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Abstract We analyse an optimal households’ asset-liability management (ALM)
problem formulated as a goal-based problem in which the family aims over an
extended planning horizon at achieving an investment goal, in the form of a
real-estate investment and a retirement goal at the end of the planning hori-
zon. The problem is formulated as a multistage stochastic program (MSP) and
we evaluate in this article the impact of second order stochastic dominance
(SSD) constraints on different specifications of the family objective functions
and with respect to three alternative benchmark policies adopted to gener-
ate the SSD constraint set. The problem is formulated as a linear stochastic
program and, following Kopa et al. (2018) the SSD constraints are based on
a simple permuation matrix, whose effectiveness in determining the decision
maker strategies is confirmed in a case study developed in the second part of
the article. We show that depending on the adopted benchmark policy, SSD
feasibility even if far away on the planning horizon may influence root node
decisions and affect both the adopted investment and the liability optimal
policies. Interestingly, SSD feasibility, depending benchmark policy may also
imply first-oder stochastic dominance (FSD). Finally we analyse in the article
from a qualitative viewpoint the relationship between a minimum shortfall
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with respect to the goals objective and the introduced SSD constraints at the
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Introduction

We consider in this work a family’s dynamic asset-liability management (ALM)
problem over a long-term planning horizon formulated as a stochastic program-
ming (DSP) problem with an individual objective to minimise the shortfall
with respect to a terminal retirement goal, after at an intermediate stage, in-
vesting in the real estate market. Both the intermediate and terminal goals
are stochastic and the decision problem is formulated relying on estimates of
average salaries, living costs and of a liquidity buffer for precautionary rea-
sons. The attainability of each goal is subject to an uncertainty generated by
asset returns and liability costs and we formulate the optimization problem
with a second order stochastic dominance (SSD) constraints. The asset uni-
verse includes mutual funds, pension funds, unit-linked contracts and annuities
plus cash, while libilities are limited to living costs and fixed or floating rate
mortgages for the real estate investment.

The decision maker faces a financial planning problem whose effective so-
lution is however not easy due to its’ long-term nature and the uncertainties
affecting most of the economic and financial variables over such horizon. Con-
sistently with the life-cycle hypothesis in Modigliani and Ando (1957), we
assume a rational investor who wishes to preserve living and consumption
standards over her/his lifetime. Retirement goals are set accordingly so to
keep current consumption levels during retirement, that depending on indi-
viduals current ages may be very far out in the future: when not otherwise
specified both investment and retirement goals are set in nominal terms and
then inflation-adjusted. Since Modigliani and Ando (1957), this class of de-
cision problems, at the very heart of households’ economics, has naturally
attracted a rather extensive and diversified interests by the scientific commu-
nity resulting into several possible optimization approaches Merton (1969);
Samuelson (1969); Hakansson (1974); Kahneman and Tversky (1979); Kall-
berg and Ziemba (1979); Mulvey and Ziemba (1998); Levy (2006); Consigli
(2007); Medova et al. (2008). Indeed the problem is dynamic and stochastic
since not only living costs depend on consumer price inflation, but also the
labor income is random particularly over a long horizon, as are portfolio re-
turns and borrowing costs. Upon retirement depending on the pension scheme,
defined benefit or defined contribution, see Consigli et al. (2012b) and Kopa
et al. (2018), longevity risk may also be beared by the individual. In this work
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we aim at clarifying the implications of stochastic dominance constraints on
optimal dynamic goal-based investment policies as the investors’ risk attitudes
change within a realistic setting.

Already in previous developments Consigli and Dempster (1998); Medova
et al. (2008); Consigli et al. (2011, 2012b) we (toglierei riferimenti per-
sonali) emphasised the potentials of DSP formulations in the area of individ-
ual asset-liability management: almost all features and modeling complexities
considered above can be accommodated within a DSP model allowing for long
term plannning of households life projects. Here we extend previous studies on
optimal retirement plans Consigli et al. (2012b) and Kopa et al. (2018) to anal-
yse specifically the interaction between medium and long-term targets under
stochastic dominance (SD) constraints and for varying agents’ risk attitude.

SD preferences are well studied in decision theory and they are rigorously
established from a mathematical perspective in optimization theory. SD was
introduced more than 50 years ago and it was firstly applied to economics and
finance in Quirk and Saposnik (1962), Hadar and Russell (1969) and Hanoch
and Levy (1969). Then, the SSD constraints were applied to static stochastic
programs in Dentcheva and Ruszczynski (2003) and Luedtke (2008) and to
portfolio efficiency analysis, see e.g. Kuosmanen (2004), Dupacovd and Kopa
(2012) and, more recently, Kopa and Post (2015). Similarly, the FSD con-
straints were used in Kuosmanen (2004), Dentcheva and Ruszczyriski (2004)
and Dupacovd and Kopa (2014). In multistage stochastic optimization, the
SSD constraints were applied to asset-liability modeling in Yang et al. (2010)
and in an individual pension allocation problem in Kopa et al. (2018).

The investment-consumption problem is formulated in discrete time: we
consider a data tree process with randomness affecting interest rates, invest-
ment returns, goals values, family income and living costs. The decision maker
faces annual living costs and we assume that family goals are placed only at
pre-specified decision points over the decision horizon. The first goal is rep-
resented by the real estate: depending on the evolution of the house market,
several years from now, the investment might require different levels of bor-
rowing: accordingly, since outstanding debt reduces the overall family wealth,
the retirement goal achievement might be jeopardised. The investor wishes
to generate through a dynamic investment policy a family wealth capturing
both goals and stochastically dominating to the second order wealth processes
generated by benchmark policies. We consider in this article three such kind
of policies.

To clarify the article’s contribution we depart from two relevant previous
works: in Kopa et al. (2018) a computationally efficient extension of an indi-
vidual pension problem under stochastic dominance constraints was presented
with respect uniquely to a final retirement target. In Consigli et al. (2012a)
we solved a household financial planning problem without any stochastic dom-
inance constraints but as here below including a sequence of goals within a
relatively standard problem formulation. Here we extend those works in several
directions:
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— Second order stochastic dominance (sostituirei con SSD) is analysed
with respect to a range of possible specifications of the investor’s risk profile
and a specific focus on the trade-off between a retirement and a real estate
goals is developed;

— The objective function is formulated as a risk-reward function in which risk
is measured by the drawdown with respect to the input, inflation-adjusted
targets at different time horizons;

— The SSD principle is defined with respect to a set of realistic investment
benchmarks, and the resulting optimal policy (manca il verbo) back-
tested out-of-sample against the associated policies.

— For given benchmark portfolios, we consider the implications on first-order
stochastic dominance (FSD) relationship of imposing SSD constraints at
different stages of the dynamic problem.

The main article’s contribution may be found in the extensive set of evi-
dences on the optimal investment policies and the assessment of the SD con-
straints effectiveness for different problems specifications. Of specific interest
is the sensitivity of the root node investment and scenario-dependent liabil-
ity decisions under SSD constraints and varying risk-return trade-offs over a
long-term planning horizon. The inclusion of SSD constraints in an individual
ALM problem with time- and state-dependent targets is novel and leads to
a set of relevant financial evidences: we analyse in the case study the impact
of SSD feasibility on a representative family’s optimal wealth distribution at
the end of a 20 year horizon. An extended set of evidences confirms that SSD
conditions limit significantly the lower tail of the wealth distributions without
jeopardising the optimal policy upside. The interaction between the stochas-
tic dominance constraints and different specifications of an agent risk-reward
function is also analysed in detail.

The article is structured as follows: in section 1 we analyse the goals’ trade-
off and introduce the key elements of an individual asset-liability management
(ALM) problem from an economic perspective to clarify the rationale of a
decision model based on SSD preferences. The ALM problem’s formulation
is developed in section 2, while in subsections 2.1 and 2.2 we introduce the
optimization problem and discuss the model’s mathematical implications, the
scenario generation approach and the implementation details. The section 3
is devoted to a case study and an extended set of evidences to highlight the
implications of the adopted modeling approach on the individuals’ investment
strategies and present a qualified set of comparative evidences.

1 Goal-based investments under a stochastic dominance
perspective

We consider a household whose financial allocation decisions evolve over a
long-time working lifespan: family planning is determined by current savings
and future investment and consumption plans as reflected in a finite number
of family goals. In sub-section 3 we consider a canonical 4-member family
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and analyse how an intermediate real estate and an horizon retirement goals
will affect optimal investment policies over a 20-year planning horizon and
to which extent leverage decisions on early targets may affect the likelihood
to achieve goals later on. To clarify the modeling process and convey the
issues involved by the formulation of a household asset-liability management
(ALM) problem under stochastic dominance constraints, we introduce in this
section some notation and summarize the random factors affecting this class of
financial management problems. The rationale (rationale?) and implications
of an SSD approach are also clarified.

In a DSP setting, asset and liability scenarios are assumed to be generated
by an extended set of random coeflicients whose evolution along a scenario tree
provides the fundamental model for discrete risk evaluation within the opti-
mization problem, see Dupacova et al. (2000); Consigli et al. (2011); Bertocchi
et al. (2011). We consider a generic finite decision horizon T := {to, 1, ....,tx },
with typically tg = 0, current time and ¢ty = T retirement age, and a fam-
ily wealth W (t,w), t € T, that given an initial investment portfolio X, will
evolve in a probability space (2, F,P) Consigli et al. (2012a) (spiegare la
referenza) along random trajectories w. Two goals are considered in this
study: an intermediate real estate goal WTf with to < 7 < T,7 € T based on
current, time 0, market values and a terminal retirement goal W{,ﬁ this latter
is determined relying on current living standards and a pension conversion
factor consistent with economic practice. Both goals are defined at ¢t = 0 re-
lying on current information and they will evolve along random inflation and
real estate revaluation paths, thus generating stochastic values at the speci-
fied times: the resulting probability distributions at 7 and T respectively are
relevant in the definition of the SD constraints. For t € T, before rebalancing,
the individual’s wealth is determined by the investment portfolio value X,

by the investment goals Wt): acquired in 7 < t;, the oustanding debt y;, and
by a cash surplus z;;:

Wty w) = X,y () + Y Wil 4 (@) = e, (@) + 24 (@) (1)
k<j

In (1), rff (w) is the portfolio value random variation over the time step
[tj—1,t;] and WtJ; (w) defines the value in ¢; of investment goals acquired be-
fore t;. The portfolio evolution can be captured through buying and selling
decisions: again for ¢t € T we have X (¢;,w) = th_lrgf (w) + X;Jr,(w) - X (w)
indicating with + and — aggregate buying and selling decisions along the ran-
dom paths w. Similarely we denote with y:j (w) and y, (w) debt borrowing and
reimboursement decisions taken in ¢; along path w, while b;, (w) is the interest
rate on the debt at time ¢;. The cash position evolves in each stage t € T,
trajectory w, as:

th (w) = th71(1 =+ Tz7tj71) =+ Itj (UJ) — Ctj (OJ) — Wt‘f]l{] + (2)
+ X (W) = XF (W) = ye,bny (W) + 0 —
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In equation (2) we denote with I;; and C;, the family income and living
costs during the period and we denote the investment goals with Wtf where
H{ takes value 1 or 0 depending on the targets’ time input to the problem.
From a modeling viewpoint, a final relevant issue refers to the evaluation
of the financial position at time T, end of the planning horizon, assumed
here to coincide with the retirement age Consigli et al. (2012b) (spiegare la
referenza). Some authors consider a lifetime planning horizon Medova et al.
(2008). In the case study in section 3 we consider among the assets different
pension funds and the family by setting a retirement goal W{« will determine
a desirable family income upon retirement (questa frase mi suona male).
Buying and selling decisions on individual assets i € A at time ¢ are specified
by x;tt and @, ,, thus Xy = 37,0 0 >0 o Tt X = x;ft and X, =
D e A Dnet ; p, - Following Consigli et al. (2012b), in T for given pension fund
value and prevailing interest rated we introduce a terminal adjustment, a so-
called end effect Er that will also determine the terminal wealth distribution:
W(T,w) = Xy, 17 (W) + Xper Wil p(w) = yr(w) + 27(w) + Er(w). We go
more in detail on this issue in section 2.

Let now Fyw,(w) = P(W; < w) (nelle figure la notazione delle dis-
tribuzioni cumulate e’ leggeremenete diversa, in particolare la W e’
ad apice, e per il benchmark non c’e’ la B a pedice ) be the cumulative
probability distribution of the individual wealth at time t. We wish to evaluate
the SD relationships between Fy, (w) and the wealth dstributions generated
by alternative benchmark policies: Fy ;(w) = P(Bg: < w) is the cumulative
distribution generated by the k-th benchmark portfolio at time ¢. Relying on
normalised portfolio and benchmark values (see below) SD relationships can be
easily specified with respect to the wealth distributions Fy, (w) and F, ,(w)
or the associated compound return distributions as w varies. They can also
be assessed with respect to the quantiles of the distributions, for a € (0, 1),
relying on F‘;,tl(oz) and Fy_ (). Here below we consider a discrete probability
space generated by wealth and benchmarks tree processes. Under such assump-
tion, following Kopa et al. (2018), we show that indeed first and second order
SD constraints can be enforced through appropriate linear operators leading
respectively to a mixed integer or a linear programming problem formulation.
We analyse first the economic implications of the SD constraints when applied
to a dynamic framework.

Consider the real estate target-time 7: before the acquisition, let this be
7—, the individual’s wealth would not include any mortgage nor debt position
and W, _(w) = >, 4 %i,r— (w)+2-—. Upon acquisition we may record either or
both a liability increase and an asset portfolio reduction aimed at funding the
investment: the family wealth along the random path w after the investment
will be

We(w) =Y win,(w) + W —yf + 2,
i€Ah<T
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where
YIPITRIED DI PETMEDES YD B PE!
€A h 1€EAh<T— €A i€EAhZT

The two quantities W,_(w) and W, (w) differ on the wealth composition:
in the latter case inclusive of the real estate investment and associated liability
and, consequently, they differ in terms of liquidity as further dicussed in section
2 and they differ by composition and portfolio weights. At 7 dependending on
the underlying probability space (2, F,P) the wealth distribution will depend
on the cumulative returns generated by the investment strategy so far, by the
cash balance evolution and the market value of the real estate. After the real
estate investment and before retirement, assuming a retirement income funded
only through pension and insurance products, thus excluding a real estate dis-
investment, a relevant mortgage in 7 might jeopardise the achievement of the
retirement goal VT/} at T'. Notice that leaving liquidity aside, the wealth distri-
butions in 7 with and without the real estate should be the same: accordingly
we introduce a stochastic dominance relationship by comparing W;(w) with
the wealth distribution generated by a benchmark investment portfolio. What
are then appropriate benchmark strategies By to consider when assessing the
SD relationships? We consider k = 1,2, 3 strategies of increasing complexity,
actually adopted in practice.

1. Bj: the initial portfolio X is invested in the financial market following
an equally-weighted strategy 1/N in which the portfolio composition does
not vary over time (solitamente quando confronto con I’Ll/N cito
DeMiguel et al. (2007)).

2. Bs: the initial family wealth W} is invested in the money market and grows
over time depending on the prevailing risk-free interest rates.

3. Bj the family wealth Wy, ¢t € T is protected from inflation.

Under all cases, cash-flows determined by family income and living costs
are considered exactly as in the goal-based ALM problem formulation. The
following processes are considered to define the SD relationship for ¢t € T:
the family wealth Wi(w) as defined in eq. (1), based on inflation-adjusted
consumption flows, goals’ revaluation paths, a portfolio value X;(w) and cash
z;(w) and a benchmark wealth W/ (w), k = 1,2, 3 without the inclusion of any
target defined for kK =1 as

Wh(tj,w) = thj (w) + ztlj (w). (3)

where thj (w) is a (non-optimal) portfolio with equally weighted assets also
refered to as a 1/n (io userei ovunque 1/N perche’ e’ coerente con
DeMiguel e non si confonde con la notazione nodale) portfolio. Here
the cash account is determined by current consumptions and income flows
together with the liquidity generated by buying and selling decisions induced

by the benchmark strategy along scenario w: ztli (w) = ztli_l(l + o)+

I (w)—Cy, (w)+thj’+(w) —thj’_ (w). Under such strategy on a negative market
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phase, nothing will prevent the individual wealth from becoming negative, as
we show below.

For k = 2,3 we will instead consider the cases of an initial portfolio position
entirely liquidated at ¢ = 0 and invested either on a money market account
earning a stochastic risk-free interest rate or, respectively, in a fully inflation
protected account. Under either cases given the family income and current
consumptions, the benchmark portfolio will surely yield a positive return over
the planning horizon. In particular:

W2(tj,w) = Xo x R.y, (w) + zfj (w) (4)
W3 (tj,w) = Xo x I, (w) + zfj (w). (5)

In both equations (4) and (5) the cash account will evolve from an initial
cash surplus 2, according to income inflows and consumption: neither equation
implies portfolio rebalancing decisions. The terms R, ; (w) and I, (w) are
respectively a compounded risk-free amount generated by a sequence of short
interest rates r,¢; for j = 1,2, ... along scenario w and an inflation deflator
(perche’ DE-flator?) over the period 0,t; again along scenario w, a function
of the inflation process 7, (w). We see below that both processes will generate
non-negative wealths and are defined as mean-reverting stochastic processes
Consigli et al. (2011) (spiegare referenza). In the optimzation problem we
require the family wealth to stochastically dominate the above benchmark
wealths to (at invece di to) the second order.

Following Kuosmanen (2004) and Kopa et al. (2018), first and second order
SD in a discrete probability space can be characterised in terms of permutation
matrices P, namely we have for t € T:

FSD : Fyw first-order stochastically dominates (FSD) F} in stage t € T if and
only if we can find a P s.t. Wy > Py Wtk where W, and Wtk are vectors
with dimension N; the height of the scenario tree in stage ¢ and P is a
permutation (matrix) whose rows and columns sum all to 1 and whose
elements py ;; = {0,1}.

SSD : Similarly Fy second-order stochastically dominates (SSD) Fj in stage
t € T if and only if we can find a P s.t. Wy > Pth]C where W; and Wtk
are vectors with dimension A; the height of the scenario tree in stage ¢
and P, is a permutation (matrix) whose rows and columns sum all to 1
and whose generic elements py ;; € [0,1]. We have in this case a convex
combination of possible states.

The above matrix permutations can enforce first and second order SD
through appropriate constraints. Our interest is on the assessment of a SSD
constraint on a complex long-term financial planning problem: under any ran-
dom scenario w the wealth distribution induced by the solution of the opti-
mization problem is compared with that associated with W} (w), k = 1,2, 3,
at different stages over the decision horizon.
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More specifically, we analyse in the case-study the dependence of the op-
timal asset-liability strategy on the introduction of SSD constraints at the
horizon and then at the real-estate target time: under either cases we also
evaluate (ex-post the) FSD under alternative assumptions on the decision
maker risk aversion.

2 Households asset-liability management model

We introuce a discrete time households’ ALM problem, in which, given a se-
quence of family goals and current living standard, an optimal investment
policy must be determined: the asset universe includes mutual funds, life con-
tracts, pension funds and a money account. Relevant practical and operational
standards in the European market are considered as well as actual tax and
pension conversion coefficients. Concerning the retirement income generation,
the focus is primarily on alternative pension schemes offered now-a-days by
private institutions and typically complementary to public Tier I welfare ser-
vices. The optimal problem is formulated as an expected shortfall minimization
with respect to the sequence of goals Rockafellar and Uryasev (2002) Consigli
(2007) (spiegare le referenze).

We rely on an event tree problem formulation Dempster (1988); Birge
and Louveaux (2007); Consigli and Dempster (1998); Dupacova et al. (2000)
(spiegare le referenze) with a planning horizon T specified as a discrete
set of decision stages. A reference period 6, prior to time 0 is introduced in
the model to define holding returns to be evaluated at time 0. In addition
we define a time period 7,7 € T (non chiara la nuova definizione di
tau tilde) beyond T for cash flows generated during the retirement period.
Consistently with the stochastic programming formulation, random dynamics
are modeled through tree processes with non-recombining sample paths in
an appropriate probability space (£2, F,P) Dupacova et al. (2000); Consigli
et al. (2012a) (spiegare la referenza). Nodes along the tree, for ¢t € T, are
denoted by n € N; and for t = 0 the root node is labeled n = 0. The root
node is associated with the partition Ay = {£2,0} corresponding to the entire
probability space. Leaf nodes n € Np correspond one-to-one to the atoms
w € £2. For t > 0 every n € N; has a unique ancestor n— and for ¢ < T' a non-
empty set of children nodes n+. We denote with N, the number of nodes or
height of the tree in stage ¢t and with ¢,, the time period associated with node
n: t, —t,_ will then denote the time length between node n— and node n. The
set of all predecessors of node n: n—,n — —,..,0 is denoted by P,,. We define
the probability distribution P on the leaf nodes of the scenario tree so that
ZnENT pn = 1. A scenario is a path from the root to a leaf node and represents
a joint realization of the random variables along the path to the planning
horizon. We shall denote by S = Np the number of scenarios or sample paths
from the root node to the leafs. Holding, buying and selling decisions on the
investment portfolio and borrowing strategies define the control variables of
the problem. The term investment value will be adopted when appropriate
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for investment net-asset-value or (NAV). We indicate with Z; the value of the
position in asset i at ¢ = 0, before any rebalancing; x; j, denotes the value
in node n of holdings in asset ¢ purchased in node h; " , the value of asset

PR
i bought in node n; x;, ,, is the value of asset ¢ sold in node n which was
purchased in node h (queste quantita’ erano gia’ state definite a meta’
di pagina 6, c’e¢’ un po’ di ridondanza). Accordingly, sales at the root
node on positions previously held are denoted by z; _ ,: these are the values
of asset 7 sold in the root node 0 which was purchased at time 7. Three asset
classes A;j, Ay and Aj are considered for mutual funds (MF), pension funds

(PF) and life annuities (LA), respectively.

Liabilities are denoted by y,, the debt in node n, with y" to denote a
liability issued in node n and y,, a liability reduction in node n (queste
quantita’ erano gia’ state definite a meta’ di pagina 6, c’e’ un po’
di ridondanza). The introduction of the investment nodes h for holding or
selling decisions is motivated by the dependence of capital gains and penalties
on holding periods. By summing over h € P,, for n € N, we derive the
value x; , of the investment in asset ¢ in node n: z;, = Zhe??” Zihn- The
overall portfolio value in node n is X, =}, A, UAyUAs Tin- Surplus or deficit
balances on the cash account are denoted respectively by 2} and z; .

An extended set of random coefficients is required to model the assets
payoff. NAV returns of asset ¢ in node n are denoted by r;,. We consider a
short interest rate b,, and a 10-year long rate [,, in each node n of the scenario
tree, while 7,, will denote the inflation rate in node n. QJ{ /= define the interest
rates on positive (+) and negative (-) cash positions in node n. Specific asset-
class coefficients are: a; ' (il doppio due-punti sta un po’ male) the
unit value of life annuity ¢ in node n which was bought in node h; ¢; p, »: the
unit capital gain in node n on asset ¢ which was bought in node h net of any
penalty. We indicate explicitly with p; 5, the percentage penalty on asset ¢
in node n that was purchased in h (non mi e’ chiaro cosa rappresenti
questa penalty).

Each household is characterized by a financial wealth process W,, in node
n, n € N; and t € T, which from an initial state Wy will evolve according
to cumulative investment returns, the individual’s income, inflation-adjusted
living costs, intermediate consumption and investment targets Consigli et al.
(2011) (spiegare la referenza). We denote by C,, the family living costs,
by I, the family income in nominal terms and by WT{’" the investment and
retirement goals, respectively, in node n (queste quantita’ erano gia’ state
definite a inizio di pagina 6, c’e’ un po’ di ridondanza).

Variable life annuities, ¢ € Ay (le life annuities sono state definite a
inizio pagina come Aj3) carry a complex payoff function which is determined
by a constant annuity rate and a random annuity evolution Consigli et al.
(2012b) (spiegare la referenza). In the ALM model, we denote with A; p,
the value paid by the annuity in node n after a holding period t,, — t5. The
annuity payment is determined by the lump-sum investment x;"n in node n, an

annuity conversion coefficient and the variable unit annuity coefficient a; 4.n
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in each descending node n € n+ Consigli et al. (2012a); Konicz et al. (2015)
(spiegare la referenza).

2.1 Model instance

We formulate a stochastic linear program based on a convex combination be-
tween a maximum expected wealth and a shortfall minimization problem with
respect to the targets under an extended set of constraints. A problem instance
is specified by introducing alternative benchmark policies for £ = 1,2,3 with
associated SSD relationships and cash balances. As A varies in the objective
function, we derive different convex combinations between the expected wealth
and the drawdown (Da’ errore, come si scrive?) measure. We may assume
that a relatively high A, close to 1, would characterise an investor with a low
tolerance for targets under-achievement.

TEX Py n, NEP2

max (1= NEz, [Wa] =AY Ex, [Wg—wn|wn<ﬁ/’g;ne/\@j} (6)
J

s.t for all n € My, t € T almost surely:

W, = Z Ty (L+rin) + Enllpnens, + 20 + Z W}{n — Un (7)
i€ A heP,
Wn 2 Z p2,n,ﬁWf]f (8)
ﬁeNi
1= ponn 9)
’ﬁENt
zio =& +afy— a1+ pir0) t=0, VieA (10)
Lihn = Tihn— (]- + Ti,n) - Ai,h,n - xi_,h,n Vi € -Aa h e Pﬂ (11)
Tin = Jj:—n + Z Ti,h,n Vi € .A (12)
heP,
z0:2++22x;ﬂo—2x% t=0 (13)
i€AT<0 icA
tn=Ty = Cntzl (Ldren )=z, (Itrn )+ Y Y Ainn(l4)
i€ Az heP,
DD Tann — D T~ Ynbn =y — WL
i€AhEP, i€A !
LiXy <Y wipn <UiX, Vie A (15)
hep’ll

0< Yn < ’}/W,{ (16)
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The above problem statement (6) to (16) follows the model rationale al-
ready introduced in Consigli et al. (2011): what is new in the present formu-
lation comes from the specification of the SSD constraints and the benchmark
wealths in (8) with respect to one among (3), (4), and (5). According to (9)
and (9) (c’e¢’ due volte la stessa referenza), P, is a double stochastic
matrix whose dimension depends on the stage t and the height of the sce-
nario tree at that stage. We denote with py, 5 the generic element of the
permutation matrix P, associating W, with W}f, where 0 < p2,n < 1 and
Zne/\/,, Dann = ZﬁeNt P2.n,n = 1 (io sostituirei direttamente queste nel
modello al posto della (9)).

Depending on the stage ¢, n € N; may be very large: constraint (8) requires
indeed the definition of a square matrix P whose generic elements ps ,, 5 are
decision variables having cardinality equal to the square of the number of nodes
at the SSD stage t, i.e. N2, while the number of additional linear constraints is
3N; + NZ. For instance, in a case study with 512 scenarios, to impose the SSD
condition on the last stage implies the definitions of 262 144 variables and of
263 680 linear constraints. SSD feasibility on several stages and for increasing
number of scenarios, thus, has relevant computational implications due to the
dimension of the resulting stochastic program.

Ene/\ft:wn<{7vn pn(Wn—Wn)
nEN: Wy <Wp, Pn

with p, to denote the probability of the scenario passing through n € M.
The terminal wealth W,, with n € My will include the terminal portfolio, the
end-effect E,, and cash surpluses minus the liability y,,. For t < T,n € N; the
same equation for the financial wealth applies with however99 FE,, = 0 (non
e’ chiaro il ”with however99”).

At the horizon both investments in variable annuities and pension funds
will generate cash-flows beyond the decision horizon. A discrepancy may then
arise between the terminal NAV of pension funds’ and annuities’ and the value
of their discounted cash-flows. As proposed already in Consigli et al. (2012b)
such difference is captured by the end effect E,, (ma non abbiamo detto a
termine della sezione precedente che E_n = 07). At each leaf node n,
for given 10 year interest rates l,,, we compute the discount factors e~ (7=T)
for payments to be received over T. To take such adjustment into account we
consider the following end effect for cash-flows beyond the horizon:

The conditional expectation in (6) is defined as

)

En

i€ A1UA3 icA1UA3

Z Tin Z Ci iz e T Z Tin
FeT
= Z zi,nfi,n,z (17)

i€ A1UA3

(perche’ A; non c’e’? attenzione che la life annuity e’ A3) In equa-
tion (17) for given terminal portfolio ), ¥inn (questa sommatoria su
h non c’e’ nella (17)) we define a constant pension payment over the re-
tirement period by multiplying such value for the conversion coefficients c; .:
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these are the conversion rates appropriate for positions held in asset ¢ by
an individual in pension class z. The ZiEA1UA3 TinCi . (perche’ A; non
c’e’? attenzione che la life annuity e’ Aj3) represents the constant annu-
ity associated with the retirement vehicle ¢ held by individual z on the pen-
sion portfolio in the leaf node n. The end-effect coefficients f; ,, . are defined
as (Z%d— cmwi’;)ze_l"(%_T) - 1): they express the difference at the horizon
(here coinciding with the age of retirement) between the discounted value of
all future pension payments and the current portfolio NAV.

The set of constraints (10) and (12) define the inventory balance equa-
tions. The first stage decision, or root-node decision also referred to as the
implementable decision of the MSP problem, is the only one under complete
uncertainty regarding the markets’ future evolution. We consider an initial in-
vestment z; (gia’ detto a fine pag 9) in each asset ¢ € Ay, k = 1,2, 3 prior
to rebalancing. Depending on the holding period 7 selling decisions on such
portfolio may generate a capital gain ¢; - . ;0 defines the NAV of portfolio
holdings in asset ¢ after rebalancing.

For i € A, (attenzione che la life annuity e’ A3 e questa cosa
della complex payoff era gia’ stata detta a meta’ di pag 10) annuities
carry a complex payoff function determined by a constant annuity rate and a
random annuity evolution. The annuity payment is determined by a lump-sum
investment x;”n in node n, by the conversion coefficient and by the annuity
coefficient a; 5, in each descending node. The value A, , paid by a VLA
(acronimo non definito) bought in node h and held in node n, as explained
in appendix, will depend on the initial investment ac:h and the revaluation
path over the t¢,, — t;, period.

The cash balance constraints (15) allow the tracking of all cash inflows
and outflows at each stage. At time 0 we assume a cash surplus ] before
rebalancing which is then affected by investment and selling decisions from
the input portfolio at n = 0. On subsequent stages for n € N, t > 0 we
consider cash flows generated in each node by the individual income I,,, the
consumption C,,, interest inflows on positive cash positions (rate ¢ net of the
tax on interest payments ¢#; = 27%), negative interests (rate ¢, ) and annuities
A; hn- Rebalancing decisions Tipn and x;" also generate cash flows as well

i,n
as liability increases and reductions. The real estate target is denoted by W,fn
to express the nodal value in n of a target acquired in node h.

Finally, policy and maximum borrowing constraints (15) and (16) are typ-
ically problem dependent and include lower and upper bounds on investment
decisions, respectively L; and U;, and a maximum liability, here defined in
relative terms as function of the target wealth. At the horizon, for n € N, to
avoid anticipative strategies, no decisions are allowed: :v;Ln =%p, =0 and
Yn =Yn =0

The minimization of the objective value in equation (6) under the con-
straints (10) to (15) (mancano vincoli (7) (8) (9) e (16)) is the output
of the solution algorithm. The above mathematical instance is first expressed
in algebraic form (GAMS 23.2), then the inclusion of the scenario coefficients
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for each equation will lead to the definition of a large scale stochastic linear
program in MPS format solved with a commercial solver (CPLEX 12.1) Con-
sigli and Dempster (1998); Consigli et al. (2011) (e.g. Cplex LP) (spiegare
referenze). We summarise next the elements of the adopted stochastic model
for portfolio returns and interest rates and the associated tree generation pro-
cedure.

2.2 Scenario generation and stochastic dominance

(nel titolo c’e’ stochastic dominance ma poi non se ne parla, si
potrebbe invece mettere benchmark definitions)

Problem (6) to (15) requires the specification of the tree process of asset
returns, liability costs, money market account and benchmark wealths. We
follow the stochastic model presented in Consigli et al. (2011): specifically the
short- and long-term interest rates and the inflation process are modeled as
mean-reverting correlated Cox-Ingersol-Ross (CIR) processes Cox et al. (1985).

In (18) for j = 1,2,3 we assume for the short rate r,, = w’, the long
rate [,, = w? and inflation 7, = w3. The coefficients a’,w’* and ¢/ denote
respectively the mean reversion coefficient, the long term equilibrium values
and the standard deviations for each process, whereas t,, —t,,_ defines the time
increment between the nodes n— and n. Correlation is introduced directly on
the realizations e], of three standard normal variables via the Choleski elements
cjr of the correlation matrix. Given the initial states w?(0) = w} for t € T,
n € N; we have:

Wl =w (W —w! Yt =t )+ 07w\t — e Z ¢jren (18)

r=1,2,3

The coefficients of the CIR processes are estimated through the method
of moments. In Table 1 we report the estimated model coefficients adopted in
the case study.

mean long term CIR long term Choleski matrix
reversion rate volatility
short rate 0,103 1,90% 4,57% 1
long rate 0,158 1,33% 4,28% 0,888776  0,458355
inflation 0,110 1,70% 4,33% 0,667990  0,058399  0,741794

Table 1: Interest rate model and inflation rate coefficients, monthly data
1/1/2000-31/12/2016

These processes will determine the asset returns according to a hierarchi-
cal structure in which fixed income and money market returns are derived
according to a duration-convexity approximation and equity returns, require
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in addition the specification of a risk premium process. For the detailed model
instance, we refer to Consigli et al. (2011).

For given initial conditions and input tree structure, the return coefficients
;. along the tree are derived through Monte Carlo (MC) simulations linking
each node to the descending nodes and spanning all the event tree. Scenario
generation will here below be extended to infer the benchmark wealth distri-
butions, an input to the optimization problem. The procedure can be sketched
as follows: (i A\ nell’algoritmo NON sono definiti. Che differenza c’e’
tra DERIVE e COMPUTE? Ho eliminato W; che NON e’ calcolato
dall’algoritmo e sostituito con T per coerenza con la Fig. 1)

Return scenario generation algorithm
given all starting conditions and coefficients:
72,0510, ™0, Xo—, DI, CI and Uj,A‘g),ﬁ(J), {,5%,6%, wij

for teT
for ne N

generate CIR scenarios r; n,ln, T

for j=1,2
generate the bond indices Bj,

for j =3
derive the equity premium J;,
compute the random drift p;, =7, ., + crj)\%

generate the equity value B},
end for j
compute 75 =3, w;;r(B)
for k=1,2,3
determine the benchmark processes: W}
end for k
end forn
end fort
for k=1,2,3
derive the benchmarks’ distribution: Fj(T)
end for k

For every investment opportunity ¢ € Ag,k = 1,2,3 the algorithm will
generate the set of nodal returns needed by the ALM model specification.
(non ho trovato dove si spiega il passaggio da B,, a Aj) The short rate
75,n Provides also a basis for the mortgage rate and the interest rates on the
cash account z;! /~. Additional random coefficients in the model are defined by
the unit annuity a; ., in node n of asset ¢ that was purchased in node h € P,
and by the end-effect coefficients f; ,, . introduced in eq. (17).

Once the tree processes for the asset returns, the risk-free money market
account and the inflation have been generated, it is possible to derive the tree
processes for the benchmark returns for £ = 1,2, 3. Fig. 1 shows the associated
wealth distributions at the end of the planning horizon.

A 1/n (modificherei con 1/N) strategy, by enforcing a stage-by-stage
rebalancing to preserve equal weights across all assets, will surely limit the
portfolio value dispersion around the mean, but it won’t necessarily avoid
negative returns as shown in Fig. 1. The other benchmarks will generate only
positive returns: the inflation-adjusted wealth dynamics is the one that over
the 20 years is expected to yield the higher returns. For a given input scenario
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Fig. 1: Benchmark wealths distributions at the end of the planning horizon. k=1 for 1/N
pflio, k=2 for risk-free pflio, k=3 for inflation-adjusted pflio.
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tree, we will consider in the case study an extended set of evidences related to
different benchmark strategies and optimization problems’ specifications.

3 Case-study: goal-based investing and stochastic dominance

We consider a 512 scenario tree spanning a 20 year horizon with the following
branching structure 42 — 25. The results consider a first stage decision based
on a scenario tree spanning the period from January 1, 2017 to 31-Dec-2036.

We refer to Consigli et al. (2015) and references therein for a summary
on the steps from the stochastic program formulation to its solution and the
associated output analysis. In this project we rely on a Matlab 7.4 and GAMS
23.2 interface for scenario generation, alegbraic model formulation and MPS
file generation for a large scale deterministic equivalent problem Birge and
Louveaux (2007) (spiegare referenza).

The MPS file input to CPLEX dual solver due to the high number of sce-
narios is very large-scale with 155549 rows and 461 601 columns and 1369455
non-zero coefficients: the generation of the MPS file and the technology ma-
trix reduction before solution requires on a Toshiba labtop with Intel(Core)
processor of 2.60GHz and 12 GB of RAM roughly 65 minutes of CPU time
while the solution algorithm took roughly 3 minutes of CPU time to solve one
problem instance. In this case study we analyse the impact of the SSD con-
straints on the optimal asset-liability strategy for different A = {0.25,0.5,0.75}
as the benchmark portfolio changes from k = 1,2,3. In what follows one
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problem instance, for brevity, will be referred to as L(\, k,7) to span: (i) dif-
ferent values of A in the objective function (6), (ii) the benchmark policies
adopted for SSD feasibility and (iii) the decision stage 7 in which the SSD
constraint is imposed: we consider below two cases 7 = 10,20 years where
the real estate and retirement targets are set. We denote with F k(W;f,T) and
Fw (W) (la notazione non mi sembra coerente. Per la ricchezza
cumulata benchmark io userei solo F(t), per la ricchezza cumu-
lata della ricchezza ottima userei Fy (A k,t) come quella che usi-
amo nelle figure 5 e 6) the associated benchmark and optimal wealth
cumulative distributions. On a given support their difference is denoted by
0% - (w) = Fw (Wxr(w)) = F(WY (w)) = P(W,r < w) —=P(WY, < w).
We consider the following evidences in this case study:

— The overall impact of SSD constraints on the problem solution and the
individuals wealth dynamics;

— The sensitivity of the optimal asset-liability strategy to SSD constraints;

— The implication on first order SD (modificherei con FSD) of SSD con-
straints;

— The trade-off between intermediate and terminal goals under SSD con-
straints;

The following goals will determine the optimal financial plan:

— Investment goals: a 150 000 Eur real estate investment in 10 years time. This
will imply a leverage and the selling of financial investments, according to
a share to be determined by the optimiser and it will lead to an increase
of the family wealth. In (16) we allow with v = 0.7 a maximum liability
worth 70% the current real estate value.

— Retirement goal: the family wishes to preserve the living standard during
retirement and to this aim a projected final goal at the horizon is set
in nominal terms to 750000 Eur: such value will generate a stochastic
inflation-adjusted pension target at the horizon, from which an annual
pension of 750000 x 0.04 = 30000 would be generated in nominal terms
at current pension conversion coefficient: such annuity will however worth
more when received under a no-inflation very low interest rate scenario,
while it would be discouraged under a high interest rate scenario. To take
the issue into account as mentioned above we include at the horizon an
adjustment.

Our representative decision maker and family member faces annual costs
currently around 30000 Euros and relies on an income of 50000 Euros: for
precautionary reasons a lower bound of 15000 Euros is set by the decision
maker to be held in cash. Finally at ¢ = 0 the family may rely on an initial
financial portfolio worth 100000 Euros. Over time, consumption costs, goals
and income will grow according to the prevailing inflation rates.
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Table 2: Stochastic program solutions £(A, k, 7): scenario proportions, min, average and max
positive exceedances of the wealth distributions relative to the benchmark distributions,
scenario-wise, in Euros.

T =20 T =10

w.rI.t. wt w2 w3 wt w2 w3
W(0,25;1) 100.0% 99.6% 91.4% 100.0% 100.0% 94.5%
min 0.00 -1.66 -234.74 | 5157.976 0 -107.838
mean 89233.28 72248.93 46085.02 | 55760.18 42568.87 33645.857
max 545066.26  459566.40 369354.67 | 134508.6 156095  140231.18
W(0,50;1) 100.0% 99.2% 87.3% 100.0% 100.0% 96.1%
min 0 -3.42 -371.937 12636.21 0 -42.836
mean 65930.75 50457.97  26662.5645 | 54688.01 41649.85  32379.107
max 279779.2 361226.6  307328.419 134601.6 155357  140288.12
W(0,75;1) 100.0% 99.0% 85.5% 100.0% 100.0% 96.1%
min 0 -8.882 -352.168 | 12636.21 0 -69.588
mean 65330.35 47396.75  24857.1969 | 54557.83 41645.8  32373.407
max 279979.4 361226.6  307750.535 | 138055.5 157297.9  140231.84

3.1 Benchmark strategies, SSD feasibility and optimal wealth

Consider the two cases of SSD constraints set at 7 = 20 and 7 = 10 years and
the corresponding wealth distributions, those associated with: (i) the bench-
mark strategies and the optimal AL (abbiamo definito AL o solo ALM?)
strategies (ii) under SSD constraints and (iii) without SSD constraints. In
Tables 2 and 3 we present a set of evidences associated with the above three
distributions as A = 0.25,0.5,0.75. We check the impact of the SSD constraints
and the adopted benchmark strategies on the terminal and intermediate wealth
distributions as the family objectives penalise increasingly the shortfall with
respect to the terminal retirement target.

Consider first Table 2: we report evidences on the wealth distribution gen-
erated at t = 20 and ¢ = 10 by the optimal policies as A increases, when the
SSD constraints are associated with the benchmark wealths W*, k = 1,2,3:
the percentage values represent the proportion of scenarios in which W (\) ex-
ceeds W, immediately below the minimal, average and maximal differences
between the two quantities scenario-wise. At the end of the planning horizons
the values W(A) (qui manca 1’1 nella parentesi) are computed before re-
tirement and can thus be compared with the retirement goals. The flag 1 in
W (A, 1) refers to active SSD constraints (perche’ invece di usare 1’1 non
inseriamo direttamente il benchmark di riferimento con cui stata
calcolata e mettiamo il ”’noSSD” se invece non c’e’ vincolo attivo?),
needed in Table 3. Every pair W(\,1) — W identifies a problem solution
with active SSD constraints on the associated benchmark (non mi e’ chiaro
che benchmark e’ considerato quando I’'SSD e’ attivo. Cioe’, W (A, 1)
specifica il A e che I’SSD e’ attivo ma non rispetto a quale bench-
mark. Dato che nei confronti dei benchmark W? e W?3 ci sono valori
negativi significa che stata utilizzata la ricchezza ottima ottenuta
avendo come benchmark W1...).
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The table can be read columnwise taking into account the first benchmark
distribution for W1 generated by the 1/n (modificherei con 1/N) strategy
and then the distributions of W? and W? generated by the money market
and the inflation adjusted strategies, first at the end of the investment horizon
and then at the intermediate stage. The benchmark policy k£ = 1 is liable to
generate at the horizon negative wealth values, depending on the introduced
market scenarios. On the other hand, for £ = 2,3 all wealth scenarios are
bounded to be positive and above the initial wealth level of the family.

For k = 1,2 we see that the associated SSD-feasible strategy do actually
lead, scenario-wise, to an almost sure positive excess of the family wealth rel-
ative to the benchmark wealths at both the 20 and 10 year horizons. As A
increases from 0.25 to 0.75 we also see that, according to the min, mean and
maz statistics, the associated wealth distributions shift slightly to the left: this
is true in particular for the terminal wealth distributions while the interme-
diate wealth distributions are relatively insensitive to the A’s. According to
the fourth and seventh columns, with SSD constraints on W3 at 7 = 20 and
10, SSD-feasibility still leads on average to positive 03 (), 7) and with very
low negative exceedances when they occur. The key evidence is that W3(w)
generates the most demanding benchmark policy and when A = 0,75 at the
horizon the family is left on average with a low income and in the best case
scenario with less than half the retirement target. Similar evidences can be
taken at ¢ = 10 when the SSD constraints are set at that stage.

To further evaluate the impact of the SSD constraints on the wealth dis-
tributions we consider in Table 3 the evidences collected when solving the
stochastic program (6)-(16) with and without SSD constraints: in the first
case we took k = 3.

We denote with W (A, 1) and W (A, 0) wealth values associated with optimal
solutions with and without SSD constraints at the given stages, respectively.
The table can be read again column-wise first on the terminal horizon, 7 = 20,
and then at the 10 year horizon. Every pair W (A, 1)-W (A, 0) is generated by
the solution of two stochastic programs: we present the share of scenarios in
which W(A,1) > W(A,0) and immediately below the minimum, average and
maximum excesses.

When 7 = 20, we see that as A increases, with or without stochastic dom-
inance constraints the wealth distributions shift to the left. When A = 0.25
and 0.50 the introduction of SSD constraints does not penalise the wealth
distribution while when A = 0.75 the SSD constraints lead to a left shift
which generates mostly negative differences. At the intermediate stage, how-
ever, when removing the SSD constraints, independently of A, the intermediate
wealth distributions shift significantly to the right with negative mean values
on all problems comparisons. Notice that of specific rilevance are on Table 3
the figures on the sub-tables diagonals, for same 7 and A with and without
SSD. The other figures are left for further evidence. According to the figures,
we can summarise that the presence of SSD constraints generates a significant
penalty on the family wealth when A = 0.75 and a less relevant one when
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Table 3: Comparison of wealth scenarios SSD constraints, for k£ = 3, and without. Percent-
ages of positive exceedances of W (A, 1) over W(),0), at 7 = 20 and 10 and min, mean and
max differences in Euros.

T=20 7=10

W(0,250)  W(0,50)  W(0,750) | W(0,25;0) W(0,50) W(0,75;0)
W(0,25;1) 100.0% 97.7% 25.8% 16.4% 16.4% 16.4%
min 56823.02 -25552.43 -232268.54 -33830.02  -29766.33 -33830.02
mean 87538.00 21558.44 -1695.28 -6482.392  -5410.222 -6482.257
max 312797.72  156439.83 127429.88 49612.69 51600.91 49612.691
W(0,50;1) 100.0% 37.9% 25.8% 16.4% 16.4% 16.4%
min 43483.38 -92650.87  -294294.795 -44875.3  -29880.39 -44875.3
mean 68115.55 2135.986  -21117.7368 -7749.141 -6676.971 -7749.006
max 259156.8 156439.8 127429.878 49612.69 51600.91 49612.691
W(0,75;1) 100.0% 37.9% 25.8% 16.4% 17.2% 16.4%
min 39925.53 -89825.64  -293872.679 -43892.77  -34937.41 -43892.77
mean 66310.18 330.6182  -22923.1044 -7754.842  -6682.672 -7754.707
max 259578.7 156439.8 127429.878 49612.69 51600.91 49612.691

A = 0.50 leading to a positive shortfall with respect to the terminal retirement
goal.

3.2 Optimal asset-liability strategy under SSD constraints

We report next the collected evidences in terms of optimal asset-liability strat-
egy associated with the solution of programs L(\, k, 7). We study the impact
on the root node decision and the liability decision at the intermediate stage
of the SSD constraints initially at 7 = 20 years and then receding to 7 = 10.
The evidences are again compared also with the optimal strategy that would
have been generated without SSD constraints. Notice that the liability is lim-
ited to the mortgage that would be generated by the real estate target. Under
the different benchmark strategies we check whether the root node decision is
affected or not by SSD constraints far down the planning horizon and specifi-
cally in correspondence with the targets’ stages, (qui ¢’e’ una virgola, non
so se volevi aggiungere altro)

Fig. 2 shows on the left that SSD constraints set at stage 6, after 10 years,
do actually influence the root node investment allocation but negligibly the
mortgage decision, why it is not so when set at the end of the planning horizon:
the optimal root node portfolio remains the same under any benchmark while
in this case a moderate impact is on the liability. Interestingly the total removal
of SSD constraints does generate the same optimal allocation as the one with
SSD on benchmark strategy 1. We see below in Fig. 3 and Fig. 4 that as A
increases when 7 = 10 the very same sensitivity of the here and now decision
to SSD constraints on the benchmark policies is recorded while the borrowing
decision changes quite dramatically and it reaches its upper bound on all
scenarios. Interestingly however when 7 = 20 in both figures below the here
and now asset allocation is sensitive to the SSD constraints on benchmark 3
and the stage 6 borrowing decision is in this case scenario dependent.
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Fig. 2: £(0,25,k, 7): H&N allocations and liability strategy. Top graphs are the H&N allo-
cations where vertical-line represents the bank account (il), horizontal-line the unit-linked
monetary (i8), dots unit-linked (i9) and obliques-line the unit link bond government (i6).
Bottom plots show the stage 6-year 10 borrowing strategy in a debt boxplot: the mini-
mum value, the first, second and third quartiles and the maximum value. Left the optimal
decisions when SSD constraints are at ¢ = 10, right at ¢t = 20.
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When A = 0.75 similar remarks on the optimal root node asset allocation
and borrowing strategy apply.

We may summarise the collected evidences on the root node asset allocation
and mortage decisions by saying that their sensitivity to changing A is limited
while they are affected by SSD constraints even when set at the end of the
planning horizon as the benchmark policy becomes more demanding, as in the
case of an inflation-adjusted wealth.

(Qui secondo me il commento da fare e’ che i vincoli SSD risul-
tano chiaramente pi stringenti quando il vincolo e’ allo stadio 6,
ma talvolta anche quando e’ allo stadio 8. In ogni caso, quando
la dominanza si fa’ sentire, questo si traduce in una maggiore di-
versificazione e questa conseguenza e’ stata evidenziata in tutti i
lavori che hanno a che fare con la SD: dominanza stringente = mag-
giore diversificazione. Inoltre, e’ per me molto interessante che la
dominanza induca di fatto una posizione diversificata ma anche pi
conservativa (per tenere sotto controllo la coda di sx) e questo fa si
che l’evoluzione della ricchezza sia pi bilanciata e induca spesso una
minore esposizione alle liabilities: perdo meno = ho piu’ ricchezza
= chiedo meno mutuo.)
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Fig. 3: £(0,50, k,7): H&N allocations and liability strategy. Top graphs are the H&N allo-
cations where vertical-line represents the bank account (il), horizontal-line the unit-linked
monetary (i8), dots unit-linked (i9) and obliques-line the unit link bond government (i6).
Bottom plots show the stage 6-year 10 borrowing strategy in a debt boxplot: the mini-
mum value, the first, second and third quartiles and the maximum value. Left the optimal
decisions when SSD constraints are at ¢ = 10, right at ¢t = 20.
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3.3 Second and first order stochastic dominance

Following up from Tables 2 and 3, we consider next more explicitly the im-
plications of SSD constraints on first- and second-order SD relationships at
different stages: we focus again on the target stages, 7 = 10,20. We address
the following questions:

— Depending on the benchmark policy, £ = 1,2, 3 and the risk coefficient A,
when imposing an SSD constraint on stage ¢t would that influence the SD
relationships in prior or subsequent stages?

— Furthermore: under which conditions would that also imply FSD with re-
spect to the benchmark policies?

From above, the answers are to a large extent benchmark-policy-dependent
and we see that in the given context, very often SSD carries also the FSD prop-
erty, particularly when the benchmark wealth distribution is not particularly
challenging, as for k£ = 1. We consider on the left the evidences collected when
setting the SSD constrains on stage 6, at the 10 year horizon. On the right
the stage 8, year 20 case study. We see from both tables that SSD constraints
influence if any SD relations at current and previous stages and that, on the
same scenario set, depending on the benchmark policy very often SSD also
implies FSD.

We summarise the evidences by considering each benchmark policy at the
time:
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Fig. 4: £(0,75,k,7): H&N allocations and liability strategy. Top graphs are the H&N allo-
cations where vertical-line represents the bank account (il), horizontal-line the unit-linked
monetary (i8), dots unit-linked (i9) and obliques-line the unit link bond government (i6).
Bottom plots show the stage 6-year 10 borrowing strategy in a debt boxplot: the mini-
mum value, the first, second and third quartiles and the maximum value. Left the optimal
decisions when SSD constraints are at ¢ = 10, right at ¢t = 20.
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k =1 For any A SSD with respect to the 1/N strategy implies FSD at the same
stage when 7 = 10 and jointly SSD and FSD in previous stages when
T = 20;

k =2 Under any A SSD implies FSD on the same stage when 7 = 10 while it is
not necessarily so (sostituirei con ”it’s not the case”) when 7 = 20
even if very limited FSD infeasibilities. On the other hand when set at the
terminal stage SSD feasibility holds only at that stage and not before, nor
does FSD.

k = 3 Finally in this case SSD feasibility implies only in one case FSD feasibility
at the same stage, which is when A = 0,75 while it doesn’t have any im-
plication neither on SSD nor on FSD conditions in previous or subsequent
stages when A # 0,75 or 7 = 20 (attenzione! io non vedo questo caso,
a me sembra che con k=3 non ci sia mai FSD).

To summarise, when the benchmark policy is challenging then SSD feasi-
bility is problem specific and likely to affect the optimal asset-liability strategy
since the first stage and throughout the planning horizon when set either at
stage 6 or 8. It is novel and interesting the impact of SSD constraints on the
optimal asset-liability strategy as partially witnessed by the Fig. 3 and 3 in
particular. We complete this case-study by analysing the relationship between
the SSD constraints and the real estate and retirement goals: a-priori we may
expect the constraint when particularly strict, by reducing the feasibility re-
gion to yield a sufficient wealth to achieve the real estate target with minimal
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Table 4: SD relations when imposing the SSD con- Table 5: SD relations when imposing the SSD con-

straint on stage 6 straint on stage 8
Lambda Benchmark 6 stage 8 stage Lambda Benchmark 6 stage 8 stage
SSD noSSD SSD SSD
/N FSD  noFSD /N FSD  FSD
. SSD noSSD . noSSD  SSD
0.25 Risk-free FSD 1oFSD 0.25 Risk-free noFSD  noFSD
Inflati SSD noSSD Inflati noSSD  SSD
niation noFSD  noFSD nHiation noFSD  noFSD
SSD noSSD SSD SSD
1/N FSD noFSD /N FSD FSD
. SSD noSSD . noSSD  SSD
0.50 Risk-free FSD noFSD 0.50 Risk-free noFSD  noFSD
Inflati SSD noSSD Inflati noSSD  SSD
niiation noFSD  noFSD ntation noFSD  noFSD
SSD noSSD SSD SSD
/N FSD noFSD /N FSD FSD
. SSD noSSD . noSSD  SSD
0.75 Risk-free FSD noFSD 0.75 Risk-free noFSD  noFSD
Inflati SSD noSSD Inflati noSSD  SSD
MHation 1oFSD  noFSD pHation - oFSD  noFSD

borrowing and in so doing facilitate the achievemant of a sufficient retirement
income.

(bene il commento. Io sottolinerei che ’achievement del FSD
non €’ in generale garantito se non nei casi in cui anche la stessa
SSD e’ relativamente da ottenere. Inoltre sottolinerei che quando
la SSD e’ imposta sullo stadio 6 non si ottiene MAI sullo stadio 8,
a sottolineare che la funzione obiettivo tende in una direzione che
e’ in qualche modo contrastante con la SD e quindi non appena il
portafoglio e’ ”libero” dalla SD si sposta dal benchmark per tendere
all’ottimizzazione dell’obj.)

3.4 Goals trade-off analysis

Individual ALM problems have been proposed by several authors Mulvey and
Ziemba (1998); Medova et al. (2008); Consigli (2007) with relevant real-world
applications already in the past. In this article we have extended a previ-
ous modeling effort Consigli et al. (2011) to incorporate stochastic dominance
principles in a goal-based model. In this final set of evidences we analyse the
implication of SSD constraints at the final stage specifically on the interme-
diate leverage and the shorfall with respect to the retirement target for the
specific case of £(0.5;3;7): the choice is justified by the SD relationships be-
tween the benchmark strategies as reported in Fig. 77 and the evidence on the
optimal problems solutions as A\ varies.

The real estate and the retirement targets are both revalued in real terms
and thus their scenario evolution is determined by the same scenarios of the
initial portfolio: given the different at ¢ = 0 between the initial portfolio value
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and the real estate target, at t = 10, depending on the optimal portfolio re-
turns the acquisition of the (ambitious) retirement goal may be jeopardised by
the intermedate leverage decision: in Fig. 3 we see that the borrowing decision
varies from a minimum of roughly 90000 to a maximum of 150000 Euros.
We may interpret these amounts as shortfall with respect to the intermedi-
ate target and consider how the introduction of SSD constraints with respect
to benchmark 3 affected the wealth distribution at the end of the planning
horizon, where the retirement goal was set. We display in Fig. 5 the terminal
wealth distributions associated with the optimal solution without SSD con-
straints Fyy (0.50), with SSD constraints Fy,(0.50,3,20) and the benchmark
wealth distribution for the case k = 3: F3(20) (questa notazione e’ ancora
diversa, da omogenizzare). Notice that when removing the SSD constraints
the two goals at the intermediate and terminal stages are not affected and
based on A = 0.50 the decision maker is assumed to seek a maximum expect
wealth together with a penalty on the terminal wealth shortfall with respect
to the target.

Fig. 5: Terminal wealth distributions: benchmark (solid black line) and optimal wealths with
(dashed black line) and without (solid gray line) SSD constraints at T = 20
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Seba vorrei confrontare la distribuzione della ricchezza ottima
con SSD di cui sopra in T=20 con quella che avremmo sempre in
T=20 qualora I’'SSD sia settato sempre su k=infl ma allo stadio 6.
Tra i risultati non sono riuscito a trovarli
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Fig. 6: Terminal wealth distributions: benchmark (solid black line) and optimal wealths with
(dashed black line) and without (solid gray line) SSD constraints at 7' = 10
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(Aggiunta! referenza ”fig:comparisonT10”. Bisogna aggiungere il
relativo commento)

The CDF’s plotted in Fig. 5 show that by imposing the SSD constraint
the lower tail of the wealth distribution shifts to the left but when there is the
possibility to achieve higher terminal wealth the constraints will no longer be
binding and the upper tails of F"’s will be close to each other. Accordingly
the shortfall with respect to the retirement goal across all scenarios will be
reduced by requiring SSD feasibility. In the best case scenario the family will
buy the house and move into retirement with a minimal wealth of around
28 000 euros per year. In the worst case with around 2900 euros per year, far
below the retirement goal but at least positive.

In presence of an SSD constraint at the intermdiate stage, under any sce-
nario the borrowing decision would be maximal (see Fig.3) and the shortfall
with respect to the retirement goal will increase. In a goal-based investment
problem the inclusion of SSD constraints defined with respect to a challenging
distribution helps achieving the final target or in any case limit the dispersion
around that target. Furthermore the SSD constraint preserves its mathemati-
cal rationale even for high values of A in the objective function when increasing
weight is set on targets’ shortfall minimization objective due to the impact on
the lower tail of the generated wealth distribution.
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(anche qui riporterei e sottolinerei lo stesso commento fatto prima,
cioe’ che la dominanza sullo stadio 6 non influisce sulla dominanza
allo stadio 8 e quindi il portafoglio e’ libero. Bene il tuo commento
che sistemare la coda di sinistra non incide eccessivamente sul minor
guadagno nella coda di destra.)

Conclusions

Main focus of this article is an extensive study of the financial and method-
ological implications a simple extension of a canonical goal-based individual
ALM problem to accommodate SSD principles through a set of linear con-
straints Kuosmanen (2004); Kopa et al. (2018): given a set of investment and
retirement goals we have first evaluated the impact of SSD constraints on
the family terminal wealth distribution and then their implications on first
stage investment decisions and asset-liability strategy: interestingly we have
reported that SSD-constrained portfolios will typically lead to higher perfor-
mances with an effective hedge of high losses without in general jeopadising
the portfolio upside. Furthermore even far away SSD constraints may have a
signficant impact on first stage investment allocation and liability policies.

In a practical context that SSD feasibility in presence of a relatively coarse
benchmark policy, such as in the 1/n portfolio case will easily imply FSD, while
as the benchmark return distribution shifts to the right this will no longer be
the case. Such shift will lead however to a reduced shortfall with respect to
end-of-the-horizon retirement goals.

gc: complete after last read! before submission
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