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Abstract In this article, model predictive control is used to dynamically optimize
an investment portfolio and control drawdowns. The control is based on multi-period
forecasts of the mean and covariance of �nancial returns from a multivariate hidden
Markov model with time-varying parameters. There are computational advantages to
using model predictive control when estimates of future returns are updated every
time new observations become available, because the optimal control actions are re-
considered anyway. Transaction and holding costs are discussed as a means to address
estimation error and regularize the optimization problem. The proposed approach to
multi-period portfolio selection is tested out of sample over two decades based on avail-
able market indices chosen to mimic the major liquid asset classes typically considered
by institutional investors. By adjusting the risk aversion based on realized drawdown,
it successfully controls drawdowns with little or no sacri�ce of mean�variance e�-
ciency. Using leverage it is possible to further increase the return without increasing
the maximum drawdown.
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1 Introduction

Financial risk management is about spending a risk budget in the most e�cient way.
Generally speaking, two di�erent approaches exist. The �rst approach consists of di-
versi�cation, that is, reducing risk through optimal asset allocation on the basis of
imperfectly correlated assets. The second approach consists of hedging, that is, reduc-
ing risk by giving up the potential for gain or by paying a premium to retain some
potential for gain. The latter is also referred to as insurance, which is hedging only
when needed.

The 2008 �nancial crisis clearly showed that diversi�cation is not su�cient to avoid
large drawdowns (Nystrup et al, 2017a). Diversi�cation fails, when needed the most,
because correlations between risky assets tend to strengthen during times of crisis (see,
e.g., Pedersen, 2009; Ibragimov et al, 2011). Large drawdowns challenge investors' �-
nancial and psychological tolerance and lead to fund redemption and �ring of portfolio
managers. Thus, a reasonably low maximum drawdown (MDD) is critical to the suc-
cess of any portfolio. As pointed out by Zhou and Zhu (2010), drawdowns of similar
magnitude to the 2008 �nancial crisis are more likely than a �once-in-a-century� event.
Yet, if focusing on tail events when constructing a portfolio, the portfolio will tend to
underperform over time (Lim et al, 2011; Ilmanen, 2012; Downing et al, 2015).

As argued by Goltz et al (2008), portfolio insurance can be regarded as the most
general form of dynamic�as opposed to static�asset allocation. It is known from Mer-
ton's (1973) replicating-argument interpretation of the Black and Scholes (1973) for-
mula that nonlinear payo�s based on an underlying asset can be replicated by dynamic
trading in the underlying asset and a risk-free asset. As a result, investors willing and
able to engage in dynamic asset allocation (DAA) can generate the most basic form of
risk management possible, which encompasses both static diversi�cation and dynamic
hedging (Goltz et al, 2008).

Although DAA is a multi-period problem, it is often approximated by a sequence of
myopic, single-period optimizations, thus making it impossible to properly account for
the consequences of trading, constraints, time-varying forecasts, etc. Following Mossin
(1968), Samuelson (1969), and Merton (1969), the literature on multi-period portfo-
lio selection is predominantly based on dynamic programming, which properly takes
into account the idea of recourse and updated information available as a sequence of
trades is chosen (see Gârleanu and Pedersen, 2013; Cui et al, 2014, and references
therein). Unfortunately, actually carrying out dynamic programming for trade selec-
tion is impractical, except for some very special or small cases, due to the �curse of
dimensionality� (Bellman, 1956; Boyd et al, 2014). As a consequence, most studies in-
clude only a limited number of assets and simple objectives and constraints (Mei et al,
2016).

The opportunity to select portfolio constituents from a large universe of assets
corresponds with a large potential to diversify risk. Exploiting such potential can be
di�cult, however, as the presence of error increases when the number of assets increases
relative to the number of observations, often resulting in worse out-of-sample perfor-
mance (see, e.g., Brodie et al, 2009; Fastrich et al, 2015). Transaction and holding costs
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not only have great practical importance but are also a means to address estimation
error and regularize the optimization problem.

Multi-period investment problems taking into account the stochastic nature of �-
nancial markets are usually solved in practice by scenario approximations of stochastic
programming models, which is computationally challenging (see, e.g., Dantzig and
Infanger, 1993; Mulvey and Shetty, 2004; Gülp�nar and Rustem, 2007; P�nar, 2007;
Zenios, 2007). Herzog et al (2007) proposed the bene�t of model predictive control
(MPC) for multi-period portfolio selection (see also Meindl and Primbs, 2008; Bempo-
rad et al, 2014; Boyd et al, 2014). The idea is to control a portfolio based on forecasts
of asset returns and relevant parameters. It is an intuitive approach with potential
in practical applications, because it is computationally fast. This makes it feasible to
consider large numbers of assets and impose important constraints and costs (see Boyd
et al, 2017).

This article implements a speci�c case of the methods of Boyd et al (2017), with
an additional mode that controls for drawdown by adjusting the risk aversion based
on realized drawdown. The proposed approach to drawdown control is a practical
solution to an important investment problem and demonstrates the theoretical link
to DAA. A second contribution is the empirical implementation based on available
market indices chosen to mimic the major liquid asset classes typically considered
by institutional investors. The testing shows that the MPC approach works well in
practice and indeed makes it computationally feasible to solve realistic multi-period
portfolio optimization problems and search over hyperparameters in backtests. When
combined with drawdown control and use of leverage, it is possible to increase returns
substantially without increasing the MDD.

The implementation is based on forecasts from a multivariate hidden Markov model
(HMM) with time-varying parameters, which is a third contribution. The combination
of an adaptive forecasting method and MPC is a �exible framework for incorporating
new information into a portfolio, as it becomes available. Compared to Nystrup et al
(2018), it is an extension from a single- to a multi-asset universe, which requires a dif-
ferent estimation approach. The HMM could be replaced by another return-prediction
model, as model estimation and forecasting are treated separately from portfolio selec-
tion. Obviously, the better the forecasts, the more value can be added. The choice of an
HMM is motivated by numerous studies showing that DAA based on regime-switching
models can add value over rebalancing to static weights and, in particular, reduce po-
tential drawdowns (Ang and Bekaert, 2004; Guidolin and Timmermann, 2007; Bulla
et al, 2011; Kritzman et al, 2012; Bae et al, 2014; Nystrup et al, 2015a, 2017a, 2018).

The article is structured as follows: Section 2 outlines the MPC approach to multi-
period portfolio selection with drawdown control. Section 3 describes the HMM, its
estimation, and use for forecasting. The empirical results are presented in Sect. 4.
Finally, Sect. 5 concludes.

2 Multi-period portfolio selection

Multi-period portfolio selection is a well-established research �eld since the work of
Mossin (1968), Samuelson (1969), and Merton (1969). Since then, it is well understood
that short-term portfolio optimization can be very di�erent from long-term portfolio
optimization. For su�ciently long horizons, however, it is not possible to make better
predictions than the long-term average. Hence, it is really about choosing a sequence
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of trades to carry out over the next days and weeks (Gârleanu and Pedersen, 2013;
Boyd et al, 2017). Looking only a limited number of steps into the future is not just an
approximation necessary to make the optimization problem computationally feasible;
it also seems perfectly reasonable.

Recent work has shown the importance of the frequency of the input estimates to
the portfolio optimization being consistent with the time-horizon that performance is
evaluated over (Kinlaw et al, 2014, 2015; Chaudhuri and Lo, 2016). Even for long-
term investors, though, performance is evaluated continually. The problem is that risk
premiums and covariances do not remain invariant over long periods. In a single-period
setting, the only way of taking this time variation into account is by blending short-
and long-term estimates or the resulting allocations together, which is not optimal. In a
multi-period framework, di�erences in short- and long-term forecasts as well as trading
and holding costs can be properly modeled. Multi-period optimization, naturally, leads
to a dynamic strategy.

2.1 Stochastic control formulation

The formulation of the multi-period portfolio selection problem as a stochastic control
problem is based on Boyd et al (2017). Every day a decision has to be made whether or
not to change the current portfolio, knowing that the decision will be reconsidered the
next day with new input. Possible bene�ts from changing allocation should be traded
o� against risks and costs.

Let wt ∈ Rn+1 denote the portfolio weights at time t, where (wt)i is the fraction of
the total portfolio value Vt invested in asset i, with (wt)i < 0 meaning a short position
in asset i. It is assumed that the portfolio value is positive. The weight (wt)n+1 is the
fraction of the total portfolio value held in cash, i.e., the risk-free asset. By de�nition,
the weights sum to one, 1Twt = 1, where 1 is a column vector with all entries one,
and are unitless.

A natural objective is to maximize the present value of future, risk-adjusted ex-
pected returns less transaction and holding costs over the investment horizon T invest,

E

[
T invest−1∑
t=0

ηt+1
(
rTt+1wt+1 − γt+1ψt+1 (wt+1)

)

− ηt
(
φtrade
t (wt+1 − wt) + φhold

t (wt+1)
)]
,

(1)

where the expectation is over the sequence of returns r1, . . . , rT invest ∈ Rn+1 condi-
tional on all past observations, ψt : Rn+1 → R is a risk function (described in Sect.
2.3), γt is a risk-aversion parameter used to scale the relative importance of risk and
return, φtrade

t : Rn+1 → R is a transaction-cost function (described in Sect. 2.5),
φhold
t : Rn+1 → R is a holding-cost function (described in Sect. 2.5), and η ∈ (0, 1) is

a discount factor (typically equal to the inverse of one plus the risk-free rate).

2.2 Model predictive control

MPC is based on the simple idea that in order to determine the trades to make, all
future (unknown) quantities are replaced by their forecasted values over a planning
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horizon H. For example, future returns are replaced by their forecasted mean values
µ̂τ |t, τ = t + 1, . . . , t + H, where µ̂τ |t is the forecast made at time t of the return
at time τ . This turns the stochastic control problem into a deterministic optimization
problem:

maximize
∑t+H
τ=t+1

(
µ̂Tτ |twτ − φ̂

trade
τ |t (wτ − wτ−1)

− φ̂hold
τ |t (wτ )− γτ ψ̂τ |t (wτ )

)
subject to 1Twτ = 1, τ = t+ 1, . . . , t+H,

(2)

with variables wt+1, . . . , wt+H (see Boyd et al, 2017, for a detailed derivation). Note
that wt is not a variable, but the known, current portfolio weights. In formulation (2),
φ̂trade and φ̂hold can be estimates of actual transaction- and holding-cost functions or
arbitrary functions found to give good performance in backtest (see Sect. 2.5).

2.2.1 Suboptimal control

Solving the optimization problem (2) yields an optimal sequence of weights w?t+1, . . . ,
w?t+H . The di�erence of this sequence is a plan for future trades over the planning
horizonH under the highly unrealistic assumption that all future (unknown) quantities
will be equal to their forecasted values. Only the �rst trade w?t+1 −wt in the planned
sequence of trades is executed. At the next step, the process is repeated, starting from
the new portfolio wt+1. The planning horizonH can typically be much shorter than the
investment horizon, without a�ecting the solution. This is why discounting is ignored
in formulation (2) compared to (1).

In the case of a mean�variance objective function, Herzog et al (2007) showed that
future asset allocation decisions do not depend on the trajectory of the portfolio, but
solely on the current tradeo� between satisfying the constraints and maximizing the
objective. MPC for stochastic systems is a suboptimal control strategy; however, it
uses new information advantageously and is better than pure open-loop control. The
open-loop policy would be to execute the entire sequence of trades based on the initial
portfolio without recourse.

While the MPC approach can be criticized for only approximating the full dynamic
programming trading policy, the performance loss is likely very small in practical prob-
lems. Boyd et al (2014) developed a numerical bounding method that quanti�es the loss
of optimality when using simpli�ed approaches, such as MPC, and found it to be very
small in numerical examples. In fact, the dynamic programming formulation is itself
an approximation, based on assumptions�like independent and identically distributed
returns�that need not hold well in practice, so the idea of an �optimal strategy� itself
should be regarded with some suspicion (Boyd et al, 2017).

2.2.2 Computation

Algorithm 1 summarizes the four steps in the MPC approach to multi-period portfolio
selection (Herzog et al, 2007; Meindl and Primbs, 2008; Bemporad et al, 2014; Boyd
et al, 2014, 2017; Nystrup et al, 2018). There are computational advantages to using
MPC in cases when estimates of future return statistics are updated every time a
new observation becomes available, since the optimal control actions are reconsidered
anyway.
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Algorithm 1 (MPC approach to multi-period portfolio selection.)

1. Update model parameters based on the most recent observation
2. Forecast future values of all unknown quantities H steps into the future
3. Compute the optimal sequence of weights w?t+1, . . . , w

?
t+H based on the current

portfolio wt
4. Execute the �rst trade w?t+1 − wt and return to step 1

Formulation (2) is a convex optimization problem, provided the risk function and
the transaction and holding costs and constraints are convex (Boyd and Vandenberghe,
2004). Computing the optimal sequence of trades for H = 15 with n = 10 assets by
solving the optimization problem (2) with the risk-function and transaction and holding
costs and constraints described in Sections 2.3 and 2.5, respectively, takes less than 0.02
seconds using CVXPY (Diamond and Boyd, 2016) with the open-source solver ECOS
(Domahidi et al, 2013) on a standard Windows laptop.

Using a custom solver, or a code generator such as CVXGEN (Mattingley and
Boyd, 2012), would result in an even faster solution time. These solvers are more than
fast enough to run in real-time. The practical advantage of the high speed is the ability
to carry out a large number of backtests quickly. For example at 0.02 seconds per solve,
each year of a backtest with daily trading can be carried out in around �ve seconds.
In one hour, a 32-core machine can carry out �ve-year backtests with 4,000 di�erent
combinations of hyperparameters.

2.3 Risk-averse control

The traditional risk-adjustment charge is proportional to the variance of the portfolio
return given the portfolio weights, which corresponds to

ψt (wt) = wTt Σtwt. (3)

Note that Σt is an estimate of the return covariance under the assumption that the
returns are stochastic. It can be interpreted as a cost term that discourages holding
portfolios with high variance.

Objective function (1) with risk function (3) corresponds to mean�variance prefer-
ences over the changes in portfolio value in each time period (net of the risk-free return).
If the returns are independent random variables, then the objective is equivalent to the
mean�variance criterion of Markowitz (1952).1 It is a special case of expected utility
maximization with a quadratic utility function. While the utility approach was the-
oretically justi�ed by von Neumann and Morgenstern (1953), in practice few, if any,
investors know their utility functions; nor do the functions which �nancial engineers
and economists �nd analytically convenient necessarily represent a particular investor's
attitude toward risk and return (Dai et al, 2010; Markowitz, 2014). The mean�variance
criterion remains the most commonly used in portfolio selection (Kolm et al, 2014).

There is keen interest in other risk measures beyond the quadratic risk (3), for
many good reasons (see, e.g., Zenios, 2007; Scutellà and Recchia, 2013). Many of these
are convex and thus would work in this framework. A popular alternative is expected
shortfall, also known as conditional value-at-risk, de�ned as the expected loss in the

1 When H = 1, the multi-period problem (2) with risk function (3) reduces to the single-
period mean�variance problem studied by Markowitz (1952).
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worst q% of cases. It is a coherent measure of risk and a convex function of the port-
folio weights (Artzner et al, 1999; Rockafellar and Uryasev, 2000; Bertsimas et al,
2004). Unlike the quadratic measure (3), it only penalizes down-side risk.2 In practice,
portfolios constructed to minimize expected shortfall often realize a higher shortfall
out of sample than minimum-variance portfolios because of forecast uncertainty (Lim
et al, 2011; Stoyanov et al, 2012; Downing et al, 2015). The lower the quantile level
q, the larger the uncertainty. For investors concerned with tail risk, drawdown control
is an appealing alternative since it, unlike expected-shortfall optimization, prevents a
portfolio from losing more than a given limit.

2.4 Drawdown control

A portfolio is often subject to a maximum drawdown constraint, meaning that, at each
point in time, it cannot lose more than a �xed percentage of the maximum value it
has achieved up to that time. If the maximum value achieved in the past�sometimes
referred to as a high-water mark�is

Mt = max
τ≤t

Vτ , (4)

then the drawdown at time t is de�ned as

Dt = 1− Vt
Mt

. (5)

Controlling drawdown through DAA may appear similar to the constant-proportion
portfolio insurance (CPPI) policy introduced by Black and Jones (1987); Black and
Perold (1992). However, they considered the problem of portfolio selection under the
constraint that the portfolio value never falls below a �xed �oor, rather than a �xed
fraction of its maximum-to-date. The CPPI procedure dynamically allocates total as-
sets to a risky asset in proportion to a multiple of the di�erence between the portfolio
value and the desired protective �oor. This produces an e�ect similar to owning a put
option (under the assumption that it is possible to trade continuously when asset prices
fall), which is the idea behind option-based portfolio insurance (OBPI), proposed by
Leland (1980); Rubinstein and Leland (1981).

Grossman and Zhou (1993) were �rst to study portfolio selection under the con-
straint that the portfolio value never falls below a �xed fraction of its maximum-to-date.
They extended the CPPI policy of Black and Jones (1987); Black and Perold (1992)
to a stochastic �oor in a frictionless �nancial market comprised of a risky asset with
random-walk return dynamics and a risk-free asset with constant return. They showed
that, for constant relative risk aversion utility functions, the optimal allocation to risky
assets at time t is in proportion to the cushion Dmax−Dt, where Dmax ∈ (0, 1) is the
maximum acceptable drawdown. This is implemented by adjusting the risk-aversion
parameter in response to changes to the cushion.

Let γ0 be the risk aversion when the drawdown Dt = 0, i.e., when Vt =Mt. This
is the initial risk aversion, since V0 =M0, and it is the minimum risk aversion at any
later point in time, because the drawdown can never be negative. When Dt = Dmax,

2 If the underlying return distribution is Gaussian with known parameters, then the portfolio
that minimizes expected shortfall for a given expected return is equivalent to the portfolio that
minimizes variance with the same expected return (Rockafellar and Uryasev, 2000).
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then the allocation to risky assets should be zero, meaning that the risk aversion should
be in�nite. This leads to

γt = γ0
Dmax

Dmax −Dt
. (6)

In practice, the cushion in the denominator is replaced by max (Dmax −Dt, ε),
where ε is some small number, to avoid division by zero or negative numbers in case
the drawdown limit is breached. Moreover, γτ is only adjusted based on the realized
drawdown, which means keeping γτ = γt for τ = t + 1, . . . , t +H when solving (2).
Note that it is straight forward to implement another relationship between γt and γ0

than (6).
Drawdown control is a reactive mechanism that seeks to limit losses as they evolve

(Pedersen, 2015). It will, by construction, increase risk aversion in the domain of losses,
implying a path-dependent utility function (see, e.g., Dohi and Osaki, 1993). If the
drawdown gets too close to the limit, it can be impossible to escape it (depending
on the risk-free rate). The lower the drawdown limit Dmax and initial risk-aversion
parameter γ0, the larger the risk of getting trapped at the limit. In practice, a portfolio
manager that gets trapped at a drawdown limit will need to contact the client or the
board to get a new limit�or a dismissal.

2.5 Forecast-error risk

Data-driven portfolio optimization involves estimated statistics that are subject to esti-
mation errors (Merton, 1980). Practitioners tend to trust history for input estimation,
because it is objective, interpretable, and available, but the nonstationary nature of
�nancial returns limits the number of relevant observations obtainable. As a result, the
bene�ts of diversi�cation often are more than o�set by estimation errors (Jorion, 1985;
Michaud, 1989; Black and Litterman, 1992; Broadie, 1993; Chopra and Ziemba, 1993;
Garlappi et al, 2006; Kan and Zhou, 2007; Ardia et al, 2017). Including transaction and
holding costs and constraining portfolio weights are ways to regularize the optimization
problem and reduce the risk due to estimation errors.

2.5.1 Transaction costs

Transaction costs are important when comparing the performance of dynamic and
static strategies, as frequent trading can o�set a dynamic strategy's potential excess
return. In order to regularize the optimization problem and reduce the risk of trading
too much, a penalty for trading,

φtrade
t (wt − wt−1) = κT1 |wt − wt−1|+ κT2 (wt − wt−1)

2 , (7)

should be included in the objective function, where κ1 and κ2 are vectors of penalty
factors and the absolute and squared value are elementwise. This could re�ect actual
transaction costs or a conservatism toward trading, for example, due to the uncertainty
related to the parameter estimates and forecasts.

The weighted elastic-net penalty (7) is a convex combination of `1- and squared
`2-norm penalties. It reduces the number of trades like the `1 penalty and the size of
trades like the squared `2 penalty. The `1 penalty is similar to the standard proportional
transaction cost and is a convex relaxation of constraining the number of trades. The
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squared `2 penalty is used to model price impact (Almgren and Chriss, 2001; Boyd
et al, 2017); it shrinks together trades in correlated assets and splits trades over multiple
days.3

Many alternative formulations are possible. Popular models of transaction costs
include |wt − wt−1|3/2, which is another convex function, possibly scaled by the as-
set standard deviations and volumes (Grinold and Kahn, 2000; Boyd et al, 2017).
Grinold (2006) and Gârleanu and Pedersen (2013) argued for a cost of the type
(wt − wt−1)

T Σt (wt − wt−1)�closely related to the risk-adjustment charge (3)�-
which captures the increased cost of trading when volatility rises.

2.5.2 Holding costs

Holding the portfolio wt over the t'th period can incur a holding-based cost. A basic
holding-cost model includes a charge for borrowing assets when going short, which has
the form

φhold
t (wt) = sTt (wt)− , (8)

where (st)i ≥ 0 is the borrowing fee for shorting asset i in period t, and (w)− =
max {−w, 0} denotes the negative part of (the elements of) w. This is a fee for shorting
the assets over one investment period. A cash borrow cost can easily be included if
needed, in which case (st)n+1 > 0. This is the premium for borrowing, and not the
interest rate. When short positions are implemented using futures, the holding cost is
(at least) equal to the risk-free rate.

Another option is to include a holding cost similar to

φhold
t (wt) = ρT1 |wt|+ ρT2 w

2
t , (9)

where ρ1 and ρ2 are vectors of penalty factors and the absolute and squared value are
elementwise. For su�ciently large holding costs (8) and (9), the portfolio will be long
only, because the weights always sum to one (see (2)). Hence, including holding costs
is a means of controlling portfolio leverage.

The weighted elastic-net penalty (9) can be justi�ed by reformulating the mean�-
variance criterion as a robust optimization problem (Ho et al, 2015; Boyd et al, 2017).
It reduces the number of holdings like the `1 penalty and the size of holdings like the
squared `2 penalty. The `1 penalty is a convex relaxation of constraining the number
of holdings. It can be regarded as a shrinkage estimator of the expected return (Stein,
1956; Fabozzi et al, 2010). The squared `2 penalty shrinks together holdings in corre-
lated assets; it corresponds to adding a diagonal matrix to the forecasted covariance
matrix in (3), similar to a Stein-type shrinkage estimator (Ledoit and Wolf, 2004).

2.5.3 Constraints

Another way to improve the out-of-sample performance is to impose constraints on the
portfolio weights, which is equivalent to shrinking the covariance matrix (Jagannathan
and Ma, 2003; Ledoit and Wolf, 2003, 2004; DeMiguel et al, 2009a; Li, 2015). Di�erent
constraints correspond to di�erent prior beliefs about the asset weights. The portfolio

3 Price impact is the price movement against the trader that tends to occur when a large
order is executed.
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may be subject to constraints on the asset weights, such as minimum and maximum
allowed positions for each asset:

−wmin ≤ wt ≤ wmax, (10)

where the inequalities are elementwise and wmin and wmax are nonnegative vectors
of the maximum short and long allowed fractions, respectively. A long-only portfolio
corresponds to wmin = 0.

Portfolio leverage can be limited with a constraint∥∥(wt)1:n

∥∥
1
≤ Lmax, (11)

which requires the leverage to not exceed Lmax. Refer to Boyd et al (2017) for examples
of many other convex holding and trading costs and constraints that arise in practical
investment problems and can easily be included.

3 Data model

The volatility of asset prices forms clusters, as large price movements tend to be followed
by large price movements and vice versa, as noted by Mandelbrot (1963).4 The choice
of a regime-switching model aims to exploit this persistence of the volatility, since
risk-adjusted returns, on average, are substantially lower during turbulent periods,
irrespective of the source of turbulence (Fleming et al, 2001; Kritzman and Li, 2010;
Moreira and Muir, 2017).

Clustering asset returns into time periods with similar behavior is di�erent from
other types of clustering, such as k-means, due to the time dependence (Dias et al,
2015). In machine learning, the task of inferring a function to describe a hidden struc-
ture from unlabeled data is called unsupervised learning. The data is unlabeled, be-
cause the regimes are unobservable. When the transition between di�erent regimes is
controlled by a Markov chain, the regime-switching model is called a hidden Markov
model.

The HMM is a popular choice for inferring the hidden state of �nancial markets,
because it is well suited to capture the stylized behavior of many �nancial time series
including volatility clustering and leptokurtosis, as shown by Rydén et al (1998). In
addition, it can match the tendency of �nancial markets to change their behavior
abruptly and the phenomenon that the new behavior often persists for several periods
after a change (Ang and Timmermann, 2012).

3.1 The hidden Markov model

In an HMM, the probability distribution that generates an observation depends on
the state of an unobserved Markov chain. A sequence of discrete random variables
{st : t ∈ N} is said to be a �rst-order Markov chain if, for all t ∈ N, it satis�es the
Markov property:

Pr (st+1| s1, . . . , st) = Pr (st+1| st) .

4 A quantitative manifestation of this fact is that while returns themselves are uncorrelated,
absolute and squared returns display a positive, signi�cant, and slowly decaying autocorrelation
function.
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The conditional probabilities Pr (st+1 = j| st = i) = γij are called transition proba-
bilities. A Markov chain with transition probability matrix Γ = {γij} has stationary
distribution π, if πTΓ = πT and 1Tπ = 1.

Future (excess) returns and covariances are forecasted using a model with multi-
variate Gaussian conditional distributions:

ot| st ∼ N (µst , Σst) .

When the current state st is known, the distribution of the observation ot depends only
on st and not on previous states or observations. The sojourn times are implicitly as-
sumed to be geometrically distributed, implying that the time until the next transition
out of the current state is independent of the time spent in the state.

3.2 Estimation

Using the online version of the expectation�maximization algorithm proposed by Stenger
et al (2001), estimates of the model parameters are updated after each sample value.5

The idea is that forward variables αt are updated in every step. These variables give
the probability of observing o1, . . . , ot and being in state i ∈ S at time t:

(αt)i = Pr (st = i, o1, . . . , ot) , i ∈ S.

In the �rst step, the forward variables are set to

(α1)i = (δ)i Pr (o1| s1 = i) , i ∈ S,

where δ is the initial state distribution, i.e., (δ)i = Pr (s1 = i).
With every observation, the α values are updated by summing the probabilities

over all possible paths which end in the new state j ∈ S:

(αt)j =

[∑
i∈S

(αt−1)i γij

]
Pr (ot| st = j) , j ∈ S.

The �ltering probability of being in a particular state i ∈ S at time t, given the
observations, is

(ξt)i = Pr (st = i| o1, . . . , ot) =
Pr (st = i, o1, . . . , ot)

Pr (o1, . . . , ot)
=

(αt)i
1Tαt

.

The probability of a certain state transition i to j, given the observations, is

(ζt)ij = Pr (st−1 = i, st = j| o1, . . . , ot)

=
Pr (st−1 = i, o1, . . . , ot−1) Pr (st = j| st−1 = i) Pr (ot| st = j)

Pr (o1, . . . , ot)

=
(αt−1)i γijPr (ot| st = j)

1Tαt
.

5 See also the survey by Khreich et al (2012).
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These formulas provide the re-estimation scheme. At every time step t, the proba-
bilities ξt and ζt are computed and used to update the model parameters (∀i, j ∈ S):

γ̂tij =

∑t
τ=2 Pr (sτ−1 = i, sτ = j| o1, . . . , oτ )∑t

τ=2 (ξτ )i

=

∑t−1
τ=2 (ξτ )i∑t
τ=2 (ξτ )i

γ̂t−1
ij +

(ζt)ij∑t
τ=2 (ξτ )i

(12)

µ̂ti =

∑t
τ=1 (ξτ )i oτ∑t
τ=1 (ξτ )i

=

∑t−1
τ=1 (ξτ )i∑t
τ=1 (ξτ )i

µ̂t−1
i +

(ξt)i ot∑t
τ=1 (ξτ )i

(13)

Σ̂ti =

∑t
τ=1 (ξτ )i

(
oτ − µ̂ti

) (
oτ − µ̂ti

)T∑t
τ=1 (ξτ )i

=

∑t−1
τ=1 (ξτ )i∑t
τ=1 (ξτ )i

Σ̂t−1
i +

(ξt)i
(
ot − µ̂ti

) (
ot − µ̂ti

)T∑t
τ=1 (ξτ )i

.

(14)

The sums in these equations are computed by storing the values and adding the new
terms at each time step. This can be seen as continually updating the su�cient statis-
tics, which are used to compute the new parameters.

3.2.1 Exponential forgetting

A problem with this method is that all values from t = 1 to the current time instant
are used to compute the su�cient statistics. If the initial parameter values are far
away from the true values, this will slow down the convergence process. Moreover,
nonstationary data are not well handled. As a solution to these problems, Stenger et al
(2001) proposed to compute the su�cient statistics using exponential forgetting, by
which estimates prior in time receive less weight.

The idea is to replace the sums in the re-estimation formulas (12)�(14) by variables
which are updated recursively. For example, the term

∑t
τ=1 ξτ is replaced by variables

Sξt which are updated as

Sξt = λSξt−1 + (1− λ) ξt,

where λ ∈ (0, 1) is the forgetting factor. This approach discounts old observations
exponentially, such that an observation that is τ samples old carries a weight that
is equal to λτ times the weight of the most recent observation. Hence, the e�ective
memory length is T eff = 1/ (1− λ).

Exponential forgetting is a natural choice when parameters are believed to follow a
random walk (Smidl and Gustafsson, 2012). The choice of memory length is a tradeo�
between adaptivity to parameter changes and sensitivity to noise. With an HMM the
mean and covariance are free to jump from one state to another at every time step�or
instantaneously, if a continuous-time model is employed (Nystrup et al, 2015b)�even
when the time variation of the underlying parameters is assumed to be smooth. In this
way, the adaptively-estimated HMM combines abrupt changes and smooth variations
(Nystrup et al, 2017b).



Multi-Period Portfolio Selection with Drawdown Control 13

3.2.2 Shrinkage estimation

The usual issues when estimating a high-dimensional covariance matrix also arise in
the context of HMMs, causing unstable estimates of the transition matrix and of the
hidden states, as shown by Fiecas et al (2017). In fact, the problem is even more
pronounced, as some regimes could be seldom visited, in which case the e�ective sam-
ple size for estimating the covariance matrix will be very small. Furthermore, when
applying exponential forgetting, the sample size is bounded by the e�ective memory
length.

One possible solution, as proposed by Fiecas et al (2017), is to apply a Stein-type
shrinkage estimator

Σ̂shrink
i = (1− νi) Σ̂i + νitr

(
Σ̂i
)
n−1In, (15)

where νi ∈ [0, 1] is the shrinkage factor and In is the n×n identity matrix. In order to
further stabilize the state classi�cation, it can be necessary to consider only a subset
of the indices when estimating the state probabilities (see Sect. 4.2).

3.3 Forecasting

The �rst step toward calculating the forecast distribution is to estimate the current
state probabilities given the past observations and parameters. This is the ξt that is
estimated as part of the online algorithm. Once the current state probabilities are
estimated, the state probabilities h steps ahead can be forecasted by multiplying the
state estimate ξ̂t|t with the transition probability matrix h times:

ξ̂Tt+h|t = ξ̂Tt|tΓ
h
t . (16)

The parameters are assumed to stay constant in the absence of a model describing
their evolution.

The density forecast is the average of the state-dependent conditional densities
weighted by the forecasted state probabilities. When the conditional distributions
are distinct Gaussian distributions, the forecast distribution will be a mixture with
non-Gaussian distribution (Frühwirth-Schnatter, 2006). Using Monte Carlo simula-
tion, Boyd et al (2014) found that the results of dynamic portfolio optimization are
not particularly sensitive to higher-order moments. For the present application, only
the �rst and second moment of the forecast distribution are considered.

The �rst two unconditional moments of a multivariate mixture distribution are

µ =
∑
i∈S

(ξ)i µi, (17)

Σ =
∑
i∈S

(ξ)iΣi +
∑
i∈S

(ξ)i (µi − µ) (µi − µ)
T , (18)

with (ξ)i denoting the forecasted state probabilities.
Before calculating the unconditional moments of the mixture distribution, the con-

ditional means and covariances of the returns rt are calculated based on the estimated



14 Peter Nystrup et al.

moments of the log-returns. Within each state, the log-returns are assumed to be in-
dependent and identically distributed with Gaussian distribution:

log (1+ rt) ∼ N
(
µlog
st , Σ

log
st

)
,

where µlog
st and Σlog

st are the conditional mean and covariance of the log-returns. Thus,
the conditional mean and covariance of the returns rt are given by

(µs)i = exp

{(
µlog
s

)
i
+

1

2

(
Σlog
s

)
ii

}
− 1, (19)

(Σs)ij = exp

{(
µlog
s

)
i
+
(
µlog
s

)
j
+

1

2

{(
Σlog
s

)
ii
+
(
Σlog
s

)
jj

}}
·
{
exp

{(
Σlog
s

)
ij

}
− 1

}
.

(20)

Note that i and j in (19) and (20) refer to elements of the conditional mean and
covariance, i.e., speci�c assets, whereas s refers to a state.

The forecasted mean and covariance will be mean-reverting as the forecast hori-
zon extends and the state probabilities converge to the stationary distribution of the
Markov chain. The more persistent the states are, the slower the rate of convergence.

4 Empirical results

The empirical testing is divided into two parts. The purpose of the in-sample train-
ing is to determine the optimal number of regimes, memory length in the estimation,
shrinkage factors, and values of the hyperparameters in the MPC problem (2). In the
out-of-sample test, the performance of the MPC approach to multi-period portfolio se-
lection with drawdown control is evaluated for the particular choice of hyperparameters
and compared to various benchmarks.

4.1 Data

4.1.1 In sample

The choice of time period is a tradeo� between historical data availability and asset
universe coverage. The in-sample asset universe consists of developed market (DM)
and emerging market (EM) stocks, listed DM real estate, DM high-yield bonds, gold,
oil, corporate bonds, and U.S. government bonds.6 All indices measure the total net
return in USD with a total of 2,316 daily closing prices per index covering the period
from 1990 through 1998.7 The �rst two years are used for initialization and the last
seven years are used for training.

6 The eight indices are MSCI World, MSCI Emerging Markets, FTSE EPRA/NAREIT
Developed Real Estate, BofA Merrill Lynch U.S. High Yield, S&P GSCI Crude Oil (funded
futures roll), LBMA Gold Price, Barclays U.S. Aggregate Corporate Bonds, and Bloomberg
Barclays U.S. Government Bonds.
7 Days on which more than half of the indices had zero price change (27 days in total) have

been removed. In the few months where only monthly prices are available for DM high-yield
bonds, linear interpolation with Gaussian noise has been used to �ll the gaps.
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Figure 1: Development of the ten indices over the 20-year out-of-sample period.

This is only a subset of the indices considered in the out-of-sample test, as historical
data is not available for EM high-yield bonds and in�ation-linked bonds. Furthermore,
U.S. government bonds are a substitute for the Citi G7 government-bond index in
sample.

4.1.2 Out of sample

The asset universe considered in the out-of-sample test consists of DM and EM stocks,
listed DM real estate, DM and EM high-yield bonds, gold, oil, corporate bonds, in�ation-
linked bonds, and government bonds.8 All indices measure the total net return in USD
with a total of 5,185 daily closing prices per index covering the period from 1997
through 2016.9 The �rst two years are used for initialization and the last 18 years are
used for out-of-sample testing.

Figure 1 shows the ten indices' development over the 20-year out-of-sample period.
There are large di�erences in the asset classes' behavior. The �nancial crisis in 2008
stands out, in that respect, as the majority of the indices su�ered large losses in this
period.

Table 1 summarizes the indices' annualized excess return, excess risk, Sharpe ratio
(SR)10, maximum drawdown11, and Calmar ratio (CR)12. The risk-free rate is assumed

8 The ten indices are MSCI World, MSCI Emerging Markets, FTSE EPRA/NAREIT De-
veloped Real Estate, BofA Merrill Lynch U.S. High Yield, Barclays Emerging Markets High
Yield, S&P GSCI Crude Oil (funded futures roll), LBMA Gold Price, Barclays U.S. Aggre-
gate Corporate Bonds, Barclays World In�ation-Linked Bonds (hedged to USD), and Citi G7
Government Bonds (hedged to USD).
9 Days on which more than half of the indices had zero price change (19 days in total) have

been removed.
10 The Sharpe ratio is the excess return divided by the excess risk (Sharpe, 1966, 1994).
11 The maximum drawdown is the largest relative decline from a historical peak in the index
value, as de�ned in Sect. 2.4.
12 The Calmar ratio is the annualized excess return divided by the maximum drawdown.
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Table 1: Annualized performance of the ten indices over the 20-year out-of-sample
period in excess of the risk-free rate.

Index
Excess Excess Sharpe Maximum Calmar
return risk ratio drawdown ratio

1. DM stocks 0.042 0.18 0.24 0.57 0.07
2. EM stocks 0.035 0.28 0.12 0.65 0.05
3. Real estate 0.054 0.22 0.24 0.72 0.07
4. DM high-yield bonds 0.050 0.12 0.42 0.35 0.14
5. EM high-yield bonds 0.077 0.13 0.61 0.36 0.21
6. Oil -0.046 0.42 -0.11 0.94 -0.05
7. Gold 0.038 0.16 0.23 0.45 0.09
8. Corporate bonds 0.040 0.06 0.68 0.16 0.25
9. In�ation-linked bonds 0.041 0.04 0.99 0.10 0.40
10. Government bonds 0.032 0.03 1.17 0.05 0.65

to be the daily equivalent of the yield on a one-month U.S. treasury bill. The reported
excess risks have been adjusted for autocorrelation using the procedure outlined by
Kinlaw et al (2014, 2015).13

The di�erences in performance are substantial. The oil price index is the only index
that has had a negative excess return. The EM high-yield bond index realized the
highest excess return while in�ation-linked and government bonds realized the highest
Sharpe and Calmar ratios. Fixed income bene�ted from falling interest rates over the
considered period.

4.2 In-sample training

In the in-sample training, the risk-aversion parameter is �xed at γ = 5 and portfolio
performance is evaluated in terms of SR, excess return, and annual turnover. The
choice of γ = 5 results in portfolios with an excess risk similar to that of the equally-
weighted 1/n portfolio (in Sect. 4.4 results are shown for a range of values of the
risk-aversion parameter). Training is carried out solely for a long-only (LO) portfolio
with no leverage. Realized transaction costs, including bid�ask spread, are assumed to
be 10 basis points, and there is no transaction cost associated with the risk-free asset.
The assets are assumed to be liquid enough compared to the total portfolio value that
price impact can be ignored.14 Further, it is assumed that there are no holding costs.

Many of the hyperparameters are mutually dependent, which makes the in-sample
training more challenging. For example, if the MPC planning horizon is doubled, trans-
action costs also have to be doubled in order to maintain an approximately similar
turnover.15 In addition, the optimal values of the MPC hyperparameters depend on
the choice of forecasting model.

13 The adjustment leads to the reported excess risks being higher than had they been annu-
alized under the assumption of independence, as most of the indices display positive autocor-
relation. The largest impact was on the excess risk of EM stocks that went from 0.20 to 0.28
and the excess risk of DM high-yield bonds that went from 0.05 to 0.12.
14 A transaction cost of 10 basis points is within the range of values estimated in empirical
studies (see Pedersen, 2015, Chapter 5). It could be argued that transaction costs should be
lower for some indices and higher for others. This could easily be implemented as the elements
of κ1 and κ2 in (7) need not all be the same.
15 See Grinold (2006); Boyd et al (2017) for more on amortization of transaction and holding
costs.
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To simplify the training task, it is divided into two steps. First, reasonable values of
the MPC parameters are chosen and then used when testing di�erent forecasting mod-
els. Second, the optimal MPC hyperparameters are found for the selected forecasting
model. A �nal check is done to ensure that the model is still optimal for that choice of
MPC hyperparameters.

4.2.1 Forecasting model

Number of regimes and indices. At �rst, a multivariate HMM is �tted to all indices
at once. This results in a state sequence with low persistence and frequent switches,
leading to excessive portfolio turnover and poor results. This is surprising given the
large number of studies showing the value of DAA based on regime-switching models,
in particular Nystrup et al (2017a) who used a univariate HMM of daily stock returns
to switch between prede�ned risk�on and risk�o� multi-asset portfolios. Inspired by
this approach, the states are instead estimated based on the two stock indices (DM
and EM). The mean vector and covariance matrix in each state is still estimated based
on all indices, but the underlying state is estimated solely based on the two stock
indices. This leads to a more persistent state sequence with fewer switches and better
portfolio performance. There is no bene�t to including additional indices in the state
estimation, as it increases the uncertainty. The stock indices appear to be su�cient in
order to capture important changes in risk and return. Models with two, three, and
four regimes are tested. There is no bene�t in going from two to three regimes and it
is very hard to distinguish between four regimes out of sample.

E�ective memory length. E�ective memory lengths of T eff = 65, 130, 260, 520 days
are tested. The shorter the memory length used in the estimation, the higher the risk
of having states with no visits and, consequently, probabilities converging to zero and
never recovering. This happens with memory lengths shorter than 100 days. The more
regimes, the longer the optimal memory length. With only two regimes, 130 days appear
to be optimal.

Shrinkage factors. The shorter the memory length, the higher the optimal shrinkage
factor. Shrinkage factors of νi = 0.1, 0.2, . . . , 0.5 are tried in each of the two regimes.
A shrinkage factor of 0.2 in the most frequent regime and 0.4 in the least visited regime
performs best. The use of shrinkage signi�cantly improves the results, although they
are not overly sensitive to the speci�c choice of shrinkage factor within the tested range.

4.2.2 MPC parameters

Planning horizon. Planning horizons of H = 10, 15, . . . , 30 days are tested. 10 days
are found to be too few, while it appears that there is no bene�t in going beyond 15
days.

Maximum holding constraint. Maximum holding constraintswmax = 0.2, 0.3, . . . , 0.5
are tried. A maximum holding constraint ensures a minimum level of diversi�cation, but
with wmax = 0.2 there is limited possibility for deviating from the equally-weighted
portfolio. As a compromise, a value of wmax = 0.4 is selected, but results are not
sensitive to the particular choice within this range of values.
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Transaction costs. Transaction costs (κ1)1:n = 0.0005, 0.001, . . . , 0.0055 are tested,
while there is no transaction cost associated with the risk-free asset, i.e., (κ1)n+1 =

0. The term κT1 |wt − wt−1| is very e�ective at reducing portfolio turnover. When
this penalty is included, there is no additional bene�t from including a second term
κT2 (wt − wt−1)

2. This squared term reduces the size of trades, but it appears that
it simply means that trades are split over multiple days and therefore delayed. This
is not bene�cial given the assumption that there is no realized price-impact cost. The
value (κ1)1:n = 0.004 is selected.

Holding costs. Holding costs ρ2 = 0, 0.0005, . . . , 0.002 are tested. The holding cost
ρT2 w

2
t has a similar e�ect as the weight constraint (10): it encourages diversi�cation and

reduces the risk due to uncertainty in the covariance forecasts. Increasing ρ2 leads to a
more diversi�ed and stable portfolio. If (ρ2)n+1 = 0, this will at the same time increase
the allocation to cash, which is undesirable. The value ρ2 = 0.0005 is selected. There
is no bene�t to including an `1 term ρT1 |wt|, which leads to a more sparse portfolio.

4.3 Out-of-sample test results for γ0 = 5

Below, the performance of the MPC approach is evaluated for the above choice of
hyperparameters and compared to various benchmarks. First, results when γ0 = 5 are
reported, and then in Sect. 4.4 results are analyzed for a range of values of γ0. In all
cases it is assumed that assets can be bought and sold at the end of each trading day,
subject to a 10 basis point transaction cost, and the fee for shorting assets is assumed
to be equal to the risk-free rate. It is assumed that there are no price-impact or holding
costs.

4.3.1 Allocations

Figures 2 and 3 show the asset weights over time for a long-only and a long�short (LS)
portfolio and for a leveraged long-only (LLO) portfolio without and with drawdown
control, respectively. The cost and weight parameters not mentioned in the �gure cap-
tions are equal to zero. The portfolios always include multiple assets at a time due to
the imposed maximum holding (wmax)1:n = 0.4. The allocations change quite a bit
over the test period, especially in the LS portfolio.

Leverage is primarily used between 2003 and mid-2006 and again from 2010 until
mid-2013. With the exception of these two periods, the four portfolios include holdings
in the risk-free asset most of the time in addition to some short positions in the LS
portfolio. The impact of drawdown control on the allocation is most evident during the
2008 crisis, where the LLO portfolio subject to drawdown control is fully allocated to
cash.

4.3.2 Performance compared to �xed mix and 1/n

In Tab. 2, the MPC portfolios' annualized performance in excess of the risk-free rate
when γ0 = 5 is compared to a �xed-mix (FM) portfolio and an equally-weighted (1/n)
portfolio. The FM portfolio is rebalanced monthly to the average allocation of the LO
portfolio over the entire 18-year test period. This means that the LO and the FM
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Figure 2: Asset weights over time for a long-only and a long�short portfolio.

Table 2: Annualized performance of MPC portfolios with γ0 = 5 compared to �xed
mix and 1/n.

LO LLO LLODmax=0.1 LS FM 1/n
Excess return 0.10 0.13 0.11 0.12 0.06 0.06
Excess risk 0.11 0.12 0.11 0.12 0.12 0.11
Sharpe ratio 0.97 1.01 1.00 1.01 0.51 0.52
Maximum drawdown 0.19 0.19 0.10 0.23 0.38 0.37
Calmar ratio 0.56 0.65 1.07 0.54 0.16 0.16
Annual turnover 2.93 3.22 3.24 6.75 0.16 0.16

Notes: The �xed-mix portfolio is rebalanced monthly to the average allocation of the long-only

portfolio. The 1/n portfolio is rebalanced monthly. Transaction costs of 10 basis points per

transaction have been deducted. A borrowing fee equal to the risk-free rate has been deducted

for short positions.
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Figure 3: Asset weights over time for a leveraged long-only portfolio without and with
drawdown control.

portfolios have the same average allocation. Thus, di�erences in performance can only
be attributed to timing and transaction costs. The 1/n portfolio is rebalanced monthly
to an equal allocation across all risky assets. The performance of FM and 1/n is fairly
similar.

The LO portfolio's excess return is 445 basis points higher than that of the FM
portfolio. This, combined with a slightly lower excess risk, leads to a SR of 0.97 com-
pared to 0.51. DAA, even without drawdown control, leads to a MDD of 0.19 compared
to the FM portfolio's 0.38. This leads to a CR that is more than three times as high
(0.56 compared to 0.16). The LO portfolio's annual turnover of 2.93 is a lot higher
than that of the FM portfolio, but the reported results are net of transaction costs of
10 basis points per one-way transaction.
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Allowing a maximum leverage of Lmax = 2 leads to a higher turnover and a slightly
higher excess return, excess risk, and SR when γ0 = 5. The LLO portfolio's MDD is
the same as that of the LO portfolio. This leads to a CR of 0.65 compared to the LO
portfolio's 0.56.

By allowing leverage and imposing a maximum acceptable drawdown of Dmax =
0.1, the CR can be further improved. The reduction in MDD more than o�sets the
loss of excess return, leading to a CR of 1.07. Note that the imposition of a drawdown
limit only leads to a slightly higher turnover.

The LS portfolio's SR and CR are similar to those of the LO portfolio. Its annual
turnover of 6.75 is by far the highest of any of the portfolios. This could easily be
reduced, though, by imposing a higher trading penalty in the optimization.

Another way to reduce turnover is to reconsider the allocation less frequently.
Weekly rather than daily adjustments reduce the turnover by more than one, but lead
to a slightly lower return and higher risk.16 The savings in terms of transaction costs
are not enough to compensate for the lost opportunities. The Calmar ratio deteri-
orates more so than the Sharpe ratio, because drawdown control does not work as
well when allowing less frequent allocation changes. In addition, portfolio constraints
can be violated. Yet, the Sharpe ratio is relatively stable, which indicates that the
regime-switching approach is robust.17

Figure 4 shows the value of the portfolios from Tab. 2 over time on a log scale.
The MPC portfolios outperform the equally-weighted portfolio throughout the 18-year
period. The leveraged portfolios, in particular, have bene�ted from the bull market
from 2003 until 2008 and again after the �nancial crisis. The MPC portfolios lost value
in 2008, but they lost much less than the 1/n portfolio. None of the portfolios have
gained much value in 2014 and 2015.

4.4 Drawdown control results

4.4.1 Long only

Figure 5 shows the annualized excess return net of transaction costs as a function of
(a) annualized excess risk and (b) maximum drawdown for di�erent values of γ0 and
Dmax for a long-only portfolio. For comparison, the ex-post mean�variance e�cient
frontier and the 1/n portfolio are shown. Note that the risk of the 1/n portfolio could
be changed by allocating part of the portfolio to the risk-free asset. The ex-post e�cient
frontier shows the maximum excess return obtainable for a given excess risk for a �xed-
mix, long-only portfolio subject to the maximum holding constraint (wmax)1:n = 0.4,
conditional on knowing the returns beforehand. It is referred to as a no-regret frontier
(Bell, 1982). It more or less overlaps with the ex-post mean�MDD e�cient frontier in
both risk spaces; therefore, only the former is shown.

The dynamic frontiers are clearly superior to the static, no-regret frontier. This
is impressive considering that the no-regret frontier is constructed in hindsight and,
thus, not obtainable in practice. In other words, even if they knew future returns when

16 Note that all hyperparameters were selected in sample based on a daily update frequency
(Sect. 4.2). When these parameters are used with a lower update frequency, as expected, the
results are worse.
17 Results from the experiments with weekly portfolio adjustments are not reported in the
article but are available upon request.
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Figure 4: Performance over time of MPC portfolios with γ0 = 5 compared to an
equally-weighted portfolio.
Notes: Transaction costs of 10 basis points per transaction have been deducted. A borrowing

fee equal to the risk-free rate has been deducted for short positions.

choosing their benchmark, investors who insist on rebalancing to a static, diversi�ed
benchmark could not have outperformed the dynamic strategies net of transaction
costs over the 18-year test period in terms of SR nor CR. The opportunity for DAA
signi�cantly expands the investment opportunity set; even so, this is a noteworthy
result.

The 1/n portfolio is ine�cient regardless of whether risk is measured by standard
deviation or MDD. This is no surprise given that it is based on a naive prior assumption
of equal returns, risks, and correlations across all assets. Yet, equally-weighted portfo-
lios are often found to outperform mean�variance optimized portfolios out of sample
(DeMiguel et al, 2009b; López de Prado, 2016). This suggests that the no-regret fron-
tier would likely be closer to the 1/n portfolio than to the dynamic frontiers, had it
not bene�ted from hindsight.

Looking at the frontiers with and without drawdown control in Fig. 5a, it appears
that drawdown control can be implemented with little loss of mean�variance e�ciency.
By increasing the risk-aversion parameter as the drawdown approaches the maximum
acceptable drawdown Dmax, a larger fraction of the portfolio is allocated to the risk-
free asset, cf. Fig. 3b. Except for the transaction costs involved, this does not lead to
a worse SR per se, but reduced risk-taking in periods with above-average SRs would.
This is clearly not the case. Drawdown control simply leads to a higher average risk
aversion.

From Fig. 5b it can be seen that the drawdown limit is breached�although not by
much�when γ0 = 1. The success of the proposed approach to drawdown control is not
very sensitive to the choice of initial risk-aversion parameter γ0. Essentially, any value
γ0 ≥ 3 will work with a drawdown limit as tight as Dmax = 0.1. Drawdown control
is more sensitive to the allocation-update frequency, since optimal drawdown control
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Figure 5: E�cient frontiers for di�erent values ofDmax compared to a no-regret frontier
and an equally-weighted portfolio, when no leverage is allowed.
Notes: The points, from right to left, correspond to γ0 = 1, 3, 5, 10, 15, 25. The 1/n portfolio is

rebalanced monthly. Transaction costs of 10 basis points per transaction have been deducted.

requires continuous trading. Yet, daily allocation updates are su�cient for it to work
for reasonable values of γ0 and Dmax.

4.4.2 Long�short

Figure 6 shows the annualized excess return net of transaction costs as a function of (a)
annualized excess risk and (b) maximum drawdown for di�erent values of γ0 and Dmax
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Figure 6: E�cient frontiers for di�erent values ofDmax compared to a no-regret frontier
and an equally-weighted portfolio, when leverage and short positions are allowed.
Notes: The points, from right to left, correspond to γ0 = 1, 3, 5, 10, 15, 25. The 1/n portfolio is

rebalanced monthly. Transaction costs of 10 basis points per transaction have been deducted.

The maximum leverage allowed is Lmax = 2.

for LS and LLO portfolios. For comparison, the ex-post mean�variance e�cient frontier
and the 1/n portfolio are shown. The ex-post e�cient frontier gives the maximum
excess return obtainable for a given excess risk for a �xed-mix, long�short portfolio
subject to the same holding and leverage constraints,

(
wmin

)
1:n

= (wmax)1:n = 0.4
and Lmax = 2, conditional on knowing the returns beforehand.
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In Fig. 6a, the possibility of using leverage or taking short positions extends the
e�cient frontier. Leverage can be applied to increase risk while maintaining diversi�-
cation, rather than concentrating the portfolio in a few assets. This reduces the gap
between the dynamic frontiers and the no-regret frontier.

In Fig. 6b, the di�erence between the dynamic frontiers and the no-regret frontier
is still substantial. Again, the ex-post mean�variance e�cient frontier more or less
overlaps with the ex-post mean�MDD e�cient frontier; therefore, only the former is
shown. By taking a dynamic approach, the maximum drawdown can be reduced by
0.25, while maintaining the same excess return.

The combination of leverage and drawdown control is powerful. Compared to Fig.
5b, it is possible to increase the excess return by several hundred basis points without
su�ering a larger MDD by combining the use of leverage with drawdown control. The
possible excess return is bounded by the drawdown limit. Seeking excess return beyond
this boundary by removing the drawdown limit and lowering γ0 comes at the cost of a
signi�cantly increased MDD. This is true regardless of whether leverage can be applied.

5 Conclusion

By adjusting the risk aversion based on realized drawdown, the proposed approach to
multi-period portfolio selection based on MPC successfully controlled drawdowns with
little or no sacri�ce of mean�variance e�ciency. The empirical testing showed that
performance could be signi�cantly improved by reducing realized risk and MDD using
this dynamic approach. In fact, even if they knew future returns when choosing their
benchmark, investors who insisted on rebalancing to a static benchmark allocation
could not have outperformed the dynamic approach net of transaction costs over the
18-year out-of-sample test period. The combination of leverage and drawdown control
was particularly successful, as it was possible to increase the excess return by several
hundred basis points without su�ering a larger MDD.

The MPC approach to multi-period portfolio selection has potential in practical ap-
plications, because it is computationally fast. This makes it feasible to consider a large
universe of assets and implement important constraints and costs. When combined with
an adaptive forecasting method it provides a �exible framework for incorporating new
information into a portfolio as it becomes available. This should de�nitely be useful in
future research, when evaluating the performance of return-prediction models.
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