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Abstract In this paper, we present a multistage time consistent Expected Conditional Risk Measure
for minimizing a linear combination of the expected mean and the expected variance, so-called
Expected Mean-Variance. The model is formulated as a multistage stochastic mixed-integer quadratic
programming problem combining risk-sensitive cost and scenario analysis approaches. The proposed
problem is solved by a matheuristic based on the Branch-and-Fix Coordination method. The
multistage scenario cluster primal decomposition framework is extended to deal with large-scale
quadratic optimization by means of stage-wise reformulation techniques. A speci�c case study in
risk-sensitive production planning is used to illustrate that a remarkable decrease in the expected
variance (risk cost) is obtained. A competitive behavior on the part of our methodology in terms of
solution quality and computation time is shown when comparing with plain use of CPLEX in 150
benchmark instances, ranging up to 711845 constraints and 193000 binary variables.
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1 Introduction

Mathematical optimization is actually one of the most reliable tools for decision-making. The need to
incorporate uncertainty into mathematical programming models gave rise to the �eld of Stochastic
Optimization, which enables the risk inherent in decision making due to uncertainty in the main
parameters of the problem to be managed as far as possible. Multistage stochastic optimization is
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a good tool for representing uncertainty. Such problems have a more complex information structure
scenario than (frequently approximated) two-stage models. In the general formulation of a multistage
stochastic model, decisions on each stage have to be made stage-wise without anticipation of future
events, i.e. the so-called non-anticipativity constraints (NAC), see Wets (1974,1975) [43,44], must be
satis�ed. The problem is formulated by what is known as the Deterministic Equivalent Model (DEM),
a term coined by Wets (1974,1975) [43,44]. Conventionally, special attention has been given to
optimizing the DEM by optimizing expected value of the objective function over the set of scenarios.
In 1994 Kall and Wallace gave an introduction scenario analysis (see [28]) and in 1997 Birge and
Louveaux explained the main concepts on stochastic optimization via scenario tree analysis (see [9]).

In multistage stochastic optimization problems where the parameters are random variables
with known probability distributions, a multistage Risk Neutral (RN) strategy is conventionally
considered. In multistage RN approaches the optimization is performed in average, i.e. the setting
does not hedge against the occurrence of low probability high-consequence events. Alternatively, a
decision-maker that is very concerned about non-desired scenarios may consider a risk-averse strategy
for the optimization problem. Several risk averse measures were suggested by various authors, see
some surveys in [35] and [38]. Additionally, it also seems natural to consider that the optimal decisions
at a certain node of the tree should not depend on scenarios that cannot happen in the future, i.e.
the so-named time consistency principle stated by Shapiro in 2009 (see [40]).

From a modeling perspective, in this paper we introduce a multistage time consistent risk averse
measure, so-called Expected Mean-Variance (EMV), that can be included in the class of Expected
Conditional Risk Measures (ECRM) proposed by Homem-de-Mello and Pagnoncelli in 2016 (see [32]).
Interestingly, ECRMs have suitable properties for multistage scenario cluster primal decomposition
frameworks. The proposed EMV model minimizes a linear combination of the expected mean and
the expected variance, based on a combination of risk-sensitive cost (see [11]) and scenario analysis
approaches. Consequently, EMV is formulated as a multistage stochastic mixed-integer quadratic
programming problem.

In recent years, Quadratic Programming (QP) problems attracted considerable attention both
from modeling and algorithmic standpoints. Many applications of science and technology are by
construction, or after reformulations, described as QP or Mixed-Integer Quadratic (MIQ) problems
(see Furini et al. [23] for a summary of applications). A classical linearization strategy that promotes
very concise mixed 0-1 linear representations of mixed 0-1 quadratic programs was put forward by
Glover in 1975 (see [25]). In 1976 McCormick presented a general method for obtaining a global
solution in factorable nonlinear programming problems (see [31]). More recently, in 2004 Adams,
Forrester and Glover gave a linearization strategy for mixed 0-1 quadratic problems that produces
small formulations with tight relaxations by using binary identities to rewrite the objective (see [1]).
In 2013 Kolodziej, Castro and Grossmann presented relaxation techniques for solving nonconvex
bilinear programs (see [29]).

A number of recent papers have considered Stochastic Mixed Integer Quadratic (SMIQ)
framework for modeling decision problems under uncertainty. To account for volatility in the power
industry, in 2004 Conejo et al. focused on risk modeling, emphasizing the tradeo� between maximum
pro�t and minimum risk as an MIQ (see [13]). In 2006 S. Ahmed proposed stochastic programming
decomposition algorithms for mean-risk functions, see [2]. In 2008 Osorio, Gulpinar and Rustem
presented a case study of a mixed integer stochastic programming approach to mean-variance post-
tax portfolio management using scenario trees as an SMIQ model (see [36,37]). In 2009 Dentcheva
and Ruszczy«ski presented multivariate stochastic dominance constraints and robust stochastic
dominance for risk modeling, see [15,16]. Recently in 2017 Sun et al. introduced quadratic two-stage
stochastic optimization with coherent measures of risk, see [42].

As it has been observed in the literature, decomposition algorithms are able to exploit the
nice structure of models based on scenario analysis and convexity. Those approaches include,
among others, the following types for two-stage and multistage problems: Benders Decomposition,
Lagrangean Decomposition, Regularization, Progressive Hedging, Stochastic Dynamic Programming
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and scenario cluster primal decomposition (see [5] and references therein). Since 2005, Escudero et al.
have developed a general algorithm based on a Branch-and-Fix Coordination (BFC) scenario cluster
primal decomposition scheme for solving multistage stochastic mixed 0-1 problems (see [18,19,20],
among others). Currently, it is possible to solve large-scale multistage stochastic mixed 0-1 linear
problems by using BFC decomposition and parallelization techniques. In 2013 and 2017, Aldasoro
et al. presented a parallel BFC algorithm for solving multistage stochastic mixed 0-1 problems,
considering both exact (see [4]) and matheuristic approaches (see [5]).

Decomposition methods have also been explored for solving QP problems. In 1980 decomposition
methods for solving multistage stochastic problems with recourse, with discrete distribution,
quadratic objective function and linear inequality constraints were formulated by Louveaux (see
[30]). In 2011, Birge and Louveaux presented a quadratic nested decomposition method for solving
multistage stochastic convex quadratic models with discrete distribution (see [9]). In 2013 Cesarone
et al presented a method for mixed integer quadratic programming in the context of mean-
variance portfolio optimization, see [12]. In 2014 Siddiqui, Gabriel and Azarm presented an e�cient
optimization method that is applicable to mixed integer problems with quasiconvex constraints and
convex objective function using Benders decomposition (see [41]). In 2015 Mijangos published an
algorithm to solve two-stage stochastic nonlinear convex problems, based on the Branch-and-Fix-
Coordination methodology of [17] for two-stage stochastic mixed 0-1 �rst-stage problems, see [33].

From an algorithmic perspective, in this paper we introduce a matheuristic decomposition
algorithm for solving multistage stochastic convex quadratic 0-1 problems with bounded continuous
variables, named the Quadratic matHeuristic Branch-and-Fix Coordination algorithm (QH-BFC).
We generalize to quadratic optimization the BFC and branching approaches presented in 2017 by
Aldasoro et al. (see [5]). The multistage scenario cluster primal decomposition framework is extended
to deal with large-scale quadratic optimization by means of stage-wise reformulation techniques,
rewriting the objective function and updating the set of constraints. The algorithm proposed can be
applied to a wide variety of realistic problems, for example the stochastic portfolio selection problem,
many process engineering problems, production planning problems, and scheduling problems, among
others.

A risk-sensitive production planning is used as a speci�c case study (see in [39] the modeling,
classi�cation and reformulation of production planning problems and a review of models for
production planning under uncertainty in [34]). We report a broad computational experience
conducted to assess the solution quality of the matheuristic solution for 150 medium-scale and large-
scale instances up to 711845 constraints and 193000 0-1 variables. The multistage stochastic mixed
0-1 quadratic instances are available in our SMIQLib repository [6]. The results evidence a remarkable
decrease in absolute and relative risk costs, with an increase in expected cost.

The rest of the paper is organized as follows: Section 2 presents the description of the
multistage stochastic mixed 0-1 quadratic problem and de�nes the time consistent EMV model.
The reformulation of the DEM model using Fortet and Glover inequalities and the relaxation of
the DEM model using the McCormick scheme are also described in this section. Section 3 details
clustering partitioning and explains the matheuristic quadratic QH-BFC algorithm. Section 4 reports
a description of a general multistage stochastic quadratic production planning problem and the main
results of a broad computational experience to assess the validity of the QH-BFC algorithm for solving
medium and large scale mixed 0-1 quadratic problems. The computation results are compared with
the plain use of CPLEX v12.6.3. Section 5 concludes and outlines future work.
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2 Time consistent EMV risk aversion in multistage stochastic quadratic optimization

2.1 Multistage stochastic mixed 0-1 quadratic problem

Consider the following multistage deterministic mixed 0-1 convex quadratic model:

min
∑
t∈T

atxt + btyt +
1

2

∑
t,t′∈T

(xt, yt, xt′ , yt′)Dtt′


xt

yt
xt′

yt′


s.t.

∑
τ∈T t

(At
τxτ +Bt

τyτ ) = ht ∀t ∈ T

xt ∈ {0, 1}nxt , 0 ≤ yt ≤ Mt ∀t ∈ T ,

(1)

where T is the set of stages, such that T = |T |, xt and yt are the nxt and nyt dimensional vectors of
the 0-1 and continuous variables, respectively, at and bt are the row vectors of the objective function
coe�cients, respectively, Mt is the upper bound vector of the continuous variables, Dtt′ is a known
positive semide�nite matrix of dimensions (nxt + nyt + nxt′ + nyt′)× (nxt + nyt + nxt′ + nyt′), A

t
τ

and Bt
τ are the m× nxt and m× nyt constraint matrices, respectively, for stages in T t = {1, . . . , t}

and ht is the right-hand-side vector (rhs) for stage t ∈ T .
Using a scenario analysis approach, model (1) can be extended to consider uncertainty in any

of the main parameters, namely, the objective function, rhs and constraint matrix coe�cients. Let
(Ω,F , P ) denote a probability space. Ω denotes the �nite set of scenarios, where ω ∈ Ω represents a
speci�c scenario and wω denotes the probability P assigned by the modeler to scenario ω, such that∑

ω∈Ω wω = 1. Two scenarios are said to belong to the same group in a given stage when they have
the same realizations of the uncertain parameters up to that stage. Following the non-anticipativity
(NA) principle stated in [44], both scenarios should have the same value for the variables with time
indexes up to the given stage. Let F1 ⊂ F2 ⊂ . . . ⊂ FT be sub sigma-algebras of F , where Ft

corresponds to the information available until stage t. A multi-period risk function F is a mappping
from Z1 × . . .×ZT to IR, where Zt denotes a space of Ft-measurable functions from Ω to IR.

For the general formulation of a multistage model consider a multistage scenario tree to represent
uncertainty, where G is the set of nodes. Let g ∈ G denote a node in the scenario tree that has a
one-to-one correspondence with a scenario group, say g, in the same stage t, where Gt ⊂ G denotes
the set of nodes (and thus the related scenario groups) in stage t = t(g), for t ∈ T . Let Ãg and Sg

denote the sets of ancestor and successor nodes of node g (including itself), respectively. Also let
Ωg ⊂ Ω denote the set of scenarios that belong to group g, such that Ω1 = Ω, where g = 1 is the
root node in the scenario tree, and Ωg is singleton for g ∈ GT (for that case, let g = ω).

By slightly abusing the notation, the following deterministic quadratic problem emerges for
g ∈ GT ,

zgQP = min
∑
q∈Ag

aqxq + bqyq +
1

2

∑
q,q′∈Ãg

(xq, yq, xq′ , yq
′
)Dqq′


xq

yq

xq′

yq
′


s.t.

∑
q∈Ag

(Aq
gx

q +Bq
gy

q) = hg

xg ∈ {0, 1}ng
x , 0 ≤ yg ≤ Mg.

(2)

Consider the compact representation of the Deterministic Equivalent Model (DEM) of an SMIQ
problem that minimizes the expected value of the quadratic function over the set of scenarios Ω in
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the scenario tree:

(DEM) : zDEM = min
∑
g∈GT

wg[
∑
q∈Ãg

aqxq + bqyq +
1

2

∑
q,q′∈Ãg

(xq, yq, xq′ , yq
′
)Dqq′


xq

yq

xq′

yq
′

]

s.t.
∑

q∈Ag

(Aq
gx

q +Bq
gy

q) = hg ∀g ∈ G

xg ∈ {0, 1}ng
x , 0 ≤ yg ≤ Mg ∀g ∈ G,

(3)

where wg is the probability of scenario g, for g ∈ GT in the scenario tree (note that for each node
g ∈ G, the weight wg =

∑
ω∈Ωg wω is recovered); Ag ⊆ Ãg is the set of the ancestor nodes of

node g (including itself) whose decisions have direct in�uence (i.e., have non zero elements) on the
constraints for node g, where A1 = {1}; xg and yg are the vectors of the 0-1 and continuous variables
for node g, respectively; Mg is the upper bound vector of the continuous yg for g ∈ G; ag and bg are
the vectors of the objective function coe�cients for the 0-1 and continuous variables, respectively;
Aq

g and Bq
g are the constraint matrices of ancestor node q ∈ Ag in node g for the vectors xq and

yq, respectively; hg is rhs for node g; ng
x and ng

y are the number of 0-1 and continuous variables,
respectively, for g ∈ G, nx =

∑
g∈G ng

x and ny =
∑

g∈G ng
y.

The structure of the matrix of the quadratic form of the objective function in (3) considers
quadratic terms inside a node or between pair of nodes under the same scenario (intra-scenarios) but
not under di�erent scenarios (inter-scenarios), as follows,

v1 v2 . . . vm2 vm2+1 . . . vm3 . . . vmT−1+1 . . . vmT

v1 D1,1 D1,2 . . . D1,m2 D1,m2+1 D1,m3 . . . D1,mT−1+1 D1,mT

v2 D2,1 D2,2 D2,m2+1 . . .
...

...
. . .

vm2 Dm2,1 Dm2,m2 . . . Dm2,m3

vm2+1 Dm2+1,1 Dm2+1,2 Dm2+1,m2+1

...
...

...
...

. . .

vm3 Dm3,1 Dm3,m2 Dm3,m3

...
...

. . .

vmT−1+1 DmT−1+1,1 DmT−1+1,mT−1+1

...
...

. . .

vmT DmT ,1 DmT ,mT

where vq = (xq, yq) is a nq
x + nq

y vector of decisions, mt =
∑t

τ=1 |Gτ | and the (nq
x + nq

y + nq′

x + nq′

y )×
(nq

x + nq
y + nq′

x + nq′

y ) matrices Dqq′ are de�ned as

Dqq′ =


Dxqxq Dxqyq Dxqxq′ Dxqyq′

Dyqxq Dyqyq Dyqxq′ Dyqyq′

Dxq′xq Dxq′yq Dxq′xq′ Dxq′yq′

Dyq′xq Dyq′yq Dyq′xq′ Dyq′yq′

 ,

for q, q′ ∈ Ãg, g ∈ GT and Dqq′ = 0 if ̸ ∃g ∈ GT : q, q′ ∈ Ãg. See an example in Figure 1.

2.2 Time consistent EMV in multistage mixed 0-1 quadratic modeling

In stochastic quadratic optimization, quadratic terms can appear as a natural consequence of the
modeling, i.e. models of the type (2) ∀g ∈ G and the DEM (3) in compact representation. On the
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(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5) (x6, y6) (x7, y7)
(x1, y1) D11 D12 D13 D14 D15 D16 D17

(x2, y2) D21 D22 D24 D25

(x3, y3) D31 D33 D36 D37

(x4, y4) D41 D42 D44

(x5, y5) D51 D52 D55

(x6, y6) D61 D63 D66

(x7, y7) D71 D73 D77

1

3

7

6

2

5

4

Fig. 1 Example of matrix structure (left) in 22 scenario tree (right)

other hand, quadratic terms can appear as the result of incorporating risk measures over a multistage
Risk Neutral (RN) problem. In this subsection we detail the second way.

Given ξ(ω) a random vector with the discrete distribution ξ(ω) = (aω, bω, Aω, Bω, hω,Mω) with
likelihood wω for each scenario ω ∈ Ω, the corresponding values emerge in each group g ∈ G : ω ∈ Ωg,
ξg = (ag, bg, Ag, Bg, hg,Mg) with likelihood wg. ξt is a nt-dimensional random vector representing
the uncertainty observed in stage t, i.e., Ft-measurable mapping from Ω to IRnt . We consider the
following linear mixed 0-1 DEM in compact representation,

zMIP = min
∑
g∈G

wg[agxg + bgyg]

s.t.
∑

q∈Ag

(Aq
gx

q +Bq
gy

q) = hg ∀g ∈ G

xg ∈ {0, 1}ng
x , 0 ≤ yg ≤ Mg ∀g ∈ G,

(4)

where ag, bg coe�cients are random vectors in the objective function with known distribution
functions for all g ∈ G (see Figure 2).

'

&

$

%

ξ1(ω)

ξ2(ω)

ξ3(ω)

. . .

ξT (ω)

ξT (ω)

. . .

ξ3(ω)

. . .

. . .

ξ2(ω)

ξ3(ω)

. . .

. . .

ξ3(ω)

. . .

. . .

ξT (ω)

ξT (ω)
ω = 1

ω = 2

ω = |Ω| − 1

ω = |Ω|

a1, b1

a2, b2

a|Ω|−1, b|Ω|−1

a|Ω|, b|Ω|

Fig. 2 Example of random vectors a and b over a multistage scenario tree.

For that reason, consider the following random vectors, where expectations, variances, and
covariances can be calculated based on their distribution functions.
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ag: is the random cost for the x−variable in node g ∈ G, with expectation µag := E(ag) and covariance
matrix Σagag := V ar(ag) = Cov(ag, ag) of dimension ng

x × ng
x.

bg: is the random cost for the y−variable in node g ∈ G, with expectation µbg := E(bg) and
covariance matrix Σbgbg := V ar(bg) = Cov(bg, bg) of dimension ng

y × ng
y and mixed covariance

Σagbg := Cov(ag, bg) of dimension ng
x × ng

y.

In RN stochastic optimization, the objective function considers the expectation over the set of
scenarios. Typically, this corresponds to the maximization of the expected returns or the minimization
of the expected loss in �nancial and industrial applications, respectively.

zRN = min
∑
g∈G

wg[µagxg + µbgy
g]

s.t.
∑

q∈Ag

(Aq
gx

q +Bq
gy

q) = hg ∀g ∈ G

xg ∈ {0, 1}ng
x , 0 ≤ yg ≤ Mg ∀g ∈ G.

(5)

Instead of minimizing only the expected loss (the conventional goal in an RN environment), we
propose also to minimize the variability in terms of variances and covariances.

The cost for group g ∈ G is given by zg =
∑

q∈Ãg

(aqxq + bqyq) where Ag is the set of indexes for

the ancestor nodes of group g. The expectation cost for group g ∈ GT under (a, b)-distribution is

E(zg) =
∑
q∈Ãg

(µaqxq + µbqy
q) (6)

and the variance cost for group g ∈ GT under (a, b)-distribution is

V ar(zg) =
∑

q,q′∈Ãg

(xqyqxq′yq
′
)Dqq′


xq

yq

xq′

yq
′

 , (7)

where the (nq
x + nq

y + nq′

x + nq′

y )× (nq
x + nq

y + nq′

x + nq′

y ) matrices Dqq′ are de�ned as follows

Dqq′ =


Σaqaq Σaqbq Σaqaq′ Σaqbq′

Σbqaq Σbqbq Σbqaq′ Σbqbq′

Σaq′aq Σaq′bq Σaq′aq′ Σaq′bq′

Σbq′aq Σbq′bq Σbq′aq′ Σbq′bq′

 .

Remember that the covariance matrix is symmetric semide�nite positive. If the distribution
functions are not fully known, the expectations, variances and covariance matrices can be estimated
using good estimators. At this point, the following possible objective functions can be considered:

1. The expected conditional mean of the cost for all groups g, g ∈ GT , based on (6):

µ =
∑
g∈GT

wgE(zg). (8)

In this case, the multistage stochastic DEM model (5) is an RN model.
2. The expected conditional variance of the cost for all groups g, g ∈ GT , based on (7):

σ2 =
∑
g∈GT

wgV ar(zg). (9)

In this case, the multistage stochastic DEM model is a variance model.
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3. The β linear combination of both (8) and (9), where β > 0. For each group g ∈ GT the risk-
sensitive objective function is given by E(zg)+β ·V ar(zg) where β is the risk-aversion parameter
(see de�nition of risk-sensitive cost in [11]). By extension of that de�nition, the objective function
function can be considered over all groups g, g ∈ GT , based on (6) and (7):

µ+ β · σ2 =
∑
g∈GT

wg[E(zg) + β · V ar(zg)]. (10)

We called to this risk function, Expected Mean-Variance (EMV). We propose a multistage risk-
sensitive stochastic mixed 0-1 problem de�ning the objective function in the DEM in compact
representation as in (10), in an extension of the risk-sensitive function to multistage stochastic
models. Since a decrease in expected variance produces an increase in expected cost, so the decision-
maker should carefully establish the value of the risk-aversion parameter β. As an example, a risk
conservative decision-maker places more emphasis on minimizing risk and therefore de�nes a large
value of β to increase the weight of the risk measure.

Using the objective function EMV, the Deterministic Equivalent Model is as follows,

zDEM
EMV = min

∑
g∈GT

wg
∑
q∈Ãg

[E(zq) + β · V ar(zq)]

s.t.
∑

q∈Ag

(Aq
gx

q +Bq
gy

q) = hg ∀g ∈ G

xg ∈ {0, 1}ng
x , 0 ≤ yg ≤ Mg ∀g ∈ G.

(11)

Note that we have de�ned two multistage stochastic quadratic problems (3) and (11) in compact
representation with the same structure. Model (3) is a multistage risk-sensitive model (13) when the
coe�cients of the linear terms aq and bq are the expectations µaq and µbq and each matrix Dqq′

of the quadratic terms is the matrix 2βCov(aq, bq, aq
′
, bq

′
) for groups q, q′ ∈ Ãg, g ∈ GT . For this

reason, without loss generality, from now we consider the multistage stochastic quadratic problem
in compact representation (3).

Our notion of consistency is inspired on de�nitions available in literature, see [32,40]. Time
consistency concept states that optimal decisions should not depend on scenario tree branches that
we know at stage t that cannot happen in later stages. Consider the problem zDEM

EMVg′
at a given

node g′ ∈ Gt as follows: optimizing zDEM
EMV (11) when all the information and decisions from previous

stages are known, i.e:

zDEM
EMVg′

= min
∑

g∈GT∩Sg′

wg
∑
q∈Ãg

[E(zq) + β · V ar(zq)]

s.t.
∑

q∈Ag

(Aq
gx

q +Bq
gy

q) = hg ∀g ∈ G ∩ (Sg′ ∪ Ãg′
)

xg = ẋg, yg = ẏg ∀g ∈ G ∩ Ãg′
: t(g) < t

xg ∈ {0, 1}ng
x , 0 ≤ yg ≤ Mg ∀g ∈ G ∩ Sg′

: t(g) ≥ t.

(12)

where (ẋg, ẏg) is an optimal solution in (11).

De�nition 1 We say that the EMV risk measure is time consistent for problem zDEM
EMV if there exists

an optimal solution (x∗, y∗) of (11) such that for any stage t ∈ T and any node g ∈ Gt, coincides
with an optimal solution of problem (12), and this is true for any data and scenario tree.

That is, the optimality of our decisions today remain optimal if we solve the problem tomorrow
with the known information updated.

Proposition 1 The Expected Mean Variance model (11) is time consistent.
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Proof For any data, any scenario tree, any stage t ∈ T and any node g ∈ Gt, if we �x (x, y)
decisions to the optimal solution of (11), say (ẋ, ẏ), until stage t− 1 to the model (12), the solution
(ẋg, ẏg) where g ∈ G : t(g) ≥ t is feasible in (12). Let us prove the optimality by reductio ad
absurdum. Consider ((x̂g, ŷg))t(g)≥t an optimal solution of (12) which is better than ((ẋg, ẏg))t(g)≥t.
As decisions of previous stages are �xed and therefore, non-anticipativity is satis�ed, it is also feasible
solution of (11) and its objective function would be better than the optimal one (contradiction). The
result follows because the model (11) where the decisions until stage t are �xed, is separable in |Gt|
independent submodels as (12), where each submodel is attached to a subtree rooted in g ∈ Gt. ⊓⊔

Let us consider the class of risk measures de�ned in [32]:

De�nition 2 The family of the Expected Conditional Risk Measures (ECRM) is a class of multi-
period risk measures F de�ned as follows,

F (Z1, . . . , ZT ) = Z1 + ρ2(Z2) + Eξ[2] [ρ
ξ[2]
3 (Z3)] + Eξ[3] [ρ

ξ[3]
4 (Z4)] + . . .+ Eξ[T−1]

[ρ
ξ[T−1]

T (ZT )],

where ξ[t] is a realization ξ1, . . . , ξt, E indicates the expectation with respect to the corresponding
variables and ρt is a one-period risk measure applied to period t.

Proposition 2 The EMV (11) is a Expected Conditional Risk Measure.

Proof It results because the model (11) can be described in terms of previous de�nition. Note that
the objective function is as follows [E(z1) + β · V ar(z1)] +

∑
g∈G2

wg[E(zg) + β · V ar(zg)] + . . . +∑
g∈GT

wg[E(zg) + β · V ar(zg)], where wg =
∑

ω∈Ωg wω ∀g ∈ G. ⊓⊔

2.3 Reformulation of quadratic mixed 0-1 models

It is frequently possible to, explicitly tighten the bounds of the continuous variables yg, g ∈ G. From
now on, let yg and yg be the lower and upper bound vectors of yg, respectively, in each group g ∈ G,
so yg ≤ yg ≤ yg. If it is not possible to tighten the bounds for a variable ygj , y

g
j
= 0 and ygj = Mg

j ,

j ∈ Ig
y .

(DEM) : zDEM = min
∑
g∈GT

wg[
∑
q∈Ãg

aqxq + bqyq +
1

2

∑
q,q′∈Ãg

(xq, yq, xq′ , yq
′
)Dqq′


xq

yq

xq′

yq
′

]

s.t.
∑
q∈Ag

Aq
gx

q +Bq
gy

q = hg ∀g ∈ G

xg ∈ {0, 1}ng
x , yg ≤ yg ≤ yg ∀g ∈ G.

(13)
We consider reformulation of the quadratic terms where the 0-1 variables are present with and
without continuous ones. Let Ig

x and Ig
y denote the set of indexes of the variables in vectors xg and

yg, respectively, for g ∈ G.

Remark 1 For notation simpli�cation, we will consider reformulation on product of variables under
the same node g ∈ G. By analogy, it can be consider for variables under di�erent nodes g, g′ ∈ G.

In our DEM (13) the square terms on the 0-1 variables can be replaced by linear terms, (xg
i )

2 = xg
i ,

so that the coe�cients of the linear terms xg
i in the objective function are updated, such that
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agi := 1
2D

g
ii + (ag)i, i ∈ Ig

x , g ∈ G. By using the Fortet inequalities scheme [22] the 0-1 quadratic
terms xg

i x
g
j can be replaced by the 0-1 variables x̃

g
ij in the objective function, whose linear coe�cients

are cgij =
1
2D

g
ij , i, j ∈ Ig

x , i < j, g ∈ G, plus the following Reformulation Constraint (RC) system:

xg
i + xg

j ≤ 1 + x̃g
ij , i, j ∈ Ig

x , i < j, g ∈ G
x̃g
ij ≤ xg

i , x̃g
ij ≤ xg

j , i, j ∈ Ig
x , i < j, g ∈ G. (14)

By applying the scheme in Glover [25] to the mixed 0-1 quadratic terms, xg
i y

g
j can be replaced

in the objective function by the continuous variables ỹgij , whose coe�cients are dgij = 1
2D

g
ij ,

i ∈ Ig
x , j ∈ Ig

y , g ∈ G and the following RC system is added:

yg
j
xg
i ≤ ỹgij ≤ ygjx

g
i ∀i ∈ Ig

x , j ∈ Ig
y , g ∈ G

ygj + (xg
i − 1)ygj ≤ ỹgij ≤ ygj + (xg

i − 1)yg
j

∀i ∈ Ig
x , j ∈ Ig

y , g ∈ G
ỹgij ≤ ygj − (xg

i − 1)yg
j

∀i ∈ Ig
x , j ∈ Ig

y , g ∈ G.
(15)

Consequently, Dg
ij = 0, for i, j ∈ Ig

x , i ∈ Ig
x and j ∈ Ig

y or i ∈ Ig
y , and j ∈ Ig

x , g ∈ G.
We de�ne the reformulated MIQ DEM (16) with only bilinear and square terms with continuous

variables as follows,

zDEM = min
∑
g∈GT

wg[
∑
q∈Ãg

aqxq + bqyq + cqx̃q + dq ỹq +
1

2

∑
q,q′∈Ãg

(yq, yq
′
)Dqq′

yy

(
yq

yq
′

)
]

s.t.
∑
q∈Ag

Aq
gx

q +Bq
gy

q = hg ∀g ∈ G

RC (14− 15)

xg ∈ {0, 1}ng
x , x̃g ∈ {0, 1}ng

x̃ , yg ≤ yg ≤ yg, ỹg ≤ yg ∀g ∈ G,

(16)

where the matrix Dg
yy is guaranteed to be semide�nite positive (see [24]).

2.4 Relaxed formulation of quadratic mixed 0-1 models

By using the McCormick scheme [29], it is possible to replace the continuous quadratic terms ygi y
g
j

where yg
i
≤ ygi ≤ ygi and yg

j
≤ ygj ≤ ygj , by the continuous variable ug

ij in model (16). The strict

bilinear terms, ygi y
g
j can be replaced in the objective function by the continuous variable ug

ij whose
coe�cients are the elements fg

ij = Dg
ij , i ̸= j, i, j ∈ Ig

y of the matrix Dg
yy, g ∈ G and the quadratic

terms (ygi )
2 can be replaced by ug

ii, whose coe�cients are the elements fg
ii = 1

2D
g
ii, i ∈ Ig

y , of the
matrix Dg

yy, g ∈ G.

Remark 2 For notation simpli�cation, we will describe relaxed formulation on product of continuous
variables under the same node g ∈ G. By analogy, it can be consider for variables under di�erent
nodes g, g′ ∈ G.

De�nition 3 AMcCormick stagem∗ ∈ T is the stage until the McCormick scheme [29] is applied
in multistage stochastic continuous quadratic models.

If m∗ is the McCormick stage, a relaxed model of (16) can be generated. If the bilinear terms of the
continuous variables ygi y

g
j are replaced in model DEM (16) by ug

ij , i, j ∈ Ig
y , g ∈ Gt of the stages
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t, t ≤ m∗ and the corresponding McCormick Constraints (McCC) (17) are added then the relaxed
model (19) is obtained.

ug
ij ≥ ygi y

g
j
+ yg

i
ygj − yg

i
yg
j

∀i, j ∈ Ig
y , g ∈ Gt, t ≤ m∗

ug
ij ≥ ygi y

g
j + ygi y

g
j − ygi y

g
j ∀i, j ∈ Ig

y , g ∈ Gt, t ≤ m∗

ug
ij ≤ ygi y

g
j
+ ygi y

g
j − ygi y

g
j

∀i, j ∈ Ig
y , g ∈ Gt, t ≤ m∗

ug
ij ≤ ygi y

g
j + yg

i
ygj − yg

i
ygj ∀i, j ∈ Ig

y , g ∈ Gt, t ≤ m∗.

(17)

Note that for the quadratic terms, the McCC until stage m∗ are as follows,

ug
ii ≥ 2yg

i
ygi − (yg

i
)2 ∀i ∈ Ig

y , g ∈ Gt, t ≤ m∗

ug
ii ≥ 2ygi y

g
i − (ygi )

2 ∀i ∈ Ig
y , g ∈ Gt, t ≤ m∗

ug
ii ≤ (yg

i
+ ygi )y

g
i − yg

i
ygi ∀i ∈ Ig

y , g ∈ Gt, t ≤ m∗.

(18)

By slightly abusing the notation, the relaxed model can be expressed as follows,

z = min
∑
g∈GT

wg[
∑
q∈Ãg

aqxq + bqyq + cqx̃q + dq ỹq +
∑

q∈ ⋃
t≤m∗

Gt∩Ãg

fquq +
1

2

∑
q,q′∈ ⋃

t>m∗
Gt∩Ãg

(yq, yq
′
)Dqq′

yy

(
yq

yq
′

)
]

s.t. Constraints system in model (16)
McC (17).

(19)

Note that if m∗ = T the relaxed model (19) is a linear mixed 0-1 problem.

It is possible to �nd lower bounding formulations for solving bilinear programming problem (16),
considering the McCormick convex envelopes [29,31] for bounding the bilinear terms and solving
model (19). The optimal solution z of the relaxed problem (19) provides a lower bound of the optimal
solution of the DEM (16). Furthermore, if the coe�cient Dg

ij = fg
ij > 0 then ug

ij ≤ ygi y
g
j , therefore

fg
iju

g
ij ≤ Dg

ijy
g
i y

g
j , g ∈ Gt, t ≤ m∗ and if Dg

ij = fg
ij < 0 then ug

ij ≥ ygi y
g
j , therefore fg

iju
g
ij ≤ Dg

ijy
g
i y

g
j ,

g ∈ Gt, t ≤ m∗.

Furthermore, an upper bound z of the optimal solution of the DEM (16) can be obtained by
computing the objective function of the problem (16) �xing the values of the common variables
obtained from the optimal solution of the relaxed problem (19). Feasibility is obviously guaranteed
and z ≤ zDEM ≤ z.

Note that if the variable ygi , i ∈ Ig
y is semi-continuous (see [45]), the constraint system of model

(16) includes the following constraint yg
i
xg
i ≤ ygi ≤ ygi x

g
i . If x

g
i = 0 then yi = 0 and each bilinearity

ygi y
g
j = 0, ∀j ∈ Ig

y .

3 Matheuristic algorithm for multistage stochastic quadratic optimization

3.1 Cluster partitioning

We now decompose the scenario tree into a set of scenario cluster subtrees, each for a di�erent
scenario cluster in the set denoted as C = {1, ..., C} with C = |C|. Let Ωc denote the set of scenarios
that belongs to cluster c, such that Ωc

⋂
Ωc′ = ∅, c, c′ ∈ C : c ̸= c′ and Ω = ∪c∈CΩc.

We propose to choose the number of scenario clusters C as any value from the subset
{|G1|, |G2|, . . . , |GT |}. Accordingly, consider the following de�nitions taken from [19,20].
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De�nition 4 A break stage t∗ ∈ T is a stage such that the number of scenario clusters is
C = |Gt∗+1|, where t∗ + 1 ∈ T . In this case, any cluster c ∈ C is induced by a group, say gc,
for gc ∈ Gt∗+1 and contains all scenarios belonging to that group, i.e., Ωc = Ωgc .

Notice that the choice of t∗ = 0 corresponds to the full DEM and t∗ = T − 1 corresponds to the full
scenario partitioning.

Assume that the scenario set is broken down into C scenario clusters. The cluster submodels
and the full DEM (13) are to be formulated via a mixture of the splitting variable and compact
representations, so that the submodels are linked by the explicit NAC up to break stage t∗ (see
below). Additionally, let Gc ⊂ G denote the node set of the subtree that supports scenario submodel
c, such that Ωg ∩Ωc ̸= ∅ means that g ∈ Gc, and Gt

c = Gt ∩ Gc is the node set in stage t ∈ T in the
subtree supporting cluster submodel c ∈ C. The MIQ submodel for c can be expressed (in compact
representation) as follows:

zc = min
∑

g∈Gc∩GT

wg
c [

∑
q∈Ãg

aqxq
c + bqyqc +

1

2

∑
q,q′∈Ãg

(xq
c , y

q
c , x

q′

c , y
q′

c )Dqq′


xq
c

yqc
xq′

c

yq
′

c

]

s.t.
∑
q∈Ag

Aq
gx

q
c +Bq

gy
q
c = hg ∀g ∈ Gc

xg
c ∈ {0, 1}ng

x , yg
c
≤ ygc ≤ ygc ∀g ∈ Gc,

(20)

where wg
c =

∑
ω∈Ωg∩Ωc

wω for g ∈ Gc Now split the set of stages T into two subsets, such that
T = T1

⋃ T2, where T1 = {1, . . . , t∗}, and T2 = {t∗ + 1, . . . , T}.
The full DEM (13) is formulated by a mixture of the splitting variable representation (to explicitly

satisfy the NAC between the cluster submodels) and the compact representation (to implicitly satisfy
the NAC of each cluster). So, the cluster splitting-compact representation can be expressed as follows:

zDEM = min
∑
c∈C

∑
g∈Gc∩GT

wg
c [

∑
q∈Ãg

aqxq
c + bqyqc +

1

2

∑
q,q′∈Ãg

(xq
c , y

q
c , x

q′

c , y
q′

c )Dqq′


xq
c

yqc
xq′

c

yq
′

c

]

s.t.
∑
q∈Ag

Aq
gx

q
c +Bq

gy
q
c = hg ∀g ∈ Gc, c ∈ C

NAC (22− 23)

xg
c ∈ {0, 1}ng

x , x̃g
c ∈ {0, 1}ng

x̃ , yg
c
≤ ygc ≤ ygc , ỹgc ≤ ygc ∀g ∈ Gc, c ∈ C.

(21)
Now, in the splitting-compact representation of the DEM (21) the NA principle is implicitly taken
into account for the stages t ∈ T2. On the other hand, the (explicit) NAC of the variables in the
nodes that belong to the stages in set T1 can be formulated by observing that the clusters c and c′

have the node g in common if g ∈ Gc ∩ Gc′ , and this can only happen for g ∈ Gt : t ∈ T1. Let Cg

denote the set of (lexicographically ordered) indexes of the scenario clusters to which node g belongs,
for g ∈ Gt, t ∈ T1, such that n(c) is the element immediately next to element c, for c ∈ Cg/{|Cg|},
where |Cg| is the last element in set Cg.

So, the cluster submodels (20) are linked by the NAC to be formulated as follows:

xg
c − xg

n(c) = 0 ∀c ∈ Cg/{|Cg|}, g ∈ Gt, t ∈ T1. (22)

ygc − ygn(c) = 0 ∀c ∈ Cg/{|Cg|}, g ∈ Gt, t ∈ T1. (23)
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Given yg
c
and ygc the tightened lower and upper bounds of vectors ygc , for each cluster c ∈ Cg, it is

possible to join the tightened bounds associated with replicated variables ygc , c ∈ Cg, g ∈ Gt, t ∈ T1,
in the splitting-compact representation of model (21). The bounds can be updated as follows:

yg
c
:= max

c∈Cg
{yg

c
} ygc = min

c∈Cg
{ygc} ∀g ∈ Gt, t ∈ T1. (24)

The reformulated cluster splitting-compact representation of model (16) can then be expressed as
follows:

zDEM = min
∑
c∈C

∑
g∈Gc∩GT

wg
c [

∑
q∈Ãg

aqxq
c + bqyqc + cqx̃q

c + dq ỹqc +
1

2

∑
q,q′∈Ãg

(yqc , y
q′

c )Dqq′

yy

(
yqc
yq

′

c

)
]

s.t. Constraints system in model (21)
RC (14− 15).

(25)

Note that it is not necessary to add the NAC for the x̃-variables and the ỹ-variables because if the
x-variables and the y-variables satisfy the NAC then the x̃-variables and the ỹ-variables satisfy the
NAC.

The reformulated scenario cluster MIQ submodel c, for c ∈ C, can be expressed as follows:

zc = min
∑

g∈Gc∩GT

wg
c [

∑
q∈Ãg

aqxq
c + bqyqc + cqx̃q

c + dq ỹqc +
1

2

∑
q,q′∈Ãg

(yqc , y
q′

c )Dqq′

yy

(
yqc
yq

′

c

)
]

s.t. Constraints system in model (20)
RC (14− 15).

(26)

If m∗ is the McCormick stage, the corresponding McCC (27) in the splitting representation are
as follows:

ug
ijc ≥ ygicy

g
jc

+ yg
ic
ygjc − yg

ic
yg
jc

∀i, j ∈ Ig
y , c ∈ Cg, g ∈ Gt, t ≤ m∗

ug
ijc ≥ ygicy

g
jc + ygicy

g
jc − ygicy

g
jc ∀i, j ∈ Ig

y , c ∈ Cg, g ∈ Gt, t ≤ m∗

ug
ijc ≤ ygicy

g
jc

+ ygicy
g
jc − ygicy

g
jc

∀i, j ∈ Ig
y , c ∈ Cg, g ∈ Gt, t ≤ m∗

ug
ijc ≤ ygicy

g
jc + yg

ic
ygjc − yg

ic
ygjc ∀i, j ∈ Ig

y , c ∈ Cg, g ∈ Gt, t ≤ m∗.

(27)

Then the relaxed cluster splitting-compact representation of model (25), replacing the bilinear terms
of the continuous variables of the stages t with t ≤ m∗ and adding the McCC (27) can be expressed
as follows:

z = min
∑
c∈C

∑
g∈Gc∩GT

wg
c [

∑
q∈Ãg

aqxq
c + bqyqc + cqx̃q

c + dq ỹqc +
∑

q∈ ⋃
t≤m∗

Gt∩Ãg

fquq
c+

1
2

∑
q,q′∈ ⋃

t>m∗
Gt∩Ãg

(yqc , y
q′

c )Dqq′

yy

(
yqc
yq

′

c

)
]

s.t. Constraints system in model (25)
McCC (27).

(28)

Note that if m∗ = T the relaxed model (28) is a linear mixed 0-1 problem.

It is worth pointing out that the e�ciency of an MIQ engine for solving models (25) and (28) is
very low, but it paves the way for performing the appropriate model decomposition. In our QH-BFC
algorithm (see Algorithm 1 in Section 3.3) we branch �xing x- variables to 0 or 1 (line 8). Note that
if the model (28) has been solved we obtain a feasible solution of model (25). Therefore, we again
obtain a lower bound, z, and an upper bound, z, of the objective function value, z ≤ zDEM ≤ z .
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3.2 Matheuristic BFC algorithm (QH-BFC)

The Branch-and-Fix Coordination (BFC) methodology is a multistage scenario cluster primal
decomposition framework, which is very suitable for solving Expected Conditional Risk Measures.
It is assumed in this section that the main concepts and de�nitions of the BFC are known (see [20]),
as is the matheuristic version of a dynamically incomplete branching H-BFC algorithm (see [5]), so
the concepts are used directly to present the models required for solving SMIQ problems.

An integer Twin Node Family is a Twin Node Family (TNF) such that all common variables have
already been branched on or �xed to 0-1 values and their related x−NAC (22) are satis�ed. The
integer TNF models in the algorithm are of two types:

a) By extension of the BFC procedure to quadratic models (see [5]) we need to solve the model
(QP), where the common variables have been �xed to their 0-1 variables,

(QP ) : zTNF
QP = min

∑
c∈C

∑
g∈Gc∩GT

wg
c [

∑
q∈Ãg

aqxq
c + bqyqc + cqx̃q

c + dq ỹqc +
1

2
(yqc , y

q′

c )Dqq′

yy

(
yqc
yq

′

c

)
]

s.t. Constraint system in model (25)
xg
c = ẋg

c ∀g ∈ Gc, c ∈ C,

(29)

where ẋg
c denotes the 0-1 value vector of vector x

g
c in scenario cluster submodel c, for c ∈ C : g ∈ Gc

and, xg
c = ẋg

c provided that the x− NAC (22) are satis�ed for g ∈ Gt, t ∈ T1. Notice that the
x-variables are �xed to 0 or 1.
If model (29) is feasible then the new incumbent solution value is zDEM := min{zTNF

QP , zDEM}.
Let (ẋg,TNF , yg,TNF , x̃g,TNF , ỹg,TNF ) denote the solution of model (29) ∀g ∈ G. Observe that all
the NAC are satis�ed.
But, given a positive McCormick stage m∗, we propose to solve a relaxation of problem (29), i.e.
the following continuous quadratic problem (QP):

(QP ) : zTNF
QP = min

∑
g∈G∩GT

wg[
∑
q∈Ãg

aqxq + bqyq + cqx̃q + dq ỹq +
∑

q∈ ⋃
t≤m∗

Gt∩Ãg

fquq+

1
2

∑
q,q′∈ ⋃

t>m∗
Gt∩Ãg

(yq, yq
′
)Dqq′

yy

(
yq

yq
′

)
]

s.t. Constraint system in model (28)
xg
c = ẋg

c ∀g ∈ Gc, c ∈ C,

(30)

and if m∗ = T , problem (30) is a linear problem.
If model (30) is feasible we obtain a lower bound zTNF

QP of model (29) and by computing the

objective function of (29) with the optimal solution of (30) (ẋg,TNF , yg,TNF , x̃g,TNF , ỹg,TNF ),

we can also obtain an upper bound, zTNF
QP of model (29). Then, zTNF

QP ≤ zTNF
QP ≤ zTNF

QP , and the

new incumbent solution value is zDEM := min{zTNF
QP , zDEM}.

b) By extension of the BFC procedure to quadratic models (see [5]), we need to solve the model
(MIQ), where the vectors xg, yg, x̃g and ỹg are �xed to the values ẋg,TNF , yg,TNF , x̃g,TNF and
ỹg,TNF , ∀g ∈ Gt, t ∈ T1, obtained by solving model (29) if m∗ = 0 and model (30) if m∗ > 0.

(MIQ) : zTNF
f = min

∑
c∈C

∑
g∈Gc∩GT

wg
c [

∑
q∈Ãg

aqxq
c + bqyqc + cqx̃q

c + dq ỹqc +
1

2
(yqc , y

q′

c )Dqq′

yy

(
yqc
yq

′

c

)
]

s.t. Constraint system in model (25)
xg
c = ẋg,TNF

c , ygc = yg,TNF
c , x̃g

c = x̃g,TNF
c , ỹgc = ỹg,TNF

c

∀g ∈ Gt ∩ Gc, c ∈ C, t ∈ T1.

(31)
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Notice that the x-variables, y-variables, x̃-variables and ỹ-variables are �xed for the stages in T1.
Observe that model (31) is easily decomposed by scenario clusters, such that

zTNF
f =

∑
c∈C

zTNF
f,c , (32)

where zTNF
f,c is the solution value of models (33) for c ∈ C, where variables for the stages in T1

have been �xed according to the solutions in previous models (29) or (30).

zTNF
f,c = min

∑
g∈Gc∩GT

wg
c [

∑
q∈Ãg

aqxq
c + bqyqc + cqx̃q

c + dq ỹqc +
1

2
(yqc , y

q′

c )Dqq′

yy

(
yqc
yq

′

c

)
]

s.t. Constraint system in model (26)
xg
c = ẋg,TNF

c , ygc = yg,TNF
c , x̃g

c = x̃g,TNF
c , ỹgc = ỹg,TNF

c

∀g ∈ Gt ∩ Gc, t ∈ T1.

(33)

In summary, the main di�erences between the Quadratic matHeuristic BFC algorithm (QH-BFC)
applied for mixed 0-1 quadratic problems and previous H-BFC procedure are the following:

1. The scenario cluster submodels (26) and (33) to be solved for any candidate TNF are mixed 0-1
quadratic problems

2. We introduce reformulation techniques for transforming an SMIQ problem into a particular SMIQ
problem with square and strict bilinear terms only for the continuous variables.

3. We de�ne the McCormick stage m∗ to generate relaxed problems associated with the quadratic
mixed 0-1 problems. Then in one step of the algorithm instead of solving TNF models (29) (in
general, continuous quadratic problems) we can introduce the solving of the relaxed problems up
to stage m∗ (see (30)), replacing bilinear terms and adding the McCC(27) in its generation.

4. The solution of problem (30) provides lower and upper bounds of the objective function of the
associated problem (29).

3.3 Procedure for solving stochastic quadratic problems

A QH-BFC algorithm is presented below for solving stochastic quadratic problems. Before solving
stochastic mixed 0-1 quadratic problems using QH-BFC algorithm we order models and decompose
them into clusters. These techniques are detailed in [4] and [20]. A rough description of the
dynamically-guided branching scheme for any TNF consists of branching �rst on the i variable
in the 0-1 δi direction, which can be expressed as follows:

δi =


0, if

∑
c∈Ci

(x̂c)i ≤
1

2
|Ci|

1, otherwise,

where (x̂c)i denotes the value of variable (xc)i in the solution of submodels (26) and Ci ⊂ C denotes
the set of cluster submodels (26) that have variable xi in common.

The algorithm is based on coordinated branching on 0-1 variables until break stage. Iteratively
lower bounds (scenario cluster models) and feasible solutions (described in the previous section) are
solved until the memory or time limit is exceeded or the stopping criterion is satis�ed. Notice that

the stopping criterion (SC) is
∣∣∣ zDEM

ν−1 −zDEM
ν

zDEM
ν

∣∣∣ < ϵ, where ν is the actual incumbent solution number

in the algorithm and ϵ is a small positive quantity.
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Algorithm 1 QH-BFC quadratic matheuristic algorithm

1: Initialization: ν := 0, zDEM
ν := ∞, i := 0, t∗, m∗ and ϵ;

2: Generate the scenario cluster MIQ submodels (26) and (33);
3: Generate the auxiliary McCormick relaxed QP (30);
4: while (memory/time limit not exceeded and SC not satis�ed) do
5: Solve MIQ (26) and compute z =

∑
c∈C zc and (δi)i∈Ix

;

6: if (z ≥ zDEM
ν or NAC (22) not satis�ed) then

7: Update TNF node i according to the dynamically guided branching scheme;
8: Fix TNF node i according to δi in the coordinated BF trees;
9: else
10: if NAC (23) not satis�ed then
11: Solve QP (30), compute zTNF

QP and update zTNF
QP := zTNF

QP ;

12: if zTNF
QP < zDEM

ν then

13: Update zDEM
ν = zTNF

QP , test SC and ν := ν + 1;

14: Solve MIQ (33) and compute zTNF
f =

∑
c∈C z

TNF
fc ;

15: Update zDEM
ν = min(zDEM

ν , zTNF
f ), test SC and ν := ν + 1;

16: end if
17: else
18: Update zDEM

ν := z, test SC and ν := ν + 1;
19: end if
20: end if
21: end while
22: Output: QH-BFC algorithm obtains its best known solution with value zDEM

ν .

4 Computational experience

The computational experiments were conducted in the ARINA computational cluster from SGI/IZO-
SGIker at UPV/EHU [8], which provides 2248 cores divided as follows: 2160 xeon cores, 88 Itanium2
cores, with RAM memory between 16 and 512 Gb per node. For these computational experiments
servers with two Broadwell-EP processors (Intel Xeon CPU E5-2680 v4 @ 2.40GHz) were used, each
processor having 14 cores, with hand hyperthreading being disabled. The nodes had 128Gb of RAM
and a solid state hard drive. For each optimization problem 8 cores were used and the memory was
limited to 100 Gb.

The QH-BFC algorithm was implemented in a C++ experimental code which uses the CPLEX
v12.6.3 optimizer with 8 threads, (see [27]). The optimizer is used by QH-BFC to solve the MIQ
submodels (26) and (33) for the set of scenario clusters C in di�erent steps, the QP submodels (30)
and the MIQ submodels (29) and (31). For solving MIQ problems using the CPLEX optimizer, in
2014 Bliek, Bonami and Lodi discussed classical algorithmic approaches, their implementation within
CPLEX and new algorithmic advances (see [10]).

4.1 Pilot case: multistage stochastic EMV production planning problem

For computational experience, we consider an application in production planning and its extension to
a multistage EMV model in stochastic quadratic optimization. A linear deterministic formulation for
the general product structure capacitated multi-level lot-sizing model with lost demand is given in
[39], a linear two stage stochastic formulation is given in [7], and a multistage stochastic formulation
is given in [14]. Now, a multistage risk-sensitive cost production planning formulation is given for
scheduling the production levels of a certain set of items in a planning horizon of several time periods.
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Sets:

� T , set of stages, |T | = T .
� G, set of scenario groups.
� J , set of items to be produced, |J | = J .
� K, set of available shared resources, |K| = K.

Deterministic parameters for item j, j ∈ J :

� αk
j , the amount of resource k consumption by one unit of item j, for k ∈ K, j ∈ J .

� γk
j , the amount of resource k for a set-up of item j, for k ∈ K, j ∈ J .

Stochastic parameters for item j in node g, j ∈ J , g ∈ G:

� sj,t(g), safety stock of item j at the end of each period of node g.
� sj,t(g), maximum volume in stock of item j at the end of each period of node g.
� dgj , the total demand of item j in node g.
� pgj , the �xed production cost of item j in node g.
� qgj , unit production cost of item j in node g.
� hg

j , unit inventory holding cost of item j in group g.
� fg

j , unit lost demand penalty of item j in node g.
� yg

j
,ygj , the bounds of production capacity of item j in node g.

� Lg
k, the available capacity of resource k in node g.

The variables for item j in node g, j ∈ J , g ∈ G:

� Xg
j , 0-1 variable whose value is 1 if item j is produced in node g.

� Y g
j , semicontinuous variable, production of item j in node g.

� Zg
j , continuous variable, stock of item j at the end of related time period in node g.

� F g
j , continuous variable, lost demand of item j in node g.

We de�ne the time consistent EMV production planning DEM with quadratic terms for the
continuous Y -variables, Z-variables and F -variables in compact representation as follows,

zDEM = min
∑
g∈GT

wg[
∑
q∈Ãg

∑
j∈J

[µ̂pq
j
Xq

j + µ̂qqj
Y q
j + µ̂hq

j
Zq
j + µ̂fq

j
F q
j ]+

β
∑

q,q′∈Ãg

∑
i,j∈J

(Y q
i , Z

q
i , F

q
i , Y

q′

i , Zq′

i , F q′

i )D̂qq′

ij (Y q
j , Z

q
j , F

q
j , Y

q′

j , Zq′

j , F q′

j )t]

s.t.

Zg
j = Z

π(g)
j + Y g

j − dgj + F g
j ∀j ∈ J , g ∈ G.

yg
j
Xg

j ≤ Y g
j ≤ ygjX

g
j ∀j ∈ J , g ∈ G

sj,t(g) ≤ Zg
j ≤ sj,t(g) ∀j ∈ J , g ∈ G∑

j∈J
αk
jY

g
j +

∑
j∈J

γk
j X

g
j ≤ Lg

k ∀k ∈ K, g ∈ G

Y g
j , Z

g
j , F

g
j ≥ 0, Xg

j ∈ {0, 1}, ∀j ∈ J , g ∈ G,
(34)

where π(g) is the predecessor group of group g. The estimations for the expectations are given
by the means pg, qg, h

g
and f

g
; the estimations for the variances are given by the sample

unbiased variances S2
qg , S

2
hg and S2

fg and the estimation of the covariance matrices D̂gg′
is given
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by Ĉov(qg, hg, fg, qg
′
, hg′

, fg′
). The estimated covariance matrices D̂gg′

ij , i, j ∈ J are de�ned as,

D̂gg′

ij =



Sqgi q
g
j

Sqgi h
g
j

Sqgi f
g
j

S
qgi q

g′
j

S
qgi h

g′
j

S
qgi f

g′
j

Shg
i q

g
j

Shg
i h

g
j

Shg
i f

g
j

S
hg
i q

g′
j

S
hg
i h

g′
j

S
hg
i f

g′
j

Sfg
i q

g
j

Sfg
i h

g
j

Sfg
i f

g
j

S
fg
i q

g′
j

S
fg
i h

g′
j

S
fg
i f

g′
j

S
qg

′
i qgj

S
qg

′
i hg

j

S
qg

′
i fg

j

S
qg

′
i qg

′
j

S
qg

′
i hg′

j

S
qg

′
i fg′

j

S
hg′
i qgj

S
hg′
i hg

j

S
hg′
i fg

j

S
hg′
i qg

′
j

S
hg′
i hg′

j

S
hg′
i fg′

j

S
fg′
i qgj

S
fg′
i hg

j

S
fg′
i fg

j

S
fg′
i qg

′
j

S
fg′
i hg′

j

S
fg′
i fg′

j


,

where S
qgi h

g′
j

is the sample-covariance between qgi and hg′

j for nodes g, g′ ∈ G, and so on.

This general multistage stochastic production planning problem has only quadratic terms for
continuous variables. If quadratic terms are introduced between 0-1 variables and between 0-1
and continuous variables, reformulation techniques can be applied as explained in Section 2.3 and
reference [10], to solve the problem e�ciently.

4.2 Testbed results for time consistent EMV cost models

We report the results obtained in the computational experience while optimizing a testbed consisting
of 15 medium and 15 large-scale problems with the structure described in Section 4.1 and �ve β values
{0, 0.001, 0.01, 0.1, 1}. The thirty instances with β = 1 used for the computational experience are
available in our repository https://ehubox.ehu.eus/index.php/s/02Jhx3vYSXVQx7e, see [6]. As
far as we know, the �rst library for multistage stochastic mixed 0-1 quadratic problems, see [3] for
two-stage stochastic integer programming and [21,26] for stochastic linear programming.

The instances come from a realistic production planning problem, described in Section 4.1, whose
dimensions are shown in Table 1 for medium-scale instances (Testbed 1) and in Table 2 for large-
scale instances (Testbed 2). The headings are as follows: Inst, Instance code; T , number of stages; m,
number of constraints; nx, number of 0-1 variables; nxci, number of common variables, i.e., number
of 0-1 variables in the subset of stages up to the break stage t∗ = i, for i = 1, 2, 3; ny, number of
continuous variables; nel, number of non zero coe�cients in the constraint matrix; Qnel, number
of nonzero coe�cients in the quadratic matrix; |Ω|, number of scenarios; |G|, number of nodes in
the scenario tree; and Tree, scenario tree structure AB1

1 AB2
2 or AB1

1 AB2
2 AB3

3 , where Ai denotes the
number of children at each node, Bi the number of stages where each node of the previous stage has
Ai children i = 1, 2, 3, so the total number of stages is T = 1+B1+B2 or T = 1+B1+B2+B3. In order
to reduce the density of the quadratic matrix, we have considered Dgg

ij matrices; the decomposition
scheme remains unaltered.

Tables 3 and 4 show the changes over time in the absolute and relative expected standard
deviation costs versus the expected mean cost for the �rst eight medium-sized instances, where
the optimal or best known solution is achieved, respectively. Table 3 details the mean-variance
performance for the risk aversion parameter β ≥ 0 in {0, 0.001, 0.01} and Table 4 for β in {0, 0.1, 1}.
The headings are as follows: µ̂β , expected mean cost, i.e. value of linear part of the objective in
(34), µ̂β =

∑
g∈G

wg[
∑
j∈J

[µ̂pg
j
Xg

j + µ̂qgj
Y g
j + µ̂hg

j
Zg
j + µ̂fg

j
F g
j ]]; σ̂

β , expected standard deviation of cost

(absolute risk cost), i.e. the quadratic part of the objective function in (34) substracted from the risk

parameter, σ̂β =
√∑

g∈G
wg[

∑
i,j∈J

(Y g
i , Z

g
i , F

g
i , Y

g′

j , Zg′

j , F g′

j )D̂gg′

ij (Y g
i , Z

g
i , F

g
i , Y

g′

j , Zg′

j , F g′

j )t]; cvβ , the

coe�cient of variation for the cost (relative risk cost), i.e. the relative expected standard deviation

with respect to the expected mean cost in percentage terms, cvβ = σ̂β

µ̂β 100. Note that the objective

function in (34) can be represented as µ̂β + β[σ̂β ]2.

https://ehubox.ehu.eus/index.php/s/02Jhx3vYSXVQx7e
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Table 1 Model dimensions for testbed 1

T m nx nxc1 nxc2 nxc3 ny nel Qnel |Ω| |G| Tree
QP1 5 4617 1110 10 60 210 2730 15662 38820 60 111 513122

QP2 5 8679 2220 20 120 420 5460 33988 149640 60 111 513122

QP3 5 13290 3510 30 150 630 8610 56853 351678 64 117 4222

QP4 6 13992 3360 10 60 210 8280 47126 117600 180 336 513222

QP5 5 17681 4680 40 200 840 11480 86802 620544 64 117 4222

QP6 5 23370 6390 30 150 630 14850 101238 630174 144 213 4232

QP7 6 26304 6720 20 120 420 16560 102316 453240 180 336 513222

QP8 6 27933 7140 20 100 420 17580 114037 481440 192 357 423122

QP9 5 31089 8520 40 200 840 19800 156071 1113216 144 213 4232

QP10 6 33515 8050 10 130 490 19830 110490 281708 432 805 1213222

QP11 6 38280 10080 30 180 630 24840 161538 1011336 180 336 513222

QP12 6 40650 10710 30 150 630 26370 173733 1074270 192 357 423122

QP13 6 50928 13440 40 240 840 33120 248312 1784352 180 336 513222

QP14 6 54081 14280 40 200 840 35160 265202 1895424 192 357 423122

QP15 6 90131 21730 10 130 730 53190 297594 758540 1200 2173 1215222

Table 2 Model dimensions for testbed 2

T m nx nxc1 nxc2 nxc3 ny nel Qnel |Ω| |G| Tree
QP16 6 169397 43460 20 260 1460 106380 671243 2925120 1200 2173 1215222

QP17 5 194601 50920 40 1000 4840 122040 1113499 6708736 768 1273 2414221

QP18 6 227075 54850 10 130 1090 133830 739360 1912268 3072 5485 1218222

QP19 6 246490 65190 30 390 2190 159570 1057930 6527438 1200 2173 1215222

QP20 4 278935 77800 40 1000 16360 171960 1506990 10032640 1536 1945 24116141

QP21 5 294320 77800 40 1000 5800 185400 1590275 10234240 1200 1945 2415221

QP22 6 327929 86920 40 520 2920 212760 1605419 11518336 1200 2173 1215222

QP23 4 363490 105150 30 1470 12990 223290 1638250 10112678 3072 3505 48182

QP24 5 367985 96500 20 500 4340 228060 1459700 6425760 3072 4825 2418221

QP25 4 413410 116670 30 1470 24510 257850 1802929 11343782 3072 3889 48116141

QP26 6 426725 109700 20 260 2180 267660 1665210 7376160 3072 5485 1218222

QP27 4 483485 140200 40 1960 17320 297720 2565210 17896960 3072 3505 48182

QP28 4 496649 139220 20 980 16340 294780 2100077 8979360 6144 6961 48116181

QP29 5 583038 162280 40 1000 8680 363960 3093111 21005824 3072 4057 2418142

QP30 5 711845 193000 40 1000 8680 456120 3546650 25331200 3072 4825 2418221

Table 3 Risk-sensitive performance for β ∈ {0, 0.001, 0.01}

Inst.
β = 0 β = 0.001 β = 0.01

µ̂0 σ̂0 cv0 µ̂0.001 σ̂0.001 cv0.001 µ̂0.01 σ̂0.01 cv0.01

QP1 239563.2 2044.0 0.85 240245.2 1973.1 0.82 242116.8 1904.1 0.79
QP2 868069.8 1574.8 0.18 868400.0 1513.6 0.17 868542.7 1506.7 0.17
QP3 925046.8 6058.4 0.65 956176.2 5253.0 0.55 1022291.0 4241.3 0.41
QP4 276597.2 2743.7 0.99 277189.2 2664.8 0.96 279802.6 2602.1 0.93
QP5 1149530.1 9418.4 0.82 1190602.7 8718.3 0.73 1471930.6 5632.6 0.38
QP6 756935.1 5187.8 0.69 760836.6 5028.0 0.66 881012.8 2765.4 0.31
QP7 818333.6 3266.7 0.40 821502.1 3112.6 0.38 860785.3 2077.3 0.24
QP8 755795.4 2846.4 0.38 756133.9 2810.1 0.37 761777.0 2656.4 0.35

The results evidence a striking decrease in the absolute and relative risk costs, with an increase in
the expected mean cost. De�ne the mean.gap and sd.gap as the relative di�erence between expected
mean cost and expected standard deviation for β > 0 with respect to β = 0 in percentage terms,

that is, mean.gap = µ̂β−µ̂0

µ̂0 100 and sd.gap = σ̂β−σ̂0

σ̂0 100 for β > 0. Figure 3 shows the β changes
over time in those gaps for instances of Tables 3 and 4. The �gures for mean.gap versus sd.gap are
represented, so the e�cient frontier is illustrated (see [28]) in relative terms, i.e. with respect to
values corresponding to β = 0. Position (0,0) represents the expected mean cost and the expected
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Table 4 Risk-sensitive performance for β ∈ {0, 0.1, 1}

Inst.
β = 0 β = 0.1 β = 1

µ̂0 σ̂0 cv0 µ̂0.1 σ̂0.1 cv0.1 µ̂1 σ̂1 cv1

QP1 239563.2 2044.0 0.85 308016.2 1228.2 0.40 412498.2 945.7 0.23
QP2 868069.8 1574.8 0.18 895960.8 1348.8 0.15 947607.4 1243.5 0.13
QP3 925046.8 6058.4 0.65 1343195.6 2523.7 0.19 1563817.0 2306.6 0.15
QP4 276597.2 2743.7 0.99 410686.5 1439.0 0.35 565631.4 1127.0 0.20
QP5 1149530.1 9418.4 0.82 2001344.5 3252.6 0.16 2407408.5 2870.1 0.12
QP6 756935.1 5187.8 0.69 988184.7 2136.5 0.22 1264335.8 1851.2 0.15
QP7 818333.6 3266.7 0.40 921379.4 1363.2 0.15 964492.1 1314.3 0.14
QP8 755795.4 2846.4 0.38 848629.6 1692.6 0.20 1020233.0 1343.6 0.13

standard deviation for model (34) with β = 0, where the deviation is computed with the solution of
the MIP model. Therefore, the regions that contain (0, 100) are ine�cient regions while those that
contain (-100,0) are infeasible regions. Note that the greater the risk parameter β is, the greater the
increase in expected mean cost and the decrease in expected cost variability will be.
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Fig. 3 E�cient frontier for problems QP1 to QP8.

4.3 Results of algorithm QH-BFC

Tables 5 to 8 show the performance of the QH-BFC algorithm compared to the plain use of
CPLEX for the medium-sized instances of Testbed 1 whose dimensions are given in Table 1 and
for β ∈ {0.001, 0.01, 0.1, 1}. The optimal gap used in CPLEX is 10−4%. The headings are as follows:
Inst, instance's code; zDEM

CPLEX , solution value of the original model (34) using CPLEX; ti time
in seconds after which the CPLEX incumbent solution is found; t, elapsed time in seconds; OG,
optimality gap in percentage terms shown by CPLEX; zDEM , solution value of the original model
(34) using QH-BFC; t, elapsed time in seconds; GG, goodness gap in percentage terms shown by
QH-BFC, i.e. relative di�erence in percentage terms between the QH-BFC and CPLEX solution

values, GG =
zDEM−zDEM

CPLEX

zDEM
CPLEX

· 100. Note that the elapsed time, t, for QH-BFC algorithm includes the

time required to generate the cluster quadratic submodels.
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Tables 5 to 8 report the optimal solution for medium-sized instances from QP1 to QP15 for several
break stages t∗. They are solved using the QH-BFC algorithm with small goodness gaps and very
competitive CPU times compared to the plain use of CPLEX. Table 5 illustrates the performance of
the algorithm for the cases of maximum risk (β = 0.001) and Table 8 for those with low level of risk
(β = 1). The intermediate values are shown in Tables 6 and 7.

Table 5 Performance of QH-BFC for Testbed 1 and β = 0.001

Inst.
Plain CPLEX QH-BFC, t∗ = 1 QH-BFC, t∗ = 2 QH-BFC, t∗ = 3

Inst zDEM
CPLEX ti t OG zDEM t GG zDEM t GG zDEM t GG

QP1 243711.5 2 2 * 244933.3 1 0.50 246435.9 1 1.12 256977.5 2 5.44
QP2 870534.1 1 1 * 873871.3 1 0.38 874161.2 1 0.42 882525.7 3 1.38
QP3 960542.8 3 4 * 964375.5 4 0.40 968653.9 3 0.84 978937.5 5 1.92
QP4 283957.8 36 37 * 283988.6 3 0.01 285865.7 2 0.67 285815.9 4 0.65
QP5 1236776.0 6 6 * 1237698.6 5 0.07 1240422.9 5 0.29 1241078.6 6 0.35
QP6 783687.4 17 18 * 784144.2 6 0.06 785988.8 6 0.29 790000.0 7 0.81
QP7 828992.7 2 7 * 829751.2 3 0.09 829751.2 3 0.09 831519.9 5 0.30
QP8 763824.8 156 157 * 764565.7 6 0.10 772661.0 5 1.16 776181.6 4 1.62
QP9 1372164.9 6 7 * 1372164.9 7 * 1373279.5 6 0.08 1375027.2 8 0.21
QP10 352263.4 8276 8277 * 352502.2 6 0.07 352867.1 4 0.17 353693.0 7 0.41
QP11 939487.8 3181 3334 * 941033.9 13 0.16 944523.6 11 0.54 947608.6 11 0.86
QP12 956831.2 654 664 * 963648.0 17 0.71 970507.1 15 1.43 972243.7 14 1.61
QP13 1761050.4 10 11 * 1761050.4 14 * 1762660.7 12 0.09 1764831.1 12 0.21
QP14 1235600.7 12175 13145 * 1235825.5 65 0.02 1243120.3 30 0.61 1245216.1 30 0.78
QP15 444067.9 245 262 * 444067.9 11 * 446802.8 9 0.62 448982.2 22 1.11

*: optimality gap achieved (≤ 0.0001%)

Table 6 Performance of QH-BFC for Testbed 1 and β = 0.01

Inst.
Plain CPLEX QH-BFC, t∗ = 1 QH-BFC, t∗ = 2 QH-BFC, t∗ = 3

zDEM
CPLEX ti t OG zDEM t GG zDEM t GG zDEM t GG

QP1 278374.5 10 10 * 279867.6 1 0.54 283079.4 2 1.69 288912.8 2 3.79
QP2 891245.7 2 2 * 893977.4 2 0.31 896465.2 1 0.59 901354.4 3 1.13
QP3 1202179.0 171 212 * 1203734.6 10 0.13 1207429.1 6 0.44 1215708.3 8 1.13
QP4 347513.5 3220 5792 * 347513.5 5 * 348236.5 3 0.21 348683.0 4 0.34
QP5 1789197.0 4203 4257 * 1789197.0 18 * 1789327.1 10 0.01 1791895.9 11 0.15
QP6 957485.9 1373 1561 * 957485.9 12 * 958188.5 6 0.07 960010.9 7 0.26
QP7 903937.6 441 851 * 904675.1 8 0.08 904675.1 6 0.08 905383.7 6 0.16
QP8 832342.2 4328 5190 * 832874.2 18 0.06 839731.4 8 0.89 842564.4 8 1.23
QP9 1804267.1 19458 21600 1.29 - 21600 - 1805497.3 25 0.07 1805212.2 22 0.05
QP10 397826.5 20233 21600 0.76 397803.3 15 -0.01 398276.3 7 0.11 398536.9 9 0.18
QP11 1178244.9 19857 21600 3.17 1179389.8 16178 0.10 1182028.8 53 0.32 1185153.7 27 0.59
QP12 1292080.9 19978 21600 2.69 - 21600 - 1298811.5 66 0.52 1299030.0 35 0.54
QP13 2173599.4 19536 21600 1.18 - 21600 - 2175007.6 98 0.06 2176892.2 33 0.15
QP14 1956025.3 21195 21600 1.94 - 21600 - 1955565.8 1177 -0.02 1956484.4 166 0.02
QP15 482827.2 19960 21600 0.24 482795.8 27 -0.01 484595.5 17 0.37 486863.6 28 0.84

*: optimality gap achieved (≤ 0.0001%)
-: zDEM not available, exceeded time limit (21600 secs.)
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Table 7 Performance of QH-BFC for Testbed 1 and β = 0.1

Plain CPLEX QH-BFC, t∗ = 1 QH-BFC, t∗ = 2 QH-BFC, t∗ = 3
Inst zDEM

CPLEX ti t OG zDEM t GG zDEM t GG zDEM t GG
QP1 458853.6 15 21600 0.64 458853.6 4 0.00 459085.7 2 0.05 466375.5 2 1.64
QP2 1077894.4 3 3 * 1079521.8 3 0.15 1079525.1 2 0.15 1086438.6 3 0.79
QP3 1980108.3 310 21600 0.61 1980108.3 54 0.00 1984200.3 8 0.21 1985167.3 10 0.26
QP4 617744.9 20021 21600 2.67 617726.0 6734 -0.00 617734.5 10 -0.00 617790.0 6 0.01
QP5 3059269.8 5059 21600 2.18 3059024.1 84 -0.01 3059483.2 18 0.01 3060419.9 16 0.04
QP6 1444666.3 1796 5364 * 1444683.2 36 0.00 1445920.8 9 0.09 1446203.5 10 0.11
QP7 1107213.3 317 320 * 1107728.7 15 0.05 1107728.7 8 0.05 1108315.5 8 0.10
QP8 1135116.8 20111 21600 3.14 1134158.3 18674 -0.08 1139056.9 21 0.35 1137562.8 12 0.22
QP9 2697515.1 19463 21600 2.92 - 21600 - 2697028.1 39 -0.02 2696819.5 22 -0.03
QP10 592853.6 937 21600 2.78 592846.7 36 -0.00 593018.9 9 0.03 593058.1 8 0.03
QP11 1941219.6 21118 21600 1.36 - 21600 - 1941959.5 86 0.04 1941959.5 29 0.04
QP12 2101147.6 19802 21600 3.79 2096506.0 21600 -0.22 2096594.7 88 -0.22 2097886.9 39 -0.16
QP13 3385430.3 15325 21600 3.55 - 21600 - 3384226.3 233 -0.04 3384409.0 68 -0.03
QP14 3332394.3 19944 21600 1.78 - 21600 - 3332300.0 261 -0.00 3332644.2 147 0.01
QP15 636088.7 19635 21600 1.73 636080.5 195 -0.00 636771.5 25 0.11 637295.4 28 0.19
*: optimality gap achieved (≤ 0.0001%)
-: zDEM not available, exceeded time limit (21600 secs.)

Table 8 Performance of QH-BFC for Testbed 1 and β = 1

Plain CPLEX QH-BFC, t∗ = 1 QH-BFC, t∗ = 2 QH-BFC, t∗ = 3
Inst zDEM

CPLEX ti t OG zDEM t GG zDEM t GG zDEM t GG
QP1 1306804.3 8945 21600 0.61 1306835.7 5 0.00 1306835.8 2 0.00 1311180.0 2 0.33
QP2 2493837.8 9 279 * 2493949.8 3 0.00 2494785.0 2 0.04 2495581.0 2 0.07
QP3 6884242.4 19493 21600 0.38 6884242.4 140 0.00 6886279.5 13 0.03 6887225.5 13 0.04
QP4 1835690.3 19642 21600 4.40 1835530.0 269 -0.01 1835530.0 6 -0.01 1835530.0 4 -0.01
QP5 10644823.9 19783 21600 0.81 10644732.3 1640 -0.00 10644866.8 33 0.00 10647284.3 23 0.02
QP6 4691252.6 19587 21600 1.59 - 21600 - 4695608.4 72 0.09 4702455.3 27 0.24
QP7 2691885.5 20804 21600 0.39 2692819.8 296 0.03 2692974.9 23 0.04 2694350.4 14 0.09
QP8 2825555.3 19729 21600 4.07 2825033.9 21600 -0.02 2825061.2 27 -0.02 2826141.4 13 0.02
QP9 8404206.1 12 21600 1.84 8404206.1 380 0.00 8404206.1 19 0.00 8404206.1 15 0.00
QP10 1537521.5 19712 21600 0.68 1537522.9 72 0.00 1540518.2 13 0.19 1540750.6 10 0.21
QP11 6546510.2 20083 21600 3.51 - 21600 - 6548148.0 2732 0.03 6549728.7 58 0.05
QP12 7033987.9 19498 21600 6.58 - 21600 - 7035452.3 95 0.02 7036023.3 42 0.03
QP13 11582579.6 20202 21600 4.38 11565213.1 1431 -0.15 11565213.1 104 -0.15 11568139.1 42 -0.12
QP14 11707481.0 21418 21600 2.61 - 21600 - 11707469.5 8217 -0.00 11706324.4 305 -0.01
QP15 1669934.9 21185 21600 4.99 - 21600 - 1668792.2 41 -0.07 1669725.9 32 -0.01
*: optimality gap achieved (≤ 0.0001%)
-: zDEM not available, exceeded time limit (21600 secs.)

The results show that the larger the risk parameter is, the harder it is to solve the problems by
the plain use of CPLEX. The QH-BFC performance in terms of the break stage reports the best
quality results for t∗ = 1 and t∗ = 2, while the shortest elapsed times are reported for t∗ = 2 and
t∗ = 3. Note that a negative GG indicates that better solutions are obtained by QH-BFC than with
the plain use of CPLEX: three instances for β = 0.001, nine for β = 0.1 and six for β = 1. Moreover,
the QH-BFC results are better than or equal to those obtained with the plain use of CPLEX in more
than half of the medium-sized instances.

Tables 9 to 12, report the performance of QH-BFC versus plain use of CPLEX for the large-sized
instances, QP16 to QP30. On the one hand, the tables show the execution of the QH-BFC algorithm
with the break stage where the smallest goodness gaps are obtained and on the other hand the results
of using QH-BFC with McCormick relaxation for m∗ = 1 and the break stage, where the shortest
CPU times are achieved.
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Table 9 Performance of QH-BFC for Testbed 2 and β = 0.001

Plain CPLEX QH-BFC, min GG% QH-BFC McCormick, min t
Inst zDEM

CPLEX ti t OG t∗ zDEM t GG t∗ zDEM t GG
QP16 732860.5 21413 21600 0.11 1 736376.2 370 0.48 2 738661.2 49 0.79
QP17 1594367.5 8224 8227 * 1 1596179.8 55 0.11 2 1597852.6 46 0.22
QP18 451406.6 19914 21600 0.03 1 451406.6 98 0.00 2 454895.4 37 0.77
QP19 1178053.2 21355 21600 0.02 1 1178055.8 103 0.00 2 1180070.0 64 0.17
QP20 1136767.5 799 804 * 1 1138569.6 65 0.16 1 1138600.8 65 0.16
QP21 1239717.4 21412 21600 0.05 1 1240706.3 114 0.08 2 1242612.5 83 0.23
QP22 1492045.2 19812 21600 0.14 1 1496834.2 885 0.32 2 1500170.2 132 0.54
QP23 900724.5 81 91 * 1 901081.6 56 0.04 1 901081.6 56 0.04
QP24 759010.3 20835 21600 0.05 1 758989.4 118 -0.00 2 762037.8 82 0.40
QP25 876224.0 16967 21600 0.00 1 877170.7 93 0.11 1 877170.7 93 0.11
QP26 873485.9 19890 21600 0.20 1 873844.9 3474 0.04 2 879891.0 125 0.73
QP27 1407885.8 190 228 * 1 1407885.8 97 * 1 1407885.8 96 *
QP28 604057.5 97 103 * 1 604057.5 89 * 1 604057.5 87 *
QP29 1559059.6 19494 21600 0.02 1 1559592.2 216 0.03 2 1563059.3 177 0.26
QP30 1476134.8 20191 21600 0.08 1 1477437.3 539 0.09 2 1480215.3 290 0.28
* optimality gap achieved (≤ 0.0001%)

Table 10 Performance of QH-BFC for Testbed 2 and β = 0.01

Plain CPLEX QH-BFC, min GG% QH-BFC McCormick, min t
Inst zDEM

CPLEX ti t OG t∗ zDEM t GG t∗ zDEM t GG
QP16 833215.7 21600 21600 1.06 2 833389.5 149 0.02 3 834265.5 97 0.13
QP17 1911416.2 3672 21600 2.17 2 1911668.5 229 0.01 3 1912790.6 130 0.07
QP18 467704.7 20753 21600 0.05 1 467691.7 202 -0.00 2 469080.2 50 0.29
QP19 1369928.1 21600 21600 1.46 2 1371067.8 368 0.08 3 1372103.8 131 0.16
QP20 1435153.9 4141 21600 0.17 1 1436752.8 277 0.11 2 1445442.2 133 0.72
QP21 1746823.7 14191 21600 2.70 2 1747178.2 1356 0.02 3 1748148.2 277 0.08
QP22 2139856.8 19203 21600 4.05 3 2140560.0 892 0.03 3 2140931.3 724 0.05
QP23 1046962.1 20124 21600 1.50 2 1048263.6 128 0.12 2 1048282.7 116 0.13
QP24 833579.8 21600 21600 1.66 2 833682.4 440 0.01 2 833674.4 155 0.01
QP25 1053973.8 20079 21600 0.31 1 1054526.6 678 0.05 2 1054724.1 217 0.07
QP26 935093.9 20097 21600 0.37 3 937959.4 547 0.31 2 940117.1 355 0.54
QP27 1674943.1 4142 21600 0.40 1 1674929.7 296 -0.00 2 1675393.8 175 0.03
QP28 622249.3 122 171 * 1 622249.3 96 * 1 622249.3 92 *
QP29 1968212.8 18099 21600 0.51 2 1969434.3 653 0.06 2 1980872.1 419 0.64
QP30 1956735.8 21352 21600 1.98 2 1943471.5 1893 -0.68 2 1943506.9 1832 -0.68
* optimality gap achieved (≤ 0.0001%)
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Table 11 Performance of QH-BFC for Testbed 2 and β = 0.1

Plain CPLEX QH-BFC, min GG% QH-BFC McCormick, min t
Inst zDEM

CPLEX ti t OG t∗ zDEM t GG t∗ zDEM t GG
QP16 1161160.3 21600 21600 1.65 2 1159976.7 553 -0.10 3 1161536.0 155 0.03
QP17 2784280.0 424 21600 1.64 1 2783971.5 488 -0.01 2 2799706.3 182 0.55
QP18 605070.1 21600 21600 1.51 2 605039.1 145 -0.01 2 605446.0 82 0.06
QP19 1905205.4 21600 21600 0.84 2 1902669.1 540 -0.13 3 1905281.8 234 0.00
QP20 2205766.1 21600 21600 0.88 1 2206286.5 6282 0.02 2 2206872.7 144 0.05
QP21 2740798.5 21600 21600 2.58 2 2739933.2 844 -0.03 3 2749412.9 403 0.31
QP22 3232869.6 21600 21600 3.07 2 3232388.4 3194 -0.01 3 3236984.6 790 0.13
QP23 1400862.5 9178 21600 0.91 1 1402583.2 251 0.12 2 1403072.1 147 0.16
QP24 1057121.9 7933 21600 1.26 2 1057492.1 330 0.04 2 1057495.6 201 0.04
QP25 1586620.0 5196 21600 0.62 1 1586609.7 534 -0.00 2 1599283.2 268 0.80
QP26 1265315.7 21600 21600 2.26 2 1264527.6 1561 -0.06 3 1265113.0 488 -0.02
QP27 2347642.7 20258 21600 1.24 1 2347474.5 588 -0.01 2 2348187.7 239 0.02
QP28 783631.3 21003 21600 0.07 1 783616.1 183 -0.00 1 783622.9 148 -0.00
QP29 2924122.3 6288 21600 2.10 2 2924431.4 1103 0.01 2 2925183.7 973 0.04
QP30 2999935.3 19228 21600 3.93 2 2982077.5 2837 -0.60 2 2983062.9 2507 -0.56
* optimality gap achieved (≤ 0.0001%)

Table 12 Performance of QH-BFC for Testbed 2 and β = 1

Plain CPLEX QH-BFC, min GG% QH-BFC McCormick, min t
Inst zDEM

CPLEX ti t OG t∗ zDEM t GG t∗ zDEM t GG
QP16 2889528.0 21600 21600 6.35 3 2890039.2 272 0.02 3 2903534.0 263 0.48
QP17 9191798.3 10536 21600 1.76 1 9190512.8 1024 -0.01 3 9450182.2 185 2.81
QP18 1603533.0 21600 21600 1.86 2 1602967.7 291 -0.04 3 1611100.2 113 0.47
QP19 5966757.4 14842 21600 2.92 3 5974940.9 594 0.14 3 6008316.7 433 0.70
QP20 7766676.7 21138 21600 1.64 2 7769849.1 282 0.04 2 7775099.5 170 0.11
QP21 9404084.9 17784 21600 3.26 2 9402986.0 976 -0.01 3 9496599.7 444 0.98
QP22 10328287.7 21522 21600 4.46 3 10344398.8 1152 0.16 3 10385346.1 1131 0.55
QP23 4156502.5 20976 21600 1.40 1 4189383.5 453 0.79 2 4202465.4 125 1.11
QP24 2526841.1 6126 21600 6.18 2 2528825.4 608 0.08 2 2532748.7 394 0.23
QP25 5317381.0 5649 21600 0.92 2 5323276.1 559 0.11 2 5457308.8 227 2.63
QP26 3165474.8 16634 21600 4.07 2 3158526.0 5767 -0.22 3 3164071.8 490 -0.04
QP27 7337863.1 21202 21600 1.78 1 7337783.1 2329 -0.00 2 7347437.2 207 0.13
QP28 2009324.3 20717 21600 4.14 2 2009553.2 479 0.01 2 2009806.6 233 0.02
QP29 9258501.8 11812 21600 2.35 2 9317154.0 1019 0.63 2 9325607.5 753 0.72
QP30 9872316.5 19471 21600 5.27 2 9851139.4 4447 -0.21 2 9856311.2 2201 -0.16
* optimality gap achieved (≤ 0.0001%)

The QH-BFC algorithm �nds better solutions than CPLEX in a third of the instances, as
evidenced by the negative goodness gaps with short CPU times. For low level of risk, β = 1, which
has the greatest weight in the quadratic term, the quality of QH-BFC solutions is better than that
of the CPLEX solution in the instances QP4, QP5, QP8, QP13, QP14 and QP15. For risk levels,
β = 0.001 and β = 0.01, the algorithm drastically reduces CPU times in the instances QP16 to
QP30 and obtains solutions with very small goodness gaps. For β = 0.1 and the instances QP16 to
QP19, QP21, QP22, QP25 to QP28 the algorithm drastically reduces CPU times and obtains better
solutions than CPLEX. For β = 1 and the instances QP17, QP18, QP21, QP26, QP27 and QP30
the algorithm drastically reduces CPU times and obtains better solutions than CPLEX.



Title Suppressed Due to Excessive Length 25

5 Conclusions and future work

This paper introduces the Expected Mean-Variance model, which is a multistage time consistent
ECRM. It also presents a Quadratic mathHeuristic Branch-and-Fix Coordination algorithmic
framework, named QH-BFC, for solving multistage quadratic mixed 0-1 problems under uncertainty.
This technique is very suitable for solving multistage stochastic models with Expected Conditional
Risk Measures. We consider stochasticity from two perspectives. First, we use a scenario cluster
analysis approach to introduce uncertainty into the parameters in the objective function, rhs and
constraint matrix coe�cients. Second, we consider the distribution functions of the coe�cients of
the objective function along each scenario, using probability and estimation techniques, to introduce
expected risk into the minimization objective. We believe that real-life uncertainty is very frequently
represented via a scenario analysis approach. Also, scenario cluster analysis is crucial for solving
medium and large scale quadratic problems, since it allows us to decompose such problems. The
broad computational experience reported assesses the quality of the matheuristic solution for medium
and large-scale multistage stochastic quadratic mixed 0-1 problems. The outstanding solution quality
and computation times found in the new approach show competitive results when compared with
the-state-of-the-art commercial optimizer CPLEX.

As a future line of work we are considering incorporating and comparing other expected
conditional risk measures for multistage stochastic quadratic problems, and would like to extend
the theory and QH-BFC algorithmic framework for solving problems subject to linear and quadratic
constraints.
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