
Annals of Operations Research manuscript No.
(will be inserted by the editor)

Efficient computation of the Shapley value for
Large-Scale Linear Production Games

Phuoc Hoang Le · Tri-Dung Nguyen ·
Tolga Bektaş

Submitted: 31st March, 2017
Re-submitted: 7th February, 2018

Abstract The Linear Production Game is concerned with allocating the total
payoff of an enterprise among the owners of the resources in a fair way. With co-
operative game theory providing a mathematical framework for sharing the benefit
of the cooperation, the Shapley value is one of the widely used solution concepts
as a fair measurement in this area. Finding the exact Shapley value for linear
production games is, however, challenging when the number of players exceeds 30.
This paper describes the use of linear programming sensitivity analysis for a more
efficient computation of the Shapley value. The paper also proposes a stratified
sampling technique to estimate the Shapley value for large-scale linear produc-
tion games. Computational results show the effectiveness of the proposed methods
compared to others.

Keywords Cooperative games · linear production game · payoff allocation ·
Shapley value · fairness.

1 Introduction

The Linear Production Game (LPG) provides a model for a collaboration arising
in a production environment in which several independent decision makers are in-
volved to make joint production maximisation based on their combined resources.
Owen (1975) describes the LPG as a type of cooperative game with transferable
utility (TU) that provides a framework to understand the cooperation among the
resource owners (players) in such a context. The players work jointly to produce
finished goods which can be sold at given market prices. Through working in the
collaboration, the team can manufacture more products, and hence, can collec-
tively generate more profit to the members.

One of the fundamental questions in cooperative game theory, including the
LPG, is how to share the payoff/cost among the players in a fair way. Several

Southampton Business School and Centre for Operational Research, Management Science and
Information Systems (CORMSIS), University of Southampton, Southampton, UK, SO17 1BJ
E-mail: hoangphuoca1@yahoo.com, T.D.Nguyen@soton.ac.uk(�), T.Bektas@soton.ac.uk

2 Phuoc Hoang Le et al.

solution concepts have in the past been proposed to address this question, which
include the core, the least core, the Shapley value and the Banzhaf index. We pro-
vide a brief review of these in Section 2.1. Among these, the Shapley value is one
of the most popular solution concepts, particularly in cooperative games with TU,
probably due to its relevant economics interpretation on marginal contributions
and its desirable mathematical properties, i.e., it is a unique concept that satisfies
four axioms of efficiency, dummy, symmetry and additivity. We provide further
details about these properties in Section 2.2. Not only the Shapley value is inter-
preted as the payoff/cost distribution but also it suggests a measure of the power
of the players in a voting game (Shapley & Shubik, 1954; Bilbao et al., 2000). The
Shapley value has also been employed in TU games with graph-restricted com-
munications as a measure of centrality to identify the important nodes in a social
network (Gomez et al., 2003; Michalak et al., 2013).

In general, one cannot calculate the Shapley value in polynomial time for many
coalition games due to the fact that its formulation involves an exponentially large
number of terms. Such a computational difficulty also holds for structured games
such as weighted voting games and minimum cost spanning tree games (see, Deng
& Papadimitriou, 1994; Ando, 2012, for more detail). Finding the exact Shapley
Value for large-scale cooperative games, including the LPG, is computationally
intractable in general.

In this paper, linear programming sensitivity analysis is used to improve the
process of recalculating the coalition values. We also construct a randomized al-
gorithm for approximating the Shapley value of the LPG with a large number
of players. This method combines linear programming sensitivity analysis and a
stratified sampling technique. The contributions of this work are as follows:

– We derive an alternative closed form solution for calculating the exact Shapley
value of a special class of Linear Production Games (in Section 3.1)

– We present a new method for its efficient computation that utilises linear pro-
gramming sensitivity analysis (in Section 3.2).

– For large-scale Linear Production Games, we additionally use a stratified sam-
pling technique to approximate the Shapley value (in Section 4).

– Finally, we provide numerical results to illustrate the effectiveness of the pro-
posed methods compared to existing methods (in Section 5).

2 Preliminaries and Related Literature

In this section, we first provide some background on cooperative game theory and
the LPG. We also provide a review of existing methods for computing the Shapley
value.

2.1 Cooperative Games with Transferable Utility

We first introduce some solution concepts of cooperative games with TU. Consider
a set N = {1, . . . , n} of n players, and a characteristic function v : 2N → R, that
maps each subset of players into a real value representing the payoff that the
coalition is guaranteed to receive no matter what other players choose. We call
G = (N , v) a cooperative game. Utility (payoff) is assumed to be transferable,

Efficient computation of the Shapley value for Large-Scale LPGs 3

i.e., for any coalition S ⊆ N , its total payoff is defined as v(S), which can be
transferred freely among its members.

Given a cooperative game (N , v), we are interested in finding an allocation
x ∈ Rn to distribute the total payoff v(N) among individual players. An allocation

(also called a payoff distribution) x is efficient if
∑
i∈N

xi = v(N).

An important question in cooperative games is whether players are willing to
join the grand coalition N . For this to happen, there should exist an allocation x ∈
Rn with which each individual player is better off as compared to their standalone
payoff. An allocation x is called individually rational if xi ≥ v({i}),∀ i ∈ N .

An imputation is an allocation that is both efficient and individually rational.
Individual rationality is not sufficient to guarantee that some players would prefer
the grand coalition N to a smaller coalition S (N . An allocation is called stable

with respect to a coalition S if
∑
i∈S

xi ≥ v(S). The set of efficient allocations that

are stable with respect to all coalitions S ⊆ N is called the core.
However, the core might not exist. In that case, alternative solution concepts

such as the least core and the Nucleous are designed to minimise the dissatisfaction
among the coalitions. While the aforementioned solution concepts deal with the
stability of the game, i.e., avoiding coalitions from breaking away from the grand
coalition, the focus of this work is on another solution concept, called the Shapley
value (Shapley, 1953), described next.

2.2 The Shapley Value

The Shapley value is among the most popular solution concepts in cooperative
game theory for dividing the total payoff/cost between the players, assuming that
they all collaborate. The allocation for player i is proportional to that player’s
contribution to the game, i.e., how much value, player i creates. The formula of the
Shapley value for player i is the weighted average of all the marginal contributions
of that player to all coalitions S ⊆ N \ {i}.

More formally, the Shapley value φ ∈ Rn of a cooperative game G = (N , v) is
the allocation of payoff where

φi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)], (1)

and where we use the short-hand notation v(S∪{i})−v(S) to denote the marginal
contribution of player i to coalition S.

Weber (1988) provides another way to formulate the Shapley value as follows.
Suppose the ordering of the arrival of players is represented as a permutation
function π : {1, 2, . . . , n} → {1, 2, . . . , n} , where π(j) = i means that player i
joins the group in position j. Denote Π(N) as the set of all permutations π =
(π(1), π(2), . . . , π(n)) of players in N , hence |Π(N)| = n!. For each π and i =
π(j), let Prei(π) := {π(1), π(2), . . . , π(j − 1)} be the set of players who are the
predecessors of player i in π. Given a permutation π that shows the ordering of the
arrival of the players, the marginal contribution of player i = π(j) is the difference
v(π(1), . . . , π(j))− v(π(1), . . . , π(j − 1)). The Shapley value φi of a player i is the

4 Phuoc Hoang Le et al.

average over all permutations π ∈ Π(N), of the marginal contribution of the player
i to all players who arrive before player i. Therefore, the value is calculated as:

φi =
1

n!

∑
π∈Π(N)

[v(Prei(π) ∪ {i})− v(Prei(π))]. (2)

In super-additive games such as the LPG, the condition v(i) ≤ v(Prei(π) ∪
{i})−v(Prei(π)) implies v(i) ≤ φi, i.e., the payoff allocation φ satisfies the individ-
ual rationality property, making the Shapley value also an imputation allocation.
The Shapley value defined in (1) is shown to be a unique division scheme that meets
four desirable criteria (axioms). The first axiom (Efficiency) requires that players
divide all the payoff/cost available to the grand coalition among themselves. The
second axiom (dummy) requires that zero payoff is assigned to a player who does
not contribute to any coalition. In the third axiom (symmetry), two players i, j are
said to be symmetric in the game v if they make the same marginal contributions
to any coalition. The axiom demands to pay equal shares to symmetric players.
The last axiom (additivity) states that, for any two separate games G1 = (N , v1)
and G2 = (N , v2), the payoff of a player in the game G1 ⊕ G2 := (N , v1 + v2)
should be equal to the sum of that player’s payoffs in the two games.

Another special property of Shapley value for a fair payoff allocation is mono-
tonicity (Young, 1985). This states that if we change a game such that the con-
tributions of a player to all coalitions stays the same or increases then the final
payoff for that player should not decrease. Young (1985) also shows that the Shap-
ley value can be described simply by the three properties of efficiency, symmetry,
and monotonicity for all cooperative games.

2.3 The Linear Production Game (LPG)

Consider a set N of n players who own a set R of r resources available for the
production of a set P of p products. Each player i has a vector of resources bi =
(b1i , b

2
i , . . . , b

r
i)
T , i.e., that player has exactly bki unit of resource k ∈ {1, 2, . . . , r}.

Manufacturing product j ∈ {1, 2, . . . , p} requires akj units of resource k, for k ∈
{1, 2, . . . , r}. Product j can be sold in the market at price cj .

For any arbitrary coalition S of players in N , the combined resource vector

is b(S) = (b1(S), b2(S), . . . , br(S))T =
∑
i∈S

bi, where bk(S) =
∑
i∈S

bki , for ∀k ∈

{1, 2, . . . , r}. The value of a coalition S is the maximum payoff this group can
achieve with all the resources possessed by its members. Let the vector of produc-
tion output be denoted as y = (y1, . . . , yp) with yp as the amount of product p
manufactured. Then, the payoff v(S) assigned to a coalition S is defined as the
total profit that the coalition can collectively gained, and can be calculated by
solving the following linear program:

v(S) := max

p∑
j=1

cjyj

s.t.

p∑
j=1

akjyj ≤ bk(S), ∀k = {1, 2, . . . , r},

yj ≥ 0, ∀j = {1, 2, . . . , p},

(3)

Efficient computation of the Shapley value for Large-Scale LPGs 5

or equivalently, v(S) := max {cTy | Ay ≤ b(S), y ≥ 0}, where A = {akj}j=1,...,p
k=1,...,r

is the resource requirement matrix.

The dual problem of (3) can be derived as

v(S) := min {b(S)Tz | ATz ≥ c, z ≥ 0}. (4)

Owen (1975) shows that the LPG is a totally balanced game and the LPG core
is always non-empty. In addition, a core solution can be constructed by solving the
dual of problem (3) for the grand coalition. Let z∗ be a dual solution of (4) when
S = N , then a payoff allocation scheme x = (bTi z

∗)i∈N is in the core. As the dual
might have multiple optimal solutions, the set of core solutions corresponding to
these optimal solutions are called the Owen set.

The characteristic function of the LPG is also super-additive; that is for any
two disjoint coalitions S1 and S2, we have v(S1)+v(S2) ≤ v(S1∪S2). Therefore, the
grand coalition will be formed for the benefit of all players. The LPG is concerned
with dividing the total payoff gained by the grand coalition to its players.

Linear Production Games have been widely studied over the past 40 years.
Granot (1986) generalises Owen’s LPG model without the additivity assumption
of the resource function. Variations of this model include minimum cost spanning
tree games (Granot et al., 1981), assignment games (Shapley & Shubik, 1971) and
network synthesis games (Tamir, 1991). Some other extensions of linear production
games are investigated in the works of Fernández et al. (2005) and Lozano (2013).
Recently, Nishizaki et al. (2016) examined a linear production game with graph-
restricted communication, developed the extended Owen solution and showed its
geometric properties. The LPG is in fact belong to a class of games called the
Operational Research Games (Borm et al., 2001), which include all games whose
payoff of each coalition is represented as the optimal value of an optimisation
problem. In the case of the LPG, this optimisation problem is a linear program.

2.4 Computing the Shapley Value

The expression (1) has an exponentially large number of terms and this implies
that computing the Shapley value exactly is NP-hard in general (Deng & Papadim-
itriou, 1994). In fact, polynomial algorithms for computing this is only possible in
special cases if we exploit the special structure of the games (Michalak et al., 2013;
Ando, 2012). The formulations of the Shapley value suggest the use of Monte Carlo
simulations. The first of such a method was proposed in Mann & Shapley (1960)
to approximate the Shapley value, and then to analyse the Electoral College vote
system in the UP Presidential elections.

2.4.1 Simple random sampling and stratified permutation sampling

With the Shapley formula (2) of permutations, (Castro et al., 2009) proposes a
simple random technique to approximate the Shapley value. Among the n! possi-
ble permulations of the players, a sample is drawn and the sample means are used
as approximated Shapley values. This technique is simple to implement compared
to other randomized methods because of its formulation. The method has some

6 Phuoc Hoang Le et al.

advantages such as being unbiased and having no error for dummy players. More-
over, its theoretical error of the approximation can be calculated in a probabilistic
way.

Castro et al. (2017) presents an improved stratified permutation sampling tech-
nique to reduce the variances of the estimation. By noticing that the ordering when
a player joins the grand coalition could be a major factor in contributing to the
variances of the estimation, the authors stratify the population into those with
fixed-position ordering. More specifically, for each player i ∈ N and each position
j = 1, . . . , n, there is a corresponding stratum containing all permutations having
player i in the j position. For optimal sampling, the authors also develop advanced
techniques for estimating the variance in each stratum before designing the opti-
mal sample sizes for the strata accordingly. The authors also present the desirable
features of the sampling technique.

2.4.2 Stratified coalition sampling

While the methods of (Castro et al., 2009, 2017) sample over permutations, another
possibility is to sample over coalitions. This sampling approach uses the coalitional
formula (1) of the Shapley value and rewrites it in the the following form:

φi =
1

n!

∑
π∈Π(N)

[v(Prei(π) ∪ {i})− v(Prei(π))].

=
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)]

=
1

n

n−1∑
k=0

1(
n−1
k

) ∑
|S|=k, i/∈S

[v(S ∪ {i})− v(S)]

︸ ︷︷ ︸
E(Y k

i)

.

(5)

Here, for each fixed i, let S be a random coalition with size k and that does

not include player i. There are

(
n− 1

k

)
such coalitions. If S is uniformly chosen

from that sub-population and if we let Y ki be the corresponding random variable
taking random value [v(S ∪ {i})− v(S)], then the inner summation is exactly the

expectation E(Y ki) of Y ki . The idea of a random sampling technique is to draw
random samples (i.e., coalitions) and replace that expectation with the sample
average.

Formulation (5) suggests the use of Monte Carlo simulation based on stratified
sampling. Each stratum k will be a set of all coalitions of the same size k. Maleki
et al. (2013) propose an heuristic method to allocate the samples into different
strata. The approach provides a non-asymptotic bound for the sampling error by
using Hoeffdings inequality (Hoeffding, 1963, Theorem 2.) to estimate the error
within each stratum.

In the sampling model of the Shapley value for player i, the population contains
all marginal contributions v(S ∪ {i}) − v(S), where S is a subset of N \ {i}. For
each player i, this can be divided into n separate strata {M i

k}n−1
k=0 , where stratum

M i
k contains all coalition of size k that does not contain player i. The total number

of samples is allocated to n × n strata by the population-proportional allocation

Efficient computation of the Shapley value for Large-Scale LPGs 7

rule. For each stratum, we take the simple random sampling to approximate the
expected value E(Y ki). More details on different stratified sampling techniques can
be found in the book by Cochran (2007).

2.4.3 Learning stratified sampling

In this stratified algorithm, the Neyman allocation is applied to decide the num-
bers of sampling units taken for each stratum. A reinforcement learning algorithm
is proposed in the paper by O’Brien et al. (2015) to estimate the variance in each
stratum and to adjust the sample allocation among strata. The method also re-
quires identifying the proportion of ‘exploration stage’ and ‘exploitation stage’ to
determine the sampling allocation, which is a heuristic step in practice. In this
implementation of the learning algorithm, we use the same coefficients γ and β of
the previous paper for our sigmoid function.

3 An Exact Method for Finding the Shapley Value of LPGs

In this section, we first provide analytical properties of the Shapley value of the
LPGs by exploiting the dual structure of the characteristic function. We then
apply linear programming sensitivity analysis (LPSA) to provide an efficient com-
putation of the marginal contribution of a player i to a coalition S.

3.1 Analytical Properties of the Shapley Value in LPGs

We first observe that, in reality, while the number of players might change, we often
have a reasonably small and fixed number of resource types. We are interested in
how the complexity of computing the Shapley value grows with the increase of the
number of players. First, we formulate the dual of the characteristic function v(S)
for each coalition S as follows,

v(S) := min
y∈Y

b(S)Ty, (6)

where Y = {y ∈ Rr : ATy ≥ c,y ≥ 0} is the feasible space of the dual problem
and let Γ be the number of extreme points of Y . It is interesting to note that this
feasible set is independent on the set of players.

Let y∗i , i = 1, . . . , n, be an optimal basic feasible solution of the dual problem
(6) with the objective coefficients bi. For simplicity, we assume that the input data
of the problem is chosen such that no coalition S would have multiple optimal
solutions in this problem of computing v(S). The assumption can be achieved by
slightly perturbing the data of the LPG. We note that similar results derived in
this work still applies even without this assumption, however, we need to be more
careful in some of the statements.

If bi are all equal, then, by symmetry, y∗i = y∗j , ∀ i, j ∈ N , i 6= j, and the

Shapley value of all players should be the same and is equal to bTi y
∗
i . It is noted,

however, that the resource vectors bi, i = 1, . . . , n, do not have to be exactly the
same for y∗i = y∗j , ∀ i, j ∈ N , i 6= j. Instead, we show below a condition on
bi, i = 1, . . . , n, for this to hold. Let us first provide some additional notation.

8 Phuoc Hoang Le et al.

Let a1, . . . ,ap be the columns of A. For each y ∈ Y , let I(y) ⊆ {1, . . . , p} be
the set of active constraints at y, i.e., aTj y = cj , ∀j ∈ I(y). We denote AI(y) as

the set of active (tight) rows of AT at y. For each i = 1, . . . , n, let us define

Ki =

{
−

∑
l∈I(y∗

i)

γlal : γl ≥ 0

}
,

as the cone formed by the negative of the tight rows in AI(y∗
i)

. We can show that

(Ki − y∗i) is indeed the polar cone of the support cone of (Y − y∗i) at 0.
We have the following results on the closed form solution of the Shapley value

if the LPG has some special properties.

Proposition 1 If −bi ∈ K1 for all i = 2, . . . , n, then the following results hold:

(a) There exists vector y∗ such that y∗i = y∗, ∀ i = 1, . . . , n.

(b) For all S ⊆ N , y∗ ∈ argmin
y∈Y

b(S)Ty.

(c) The characteristic function v of the LPG is additive and the closed form solu-
tion of the Shapley value is given by φi = bTi y

∗.
(d) The Shapley value of the game lies in the core.

Proof

(a) The proof of this part is straightforward since as long as the negative of the
objective vector −bi belongs to the cone K1, then the corresponding optimal
dual solution is y∗i = y∗1.

(b) Since y∗i = y∗j , ∀ i, j ∈ N , i 6= j, we have Ki = K, ∀ i ∈ N , for some cone

K. By the definition of y∗i , i.e., y∗i ∈ argmin
y∈Y

bTi y, and by the definition of

Ki, we have −bi ∈ Ki ≡ K. Therefore −b(S) =
∑
i∈S

(−bi) ∈ K and hence

y∗ ∈ argmin
y∈Y

b(S)Ty.

(c) From part (b) we have

v(S) = b(S)Ty∗ =
∑
i∈S

bTi y
∗ =

∑
i∈S

v({i}).

Thus, the characteristic function v of the LPG is additive and v(S ∪ {i}) −
v(S) = v({i}). We substitute into the Shapley formula and have the closed
form solution as φi = bTi y

∗. The closed form solution of the Shapley value is
given by φi = bTi y

∗.
(d) This result directly follows from the additivity property of the game. For any

coalition S, we have
∑
i∈S

φi = b(S)Ty∗ = v(S). Thus, coalition S has no incen-

tive to leave the grand coalition and the solution is stable.

Proposition 1 is useful when the resource vectors bi, i = 1, . . . , n, are reasonably
close to each other in directions such that they all belong to −K1.

Results in Proposition 1(d) show that the Shapley value lies in the core in
the special case where all the resource vectors are sufficiently close to each other.
In general, if that condition does not hold, we can construct examples where the
Shapley value is no longer stable. However, we can still generalise results from
Theorem 1 and show some partial-stability results as stated below.

Efficient computation of the Shapley value for Large-Scale LPGs 9

Proposition 2 For any coalition S whose resource vectors bj , j ∈ S, are suffi-
ciently close to each other, i.e., bj ∈ Kk ∀j ∈ S for some k ∈ {1, . . . , Γ}, the
coalition does not have any incentive to break away from the grand coalition if the
Shapley value is used as the payoff distribution among the players.

Proof In order to prove that the coalition S does not have the incentive to break

away from the Shapley value sharing scheme, we need to show that
∑
i∈S

φi ≥ v(S).

This could be done if we are able to prove that φi ≥ v({i}) ∀i ∈ N and that∑
i∈S

v({i}) = v(S).

In the first part, we have

φi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)]

≥
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
v({i}) = v({i}).

Here, we have used the fact that the LPG is superadditive and hence any marginal
contribution of player i to any coalition is at least v({i}).

In the second part, we have b(S) =
∑
j∈S

bj ∈ Kk since bj ∈ Kk,∀j ∈ S.

Therefore, the optimal dual solution z∗ of (4) for coalition S is the same with the
optimal dual solution for all bj , j ∈ S. Therefore,

v(S) = b(S)Tz =
∑
i∈S

bTi z =
∑
i∈S

v({i}).

ut

If the resource vectors are sufficiently different such that y∗i 6= y∗j for some
i, j ∈ N , i 6= j, the result in Proposition 1 no longer holds and we need to work
with the extreme points of Y which is fixed and independent of the set of players.

Let y(1),y(2), . . . ,y(Γ) be the extreme points of Y and let C(1), C(2), . . . , C(Γ)

be the corresponding polar cones at these extreme points from which the objec-
tive vectors can vary without changing the optimal solutions. Each coalition S
corresponds to an objective vector b(S) with a corresponding optimal solution y∗S
that belongs to the set {y(1),y(2), . . . ,y(Γ)}. The corresponding coalition value is
v(S) = b(S)Ty∗S .

Conversely, let Hl, l = 1, . . . , Γ, be the set of coalitions whose optimal dual
variable coincides with y(l), i.e.,

Hl =
{
S ⊆ N : y(l) ∈ argmin

y∈Y
b(S)Ty

}
.

Let γk =
k!(n− k − 1)!

n!
, for k ∈ {0, 1, . . . , n− 1}. We can rewrite the Shapley

value formulation as follows:

10 Phuoc Hoang Le et al.

φi =

n−1∑
k=0

∑
|S|=k

γk [v(S ∪ {i})− v(S)]

=

n−1∑
k=0

Γ∑
l1=1

Γ∑
l2=1

{ ∑
|S|=k, S∈Hl1

, S∪{i}∈Hl2

γk [v(S ∪ {i})− v(S)]
}

=

n−1∑
k=0

Γ∑
l1=1

Γ∑
l2=1

{ ∑
|S|=k, S∈Hl1

, S∪{i}∈Hl2

γk

[
b(S ∪ {i})T y(l1) − b(S)T y(l2)

]}
. (7)

Remark 1 The alternative analytical formulation for the Shapley value in Equa-
tion (7) is useful for cases when the numbers of resources and products (r, p) are
relatively small compared to the number of players n. In the below, we will provide
an example when the number of extreme points of Y is relatively small compared
to the total number of coalitions.

It is also possible to analyse the structure of the problem to further reduce the
calculation in Equation (7). We demonstrate one such possibility as follows. Let
KN = conv (∪i∈NKi) be the smallest cone that contains all the cones Ki, i ∈ N .
We then have the following result:

Proposition 3 For each k = 1, . . . , Γ , if C(k) ∪ KN 6= ∅, then Hk = ∅.

Proof Suppose by contradiction that C(k)∪KN 6= ∅ but Hk 6= ∅. This means there
exists a coalition S such that y(k) ∈ argmin

y∈Y
b(S)Ty. Therefore, b(S) ∈ C(k) and

hence b(S) 6∈ KN . However, we have bj ∈ KN , ∀i ∈ S and hence b(S) ∈ KN . ut

The implication of Proposition (3) is that, by checking whether or not C(k) ∪
KN 6= ∅, we can find out a list of empty Hk and hence can eliminate them from
Equation (7) to speed up the calculation.

Consider, for example, the case of n = 30, p = 3 and r = 2. Using formula-
tion (3) would involve solving 2n ≈ 109 LPs, each with p decision variables and
with (r + p) constraints. If we use Equation (7), we notice that Y has at most(
r + p

p

)
= 10 extreme points and the equation involves only 102 = 100 pairs of

(l1, l2). In each pair, we only need to evaluate linear functions of those coalitions
that satisfy {|S| = k, S ∈ Hl1 , S ∪ {i} ∈ Hl2}. Let coalition S be rewritten as a
binary vector z(S) ∈ {0, 1}n with zi = 1 if and only if player i is in the coalition.
We also denote b(S) = Bz(S) where B is a matrix of resources vectors in the
columns.

The following remark can be used to speed up the process of finding the optimal
solution for each coalition S by checking a set of linear constraints on z(S).

Remark 2 The condition of S ∈ Hl for l ∈ {1, . . . , Γ} is equivalent to:

– If the vertex y(l) is non-degenerate, (AI(y(l)))
−1Bz(S) ≥ 0, which is a set of

linear constraints on z(S).

Efficient computation of the Shapley value for Large-Scale LPGs 11

– If the vertex y(l) is degenerate, i.e., when AI(y(l)) is not a square matrix, we

can list out all combinations of columns of A
(l)
I ⊂ AI(y(l)) such that each set of

columns corresponds to a basis. Afterwards, the condition S ∈ Hl if and only

if (A
(l)
I)−1Bz(S) ≥ 0, ∀A(l)

I ⊂ AI(y(l)).

We give a sketch proof here for the remark. More detailed explanation can be
found in chapter 4 of the book by Bertsimas & Tsitsiklis (1997).

The condition S ∈ Hl is equivalent to y(l) ∈ argmin
y∈Y

b(S)Ty. That means the

dual problem (6) has y(l) as one of its optimal solutions, hence, both conditions of
feasibility and optimality must be satisfied. The feasibility condition of the vertex
in the dual polyhedron is straightforward, however, we also need to check the
optimality condition, which is the same as the feasibility condition of the primal
problem. Therefore, if a basis B is optimal in the primal problem, the condition of
S ∈ Hl is equivalent to B−1b(S) = (AI(y(l)))

−1Bz(S) ≥ 0 for the non-degenerate

vertex y(l).
Therefore, in the case of the polyhedron of the dual problem has a small number

of vertices and there are a large number of game players, we can efficiently find
the optimal solution for each coalition S by checking which value of l such that
S ∈ Hl. This step is useful in finding the Shapley value quickly.

Example 1 To provide an insight to the remark above, we provide an illustrative
game with r = 2 resources and p = 3 as follows:

Primal (b) := max 3x1 + 8x2 + x3
s.t. 5x1 + 19x2 + 11x3 ≤ b1,

13x1 + 17x2 + 23x3 ≤ b2,
x1, x2, x3 ∈ R+.

(8)

The dual problem and its feasible area are shown as following:

Dual (b) := min b1y1 + b2y2
s.t. 5y1 + 13y2 ≥ 3,

19y1 + 17y2 ≥ 8,
11y1 + 23y2 ≥ 1,
y1, y2 ∈ R+.

(9)

Suppose that there are only two types of players in our game, i.e., m = 12
players of the first type with the resource vector b = (50, 37) and m′ = 18 players
of the second type with the resource vector b′ = (28, 371). The feasible area of
the dual problem has three basic feasible solutions at three extreme points A =
(0, 0.47), B = (0.33, 0.1), C = (0.6, 0).

Following the arguments of remark 1, we have the resource constraint matrix

A =

(
5 19 11 1 0
13 17 23 0 1

)
,

from which we compute the set of active constraints and active rows at each vertices
yA,yB ,yC ∈ Y . In particular, we have I(yA) = {2, 4}, I(yB) = {1, 2}, and

12 Phuoc Hoang Le et al.

Fig. 1 Dual space of the example with the resource vector b(S)

I(yC) = {1, 5}, with AI(yA) =

(
19 1
17 0

)
, AI(yB) =

(
5 19
13 17

)
, and AI(yC) =(

5 0
13 1

)
.

For each coalition S of the game, we need to check which l ∈ {A,B,C} s.t.
S ∈ Hl. For the two resource vectors b = (50, 37) and b′ = (28, 371), the player of
type b belongs to HA and the player of type b′ belongs to HC . Now, considering
a coalition S∗ of eight players of type b and one player of type b′, i.e., the total
resource vector of the coalition is b(S∗) = (428, 667). Among the three vertices
that represent non-degenerate basic feasible solutions, we can check that the only
satisfied inequalities (AI(yB))

−1b(S∗) ≥ 0 indicates S∗ ∈ HB , i.e., B is the optimal
vertex for the dual problem.

To demonstrate the effect of degeneracy on the dual and the way in which
this issue could be overcome, we add the extra constraint 14y1 + 4y2 ≥ 5 to the
dual problem (9). The new feasible space has three vertices as {D,B,C} where

D = (0, 1.25). We have matrix A =

(
14 5 19 11 1 0
4 13 17 23 0 1

)
, and the sets of active

constraints are I(yC) = {2, 6}, I(yB) = {1, 2, 3}, and I(yD) = {1, 5}.

In this case, the vertex B becomes degenerate with AI(yB) =

(
14 5 19
4 13 17

)
.

We check that the second criteria of the Remark 2 satisfies for all basic rep-

resentations A
(B)
I =

{(
14 5
4 13

)
,

(
5 19
13 17

)
,

(
19 14
17 4

)}
of the vertex B. Since

(A
(B)
I)−1Bz(S) ≥ 0 for all representations, this confirm that B is still the op-

timal vertex of the modified problem.

Efficient computation of the Shapley value for Large-Scale LPGs 13

3.2 Linear Programming Sensitivity Analysis (LPSA)

The motivation of using LPSA is based on the following observation. Adding a
player i to a coalition S of other players, in many cases, only slightly modifies the
resource vector of the coalition. Sensitivity analysis dictates that the right-hand
side values of the Linear Programming (LP) model can vary within certain limits
without causing a change in the optimal solution. The LPSA is therefore used to
calculate v(S ∪ {i}) and hence the marginal contribution value v(S ∪ {i})− v(S),
instead of the need to re-evaluate.

The LPSA is applied to calculate the marginal contribution v(S ∪ {i})− v(S)
for each coalition S as follows. First, suppose that the calculation of v(S) can be
done by solving the following standard LP:

(P) v(S) = min{fTω | Dω = b(S), ω ≥ 0},

where f , D are coefficients derived from (c, A) after transforming problem (3)
into the standard form with slack variables added.

Using the simplex method in tabular form, a basis B is optimal if the fol-
lowing two conditions hold (i) Feasibility: B−1b(S) ≥ 0 and (ii) Optimality:
fT − fTBB

−1D ≥ 0T .
To calculate v(S ∪ {i}) in detail, let (P′) denote the new LP in which the

right hand side coefficients b := b(S) = {bk(S)}rk=1 are changed to b + ∆ :=

b(S ∪ {i}) = b(S) + bi = {bk(S) +∆k}rk=1, and where ∆ := {∆k}rk=1 = {bki }rk=1.
The optimality condition of (P′) is still satisfied, as in (P). However the new
feasibility condition is B−1(b+∆) ≥ 0 may not necessarily hold. Then, there are
two cases to consider:

– If the resource vector ∆ = bi satisfies the new feasibility condition then the
optimal basis of the problem (P′) is still the same as in (P). Hence, there is a
closed form outcome of the problem (P′) as v(S ∪ {i}) = fBB

−1(b+∆).
– Otherwise, the optimal solution and the basis of (P) are used as the starting

point for the dual simplex algorithm to solve (P′) (see Wolsey & Nemhauser,
1999, for details on the dual simplex method).

4 LPSA Randomized Algorithm

As discussed in the previous section, while we are able to exploit special structure of
the linear production game to provide an improved formulation and perform faster
recalculations of the coalition payoffs, the process might still require significant
computational resource, especially for large n. Given the difficulty of the problem,
resorting to approximation seems to be the only choice available. In this section,
we propose a randomized algorithm combining LPSA and a stratified sampling
technique to approximate the Shapley value.

The main drawbacks associated with the stratified sampling approaches re-
viewed in Section 2.4 include the need to keep track of n × n strata, and the
number of times the coalition payoffs are to be evaluated. In this section, we pro-
pose a new randomized method to take samples which will strengthen the effect
of linear programming sensitivity analysis. To this end, we rewrite expression (5)
by noticing that the summation indices S ⊆ N \ {i} can be replaced with S ⊆ N .

14 Phuoc Hoang Le et al.

This does not affect the validity of the expression since even if i ∈ S, we would then
have v(S ∪ {i})− v(S) = 0. We can therefore rewrite the Shapley value equation
as follows,

φi =
∑
S⊆N

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)]

=

n−1∑
k=0

1

n− k
1(
n
k

) ∑
|S|=k

[v(S ∪ {i})− v(S)]

︸ ︷︷ ︸
E(Xk

i)

. (10)

Here, S is written for each fixed i as a random coalition with size k and that

does not include player i. There are

(
n

k

)
such coalitions. If S is uniformly chosen

from that sub-population and if we let Xk
i be the corresponding random variable

taking random value [v(S ∪ {i})− v(S)], then the inner summation is exactly the

expectation E(Xk
i) of Xk

i . The idea of a random sampling technique is to draw
random samples (i.e., coalitions) and replace that expectation with the sample
average.

The main difference between this part and the stratified sampling methods
in the literature (Maleki et al., 2013; O’Brien et al., 2015) is the fact that the
drawing of the random sample is independent on any specific player. We can
therefore approximate E(Xk

i) for each and all players using the same sample of
coalitions of size k. After taking a sample coalition S, we choose all players i /∈ S
one by one to form the bigger coalition S ∪ {i}. The process saves (n − |S| − 1)
times of recalculating v(S) for all different player i /∈ S. In addition, instead of
finding the marginal contribution v(S ∪ {i}) − v(S) of that player i to coalition
S directly, we utilise the Linear Programming sensitivity analysis to speed up the
process.

While the benefits of the new sampling approach are clear from the descrip-
tion above, we should note two small drawbacks. First, the Shapley value esti-
mates φ̂i, i ∈ N , are now dependent as they are calculated from the same set of
samples. Second, the sizes of the resulting sub-sample Mk

i might not exactly be
population-proportional allocations (eventhough these are in expectations). The
first drawback of dependency among φ̂i, i ∈ N is not critical, however, as what we
deem important for our purposes is the bias and the variances of these estimations.
In particular, both factors are calculated separately for each player and hence does
not affect the overall quality of the estimation. Similarly, as the whole process is
an approximation in itself, the second drawback is not too significant either. We
describe the full LPSA randomized scheme in Algorithm 1.

Here we apply a simple random method into the process of sampling from
each stratum. The LPSA Randomized algorithm estimates the stratum mean µki =

E(Xk
i) based on the sample average Xk

i . Suppose that the number of samples taken
from each stratum is sufficiently large such that the central limit theorem can be
invoked to approximate the distribution of Xk

i by a Gaussian distribution with

mean µki and the standard deviation σki . From the formula φi =
1

n

n−1∑
k=0

E(Xk
i), the

corresponding variances and expected values of stratified sampling for player i is

Efficient computation of the Shapley value for Large-Scale LPGs 15

Algorithm 1 LPSA Randomized Algorithm

Input: The problem instance size (p, r, n) and LPG data (A, B, c)

Initialize: Divide total m samples into {mk}n−1
k=0 strata by population-proportional alloca-

tion, where mk is the sample size of stratum Mk

for k = 0 : (n− 1) do

if the stratum population
(n
k

)
< mk then

Compute v(S ∪ {i})− v(S) of all S ∈Mk

Find all marginal values for these strata instead of sampling
else

for j = 1 : mk do
Randomly generate a coalition S of size k
Solve the Linear Program and save the basis of the LP problem
for all player i not in the coalition S do

Rebuild the model with new resource vector of S ∪ {i}
Use LPSA to check if LP basis will change;
if the basic changes then

Use dual simplex method to solve LP problem with rhs b(S ∪ {i})
else

Apply the closed form to calculate v(S ∪ {i})
end if
Add (v(S ∪ {i})− v(S)) value into µki and σki calculations of player i

end for
end for

end if
end for

calculated as follows:

σ2
i = Var(φi) =

n−1∑
k=0

Var(
1

n− kX
k
i) =

n−1∑
k=0

Var(Xk
i)

(n− k)2
=

n−1∑
k=0

(σki)2

(n− k)2
,

and

E(φi) =

n−1∑
k=0

1

n− kE(Xk
i) =

n−1∑
k=0

1

n− kµ
k
i =

n−1∑
k=0

1

n− k
1(
n
k

) ∑
|S|=k

[v(S ∪ {i})− v(S)]

=
∑
S⊆N

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)] = φi.

(11)

After the computation of the approximate Shapley value, we implement the
process of balancing the total budget (Castro et al., 2017; O’Brien et al., 2015)
to guarantee the efficiency axiom. The process uses sample averages and variances
of the strata to find the maximum likelihood estimates of the Shapley value with
budget constraints as follows:

φ̂i = φi −
σ2
i∑n

j=1 σ
2
j

(v(N)− v(N)),

where v(N) =
n∑
i=1

φi. We note that E(v(N)) =
n∑
i=1

E(φi) =
n∑
i=1

φi = v(N). More-

over, all four properties of Shapley value are satisfied in expectation for the LPSA

16 Phuoc Hoang Le et al.

Randomized algorithm as a result of the following calculations:

E(φ̂i) = E(φi)−
σ2
i∑n

j=1 σ
2
j

(E(v(N))− v(N)) = E(φi) = φi,

and
n∑
i=1

φ̂i =
n∑
i=1

φi − (v(N)− v(N)) = v(N).

In the next section, we will show the effect of combining the LPSA for computing
the marginal contribution of a player to a coalition and the proposed stratified
sampling approach to evaluate the Shapley value of LPGs.

5 Computational Experiments

This section reports the computational experiments undertaken to assess the per-
formance of the proposed method. The algorithms are implemented in MATLAB
and run on an Intel-core i5-4570 PC with 3.2 GHz CPU and 4GB RAM. We first
describe data generation for small and large-scale instances. We then present re-
sults for small scale LPGs with n ∈ {10, 13, 16, 19, 22, 25}, for which the Shapley
value can be computed exactly using a brute force method. We then extend the
results to a set of larger size instances with up to 90 players and two types of
resource vectors. This particular setting gives us the analytical form of the Shap-
ley value, from which we can judge the accuracy of our approximation methods.
We then show the effect of LP sensitivity analysis on the computational time of
the LPSA randomized algorithm. Finally, we implement three other randomized
algorithms in the literature for comparison purposes.

For small-scale instances, we use the mean absolute percentage error (MAPE)
as a measure between the approximate and the exact Shapley values, calculated

as: MAPE(φ, φ̂) = 100.
1

n

n∑
i=1

| φ̂i − φi
φi

|, where φ is the real Shapley value and φ̂

is the approximate Shapley value.

5.1 Generating Problem Instances

Small scale LPG instances are generated as follows: For each tuple of n (the num-
ber of players), r (the number of resources) and p (the number of products), we
generate a problem instance (A,B, c) of the linear production game. The elements
of (A,B, c) are drawn randomly from a uniform distribution in the interval [0, 1].

For large-scale instances, we consider a class of LPGs where there are only two
types of players E and F , i.e., all players of the same type in the games have the
same resource vector. For these instances, the Shapley value can be determined
exactly in closed form without finding 2n values of v(S). In particular, we generate
a Linear production Game based on example 4.4 of Bjorndal & Jornsten (2009)
with p = 5 products and r = 10 resources and n = 40 players. The instances are
characterized by the following parameter settings:

Efficient computation of the Shapley value for Large-Scale LPGs 17

A =



7 3 5 2 1
6 9 9 5 10
6 3 3 4 3
9 5 4 2 1
3 6 10 2 4
4 5 1 3 8
4 3 4 2 3
7 9 1 1 7
5 8 9 3 2
2 6 3 10 2


; c =


53
57
49
34
41

 ; bE =



4
0
9
0
19
0
17
4
28
0


; bF =



15
40
11
22
7
22
0
22
0
23


. (12)

If n is the total number of players, we calculate the number of players of type
E as nE = b2n/5c and the number of players of type F is nF = n − nE . In the
problem instance where n = 40, therefore, there are nE = 16 players of type E and
nF = 24 players of type F . Note that all coalitions S are composed of pE players
of type E and pF players of type F , such that 0 ≤ pE ≤ nE and 0 ≤ pF ≤ nF .
Therefore, the total number of coalition values v(S) needed to be evaluated is
nE × nF instead of 2n. This reduces the required computational effort for the
experiment.

We compute the exact Shapley value of this game as φE = 191.03 and φF =
57.88. In this situation, the value of the grand coalition is v(N) = 4445.6. Although
a coalition involving only one type of player does not result in any product, a
balance between the two types of players generates the most outcome. Player E
has a higher payoff compared to player F because of the smaller number of players.

For each configuration (n, r, p), we generate problem instances (A,B, c) to test
our approximation algorithm. With each problem instance, the approximation
algorithm outputs different results for each run (trials). We compute the average
value for these calculations in the final result, reported in the following section.

5.2 Effects of using LP Sensitivity Analysis

In this section, we computationally test the effect of using LP sensitivity analysis
by generating LPG instances with p = 19 products, r = 27 resources, and with
varied number of players. Suppose we have a total of 10000 samples to distribute in
all the computation of the LPSA randomized algorithm. Let us denote Pbnc as the
percentage of times when the calculation of the marginal contribution v(S∪{i})−
v(S) does not change the basis (i.e., can be calculated in closed form). Let TSA
and TwoSA be the calculation times (in seconds), respectively, for the algorithms
running with and without the LP sensitivity analysis. The exact time to compute
the Shapley value is shown by Texact.

Table 1 shows the results over 100 trials for the instances described above.
When the number of players in the game is small, it is possible to compute the
exact Shapley value without resorting to randomized methods (e.g., the number of
coalitions is 2n < 104 when n ≤ 13. However, as the number of players increases,
the computational time of finding the correct Shapley value grows exponentially.
In particular, the computational time of the exact Shapley value was more than
ten hours for n ≥ 25, indicated by the ∗ in the table.

18 Phuoc Hoang Le et al.

n 13 16 19 22 25 28

Pbnc(%) 7.68 12.37 15.9 14.16 15.83 16.39

TSA(s) 41.02 37.8 35.84 35.82 34.75 34.42

TwoSA(s) 42.43 41.16 40.48 39.83 39.36 38.71

Texact(s) 21.63 150.81 1415 9514 * *

Table 1 Average 100 trials for problem instances of small sizes with p = 19, r =
27 and total 10000 samples.

For larger instances, we generate ten problem instances for each choice of n and
implement 10 trials for each problem instance. Table 2 presents the computational
results in a similar way to Table 1 for these instances, but without the exact
Shapley value calculation statistics.

n 30 40 50 60 70 80 90

Pbnc(%) 19.23 27.48 32.67 35.93 35.68 37.12 45.16

TSA(s) 34.11 28.82 26.51 26.51 26.27 24.59 21.36

TwoSA(s) 38.64 37.86 37.02 35.87 38.43 35.25 35.87

Table 2 Average 10 trials for 10 problem instances of large size with p = 19, r =
27 and total 10000 samples.

The results shown in Tables 1 and 2 suggest that as the number n of players
increases, the use of sensitivity analysis is more effective as each player can con-
tribute proportionally more to a small group compared to a bigger one; making it
beneficial to use sensitivity analysis in the case of large games. For example, when
n goes beyond 30, Pbnc shows that the time to compute marginal contributions
can be reduced in more than 20% of the total 10000 samples. For this reason,
computational time of the LPSA is significantly less than that without the use of
sensitivity analysis.

5.3 Effects of using the Stratified Sampling technique

This section presents comparison results with three other approximation algo-
rithms for comparison that we implemented, namely simple random sampling
(adapted from Castro et al., 2009), stratified coalition sampling (adapted from
Maleki et al., 2013), and learning stratified sampling (adapted from O’Brien et
al., 2015). We apply the Linear Programming Sensitivity Analysis technique for
the calculation of marginal contributions in all algorithms. A brief review of the
different steps among these sampling techniques was given in Section 2.4.

For comparison purposes, we generate random instances (A, B, c) with p = 19,
r = 27 and n = 22. The Shapley value is computed by four different algorithms
using MAPE to compare the sampling errors. Figure 2 plots the four MAPEs
against time to compare convergence of the algorithms. In the implementation, we
use different number of samples for each player. The total number of samples to

Efficient computation of the Shapley value for Large-Scale LPGs 19

use for each sampling algorithm depends on the running time of that algorithm;
hence there is the trade-off between the accuracy and computational time.

0

0.5

1

1.5

2

2.5

3

3.5

10 30 90 270 810 2430 7290

M
ea

n
 a

b
so

lu
te

 p
er

ce
n

ta
ge

 e
rr

o
r

Computational time for each algorithm (in seconds)

Comparison of four algorithms for the same problem size
p=19, r=27 and n=22

Random sampling algo.

Learning stratified algo.

LPSA Randomized algo.

Coalition algo.

Fig. 2 Comparison of four algorithms using different sampling techniques

Figure 2 shows that the MAPEs of all algorithms decrease to less than 1% as
each algorithm runs more than five minutes, but the number of samples also in-
creases proportionally. However, there are some differences in computational times
among these algorithms, where the coalition sampling is not competitive compared
to the three other algorithms. The LPSA randomized algorithm performs the best
compared to others with respect to the MAPE, particularly when the computa-
tional time is limited.

Figure 3 shows a boxplot which presents the spread of sampling errors for
the four different algorithms under the same running time for large-scale problem
instances with p = 5, r = 10 and n = 40 using the parameters shown by (12).
These results show that, on average, the LPSA randomized algorithm is the best
sampling algorithm compared to others in terms of the MAPE for computing the
Shapley value. The coalition sampling and the Learning stratified sampling do not
seem to be as effective for this particular set of problem instances as the simple
random sampling and LPSA randomized algorithms. We note that a stratified
version of the random sampling algorithm is likely to improve the results obtained
with the random sampling algorithm, but the extent to which this version would
to compete with the LPSA is an interesting question that we leave for further
research.

Finally, Table 3 shows how the MAPE changes for four algorithms with the
number n of players, where ten problem instances are generated for each value n
and the averages of ten runs are presented. The results suggest that, under a fixed
amount of running time, the LPSA randomized algorithm is, on average, the best
compared to the other three.

20 Phuoc Hoang Le et al.

 Random Sampling Coalition Sampling Learning Sampling LPSA Randomized

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
ea

n
ab

so
lu

te
 p

er
ce

nt
ag

e
er

ro
r (

M
A

P
E

)

Comparison of four algorithms with time limit of one minutes

Fig. 3 The MAPE box-plot of four algorithms to approximate the Shapley value of a large-
scale LPG

Number of players 30 40 50 60 70 80 90

Random sampling algo. 2.48 3.81 3.77 4.51 4.78 3.94 5.03

Coalition sampling algo. 3.93 5.44 5.78 6.50 6.73 6.14 6.63

Learning algo. 4.26 5.88 5.10 5.70 5.53 7.18 6.98

LPSA Randomized algo. 1.56 1.37 2.11 2.39 2.52 2.93 3.65

Table 3 Average MAPE of 10 trials for 10 problem instances of size p = 5, r = 10 with 5
minute time limit.

5.4 Error Estimation in the LPSA Randomized algorithm

In this section, we present some numerical results to show the combined effect of
both LPSA and the stratified sampling method, and show that they work well in
combination. The test instances include some large-scale games with two types of
players as described in section 5.1.

Initially, we present the results of the experiments with the LPSA Randomized
algorithm if the sampling budget and number of players in the game are modified.
When the total number of players n ranges from 30 to 90, the total sampling
budget m increases from 1000 to 35 · 1000. We then describe the MAPEs of the
algorithm showing the computational error between the real Shapley values and
the calculated values in Table 4. In general, a game with a fixed number of player
has smaller error if there are more samples to approximate the Shapley value. It
can be seen from the table that as the number of players increases, the sampling
budget also needs to increase to keep the sampling error small.

Additional results for instances with p = 5, r = 10 and n = 40 are shown
in Table 5, where the numbers of players for two types E and F are varied. For
these instances, we also use the root mean squared error (RMSE) as a quadratic

Efficient computation of the Shapley value for Large-Scale LPGs 21

m \ n 30 40 50 60 70 80 90

1000 10.48 13.76 15.36 14.48 11.96 13.74 16.39

3000 7.59 8.78 8.20 10.32 8.76 12.22 11.12

9000 4.63 4.09 5.52 4.71 6.75 6.18 6.29

27000 2.18 2.52 2.62 2.33 3.80 4.57 3.87

81000 1.66 1.26 1.75 1.41 1.66 1.58 1.47

243000 0.69 0.68 0.87 0.93 0.85 1.15 0.97

Table 4 MAPEs of LPSA Randomized algorithm for large-scale problem instances with dif-
ferent sample sizes

scoring rule which measures the average magnitude of the error, calculated as:

RMSE(φ, φ̂) =

√√√√ 1

n

n∑
i=1

(φ̂i − φi)2, where φ is the real Shapley value and φ̂ is the

approximate Shapley value. The real Shapley values and the average MAPE and
RMSE for the LPSA is given in Table 5.

players of (E,F) (5,35) (10,30) (15,25) (20,20) (25,15) (30,10) (35,5)

Shapley value of E 279.3 256.6 211.8 95.5 18.5 4.7 1.2

Shapley value of F 1.9 11.3 41.8 145.5 215.1 232.4 238.2

v(N) 1463 2905 4221 4820 3689 2465 1233

MAPE 14.56 7.42 2.1 0.64 4.55 16.98 28.58

RMSE 0.87 1.85 1.54 0.81 2.31 1.84 0.95

Table 5 The approximation errors of LPSA Randomized algorithm on large-scale problem
instances with 5 minutes time limit.

As can be seen from Table 5, as the number of players of one type is reduced,
the percentage of values that player type can claim from the v(N) in the Shapley
value increases. Moreover, the grand coalition value is largest when there is a
balance between two types of players. The reason that some problem instances
have large MAPEs is due to the fact that the Shapley values of one player become
very small, and any slight changes in the value of that approximate Shapley value
will affect the MAPE of the algorithm. The RMSE also confirm this observation
as the errors are quite small.

6 Conclusions

This paper described new computational methods for calculating the Shapley value
of Linear Production Games. We showed how to find a closed form solution of the
Shapley value in some particular cases of the game. For larger-scale LPGs, we pro-
posed a randomized algorithm combining both Linear Programming sensitivity
analysis and a stratified sampling method. The computational results that com-
pared the LPSA randomized method with three other sampling techniques in the

22 Phuoc Hoang Le et al.

literature indicated the superiority of the proposed algorithm. We expect that such
LPSA randomized algorithm could be used to approximate the Shapley value for
some other cooperative games, such as those associated with minimum spanning
trees, assignment and network synthesis.

Acknowledgement

The authors thank two anonymous reviewers for their very constructive com-
ments. The first author gratefully acknowledges the Faculty Scholarship provided
by Southampton Business School.

References

Ando, K. (2012). Computation of the Shapley value of minimum cost spanning
tree games: #P-hardness and polynomial cases. Japan Journal of Industrial and
Applied Mathematics, 29, 385–400.

Bertsimas, D. & Tsitsiklis, J. N. (1997). Introduction to Linear Optimization.
Massachusetts: Athena Scientific Belmont.

Bilbao, J.M., Fernandez, & J.R., Losada, A.J., Lopez, J.J. (2000). Generating
functions for computing power indices efficiently. Top, 8(2), 191–213.

Bjorndal, E., & Jornsten, K. (2009). Lower and upper bounds for linear production
games. European Journal of Operational Research. Production, Manufacturing
and Logistics, 196(2), 476–486.

Borm, P, Hamers, H.,& Hendrickx, R. (2001). Operations research games: A sur-
vey. TOP, 9(2), 139–216.

Castro, J., Gómez, D., & Tejada J. (2009). Polynomial calculation of the Shapley
value based on sampling. Computers and Operations Research, 36(5),1726–
1730.

Castro, J., Gómez, D., Monila, E., & Tejada J. (2017). Improving polynomial
estimation of the Shapley value by stratified random sampling with optimum
allocation. Computers and Operations Research, 82,180–188.

Cochran, W.G. (2007). Sampling Techniques, 3rd Wiley Student Edition.
Deng, X., & Papadimitriou, C.H. (1994). On the complexity of cooperative solution

concepts. Mathematics of Operations Research, 19(2), 257–266.
Fernández, F.R., Fiestras-Janeiro, M.G., Garca-Jurado, I., & Puerto, J. (2005).

Competition and Cooperation in Non-Centralized Linear Production Games.
Annals of Operations Research , 137(1), 91–100.

Gómez, D., González-Arangüena, E., Manuel, C., Owen, G., Pozo, M., & Tejada,
J. (2003). Centrality and power in social networks: a game theoretic approach.
Mathematical Social Sciences, 46(1), 27–54.

Granot, D., & Huberman, G. (1981). Minimum cost spanning tree games. Math-
ematical Programming, 21, 1–18.

Granot, D. (1986). A generalized linear production model: a unifying model. Math-
ematical Programming, 34, 212–222.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random vari-
ables, Journal of the American Statistical Association, 58(301), 13–30.

Efficient computation of the Shapley value for Large-Scale LPGs 23

Lozano, S. (2013). DEA production games. European Journal of Operational Re-
search, 231(2), 405–413.

Maleki, S., Tran, T.L., Hines, G., Rahwan, T., & Rogers, A. (2013). Bounding the
Estimation Error of Sampling-based Shapley Value Approximation. CoopMAS
2014, AAMAS 14.

Mann, I., & Shapley, L.S. (1960). Values for large games, IV: Evaluating the Elec-
toral College by Monte Carlo Techniques. The Rand Corporation, Technical
report.

Michalak, T.P., Aadithya, K.V., Szczepanski, P.L., Ravindran, B., & Jennings,
N.R. (2013). Efficient Computation of the Shapley Value for Game-Theoretic
Network Centrality. Journal of Artificial Intelligence Research, 46, 607-650.

Nishizaki, I., Hayashida, T., Shintomi, Y. (2016). A core-allocation for a network
restricted linear production game. Annals of Operations Research, 238(1), 389–
410.

O’Brien, G., El Gamal, A., & Rajagopal. R. (2015). Shapley Value Estimation for
Compensation of Participants in Demand Response Programs, IEEE Transac-
tions on Smart Grid, 6(6), 2837 –2844.

Owen, G. (1975). On the core of linear production games. Mathematical Program-
ming, 9, 358–370.

Shapley, L.S. (1953). A value for n-person games. Contributions to the Theory of
Games II, 307–317, Princeton University Press.

Shapley, L.S., & Shubik, M. (1954). A Method for Evaluating the Distribution of
Power in a Committee System. American Political Science Review, 48, 787–792.

Shapley, L.S., & Shubik, M. (1971). The assignment game I: the core. International
Journal of Game Theory, 1, 111–130.

Tamir, A. (1991). On the core of network synthesis games. Mathematical Pro-
gramming, 50(1), 123–135.

Weber, R.J. (1988). Probabilistic values for games. In A. Roth (Ed.), The Shapley
value: Essays in honor of Lloyd S. Shapley. Cambridge University Press, 101–
119.

Wolsey, L.A., & Nemhauser, G.L. (1999). Integer and Combinatorial Optimization,
John Wiley & Sons.

Young, H. P. (1985). Monotonic solutions of cooperative games, International Jour-
nal of Game Theory, 14(2), 65–72.

	Introduction
	Preliminaries and Related Literature
	Cooperative Games with Transferable Utility
	The Shapley Value
	The Linear Production Game (LPG)
	Computing the Shapley Value
	Simple random sampling and stratified permutation sampling
	Stratified coalition sampling
	Learning stratified sampling

	An Exact Method for Finding the Shapley Value of LPGs
	Analytical Properties of the Shapley Value in LPGs
	Linear Programming Sensitivity Analysis (LPSA)

	LPSA Randomized Algorithm
	Computational Experiments
	Generating Problem Instances
	Effects of using LP Sensitivity Analysis
	Effects of using the Stratified Sampling technique
	Error Estimation in the LPSA Randomized algorithm

	Conclusions

