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Abstract We consider a robust inventory problem where products are perishable with a given shelf life
and demands are assumed uncertain and can take any value in a given polytope. Interestingly, considering
uncertain demands leads to part of the production being spoiled, a phenomenon that does not appear
in the deterministic context. Based on a deterministic model we propose a robust model where the
production decisions are first-stage variables and the inventory levels and the spoiled production are
recourse variables that can be adjusted to the demand scenario following a FIFO policy. To handle
the non-anticipativity constraints related to the FIFO policy, we propose a non-linear reformulation for
the robust problem, which is then linearized using classical techniques. We propose a row-and-column
generation algorithm to solve the reformulated model to optimality using a decomposition algorithm.
Computational tests show that the decomposition approach can solve a set of instances representing
different practical situations within reasonable amount of time. Moreover, the robust solutions obtained
ensure low losses of production when the worst-case scenarios are materialized.

Keywords Lot-sizing · Integer programming · Robust optimization · Row-and-column generation
algorithms

1 Introduction

Dealing with uncertainty is very important when solving practical lot-sizing problems wherein produc-
tion decisions need to be taken before the real demands are revealed. This issue is even more important
when products are perishable because significant costs can be originated from lost production due to an
overestimation of demands. Specifically, overestimating the demands increases the holding costs and the
cost for the lost production since, typically, an item that reaches its shelf life will be either lost or sold at
a residual value. Even worse, underestimating the demands leads to costs from supplying demands with
delay which may include poor client satisfaction penalties and contractual costs. To overcome the limi-
tation of these deterministic models, we consider in this paper a robust lot-sizing problem with recourse
where the products have a fixed shelf-life. The demand of each period can be fulfilled by production in
that period, from stock resulting from production in earlier periods within the shelf-life, or backlogged.
The quantities to produce need to be decided in the beginning of the time horizon and the stock, the
backlog and the lost demand are adjusted to the scenario.
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Robust optimization [6] has arisen in the past decades as an efficient model to incorporate demand
uncertainty into the lot-sizing problems. The later assumes demand vectors can take any value in a
given uncertainty set. In that case, different models arise, depending on whether the decision variables
(e.g. production, stock, ...) can be adjusted to past history. One of the simplest models considered in
the literature [8] supposes that productions are fixed before the planning horizon starts, while the stock
variables can be adjusted to the actual value, which is equal to the total production minus the demand
of the scenario. Although the productions are fixed, the stock variables must be modeled through ad-
justable variables, leading to a difficult multi-stage optimization problem. The work of [8] conservatively
approximates the adjustable problem by a static one, yielding an easy optimization problem.

The original conservative approximation from [8] has been improved along two complementary lines
of research. On the one hand, generic heuristic have been proposed, often based on decision rules [5] or
dynamic partitions of the uncertainty sets [7,27]. The quality of these heuristic has then been assessed
by sampling the uncertainty set [7] or using lower bounds based on duality [22] or perfect information
[28]. An alternative line of research has been to solve these problems exactly [3,10,30]. The bottom line
of these exact approaches lies in generating a subset of the elements of the uncertainty set. Then, these
approaches iterate between a relaxed master problem, where the uncertainty set is now replaced by the
finite set generated so far, and adversary separation problems that identify new uncertainty vectors to
consider, using row-and-column generation algorithms. These approaches are typically suited for two-
stage robust optimization with real recourse. This being said, some lot-sizing problems can be seen as
two-stage problems, for instance when all production decisions are taken prior to knowing the demand.
Thus, exact two-stage approaches have also been applied to solve specific lot-sizing problems [1,9], using
specific types of uncertainty sets. We also mention the alternative exact approach proposed by [14], which
can solve exactly certain lot-sizing problems by reformulating the later as static robust optimization
problems, involving exponentially many constraints. We refer to [15,13,29] for comprehensive surveys on
the developments of adjustable robust optimization.

In this paper, we consider an extension of the above lot-sizing problem by considering perishable
products. The latter have a shelf-life that is typically smaller than the time horizon, after which they
must be spilled. The subtlety with perishable products is that they are typically handled through FIFO
policies, which means that oldest products are used first to attend the demand. This is an important
consideration to take into account when deriving an optimization model, which has been analyzed in
several papers (e.g. [20,23]).

While, to the best of our knowledge, the problem considered here has not been studied before, lot-
sizing problems and models considering perishable products have been considered for decades [24]. For
reviews of publications until 2011, see [4,25]. A more recent overview covering the years 2012 to 2015
is given by Janssen et. al. [20]. For overviews on managing perishability in production-distribution and
supply chain planning see [2,26]. Recently, several studied have been conducted on inventory management
of perishable products [11,16–18,21]. Among these references, stochastic models were considered in [16,
17] to handle uncertainty. However, no robust model of lot-sizing with perishable products has been
considered so far, which is the gap this works intends to fill.

Our contributions The purpose of this paper is to provide an exact solution approach to the robust
lot-sizing problem with perishable products, in line with the row-and-column generation algorithm from
[1]. To do so, we first show how the problem can be reformulated without using any production variables.
The resulting model resembles the static model for robust lot-sizing problems used in [1], however in-
volving a non-convexity not present in [1]. Hence, we show how the latter problem can be solved exactly
through a row-and-column generation algorithm, that generates elements of the uncertainty set on the
fly. In particular, the non-convexity is handled using a classical big-M linearization. Our approach is as-
sessed numerically on instances inspired by the scientific literature on robust lot-sizing, using a budgeted
uncertainty set.

Structure of the paper In Section 2 we present the nominal and the robust models, and detail the
impact of the FIFO policy on the models. We present our reformulation in Section 3. Section 4 describes
the general row-column generation solution procedure. The computational experiments are reported in
Section 5. Finally, the concluding remarks are given in Section 6.
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2 Problem Description

2.1 The nominal problem

We are given a finite planning horizon H = {1, . . . , n} together with a holding cost hi, a backlogging
cost pi, a production cost ci, a producing capacity Ci, and a spoiling cost qi, for each period i ∈ H. We
assume all these parameters are positive.

The product has a shelf life of m periods meaning that a product produced in time period i can be
used to fulfill demand until period i+m, otherwise it is spoiled after period i+m. Client demands can
also be fulfilled by backlogging. In this context, one wants to fulfill the client demands di for each period
i by producing at that period, by stock or by backlogging, while respecting the production limits in each
period.

In order to model a lot-sizing problem with perishable products it is necessary to keep track of the
age of the inventories, which cannot be accomplished directly with basic lot-sizing formulations that only
keep track of the total amount of stock at the end of each time-period. Different approaches have been
used to handle this, for instance, in [12] a discretization of the age of the inventories is considered. Here
we adapt to the inventory problem with perishable products the well-known facility location formulation
for lot-sizing problem, because the variables used in this formulation keep track of the time the product
is produced and consumed. Related formulations have been used for perishable products, see [19]. We
define next the decision variables used in our formulation. Variables yij , for i, j ∈ H, represent the
amount produced in period i to fulfill the demand of period j. We have yij = 0 for every j > i + m.
Additionally, we consider variables yn+1,j that represent the amount of demand of period j that is not
fulfilled within the time horizon, and variables yi,n+1 that represent the amount of production in time
period i that is not used within the time horizon and that is not yet spoiled. Variables si represent the
amount stored from period i to period i + 1, variables ri represent the amount backlogged from period
i to period i + 1, variables πi that represent the amount of production that is spoiled at time period i
(amount produced in time period i − m and not used until period i, period i included) and variables
xi represents all the amount produced at time period i. The nominal problem, denoted by LT , can be
modeled as follows.

min
∑
i∈H

(cixi + hisi + piri + qiπi) (1)

s.t. si =

i∑
j=1

min(i+m,n)∑
k=i+1

yjk +

min(i+m,n)∑
j=i+1

πj , ∀i ∈ H (2)

ri =

n+1∑
j=i+1

i∑
k=1

yjk, ∀i ∈ H (3)

xi =

i+m∑
j=1

yij + πi+m, ∀i ∈ {1, . . . , n−m} (4)

xi =

n+1∑
j=1

yij , ∀i ∈ {n−m+ 1, . . . , n} (5)

n+1∑
i=max(1,j−m)

yij = dj , ∀j ∈ H (6)

x ∈ X (7)

x, y, π, r, s ≥ 0 (8)

The aim is to minimize the total cost. Constraints (7) represent the limitations imposed on the
amount produced in each period. Unless stated otherwise we assume

X =
{
x ∈ Rn+ : xi ≤ Ci, ∀i ∈ H

}
. (9)
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Equations (2) define the amount stored after all demands of period i have been attended. This amount
considers the quantity produced in the previous periods to satisfy the demand in periods i+ 1 to i+m
plus the spoiled production. Equations (3) define the amount backlogged from time period i to time
period i + 1. Equations (4) and (5) establish that the amount produced in period i is used either to
fulfill demand in periods 1 to i + m, or is lost. Equations (6) state that the demand in period j must
be satisfied from production from periods j −m to n or it is not satisfied during the time horizon (case
yn+1,j > 0). Constraints (8) are non-negativity constraints. Since the spoiling costs are positive, spoiling
never occurs in an optimal solution to LT .

Lemma 1 Any optimal solution to (1)–(8) satisfies π = 0.

The situation is however more subtle in the robust case where spoiling may happen, as we explain in the
next subsection.

2.2 The robust problem

We consider in this paper the robust counterpart of problem LT , where the demands are uncertain and
belong to a known uncertainty set. Specifically, we assume that the client demands are affine functions
di(ξ) = d̄i + d̂iξ of the elements ξ ∈ Rn belonging to a given uncertainty polytope Ξ, which we assume

to be full-dimensional. We recall that d̄i and d̂i are numbers that represents the expected value of the
client demand and their deviations, respectively. The correlation among the clients demands is modeled
by set Ξ, which typically contains 0 and is included in the box [−1, 1]n.

We further consider a model where the total production of each period is a “here-and-now” decision.
Conversely, the specific dispatching of the products to the periods (represented by y), the stock, backlog
and spoiling are “wait-and-see” decisions; that is, they can be adjusted to past realizations of the demand
vector ξ and become decision functions s : Ξ → Rn+, r : Ξ → Rn+, and π : Ξ → Rn+. To prevent the
decision maker to take decisions based on the realization of future events, the functions s and r must
satisfy the so-called non-anticipativity constraints, which are stated next. Given any n-dimensional vector
v, we denote its projection over the first i components by v(i) := (v1, . . . , vi). The non-anticipativity
constraints can be formally defined as follows.

si(ξ) = si(ξ
′) ∀ξ, ξ′ ∈ Ξ; ξ(i) = ξ′(i), (10)

ri(ξ) = ri(ξ
′) ∀ξ, ξ′ ∈ Ξ; ξ(i) = ξ′(i), (11)

πi(ξ) = πi(ξ
′) ∀ξ, ξ′ ∈ Ξ; ξ(i) = ξ′(i), (12)

yji(ξ) = yji(ξ
′) ∀ξ, ξ′ ∈ Ξ; ξ(i) = ξ′(i). (13)

These constraints impose that if the scenarios ξ and ξ′ coincide for the first i time periods, then the
decisions taken until that period must be the same for both scenarios. In particular, (13) means that the
dispatching of the demand of period i among all time periods is decided at period i.

A common practice in inventory management of perishable products is to follow a FIFO policy, that
is, the demand is satisfied with the oldest products. This policy can be ensured by the additional set of
bilinear constraints.

yki(ξ)πj(ξ) = 0 ∀j ∈ H; k > j −m; i ≤ j; ξ ∈ Ξ. (14)

Constraints (14) ensure that yki(ξ) and πj(ξ) cannot be simultaneously positive. A positive value for
πj(ξ) means that a product was produced in time period j −m and was not used during its shelf life. A
positive value for yki(ξ) represents a product produced after time period j−m (the time period a spoiled
item in j was produced) that is used to fulfill demand until period j. Such demand could be satisfied
with a spoiled item whose shelf life ended in j if πj(ξ) > 0.
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The robust counterpart of (1)–(8), including non-anticipativity constraints and the FIFO restrictions
follows.

min z (15)

(F1) s.t. z ≥
∑
i∈H

(cixi + hisi(ξ) + piri(ξ) + qiπi(ξ)), ∀ξ ∈ Ξ (16)

si(ξ) =

i∑
j=1

min(i+m,n)∑
k=i+1

yjk(ξ) +

min(i+m,n)∑
j=i+1

πj(ξ), ∀i ∈ H, ξ ∈ Ξ (17)

ri(ξ) =

n+1∑
j=i+1

i∑
k=1

yjk(ξ), ∀i ∈ H, ξ ∈ Ξ (18)

xi =

i+m∑
j=1

yij(ξ) + πi+m(ξ), ∀i ∈ {1, . . . , n−m}, ξ ∈ Ξ (19)

xi =

n+1∑
j=1

yij(ξ), ∀i ∈ {n−m+ 1, . . . , n}, ξ ∈ Ξ (20)

n+1∑
i=max(1,j−m)

yij(ξ) = dj(ξ), ∀j ∈ H, ξ ∈ Ξ (21)

(10)− (14)

x ∈ X (22)

x, y, π, r, s ≥ 0 (23)

where z is a new variable representing the worst-case cost, following the usual epigraph reformulation.
Contrasting with the deterministic situation, we provide below an example showing that the robust
problem can have optimal solutions involving non-zero spoiling functions π.

Example 1 Consider the nominal demand vector d = (1, 1, 0, 0), and deviations d = (1, 1, 1, 1) assume
the correlation matrix D is the identity matrix, m = 2 and the uncertainty set is given by the budget
polytope Ξ = {ξ ∈ Rn :

∑
i∈H |ξi| ≤ Γ, |ξi| ≤ 1, i ∈ H} with Γ = 1. Assume ci = 2, hi = 1, pi = 10, qi = 2.

Then, in order to prevent backlog (since its cost is very high), the optimal policy is x = (2, 1, 0, 0). The
worst scenario is ξ∗ = (−1, 0, 0, 0) which corresponds to the case where demand is as low as possible.
Hence d(ξ∗) = (0, 1, 0, 0). For this scenario the optimal solution is given by y12(ξ∗) = 1, π2(ξ∗) = 1 and
π3(ξ∗) = 1.

Observe that, considering p2 = 1 and pi = 2, for i 6= 2 the optimal solution without imposing the
FIFO policy would be y22(ξ∗) = 1, π2(ξ∗) = 2.

The above problem contains infinitely many constraints and variables, including the infinite number
of non-convex FIFO constraints (14). To our knowledge, no algorithmic approach from the literature is
able to address such a problem exactly, even for small instances. Fortunately, we show in the following
Section that is possible to reformulate (F1) as another non-linear infinite problem, having simpler non-
linear constraints. More importantly, we show in Section 4 that the reformulation is compatible with
row-and-column generation algorithms.
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3 Reformulation

Let us first show how variables y can be removed from formulation (F1). To simplify notations, the
following formulations also use variables π1, . . . , πm whose values are always equal to 0.

min z

(F2) s.t. z ≥
∑
i∈H

(cixi + hisi(ξ) + piri(ξ) + qiπi(ξ)) ∀ξ ∈ Ξ (24)

si(ξ) ≥
i∑

k=1

(xk − dk(ξ)− πk(ξ)) ∀i ∈ H, ξ ∈ Ξ (25)

ri(ξ) ≥
i∑

k=1

(dk(ξ) + πk(ξ)− xk) ∀i ∈ H, ξ ∈ Ξ (26)

πi+m(ξ) = max

(
0,

i∑
k=1

xk −
i+m∑
k=1

dk(ξ)−
i+m−1∑
k=m+1

πk(ξ)

)
∀i ∈ {1, . . . , n−m}, ξ ∈ Ξ (27)

πi(ξ) = 0 ∀i ∈ {1, . . . ,m}, ξ ∈ Ξ (28)

x, s, r ≥ 0 (29)

We will prove the following result.

Theorem 1 A vector (x, y, z, r, s, π) is an optimal solution to (F1) if and only if (x, z, r, s, π) is an
optimal solution to (F2).

To prove the result, we introduce first a useful property satisfied by the feasible solutions of (F1).

Lemma 2 The following flow balance constraints hold for each feasible solution of (F1)

xj + sj−1(ξ) + rj(ξ) = dj(ξ) + πj(ξ) + sj(ξ) + rj−1(ξ), ∀j ∈ H, (30)

where s0(ξ) = r0(ξ) = 0.

Proof The result follows from substituting xi, si−1(ξ) and ri(ξ) with the rhs of constraints (17), (18),
and (19), respectively, and re-arranging the resulting summations.

Below we prove that the optimal solutions to (F1) are feasible for (F2).

Lemma 3 If (x, y, s, r, π) is optimal for (F1), it satisfies (25) – (27).

Proof Summing up equations (30) from j = 1 to j = i it follows that

ri(ξ) +

i∑
j=1

xj =
i∑

j=1

dj(ξ) +
i∑

j=1

πj(ξ) + si(ξ). (31)

Combining (31) with the non-negativity of ri and si, we obtain

si(ξ) ≥
i∑

j=1

(xj − dj(ξ)− πj(ξ)) ∀j ∈ H (32)

ri(ξ) ≥
i∑

j=1

(dj(ξ)− xj + πj(ξ)) ∀j ∈ H (33)

proving that (25) and (26) are satisfied.
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Algorithm 1: Constructing y

for ξ ∈ Ξ do
i, j ← 1;

di ← di(ξ);
xj ← xj ;
while i < n+ 1 do

if i ≤ j +m then

yji(ξ)← max(xj , di);

di(ξ)← max(0, di − xj);

xj ← max(0, xj − di);
else

πj+m ← xj ;
xj ← 0;

end

if di = 0 then i← i+ 1; di ← di(ξ);
if xj = 0 then j ← j + 1; xj ← xj ;

end

end
return: y

Concerning (27), let i ≤ n−m. Summing up equations (19) from j = 1 to j = i, we obtain

i∑
j=1

xj =

i∑
j=1

j+m∑
k=1

yjk(ξ) +

i∑
j=1

πj+m(ξ) (34)

=

i+m∑
k=1

i∑
j=max(1,k−m)

yjk(ξ) +

i+m∑
j=m+1

πj(ξ) (35)

=

i+m∑
k=1

dk(ξ)−
n+1∑
j=i+1

yjk(ξ)

+

i+m∑
j=m+1

πj(ξ). (36)

Isolating πi+m(ξ) in the lhs, we obtain

πi+m(ξ) =

i∑
k=1

xk −
i+m∑
k=1

dk(ξ) +

i+m∑
k=1

n+1∑
j=i+1

yjk(ξ)−
i+m−1∑
k=m+1

πk(ξ). (37)

Notice at this point that the summation of variables y in (37) represents the production from periods
{i+ 1, . . . , n+ 1} to periods {1, . . . , i+m}. Two cases occur depending on the value of that summation.
If the summation is zero, then (37) becomes

πi+m(ξ) =

i∑
k=1

xk −
i+m∑
k=1

dk(ξ)−
i+m−1∑
k=m+1

πk(ξ). (38)

and the rhs is non-negative because of the non-negativity restriction on πi+m in (F1). Otherwise, the
summation is positive meaning that the production from periods {i+1, . . . , n+1} to periods {1, . . . , i+m}
is positive. In that case, constraints (14) imply

πi+m(ξ) = 0. (39)

Grouping the cases (38) and (39), we obtain (27).

Let us now turn to optimal solutions to (F2) and show that they can be extended to feasible solutions
of (F1).

Lemma 4 If (x, s, r, π) is optimal for (F2), we can define a vector y so that (x, y, s, r, π) be feasible for
(F1).
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Proof Since we consider an optimal solution, we may assume that s and r satisfy the restrictions (25) and
(26) tightly. For each ξ ∈ Ξ, let us define the vector y(ξ) by iteratively using the production described
xj to satisfy the demand di(ξ), thus setting the value of yji(ξ). Whenever we reach i and j such that
i > j + m, the production in excess is affected to πj+m. The construction is formally described in
Algorithm 1. One readily verifies that the values for s, r, and π given by equalities (25)–(27) are equal
to those resulting from Algorithm 1. Moreover, the values provided for y satisfy the non-anticipativity
restrictions because the value set for yji(ξ) depends only on the demands {d1(ξ), . . . , di(ξ)}.

4 Row-and-column generation algorithm

Problem (F2) contains infinite numbers of variables and constraints, making it intractable as such. Here,
we tackle the problem by alternating between solving a relaxed master problem and separation problems.
While being still non-linear, the master problem is a finite optimization problem, contrasting with the
infinite optimization problems discussed in the previous sections. Let S ⊆ Ξ be the finite set generated
so far through the separation problems and let us define the relaxed master problem as

min z

(F2-RM) s.t. z ≥
∑
i∈H

(cixi + hisi(ξ) + piri(ξ) + qiπi(ξ)) ∀ξ ∈ S

(40)

si(ξ) ≥
i∑

k=1

(xk − dk(ξ)− πk(ξ)) ∀i ∈ H, ξ ∈ S

(41)

ri(ξ) ≥
i∑

k=1

(dk(ξ) + πk(ξ)− xk) ∀i ∈ H, ξ ∈ S

(42)

πi+m(ξ) = max

(
0,

i∑
k=1

xk −
i+m∑
k=1

dk(ξ)−
i+m−1∑
k=m+1

πk(ξ)

)
∀i ∈ {1, . . . , n−m}, ξ ∈ S

(43)

πi(ξ) = 0 ∀i ∈ {1, . . . ,m}, ξ ∈ S
(44)

x, s, r ≥ 0 (45)

Given a solution (x∗, z∗) for (F2-RM) the separation problem determines if there exists a vector ξ ∈ Ξ\S
for which the associated constraints (40)–(43) are violated. As already mentioned, (41) and (42) are
satisfied at equality in any optimal solution. Therefore, the separation problem amounts to verify whether
there exists ξ ∈ Ξ such that the

∑
i∈H

(cixi + hisi(ξ) + piri(ξ) + qiπi(ξ)) > z∗

where s, r and π are given by (41)–(45). This can be reformulated as the following non-linear maximization
problem in variables (ξ, s, r, π), where variables (s, r, π) are redundant variables used only to simplify the
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problem description

max
∑
i∈H

(hisi + piri + qiπi) (46)

(F2-sep) s.t. ξ ∈ Ξ (47)

si = max

(
0,

i∑
k=1

(x∗k − dk(ξ)− πk)

)
∀i ∈ H (48)

ri = max

(
0,

i∑
k=1

(dk(ξ) + πk − x∗k)

)
∀i ∈ H (49)

πi+m = max

(
0,

i∑
k=1

x∗k −
i+m∑
k=1

dk(ξ)−
i+m−1∑
k=m+1

πk

)
∀i ∈ {1, . . . , n−m} (50)

πi = 0 ∀i ∈ {1, . . . ,m}. (51)

Let ξ∗ and ω∗ denote the optimal solution to (F2-sep) and its cost, respectively. If ω∗ > z∗−
∑
i∈H

cix
∗
i , then

the optimal vector ξ∗ is added to S, leading to the addition of the corresponding constraints (40)–(45)
and variables s(ξ∗), r(ξ∗), π(ξ∗). Otherwise, the current solution (x∗, z∗) to (F2-RM) is optimal.

Finally, the non-linearities in (F2-sep) can be handled using classical techniques that introduce binary
variables and large coefficients denoted by M . First, we introduce the real and binary variables ui and
αi, respectively, and replace each restriction of (50) with

ui+m =

i∑
k=1

x∗k −
i+m∑
k=1

dk(ξ)−
i+m−1∑
k=m+1

πk (52)

πi+m ≤Mαi+m, (53)

πi+m ≥ ui+m (54)

πi+m ≤ ui+m +M(1− αi) (55)

αi+m ∈ {0, 1} (56)

Second, we introduce the real variables vi, wi, zi and binary variables βi, replace each pair of restrictions
(48) and (49) with

vi =
i∑

k=1

(x∗k − dk(ξ)− πk) (57)

wi =

i∑
k=1

(dk(ξ) + πk − x∗k) (58)

zi ≤ hivi +Mβi (59)

zi ≤ piwi +M(1− βi) (60)

βi ∈ {0, 1}, (61)

and replace hisi + piri by zi in the objective function (46).

5 Computational results

This section presents some of the computational experiments carried out to test the performance of the
row-and-column generation algorithm and to provide a sensitivity analysis of the perishable production
as function of some parameters.

All tests were run on a computer with processor Intel(R) Core(TM) i7, CPU 3.20GHz, with 8GB of
RAM using the optimization software Cplex studio 12.7.
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5.1 Data generation

The data is generated in order to test a wide range of practical cases. Regarding the cost structure, three
sets of instances are considered: Dynamic, Static and Random.

The costs from instance set Dynamic have a given periodicity, representing the seasonality of certain
products, and are computed as follows:

ci = 10 + 5sin( 15.i.π
180 ), i ∈ H,

hi = 2 + 1sin( 15.i.π
180 ), i ∈ H,

pi = 50 + 25sin( 15.i.π
180 ), i ∈ H,

d̄i = 1000 + 500sin( 15.i.π
180 ), i ∈ H,

qi = β + β sin( 15.i.π
180 ), i ∈ H.

Instances from the set Static represent instances with fixed costs and are generated as follows:

ci = 20, i ∈ H
hi = 4, i ∈ H,
pi = 100, i ∈ H,
d̄i = 1000, i ∈ H,
qi = β, i ∈ H.
Finally, the costs of instances from set Random represent instance where the costs vary randomly. These
costs are randomly generated, using a uniform distribution, as follows:

ci = 10 + 10 ξ+1
10 , i ∈ H,

hi = 2 + 2 ξ+1
10 , i ∈ H,

pi = 30 + 30 ξ+1
10 , i ∈ H,

d̄i = 1000 + 1000 ξ+1
10 , i ∈ H,

qi = 1 + β ξ+1
10 , i ∈ H.

where ξ represents a random integer between 0 and 9. As we aim to study the spoiled production in
detail, the spoiled cost is also controlled by a parameter β that can have three possible values: 2, 20 and
200. The number of time periods considered, n, belongs to the set {10, 20, 30, 40, 50}. For the production
capacity two cases are considered, the constant capacity case with Ci = 5000,∀i ∈ H and the unbounded
case Ci = ∞,∀i ∈ H. For the maximum allowed deviations in the client demands we consider d̂i = αd̄i
where parameter α can take values in {0.1, 0.2, 0.3}.

Finally, we emphasize that such choice of parameters allows us to simulate close-to-reality instances
while providing flexibility in the cost structures. In real cases, the cost of storage is, in general, lower
than the cost to produce and to dispose a product. The backlog costs are usually high since they penalize
customer dissatisfaction associated with fulfil demand with delay.

5.2 Optimization approach analysis

# Periods Capacity Total Time Master Time Adv. Time # Iterations
10 yes 156.262 134.824 21.437 10.358
10 no 146.509 129.368 17.140 9.502
20 yes 283.326 226.850 56.475 8.198
20 no 151.118 102.567 48.550 8.000
30 yes 543.358 362.400 180.957 10.016
30 no 487.562 340.824 146.737 9.601
40 yes 784.884 508.278 276.605 11.387
40 no 789.871 531.912 257.958 10.852
50 yes 1050.207 668.398 381.808 12.037
50 no 1017.892 642.535 375.368 11.642

Table 1 Average running times and average numbers of iterations of the decomposition approach.

As expected the running times increases when the number of periods increases. For the largest size
instances the average running times are around 1000 seconds (less than half an hour). Considering the
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capacities, we can observe that the running times tend to be a bit higher for the smaller instances.
Notice the impact of restricting the production capacity would be expected to be more relevant in the
master problem. Considering the running times spent in each of the two subproblems, we see that largest
amount of time is spent with the master problem. However, the increase of the running times with the
increase of time periods is faster with the adversarial problem than with the master problem. This can
be easily understood since the adversarial problem considers several big-M constraints, which are known
to produce bad duality bounds. The average number of iterations is relatively low, ranging from 8 to 12.

Next we detail the running times according to the shelf-life and cost structure. From Figure 1 we can
observe that the running times are higher for short shelf-life items, which may indicate that the robust
inventory problem with perishable products may be computationally more difficult to solve than the
corresponding inventory problem where product deterioration with time is not considered. Regarding
the cost structure, there is no clear trend for n = 10, 20, 30. However, for n = 40 and n = 50 the running
times are clearly higher for the set of instances with the dynamic cost structure.
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Fig. 1 Running times as a function of products shelf-life.
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Fig. 2 Running times as a function of the number of periods.

5.3 Sensitivity analysis for the spoiled production

Here we report the tests conducted to evaluate the impact of the uncertainty parameters Γ and β on the
spoiled amount when the worst-case scenario occurs. Each possible Γ and β pair represents a degree of
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uncertainty. For large values of Γ and β we assume a large degree of uncertainty (both on the total number
of demand that deviate from their nominal value as the amount of each individual deviation). Conversely,
for small values of these parameters the uncertainty becomes very restricted. Γ varies in {1, 3, 5} and β
in {0.01, 0.05, 0.1} giving a total number of 9 combinations, labeled from A, (Γ = 1, β = 0.01), lowest
conservative case, to I, (Γ = 5, β = 0.1), highest conservative case. In Figure 3 we report the percentage
of amount of production that is lost due to the end of the shelf-life of product in case the worst-case
scenario is materialized for the optimal solution found. The results are split according to the instance
cost structure (dynamic, static and random) and shelf-life, m = 2, 5, 7.

As expected, when m increases the amount of production lost decreases. With a shelf-life of m = 7
periods, the lost production is very low, only in the most adversarial case we can observe a loss higher
than 1%. Moreover, for this case, the production losses occur mainly for the dynamic cost structure
(top charts layer). On the other hand, the short shelf-life of 2 periods, the robust approach is able to
find solutions that for the worst the case scenario and under the highest degree of uncertainty, ensure a
production loss around 9% of the total demand. Additionally, if we restrict the variation of one of the
parameter assignments Γ = 5 or β = 0.1, the production loss drops for less than 4%.

5.4 Sensitivity analysis for the cost structures

In this section, we take a closer look at the impact that variations in the costs has in the optimal value,
elapsed time and spoiled amount of our proposed method. Since the results for the three cost structures
considered here are quite similar, and since the dynamic cost structure generates the hardest instances
and, simultaneously, is the cost structure that that better simulates real instances, we restrain ourselves
to the dynamic cost structure. We consider 4 variants of the dynamic cost structure, named D1, D2, D3,
D4, and characterized as follows:

D1 Instances (Standard Instance)
ci = 10 + 5sin( 15.i.π

180 ), i ∈ H,
hi = 2 + 1sin( 15.i.π

180 ), i ∈ H,
pi = 50 + 25sin( 15.i.π

180 ), i ∈ H,
d̄i = 1000 + 500sin( 15.i.π

180 ), i ∈ H,
qi = β + β sin( 15.i.π

180 ), i ∈ H.
D2 Instances (Low Backlog)

ci = 10 + 5sin( 15.i.π
180 ), i ∈ H,

hi = 2 + 1sin( 15.i.π
180 ), i ∈ H,

pi = 20 + 10sin( 15.i.π
180 ), i ∈ H,

d̄i = 1000 + 500sin( 15.i.π
180 ), i ∈ H,

qi = β + β sin( 15.i.π
180 ), i ∈ H.

D3 Instances (High Production Cost)
ci = 20 + 10sin( 15.i.π

180 ), i ∈ H,
hi = 2 + 1sin( 15.i.π

180 ), i ∈ H,
pi = 50 + 25sin( 15.i.π

180 ), i ∈ H,
d̄i = 1000 + 500sin( 15.i.π

180 ), i ∈ H,
qi = β + β sin( 15.i.π

180 ), i ∈ H.
D4 Instances (High Storage Cost)

ci = 10 + 5sin( 15.i.π
180 ), i ∈ H,

hi = 10 + 5sin( 15.i.π
180 ), i ∈ H,

pi = 50 + 25sin( 15.i.π
180 ), i ∈ H,

d̄i = 1000 + 500sin( 15.i.π
180 ), i ∈ H,

qi = β + β sin( 15.i.π
180 ), i ∈ H.

As said before, these new instances represent different variations of the dynamic cost structure. The
instances in the set D1 are the standard instances of the set dynamic, the instances in the set D2 consider
a lower backlog cost, the instances in the set D3 consider a higher production cost than those in the
standard dynamic instances and the set D4 considers a higher storage cost than those in the standard
dynamic instances.

This new set of computational experiments were carried out on a computer with processor Intel(R)
Core(TM) i7, CPU 2.70GHz with 8GB of RAM using the optimization software Cplex studio 12.7.

5.4.1 Elapsed Time and Optimal Value

First we take a look on the way the variations at the costs affects the total elapsed time and the optimal
value of the proposed method.

As expected, the optimal value grows proportionally with the number of periods for all the sets of
instances, almost linearly. The instances that present a higher production cost and storage cost, D3 and
D4 respectively, present a higher optimal value as we can see in Figure 4.

The same behavior cannot be observed for the total running time. Figure 5 shows that, although
the total running time is increasing, the increase in the storage cost produces a more unstable problem.
We claim that the increase in the storage cost can make the spoiled amount more relevant, hence those
instances whose optimal solutions may have large spoiled amounts become more difficult.
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5.4.2 Spoiled Amount

We take a look at the effects of the variation of the costs in the spoiled amount. Figure 6 presents the
spoiled amount grouped by the value of the uncertainty parameter Γ and Figure 7 presents the spoiled
amount grouped by the value of the shelf life of the product. We can notice that, overall, the largest
spoiled amount occurs for instances D1 and D4. We also notice that the increase of the uncertainty
parameter Γ produces an increase in the spoiled amount, while the increase of the shelf life parameter
M produces a decrease in the spoiled amount. This happens because high uncertainty may lead to worst
case scenarios where large amounts of products exceed their shelf life and, conversely, a large shelf life
provides a broader horizon to use the product, hence minimizing the spoiled amount.

6 Conclusions

We have considered a robust inventory problem where products are perishable and are handled through a
FIFO policy. We have introduced a robust model and a non-linear reformulation, which is solved through
a row-and-column generation algorithm.

Computational tests have been conducted to cover a broad class of instances simulating different
realistic cases. These tests have shown that (i) the solution approach can solve to optimality, and within
reasonable amount of running time, all the tested instances; (ii) the robust solutions obtained are able
to ensure, for the worst-case scenarios, low production losses due to the end of the product shelf life; (iii)
the instances considering short shelf life were computationally harder to solve, which seems to indicate
that the inclusion of products perishability adds some degree of complexity to the inventory problems.

This study raises two questions for future research. From a theoretical point of view, it would be
interesting to understand whether the inclusion of perishability changes the complexity of the problem
or, at least, if it changes the complexity of the separation problem. From a practical point of view, it
would be interesting to compare the solutions obtained using the proposed robust approach with the
solutions resulting from stochastic models assuming different probability distributions for the demands.
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Fig. 4 Optimal value grouped by the value of the parameter Γ .
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Fig. 5 Running time elapsed on the problem grouped by the value of the parameter Γ .

 0

 2

 4

 6

 8

 10

10 20 30

S
p
o
il
e
d
 A

m
o
u
n
t 

(P
e
rc

e
n
ta

g
e
)

Number of Periods

D1
D2
D3
D4

(a) Γ = 1

 0

 2

 4

 6

 8

 10

10 20 30

S
p
o
il
e
d
 A

m
o
u
n
t 

(P
e
rc

e
n
ta

g
e
)

Number of Periods

D1
D2
D3
D4

(b) Γ = 3
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(c) Γ = 5

Fig. 6 Spoiled amount grouped by the value of the parameter Γ .
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Fig. 7 Spoiled amount grouped by the value of the parameter M .
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