <i < j <n, L;j(z)L;i(z) =1 if and only if
z=0.

12



Proof. 1f z = 0, then we have

1 1
} - max{aj; — z,
aji + 2 aij; + 2

Lij(Z)Lji(Z) = max{aij — Z, } = QiG55 = 1.

On the other hand, let L;;(2)L;;(z) = 1. Since both L;;(-) and L;;(-) are
strictly decreasing, continuous and positive for z > 0, so is also the function
L7 (2) = Lij(2)Lji(2). In particular, it can take the value 1 only at one
point and we already know that it is equal to 1 when z = 0. O

The next result is as follows.

Lemma 4.2. Assume that the system (31))-(34) has a feasible solution v =
(v1,...,0,) for a given z = z1 > 0. If all the inequalities (31)-(32) are not
binding, i.e.

v; > Lij(2)v;,1 <i<j<mn, (35)
vj > Lji(2)v;,1 <i < j<n, (36)
then there exists a number zo < z1, such that v is a feasible solution of the
system (31)-(34) also for z = z.
Proof. For every 1 < i # j < n, and for every 0 < J;; < 2, we have
Lij(z1 — 0i5) > L;j(21). Let us define ¢;; as

(52']‘ = max{&\vi > Lij(zl — (5)’[)]‘}.

Each ¢;; is well-defined, as it is bounded from above by z; and uniquely
defined, as L;;(-) is strictly decreasing and continuous. Let

6 =min{d;;|1 <i#j <n}.

Observe that 6 > 0 and

~

V; > Lij(zl — 5)’[)]‘
for ez}ch 1 <4 %# j <n. Thus v is a feasible solution also for z = zo =

21—5. |

Now let us deal with the case when some of the inequalities (B1I)-(32l)
are binding. Let us define the digraph D = D(v, z) in the following way.
Let the vertex set of D be V(D) = {1,...,n} and let the arcs set of D be
A(D) = {(4,7)|vi = Lij(2)vj}. Then the following observation is true.

13



Lemma 4.3. Assume that the system (31)-(34)) has a feasible solution v =
(v1,...,0,) for a given z > 0. If there is no (directed) cycle in D(v, z), then
there exists a feasible solution v' = (v{,...,v)) of (31)-({34) such that all the
inequalities (31)-(32) are not binding.

Proof. If there is no cycle in D, then there is a vertex i € V(D) being the
start vertex of all the arcs incident with it. It means in turn that there is a
variable v; such that

vj > Lji(2)vi, g =1,...,n,j # 1. (37)

The last inequalities follow from the fact that both v; > L;;(2)v; and v; >
Lj;(z)v; cannot be simultaneously binding when z > 0, see Observation 4.1l
Now we are going to find a new solution in which no inequality where v;
occurs, is binding. Let us define 6;;,j = 1,...,n,j # i as follows:

. 1 ’Uj ‘
% =3 (Lji(z) UZ) '

Vi = v +min{d;j|j =1,...,n,j #i}.

Now let

The solution v’, where we substitute the value of v; with v}, does not change
any inequality where v; does not occur, changes all the equalities with v;
to sharp inequalities and preserves all the inequalities ([B7). It means that
the new solution is feasible, and the graph D(v/,2) is a proper subgraph
of D(v,z), i.e. A(D(WV',z)) € A(D(v,2)). To be more specific, all the arcs
incident with 7 have been removed from D. Observe also that D(v/,z) is
acyclic. Now if D(v', z) is still nonempty, then we substitute v := ¢v' and
repeat the process. Of course after at most n — 1 steps we finally obtain
a solution v for which A(D(v,z)) = 0, i.e. there are no binding equalities
among (31I))-(32)). This finishes the proof. O

The two lemmas presented above lead us to the following conclusion.

Corollary 4.4. Assume that the system (31)-(34) has a feasible solution
v =(v1,...,0,) for given z > 0. Assume that there is no (directed) cycle in
D(v,z). Then v is not an optimal solution of the problem (7)-(3).

Now we will focus on the case, when there is a cycle in D(v, z). Let us
denote with D' = D'(v, z) the subgraph of D such that V(D’) = V(D) and
an arc of D is also arc in D’ if and only if it belongs to a (directed) cycle in
D. In other words, D’ consists of all the strongly connected components of
D. The following is true.

14



Lemma 4.5. Assume that the system (31))-(34) has a feasible solution v =
(v1,...,0,) for a given z > 0. Assume that there is a (directed) cycle in
D(v,z). Assume that D' has ¢ components. Then:

1. v is optimal solution of (7)-(9).

2. The set of the solutions of (31))-({37)) is a convex polytope of dimension
d=c—1.

Proof. Assume that one of the cycles consists of the vertices i1,1s,...,s.
Then we have

Vi = Liliz (z)UiQ ’

Vig = Li2i3 (Z)Ui3 ’

’UZ'571 = Lisflis (Z)U'is7

Vi, = Ligi, (2)vi, -

It means in particular that

s

H Lijij+1 (mod s) (Z) = 17

=1

and consequently z has reached its minimal value as the functions L;;(-) are
strictly decreasing and so any decrease of z would make this product greater
than 1, while if the inequalities ([BI])-(32]) are satisfied, then

Uiy 2 Liliz (Z)Uiz )

Uiy > Lizis (z)vi:s )

,Uisfl 2 Lisflis (Z)Uis7

Vi, > Ligy (2)viy,

and thus

s

H Lijij+1 (mod s) (Z) S L.
j=1

15



This means that v is an optimum of ([7)-(@). The set of optimal solutions
of ([@)-([@) is a convex polytope as it is exactly the set of feasible solutions
of the linear system (BI)-(34). On the other hand, each variable v;, j €
{i1,42,...,is—1} may be expressed as ¢;,j(2)v;;, where ¢;, ;(2) depends only
on z i.e., is a constant when z is fixed. As this reasoning is true for every
cycle in D'(v, z), it follows that for every component C; of D'(v,z) with
sy vertices, t = 1,...,¢, (s — 1) variables may be expressed as a chosen
sth variable multiplied by a constant. On the other hand, the reasoning
similar as in the proof of Lemma [£3] shows that it is not the case for the
remaining variables, corresponding with the vertices not belonging to any
cycle of D(v,¢). This means that every component C; of D'(v, z) reduces
the dimension of the set of solutions by (s;—1) (in particular, if it is a trivial
component, it does not reduce the dimension). Since one of the variables is
fixed (v = 1), we obtain

C

d:n—l—Z(st—l):n—l—zc:st—i-zc:l:n—l—n—kc:c—l.

t=1 t=1 t=1
O

Corollary 4.6. Assume that the system (31)-(54) has a feasible solution
v = (v1,...,v,). Assume that there is a (directed) cycle in D(v,z). If
D' = D'(v, z) is connected, then v is the only optimal solution of (7)-(9).

Proof. If z > 0, then we have ¢ = 1, what implies d = 0, so the set of the
optimal solutions is a point. If z = 0, then there is exactly one solution
v; = aj1 and A is consistent. O

Note that the last corollary can be also deduced from
the results obtained by Blanquero, Carrizosa and Conde in
[Blanquero, Carrizosa and Conde (2006)] (Corollary 11).

Corollary 4.7. The set of optimal solutions of (71)-(3) is a convex polytope
of dimension at most n — 3.

Proof. 1f z > 0, then any cycle in D’(v, z) must have at least 3 vertices (see
Observation [L.1]). This implies that each component of D’(v, z) having more
than one vertex must consist of at least 3 vertices and from Corollary [£4] it
follows that there must be at least one such component when z > 0. From
the proof of Lemma it follows that

d=n-1-) (ss—1)<n—-1-2=n-3.
t=1
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Corollary 4.8. The problem (7)-(9) has one solution if n < 3.

Proof. From the previous corollary it follows that in such a case d < 0, what
implies that d = 0 and the set of optimal solutions is a point. O

The main result of this section is the following theorem, being an imme-
diate consequence of the Corollaries [24] and

Theorem 4.9. The problem (7)-(3) has a unique optimal solution if and
only if for some z > 0 there exists a feasible solution v = (v1,...,v,) result-
ing with the objective value z, such that all the (directed) cycles of D(v,z)
induce a connected subgraph of D(v, z) that covers all the vertices of D (v, z).
In such a case, z is the optimal value of the objective function.

The question is, when the assumption from the above theorem is satis-
fied. Of course we are looking for some conditions that could be imposed in
the real life. One could ask if the transitivity of the preference matrix will
be enough, i.e if the sufficient condition could be

ai; > 1ANajp>1= a; > 1.
Unfortunately this is not the case. Even more restrictive condition:
a;j > 1N ajp > 1= aj > max{a;, ajr}
is not sufficient, as the following example shows:

1 3 2/7 11/10
1/3 1 1/7 9/10
72 7 1 5
10/11 10/9 1/5 1

A=

The set of optimal solutions is a one-dimensional segment with the endpoints
(1,0.4,3,0.625) and (1,0.4,3,0.6(4)), and the optimal value is z = 0.5.

As we have already observed, it is not obvious that the problem ([7)-(3])
has unique solution. However, even if the set of the solutions is infinite, we
can still propose a nice comparison method that allows us to choose the best
one.

Our main goal is to minimize the maximum over all the deviations
la;j — v;/v;|. If this maximum equals to z, it does not matter, from the
mathematical point of view, whether the other deviations are equal to z
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or less than z and what are their exact values. However, if we include the
psychological aspects, then of course the solution where the deviations not
equal to z are as small as possible, should be preferred. The method pre-
sented in the next section satisfies this condition. Moreover, it leads us to a
Pareto-optimal solution.

5 New method of deriving the priorities

Assume that we found an optimal solution (v, z) of the problem (I0)-(I3]).
From the previous section we know that there is at least one directed cycle
of length at least 3 in the graph D’(v,z). Moreover, for each non-trivial
component C; of D'(v, z), by choosing one of its vertices (reference vertex),
say 7 and the corresponding variable v;, we can express each variable vy,
k € C; in the form

VR = CRU;, (38)

where ¢ is a constant. This is equivalent to expressing the variables wy, as

WE = Ck + w;. (39)

Thus it is possible to substitute each of the variables wj by an expression
with ¢, and finally remove a part of the inequalities in the following way.
We choose one vertex from each strongly connected component of D(v, z).
These vertices are the vertices of a new, reduced network. Now observe that
the cost of the edges inside the former components do not matter, so we can
remove all the inequalities of the form w, — w, < l,4(2) for p,q € C;, p # q.
Then, let us choose two vertices ¢ and j of the reduced network. Let p € C;
and ¢ € C;. The inequality

wy — wp < lpg(2)

can be rewritten as
wj + g — wi — ¢ < lpg(2)

or
wj — w; < lpg(2) +¢p — ¢4

The last inequality must be satisfied for all p € C; and ¢ € Cj, so we can
write it as

wj — w; < min{lpg(2) +¢p — ¢qlp € Cy,q € Cj} = 175(2).
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The functions [5;(z) are cost functions in the new network. Unfortunately,
[7;(2) = lpg(2) + ¢p — ¢q does not mean that I5;(2) = lgp(2) + ¢4 — ¢p, which
have some implications for their properties. It is straightforward to see
that [7;(2) are not necessarily differentiable and may have more than one
inflection point, but still are strictly increasing. One of the consequences is
also that the set of optimal solutions of the reduced network has dimension
at most n — 2, not n — 3, since this time there can be zero-length cycles on
two nodes even if z > 0. The consequence is that the first reduction of the
network reduces the number of variables (and vertices in the network) by at
least 2 and each other by at least 1. This process ends when there are no
zero-valued cycles or when the number of vertices is 2 (in both cases there
is exactly one solution of the problem). This leads us to Algorithm [l

Algorithm 4 Choosing the unique optimum

Step 1: Denote the initial problem with P. Let IV be the network correspond-
ing with P. Initialize the list LC' (the list of the subsets of vertices
of N forming a partition of V(V)). For each vertex ¢ of N, add the
set C; = {i} to LC. For each existing set C; (some of them will be
removed later), ¢ will be the reference vertex. Solve P using N. Let
the solution be v and let the resulting objective value be z. Go to step
2.

Step 2: If the subgraph D = D(v, z) of N is strongly connected, then STOP,
v is the desired solution, go to step 4. Otherwise, go to step 3.

Step 3: For each strongly connected component C of D(v, z), choose any vertex
i € C. For each vertex j € C,j # ¢ add all the vertices k € Cj to
the set C; and remove C; from LC (j is the reference vertex of some
set C; from the list LC). Compute new values of ¢ for k € Cj, k # i
by applying formula ([39)). Denote new, reduced problem with P and
corresponding network with V. Solve P using N. Let the solution be
v and let the resulting objective value be z. Go back to step 2.

Step 4: Having the unequivocal solution of the last instance of the problem P,
find the solution of the initial problem by using the formula (38]).

Observe that in the step 3, at the first iteration, the dimension of the
problem (7)-(9) decreases by at least 2, and at each other iteration by at
least 1. This means that the desired unequivocal optimum will be found
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after at most n — 2 iterations (i.e. after solving at most n — 2 instances of
LWAE problem). Moreover, the following is true.

Theorem 5.1. The solution obtained by the Algorithm[j is Pareto-optimal.

Proof. If the above procedure ends in one step, it follows from the Theorem
[49] that the obtained solution is unique and in consequence Pareto-optimal.
If it takes more steps, the thesis follows from the following fact (see e.g.
[Blanquero, Carrizosa and Conde (2006)|, Proof of Theorem 1).

Fact 5.2. Given a solution v of (), let €;; = |vi/v; — a;j|. Then v is
Pareto-optimal if and only if for every pair k # 1, k,l € {1,2,...,n}, v is
the solution of the problem:

minekl (40)
lvi Jvj — ag| < €ij, (i, 5) # (k1) (41)
v>0i=1,...,n. (42)

6 Computational experiments

The algorithm has been implemented in Java and and tested for a num-
ber of randomly generated problems. The assumed accuracy level was
e = 0.000001. The application has been tested on the PC with Intel(R)
Core(TM) i7-2670 QM(2.20GHz). We tested problems with n = 10 and
n = 20 (one rather should not expect the problems of size greater than 10 in
the real life, but this allowed us to examine the efficiency of our algorithms).
We did not impose any conditions on the inconsistency of the initial ma-
trix, so the elements of A were chosen uniformly at random from the set
{1,2,..., amaz }, where apq, € {3,5,10}, and then the chosen elements and
its reciprocal were put on two sides of the diagonal in the random order. In
every case 100 problems have been solved (that gives the total number of
600 test problems). The information on the running times of Algorithm
(Timel, in seconds), running times of Algorithm Bl (Time2, in seconds) and
the number of LWAE subproblems solved (#LW) are given in Table[I] (AVG
- average time in seconds, DEV - standard deviation, MIN - minimum time
in the sample, MAX - maximum time in the sample).

As we can see, in all the cases the running times are much less than one
second, which is acceptable in real life applications. The times in general
increase with a,,q; and n, although there are some exceptions. The most
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Table 1: Results of tests

a Parameter n =10 n =20
mar Timel | Time2 | #LW | Timel | Time2 | #LW
AVG 0.0041 | 0.0024 | 3.41 | 0.0064 | 0.0021 | 1.86
3 DEV 0.0019 | 0.0012 1.07 | 0.0013 | 0.0010 0.73
MIN 0.0016 | 0.0005 1| 0.0047 | 0.0005 1
MAX 0.0125 | 0.0078 6 | 0.0115 | 0.0055 5}
AVG 0.0038 | 0.0021 4.43 | 0.0110 | 0.0054 4.49
5 DEV 0.0015 | 0.0007 | 0.96 | 0.0037 | 0.0024 | 1.87
MIN 0.0016 | 0.0011 2 1 0.0059 | 0.0014 1
MAX 0.0095 | 0.0045 7 10.0228 | 0.0117 10
AVG 0.0063 | 0.0044 | 4.80 | 0.0320 | 0.0169 | 8.67
10 DEV 0.0022 | 0.0014 1.05 | 0.0108 | 0.0048 1.61
MIN 0.0022 | 0.0011 2 | 0.0125 | 0.0062 5
MAX 0.0172 | 0.0086 71 0.0578 | 0.0360 13

interesting one is probably the fact that Algorithm [4] with Algorithm Bl used
for the LWAE subproblems ran faster for bigger problems where g = 3.
The explanation of this phenomenon is probably the fact that in the presence
of so little possible values of the entries of A, the bigger matrix became
more consistent (the objective function became more "flat”), what resulted
in smaller number of necessary runs of Algorithm [Bl

One can also observe that it is more efficient to use Algorithm [3 (suc-
cessive canceling of negative cycles) to solve the subproblems - in all cases
this algorithm behaves better than Algorithm [2] (bisection).

7 Conclusion

In the paper we provide a new method of deriving priorities from an inconsis-
tent Pairwise Comparison Matrix. Our method produces a Pareto-optimal
solution very quickly because of using the logarithmic transformation and
network algorithms. The running times are so small that the new method is
competitive against other methods of finding the Pareto-efficient solutions

of ().
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An interesting open problem is whether the graph theoretic approach
applied successfully in this paper can be preserved for the case of G1(A4,v).
We leave it as an open question for future research.
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