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Abstract
This paper presents an integer programming model and a matheuristic for the physician
rostering problem. Constraints related to physician’s preferences, legal restrictions, hospital
requirements and workload balance are investigated. Moreover, a comparison of physician
and nurse rostering is analyzed to identify common constraints present in both problems.
The lack of a mathematical model that could be applied in the studied problem motivated the
development of a new formulation. Data and constraints of the proposed physician rostering
problem were provided by Hospital de Clínicas de Porto Alegre (HCPA), Brazil. Due to the
difficulty of solving large instances, amatheuristic which combines integer programming and
heuristic techniqueswas proposed to approach the problem.Computational experimentswere
conducted employing commercial and open-source solvers. Results revealed that open-source
solvers are a good alternative to solve small problems, while the proposed matheuristic gen-
erated near-optimal results within acceptable computation time employing larger instances.
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1 Introduction

Personnel rostering has received significant attention in academic literature due to its benefits
and practical applicability (Ernst et al. 2004). However, various institutions still organize their
rosters manually, demanding a considerable effort of planners and in many cases generating
poor results. In addition, a large set of input data is required to organize a roster, such as
legal labor requirements, patients attendance, employee’s preferences and constraints related
to contractual restrictions. The automation of this problem using computational techniques
brings a series of benefits such as better employee distribution across the rosters, less time
preparing the rosters and consequently an overall cost reduction.

The physician rostering problem (PRP),which aims to schedule physicians qualified in one
or more specialties, has obtained increased academic attention. Erhard et al. (2018) provide
a thorough overview of the existing literature. Problems were classified as staffing problems,
focusing on how the required size of the workforce is defined; rostering problems, where
the main objective is the generation of the rosters; and re-planning problems, addressing
short-term adjustments to already scheduled physicians.

Similarly to the PRP the nurse rostering problem (NRP) is among the most common
problems found related to personnel scheduling. There is a large number of publications
approaching problems related to specific hospitals such as Burke et al. (2010), Petrovic and
Vanden Berghe (2012) and Burke et al. (2006). Supplementary to such publications, two
competitions, the first and second nurse rostering competition (INRC-I) (Haspeslagh et al.
2014) and (INRC-II) (Ceschia et al. 2019), have been organized. For these competitions,
a common set of instances was proposed, making it easier to compare solving techniques
and stimulating the research on algorithms for solving the NRP. The INRC-I addressed a
single-skilled static problem, where the entire planning horizon must be solved at once. By
contrast, the INRC-II approached a multi-skilled problem and each week of the planning
horizon must be solved separately. Meaning that the final roster is a combination of separate
solutions satisfying global constraints. Each solving method was free to decide how to deal
with historical data and the uncertainty of future data.

Clearly, the INRC-II has made significant progress compared to the INRC-I by trying
to specify a problem-solving environment that is closer to real-world conditions by way of
including multi-skilled employees and considering the history of the previous roster. Never-
theless, these models still lack generality. For example, there is no possibility to specify the
balance ofworking hours between the scheduled employees or a preferred skill if an employee
has more than one. In addition, only a fixed problemwas proposed without the option of turn-
ing off certain constraints or changing them from hard to soft (or vice versa). Such changes
would render solving methods more flexible and, therefore, heighten the chances of them
actually being used in real-world scenarios.

This work approaches the PRP based on the data provided byHospital de Clínicas de Porto
Alegre (HCPA), Brazil. The objective is to answer the following research question: Is recent
academic progress relevant such that there is a possibility to generalize an IP formulation to
solve a hospital’s specific problem? The methodology used to answer this question includes
a basic integer programming model developed based on initial requirements provided by the
hospital. Afterward, managers provided feedback and report back with improvements that
should be implemented to obtain a better balance of working hours between the scheduled
physicians. The combination of both basic and extended models resulted in a general model
that attended all the hospital requirements. Another contribution lies in the fix-and-optimize
(F&O) matheuristic that generates good results in acceptable computation time limits. The
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F&Omatheuristic was necessary to address the most challenging instances when standalone
solvers were incapable of generating good results within the imposed time limit.

Computational experiments are conducted using real-world instances provided by HCPA
and generated instances. Detailed insights are presented regarding the constraints violation
that improved the balance of working hours between the physicians. In addition, to enable
an academic validation, both the IP formulation and the F&Omatheuristic were compared to
the heuristic Late Acceptance Hill Climbing (LAHC) developed by Sanchotene et al. (2018).
Logs of the experiments, instances and results are available on-line.1

The remainder of the paper is organized as follows. Section 2 presents the literature review.
Section 3 details the definition of the studied PRP and compares its constraints against those
in the existing literature. Section 4 provides the basic and extended integer programming
formulation for the PRP. Section 5 introduces the F&O matheuristic employed to solve
the PRP instances. Section 6 details the computational results, while Sect. 7 discusses the
conclusions.

2 Literature review

Due to similarities between the PRP and the NRP, this section details related literature regard-
ing both problems. Moreover, methods that were successfully applied to solve instances
proposed for the INRC-I and INRC-II are also detailed. Since there is a large body of publi-
cations related to theNRP, we limited the scope of the literature to only those solvingmethods
which address the instances from INRC-I and INRC-II.

Sanchotene et al. (2018) proposed a heuristic for the physician rostering problem. The
method is divided into two phases. In the first phase, a constructive heuristic is employed
to generate a feasible solution. Afterward, the LAHC heuristic is executed to improve the
solution. Computational experiments were conducted utilizing the same instances used in this
research. Results demonstrated that the LAHC heuristic obtained slightly better results for
instances with 150 physicians, while the present research achieved better results for instances
with up to 100 physicians.

An integer programming (IP) model was developed by Bruni and Detti (2014) to address
a real-world physician rostering problem of an Italian university hospital. The IP model sat-
isfies all service requirements and contractual agreements (including rest periods and annual
leave) while trying to respect, as much as possible, employee preferences. Particular attention
is paid to workload balancing. Stolletz and Brunner (2012) addressed a PRP with flexible
shifts, which have aminimum duration and can begin at any time during the day. Also, the fair
distribution of working hours is addressed. The problem was solved using a decomposition
heuristic, where the entire problem is broken down into weekly subproblems. Computational
experiments demonstrated improved results when compared to previous research (Brunner
et al. 2009). Brunner and Edenharter (2011) developed a column generation method to tackle
the PRP of an anesthesia department in an 1100-bed hospital. This procedure was necessary
because a standaloneMIP solver was incapable of solving weekly subproblems to optimality
within several hours. A real-world problem in the surgery department of a large govern-
ment hospital in Singapore was approached by Gunawan and Lau (2013) using a heuristic.
Instead of assigning physicians to shifts, they are assigned to a set of tasks incorporating
a large number of constraints and complex physician preferences. Constraint programming
combined with local search and genetic algorithms was proposed by Rousseau et al. (2002)

1 http://www.inf.ufrgs.br/~tiwickert/download/2017/physician.
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using data provided by two Canadian hospitals. A genetic algorithm to schedule physicians
for emergency rooms was proposed by Puente et al. (2009), while a combined emergency
and surgery scheduling problem was addressed by Van Huele and Vanhoucke (2014).

Compared to existing literature, the primary differences of this study are the shift regime,
which does not follow the same pattern on weekends. Furthermore, a larger number of
workload balancing constraints are required to equilibrate overtime, worked day and night
shifts as well as worked hours on non-business days.

The following literature addresses relevant solving methods applied to the NRP. The
INRC-I winner method proposed by Valouxis et al. (2012) used a two-stage approach to
decompose the problem in manageable parts, which can be solved to optimality using a
mathematical solver. The second-placed solving method (Burke and Curtois 2011) and third-
placed (Bilgin et al. 2010) developedmethods based on branch-and-price and hyperheuristics,
respectively. After the end of the competition, Santos et al. (2016) developed aMIPmodel and
employed heuristic techniques to decompose the problem. These subproblems are generated
by fixing a subset of days or shifts and the resulting subproblem is solved using a MIP solver.
Computational results demonstrated that several best-known solutions were improved.

The INRC-II winner method formulated the problem as a network flowmodel (Römer and
Mellouli 2016). The second-placed teammodeled the problemutilizing integer programming.
Each column of the IP corresponds to a rotation, that is, a sequence of consecutive worked
days for a nurse and not a complete individual roster. This procedure is called rotation-based
branch-and-price (Legrain et al. 2019).

In both competitions, the best-ranked methods include at least one component based on
mathematical models outperforming approaches based only on metaheuristics. After the
end of the competition, many methods were applied to the static version of the INRC-II
instances. This means that the entire planning horizon (4 or 8 weeks depending on the
instance) is solved at once. During the competition it was mandatory to solve each week
separately, that is, the solving method must deal with the uncertainty of future data solving
sequential weeks and having the complete result only after the last week had been solved.
These methods include a Variable Neighborhood Search (VNS) to accelerate the column
generation procedure proposed by Gomes et al. (2017), and the same procedure developed
by the second-placed (Legrain et al. 2019) but now applied to solve the entire planning
horizon at once.

Nurse rostering problems usually include a combination of constraints concerning the
minimum and maximum number of consecutive working days, days off and working days
on the same shift. These sets of consecutiveness constraints render the problem particularly
challenging to solve (Smet 2018). This is not the case for the studied PRP, which only has
consecutiveness constraints regarding the maximum number of consecutive working days
and working days on the same shift. Despite these restricted number of consecutiveness
constraints, the problem is still challenging as detailed in the computational experiments in
Sect. 6.

In terms of solving technique, the present fix-and-optimize matheuristic is similar to the
method proposed by Santos et al. (2016) and Della Croce and Salassa (2014). The main dif-
ference with respect to Santos et al. (2016) is that we decompose the problem into subsets of
physicians, days and shifts similar toDella Croce and Salassa (2014)which in our preliminary
experiments generated better results compared against using only days and shifts decomposi-
tions. The reason for choosing this solving technique in contrast to those proposed by Gomes
et al. (2017) and Legrain et al. (2019) is due to good results on the instances proposed for
the INRC-I and the natural way to decompose the problem in subsets of physicians, days
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and shifts. Moreover, as the problem size will increase in a near-future, heuristic methods
are more appropriate for these large instances.

3 Problem definition

The general physician rostering problem aims to assign physicians to shifts for each day
during a scheduling horizon. The objective is to minimize the cost associated with the vio-
lation of the soft constraints such as the maximum number of consecutive working days,
overtime and physician’s preferences. The case-specific PRP addressed in the present study
also includes the concept of locations whichmeans that physicians may be allowed to work at
specific locations and not at others within the hospital unit. In addition to the minimization of
the overall cost and violation of physician preferences, this study also introduces constraints
to generate a fair distribution of working hours between the physicians.

3.1 Basic model

Throughout the model definition, non-business days refer to Saturdays, Sundays and hol-
idays. Working days on weekdays, meanwhile, refer to weekdays which are not holidays.
Constraints are either hard (H) or soft (S):

H1 A physician can be assigned to at most one shift per day during weekdays;
H2 Minimum number of physicians per day/shift/location;
H3 Maximum number of physicians per day/shift/location;
H4 A physician must be assigned to both Early and Late shifts, or a Night shift, or have a

day off on non-business days;
H5 Invalid shift succession;
H6 A physician can be unavailable for some shifts or days;
H7 When working both Early and Late shifts, they must be worked at the same location;
H8 A physician must be qualified to work at specific locations;
S1 Maximum number of consecutive assignments to the same shift;
S2 Maximum number of consecutive assignments;
S3 Undesired working day or shift;
S4 Complete weekend, that is, a physician ideally works both Saturday and Sunday or

none;
S5 Minimum number of assignments over the planning horizon (according to the working

contract);
S6 Maximum number of assignments over the planning horizon (according to the working

contract);
S7 Maximum number of working weekends.

Constraints included in the basic model are commonly found in the existing literature. For
example, Constraints H2, H5 and S1–S7 are present in the instances proposed for the INRC-I
and INRC-II. Constraint H8 is present in the INRC-II but a slightly different manner. The
difference is that for the INRC-II nurses have specific skills, for example, a nurse can have
skills caretaker and trainee, while here physicians are qualified to be assigned to particular
locations within a working unit. Another difference is that in the case of the NRP a head
nurse can assume the work of less qualified nurses, while this is not the case in the PRP.
Constraint H1 is commonly found in the literature for all business and non-business days
(Beaulieu et al. 2000; Haspeslagh et al. 2014; Ceschia et al. 2019). However, the present PRP
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has an exception because this constraint is only valid for business days. During weekends
and holidays, working both Early and Late shifts is mandatory. Moreover, these shifts must
be worked at the same location.

In comparison with existing PRP literature, Bruni and Detti (2014) described heteroge-
neous working contracts as well as similar 12-h working shifts. However, these 12-h shifts
are valid for the entire week and not only for non-business days. Brunner et al. (2009) and
Brunner and Edenharter (2011) contrasting the case of this work where each shift has a fixed
start and end times, provided models where shifts can start at any time during a working
day and have an arbitrary duration. Another observation is the restricted number of consec-
utiveness constraints of this model compared for example, to those proposed for the INRC-I
and INRC-II. While this model has only two consecutiveness constraints (maximum number
of consecutive working days and worked days on the same shift), INRC-II problem has six
consecutiveness constraints.

3.2 Extendedmodel

The primary objective of adding this set of constraints is to improve the balance of working
hours between physicians. For example, an equal distribution of overtime and working hours
on non-business days is desired. The following constraints were incorporated into the basic
model:

H9 Minimum number of assignments on non-business days;
H10 Maximum number of assignments on non-business days;
H11 Maximum number of monthly assignments on weekdays;
S8 Preferred number of assignments on non-business days;
S9 Preference for a location;

S10 Equal day and night working hours during weekends;
S11 Maximum weekly assignments during day (Early and Late) or Night shifts;
S12 Assign physicians to the minimum possible number of locations.

Compared to the literature, Salassa and Vanden Berghe (2012) proposed a solving method
inwhich the basic idea is to have a long termbalance in terms ofworkload between employees.
Similarly to constraints H9–H11, S8 and S10, Stolletz and Brunner (2012) addressed fairness
concerning the distribution of working hours, both in terms of work less-than-contracted
hours and overtime by penalizing deviation from a pre-established minimum and maximum
working times. In the same way, the model introduced by Stolletz and Brunner (2012) has
the possibility of modeling employee-specific preferences or restrictions. This is possible in
the presented model through constraints S9 and S3 from the basic model. Constraint S11
concerns a particular case where some physicians have a small number of contracted hours
per month. This constraint ensures that such physicians do not work all their contracted hours
during the two first weeks of the month.

3.3 Shifts organization and example of a roster

Table 1 provides a simple roster presented in the physician-day view,where rows represent the
physicians and columns the days. The example has three physicians (Physician 1, Physician 2
and Physician 3), three shifts (Early [E], Late [L] and Night [N]), and three locations (In-
patient Units [1], [2] and [3]). Day shifts (Early and Late) are 6 h, while Night shifts are 12 h
long. The shifts are organized as follows:
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Table 1 Example of a roster with
7 days and three physicians

Physician Mon Tue Wed Thu Fri Sat Sun

Physician 1 L[1] L[2] N[1] – – E/L[1] E/L[1]

Physician 2 N[2] N[3] – – – N[3] N[2]

Physician 3 – E[1] – L[2] N[1] – –

– Early (6 h): 08–14 h;
– Late (6 h): 14–20 h;
– Night (12 h): 20–08 h.

When a physicianworks aNight shift, it is considered as twoworked shifts. This procedure
is necessary to calculate the total number of working shifts during the planning horizon. As
an example, Physician 1 works on Monday the Late shift at In-patient Unit 1, on Tuesday on
Late shift at In-patient Unit 2, and on Saturday/Sunday on both day shifts (Early and Late)
at In-patient Unit 1. Dashes represent days off. Day shifts (Early and Late) on non-business
days that must be worked together (enforced by H4) and Nights shifts with 12 working hours,
which need to be considered twice in order to calculate the total number of worked shifts per
roster, are highlighted in bold.

4 Integer programming formulation

This section introduces the integer programming formulation considering both hard and
soft constraints for the PRP. Table 2 presents the indices (first column) used to identify
the variables associated with their respective constraints. The second column describes the
constraints, the third column (Id) is the identifier, while the last column presents the weight
per unit of violation of each constraint. For example, in the objective function in Eq. 1 the
first term (considering index 3) c3ndω

3 refers to the variables related to the maximum number
of consecutive assignments to the same shift (identified by index 3 in Table 2) multiplied by
its respective weight ω3 (15).

Table 3 presents the sets, decision and auxiliary variables employed in the formulation.
Although rosters are typically organized with a planning horizon of 1 month, data from

the previous month is essential to avoid infeasible solutions. For example, if physicians work
night shifts on the last day of the previous month, they cannot work early or late shifts on
the first day of the current month. To avoid such situations, before the solving method starts,
the border data from the previous month is read, that is, the total number of assignments, last
assigned shift type, number of consecutive assignments of the last shift type, and number of
consecutive worked days. This data is necessary correctly evaluate the constraints: invalid
shift type succession (H5), maximum number of consecutive assignments to the same shift
(S1), maximum number of consecutive working days (S2) and complete weekend (S4).

4.1 Basic model

In this section, we describe the basic model, that is, those constraints that are most likely to
be found in many applications.
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Table 2 Indices used to associate each soft or hard constraint with their respective variable or input data in
the formulation

Index Constraint description Id Weight (ωi )

Basic model

1 Minimum number of physician per day/shift/location H2 –

2 Maximum number of physician per day/shift/location H3 –

3 Maximum number of consecutive assignments to the same shift S1 15

4 Maximum number of consecutive assignments (worked days) S2 30

5 Physician undesired working day/shift S3 10

6 Complete weekend S4 30

7 Minimum number of assignments over the planning horizon S5 20

8 Maximum number of assignments over the planning horizon S6 20

9 Maximum number of working weekends S7 30

Extended model

10 Minimum number of assignments on non-business days H9 –

11 Maximum number of assignments on non-business days H10 –

12 Maximum number of assignments on working days H11 –

13 Number of assignments below the ideal on non-business days S8 100

14 Number of assignments above the ideal on non-business days S8 100

15 Priority per location (physicians may express priority for one or
more location)

S9 15

16, 17 Equilibrium between day and night working hours during weekends S10 10

18 Maximum weekly working assignments day (Early and Late) or
Night shifts

S11 10

19 Assign physicians to the minimum possible number of locations S12 50

Minimize:
∑

n∈N

∑

d∈D

∑

i∈{3,4}
cindω

i +
∑

n∈N

∑

d∈D

∑

s∈S
g5ndsω

5

+
∑

n∈N

∑

w∈W
h6nwω6 +

∑

n∈N

∑

i∈{7,8,9}
j inω

i
(1)

Subject to:
∑

s∈S

∑

k∈K
xndsk ≤ 1 ∀n ∈ N , d ∈ D \ D̃ (2)

∑

k∈K
(xndsek + xndsl k) = 2znd ∀n ∈ N , d ∈ D̃ (3)

∑

k∈K
xndsnk + znd ≤ 1 ∀n ∈ N , d ∈ D̃ (4)

∑

s∈S

∑

k∈K
xndsk ≤ 2ond ∀n ∈ N , d ∈ D (5)

∑

k∈K
(xnds′k + xn(d+1)s′′k) ≤ 1 ∀n ∈ N , d ∈ {1, . . . , |D| − 1}, (s′, s′′) ∈ Ŝ (6)
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Table 3 Indices, sets and
variables used in the
mathematical formulation for
both the basic and extended
models

Symbol Definition

Input data

n ∈ N n is the index of the physician and N is the set of all
physicians indices

d ∈ D d is the index of the day and D is the set of all days
indices

d ∈ D̃ d is the index of the non-business day and D̃ is the
set of all non-business days indices

s ∈ S s is the index of the shift and S is the set of all shifts
indices

k ∈ K k is the index of the location and K is the set of all
locations indices

(n, k) ∈ L Set containing the pairs of forbidden locations of
physician n at location k

(n, k) ∈ P Set containing the pairs where the physician n has a
preference not to work at location k

(n, d, s) ∈ R Set containing triples with unavailable physician n
on day d and shift s

(n, d, s) ∈ U Set containing triples with the undesired working
day d and shift s of physician n

(s′, s′′) ∈ Ŝ Set containing the pairs of invalid shift successions

w ∈ W w is a Saturday index and W the set of all Saturdays
indices not including the last Saturday if it is the
last day of the month

w ∈ W̃ w is the week index and W̃ the set of all week
indices

αidsk i ∈ {1, 2}, that is, the minimum and maximum
number of physicians per day d, shift s and
location k

βi
n Limits of constraints with indices 3, 4, 7, . . . , 13 in

Table 2. That is, the maximum number of
consecutive assignments to the same shift (3),
maximum number of consecutive working days
(4), minimum/maximum number of assignments
over the planning horizon (7, 8), maximum
number of working weekends (9),
minimum/maximum number of assignments on
non-business days (10, 11), maximum number of
assignments on working days (12) and ideal
number of assignments on non-business days (13)

ωi
n Weight for violating the lower and upper bounds of

soft constraints i for physician n

se Early shift index

sl Late shift index

sn Night shift index

Decision variables

xndsk ∈ {0, 1} 1 if physician n is allocated to shift s, day d,
location k and 0 otherwise

ynw ∈ {0, 1} 1 if physician n works weekend w and 0 otherwise
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Table 3 continued Symbol Definition

znd ∈ {0, 1} 1 if physician n works both the Early and Late shifts
on day d and 0 otherwise

ond ∈ {0, 1} 1 if physician n is allocated to work on day d and 0
otherwise

qnk ∈ {0, 1} 1 if physician n works at location k and 0 otherwise

Auxiliary variables

cind ∈ N Number of violations of the soft constraints with
indices i ∈ {3, 4} in Table 2, for physician n on
day d

g5nds ∈ N Number of violations of the soft constraints with
index 5 in Table 2, for physician n on day d, shift s

h6nw ∈ N Number of violations of the soft constraints with
index 6 in Table 2, for physician n on weekend w

j in ∈ N Number of violations of the soft constraints with
indices i ∈ {7, . . . , 9, 13, 14, 16, 17, 19} in
Table 2, for physician n

m15
nk ∈ N Number of violations of the soft constraints with

indices 15 in Table 2, for physician n at location k

l18nws ∈ N Number of violations of the soft constraints with
index 18 in Table 2, for physician n on week w

∑

d∈D

∑

s∈S
xndsk = 0 ∀(n, k) ∈ L (7)

∑

k∈K
xndsk = 0 ∀(n, d, s) ∈ R (8)

xndsek − xndsl k = 0 ∀n ∈ N , d ∈ D̃, k ∈ K (9)

∑

n∈N
xndsk ≥ α1

dsk ∀d ∈ D, s ∈ S, k ∈ K (10)

∑

n∈N
xndsk ≤ α2

dsk ∀d ∈ D, s ∈ S, k ∈ K (11)

β3
n+d∑

d ′=d

∑

k∈K
xnd ′snk − c3nd ≤ β3

n ∀n ∈ N , d ∈ {1, . . . , |D| − β3
n } (12)

β4
n+d∑

d ′=d

ond ′ − c4nd ≤ β4
n ∀n ∈ N , d ∈ {1, . . . , |D| − β4

n } (13)

∑

k∈K
xndsk ≤ g5nds ∀(n, d, s) ∈ U (14)

onw + on(w+1) + h6nw = 2ynw ∀n ∈ N , w ∈ W (15)
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∑

d∈D

∑

s∈{se,sl }

∑

k∈K
xndsk

+
∑

d∈D

∑

k∈K
2xndsnk + j7n ≥ β7

n ∀n ∈ N (16)

∑

d∈D

∑

s∈{se,sl }

∑

k∈K
xndsk

+
∑

d∈D

∑

k∈K
2xndsnk − j8n ≤ β8

n ∀n ∈ N (17)

∑

w∈W
ynw − j9n ≤ β9

n ∀n ∈ N (18)

Constraints (2) ensure a physician is assigned to at most one shift per day on business
days. Constraints (3) and (4) ensure that a physician must be assigned to both day shifts,
or one Night shift, or no shift on non-business days. Constraints (5) set auxiliary variable
ond to one if physician n works on day d , and zero otherwise. Constraints (6) ensure a shift
type succession must be valid (for example, if physicians work Night shifts they cannot
be followed by Early or Late shifts on the next day). Constraints (7) ensure a physician is
assigned to a location only if allowed. Constraints (8) ensure a physician is scheduled only
if he/she is available. Constraints (9) ensure a physician works both shifts (Early and Late)
at the same location if they are worked on non-business days. This constraint is to avoid
that a physician splits a 12-h working shift across two different locations. Constraints (10)
and (11) ensure the minimum and maximum number of physicians per day/shift/location,
respectively. Constraints (12) calculate the maximum number of consecutive assignments
to Night shifts violations. Constraints (13) calculate the maximum number of consecutive
assignments (worked days) violations. Constraints (14) calculate the undesiredworked day or
shift violations. Constraints (15) calculate the complete weekend violations. Constraints (16)
and (17) calculate the minimum and maximum number of worked shifts violations over the
scheduling period, respectively. Constraints (18) calculate the maximum number of working
weekends violations.

4.2 Extendedmodel

In this section the extended model is described, that is, constraints that aim a fair distribution
of the working hours between the physicians.

Minimize:
∑

n∈N

∑

w∈W̃

∑

s∈S
l18nwsω

18+
∑

n∈N

∑

k∈K
m15

nk+
∑

n∈N

∑

i∈{13,14,16,17,19}
j inω

i + (1)

(19)

Subject to:

β10
n ≤

∑

d∈D̃
ond ≤ β11

n ∀n ∈ N (20)

∑

d∈D\D̃
ond ≤ β12

n ∀n ∈ N (21)

∑

d∈D̃
ond + j13n − j14n = β13

n ∀n ∈ N (22)
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Start Initial solution
Subproblem
generation

Solve subproblem

Time limit? Stop
yes

no

Fig. 1 Algorithm execution flowchart

∑

d∈D

∑

s∈S
xndsk − m15

nk = 0 ∀(n, k) ∈ P (23)

∑

d∈D̃

∑

k∈K

(
xndsek + xn(d+1)sek

)

−
∑

d∈D̃

∑

k∈K

(
xndsnk + xn(d+1)snk

) − j16n + j17n = 0 ∀n ∈ N (24)

∑

d∈{1,...,7}

∑

k∈K
xn(d×w)sk − l18nws ≤ γ 18

nws ∀n ∈ N , w ∈ W̃ , s ∈ S (25)

xndsk ≤ qnk ∀n ∈ N , d ∈ D, s ∈ S, k ∈ K (26)
∑

k∈K
qnk − j19n ≤ 1 ∀n ∈ N (27)

Constraints (20) ensure the minimum and maximum number of assignments on non-
business days for each physician. Constraints (21) ensure the maximum number of
assignments on business days for each physician. Constraints (22) penalize the difference
between the ideal and actual number of assignments on non-business days. Constraints (23)
penalize physicians working out of the preferred location. Constraints (24) penalize the dif-
ference between the number of assignments of day and night shifts on non-business days.
Constraints (25) penalize weekly allocations in excess of the maximum. Constraints (26) and
(27) calculate the number of distinct locations that a physician works and penalize if this
value is greater than one.

5 Fix-and-optimizematheuristic

This section provides the F&O matheuristic developed to approach the PRP. The proposed
algorithmwas adapted from a previous version to address the NRP (Wickert et al. 2016). Fig-
ure 1 provides an overview of the algorithm execution flow. The algorithm begins generating
a feasible solution using a MIP solver only considering the hard constraints. Afterward, a
subset of variables is iteratively fixed to their current values, decomposing the problem into
subproblems, which are then successively solved using a MIP solver until the computation
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time limit is reached. All hard and soft constraints are considered when the subproblem is
solved. The algorithm returns the best solution found.

Before fully explaining the algorithm, the following general terminology is introduced.
Variables or physicians are denoted as free when the associated decision variable has the
lower bound set to zero and the upper bound to one. This consequently implies that the
solver can decide on setting the value either to zero or to one. On the other hand, fixing
a day, physician or shift indicates that the decision variable is set to the corresponding
value in the incumbent solution. In this case, the solver cannot change the variable’s value.
PhysicianFreeCombinationSet is a set of combinations without repetition.

For example, when there are n = 5 physicians and the parameter kPhysician = 2, the
combinations without repetitions is 10 unique possibilities, resulting in the set Physician-
FreeCombinationSet([1,2], [1,3], [1,4], [1,5], [2,3], [2,4], [2,5], [3,4], [3,5], [4,5]). If
kLimitPhysician = 5, only 5 out of 10 items will be randomly added to the set Physician-
FreeCombinationSet. If the kLimitPhysician ≥ 10 all possible combinations will be added to
the setPhysicianFreeCombinationSet.During the algorithm’s execution, the decision variable
will have physicians 1 and 2 with lower bound zero and upper bound one, while physicians
3–10 will have their lower and upper bounds fixed to their current values. As such, the solver
can only change the value of the decision variables of physicians 1 and 2.

Algorithm 1 provides the pseudo-code. The input parameters kMaxDay, kMaxPhysician,
kMaxWeek and kMaxShift represent the maximum number of free variables of each type.
Meanwhile, kLimitDay, kLimitPhysician, kLimitWeek and kLimitShift are the limits of com-
binations generated for each type of neighborhood. Algorithm 1 begins by generating an
initial feasible solution x (line 2) considering only the hard constraints using a MIP solver.
The number of free variables to optimize is initialized with one (line 3), and the loop (lines 4
to 17) is iterated until the time limit (TL) is reached.

Algorithm 1: Fix-and-optimize matheuristic algorithm.
1 FixAndOptimize(kMaxWeek, kLimitWeek, kMaxShift, kLimitShift, kMaxDay, kLimitDay, kMaxPhysician,
kLimitPhysician, TL, STL)

2 x = generateInitialSolution()
3 kWeek = kShift = kDay = kPhysician = 1
4 do
5 x = FixPerDay(x, kDay, kLimitDay, STL)
6 kDay = kDay+1
7 x = FixPerPhysician(x, kPhysician, kLimitPhysician, STL)
8 kPhysician=kPhysician+1
9 x = FixPerWeek(x, kWeek, kLimitWeek, STL)

10 kWeek=kWeek+1
11 x = FixPerShift(x, kShift, kLimitShift, STL)
12 kShift=kShift+1
13 if (kDay > kMaxDay) kDay = 1
14 if (kPhysician > kMaxPhysician) kPhysician = 1
15 if (kWeek > kMaxWeek) kWeek = 1
16 if (kShift > kMaxShift) kShift = 1
17 while TL not reached;
18 return x

Inside the loop (lines 5 to 16), the algorithm executes different methods representing the
neighborhoods. Each neighborhood is explored until either a local minimum is found or
it reaches the STL (subproblem time limit). For each step, the value of kDay, kPhysician,
kWeek and kShift is incremented. If the limit of each type is exceeded, variables are reset to 1
(lines 13 to 16).
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Algorithm 2 begins generating the combination of physicians that will be free to be
optimized until the kLimitPhysician is reached (the combination function at line 2). The loop
(lines 4 to 16) is iteratedwhile the best neighbor solution is at least 20%better than the current
solution. The loop begins by storing the current solution value and the best neighbor value
(function OFV lines 5 and 6). The nested loop (lines 7 to 14) explores the neighborhood by
fixing the entire problem (line 8), and unfixing only the free variables that will be optimized
(line 9). TheMIP solver is executed until either the optimal solution is found or STL is reached
(line 10). If the Objective Function Value (OFV) of subproblem x is lower than the OFV
of the best neighbor (line 11), then the bestNeighborValue variable is updated accordingly
(line 12).

Algorithm 2: Fix per physician.
1 FixPerPhysician(x, kPhysician, kLimitPhysician, STL)
2 physicianFreeCombinationSet = combination(kPhysician, kLimitPhysician)
3 improved = false
4 do
5 currentSolutionValue = OFV(x)
6 bestNeighborValue = OFV(x)
7 foreach Integer free : physicianFreeCombinationSet do
8 fixAll(x)
9 unFix(free, x)

10 solve(x, STL)
11 if OFV(x) < bestNeighborValue then
12 bestNeighborValue = OFV(x)
13 end
14 end
15 improved = bestNeighborValue*1.2 < currentSolutionValue
16 while improved;
17 return x

Figures 2 and 3 detail an iteration of a fix per physician neighborhood with kPhysician = 1
and kPhysician = 2, respectively. Rows with a gray background are available to be optimized
by the solver, meaning that the decision variables have lower bounds set to zero and upper
bounds of one. By contrast, rows with a white background have the associated decision
variable bounds fixed to the current incumbent value, forbidden the solver to change these
values. Observe that, when a decision variable has both upper and lower bounds set to the
same value, they are ignored by the MIP solver. Since the fix per week, fix per shift and fix
per day decompositions follow the same idea, the pseudo-code of these algorithms has been
omitted for textual economy.

6 Computational experiments

This section analyzes a series of computational experiments to investigate whether the pro-
posed IP formulation can be solved using commercial and open-source MIP solvers for both
small and large instances.

6.1 Data sets and experimental setup

The source code was written in Java and compiled with OpenJDK 1.8. The experiments were
conducted on an Intel Core i5-2410M CPU 2.30 GHz (2 cores) with 6GB of RAM memory
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Fig. 2 Fix per physician
(kPhysician = 1) Physician Mon Tue Wed

P1 L[1] L[2] N[2]
P2 N[1] N[1] N[3]
P3 – E[3] –

P1 L[1] N[2] N[2]
P2 N[1] N[1] N[3]
P3 – E[3] –

P1 L[1] N[2] N[2]
P2 N[2] N[1] N[3]
P3 – E[3] –

Fig. 3 Fix per physician
(kPhysician = 2) Physician Mon Tue Wed

P1 L[1] N[2] N[2]
P2 N[2] N[1] N[3]
P3 – E[3] –

P1 L[1] N[1] N[2]
P2 N[2] L[1] N[3]
P3 – E[3] –

P1 L[1] N[1] N[2]
P2 E[2] L[1] N[3]
P3 E[3] E[3] –

running Linux Mint 17.2 64-bits. The solvers employed were CPLEX version 12.6.2 and
Coin-OR CBC version 2.9.9. Both solvers were run with default parameters. The gap is
calculated using the equation gap = 100 × OFV−LB

LB , where OFV is the objective function
value and LB is the lower bound. All parameters of the F&O matheuristic were tuned using
irace (López-Ibáñez et al. 2016).

Table 4 presents the parameter names, tested ranges and the chosen parameter values
computed by irace, respectively. Irace reported the values STL = 8s, kMaxWeek = 2, kLim-
itWeek = 4, kMaxShift = 3, kLimitShift = 3, kMaxPhysician = 20, kLimitPhysician = 30,
kMaxDay = 8, and kLimitDay = 8 as the best parameter values to be used by the proposed
F&O matheuristic. The default irace parameters were used for the experiments, that is, the
confidence level is 0.95.

The dataset employed in the experiments was generated based on the information provided
by HCPA. The algorithm was tested in 30 generated instances. Currently, the real number
of physicians to schedule is 50. However, the number of physicians will increase in a near
future, and so this is the reasoning behind generating larger instances. The objective is to
analyze whether these larger and more demanding instances can still be solved using the
proposed methods. The following instances were generated:
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Table 4 Tested parameter ranges Name Range of values Irace

STL [5, 8, 12] 8

kMaxWeek [1, …, 4] 2

kLimitWeek [1, …, 8] 4

kMaxShift [1, …, 3] 3

kLimitShift [1, …, 7] 3

kMaxPhysician [1, 5, 10, 15, 20, 25, 30] 20

kLimitPhysician [5, 10, 15, 30, 35, 40, 45, 50] 30

kMaxDay [1, 8, 16] 8

kLimitDay [4, 8, 16, 32] 8

– 10 instances with 50 physicians and four weeks;
– 10 instances with 100 physicians and four weeks;
– 10 instances with 150 physicians and four weeks.

The computation time limit for each experiment was fixed according to the instance size
and algorithm. Note that the F&O matheuristic has half of the computational time limit
compared against the MIP solvers. This solving method is used when results are required in
reduced computational time. The following experimental setup was proposed:

– One single execution using CPLEX solver and a computation time limit of 12 h;
– One single execution using CPLEX and Coin-OR CBC with computation time limits of

20, 40 and 60 min for the instances with 50, 100 and 150 physicians, respectively;
– 10 executions using the F&O matheuristic with computation time limits of 10, 20 and

30 min for the instances with 50, 100 and 150 physicians, respectively.

In addition, two instances using data from April and May of 2019 provided by HCPA
were employed for the computational experiments using the extended model. The reported
results and statistics constitute the real roster used in the hospital.

6.2 MIP solver results

Table 5 provides the results when the basic IP formulation is solved using the standaloneMIP
solvers CPLEX and Coin-OR CBC. The column labels LB, OFV and Gap correspond to the
lower bound (provided byCPLEX), objective function value and the gap calculated according
to the equation introduced in the previous section. Experiments are split into three blocks.
The first block provides the results when CPLEX was executed for a long computation time
(12 h). The objective of this experiment was to generate good LBs to use them for comparing
the other solvingmethods. In practice, this time limit is not considered acceptable. Therefore,
other experiments have shorter computation time limits.

The second and third blocks present the results when CPLEX and Coin-OR CBC were
employed to solve the IP formulation using computation time limits of 20, 40 and 60 min for
instances with 50, 100 and 150 physicians, respectively. Instances containing 50 physicians
were solved to optimality employing CPLEX and near-optimality using Coin-OR CBC. For
larger instances,with 100 and150physicians,Coin-ORwas not capable of generating feasible
solutions within the time limit, while CPLEX generated 6 out of 10 feasible solutions when
instances with 100 physicians are tackled. Both solvers could not find feasible solutions for
instances with 150 physicians within 1h.
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These results show that MIP solvers are a good option for solving instances of up to
50 physicians, which is the hospital’s current situation. Both CPLEX and the open-source
solver Coin-ORCBCgenerated good results. Optimal and near-optimal results were obtained
within acceptable computation time limits. However, for large instances with 100 and 150
physicians, improvements in the IP formulation or other solving methods are necessary to
generate better results.

6.3 Fix-and-optimize results

Table 6 presents the results using the fix-and-optimize (F&O) matheuristic. The three last
columns provide CPLEX results. However, a direct comparisonwith heuristics is not possible
sinceMIP solvers address problems improving both upper and lower bounds aiming to prove
optimality. The gap is calculated relative to the LB (second column), obtained by CPLEX
when executed with a time limit of 12h. Values in bold represent the best results.

As explained in Sect. 5, the F&O matheuristic uses CPLEX to solve the subproblems and
results are compared to the LateAcceptanceHill Climbing (LAHC) developed by Sanchotene
et al. (2018). Computational results demonstrated that for instanceswith 50 physicians, results
were very close to optimality with an average relative gap of 0.03%. Instances with 100 and
150 physicians have average relative gaps of 6.00% and 8.75%, respectively.

In general, the F&O matheuristic generated similar results as the LAHC heuristic devel-
oped by Sanchotene et al. (2018). These computational experiments show that both the
LAHC heuristic and the F&O matheuristic are good alternatives to address large problems
with 100 and 150 physicians. Both methods generated good results within short computa-
tion times. By contrast, when solving problems with up to 50 physicians, the standalone
MIP solvers are the most effective alternative. Note that the proposed F&O matheuristic is
solver-independent and general, being capable of addressing both the basic and extended
models without compromising the quality of the results compared to the case-specific LAHC
heuristic.

6.4 Objective function analysis

Figure 4 provides an analysis of the OFVwhen varying the number of physicians and remov-
ing different subsets of constraints. The objective is to evaluate the influence of the different
sets of constraints upon the OFV. Black bars indicate the results when all constraints are
considered when varying the number of physicians from 50 to 90. With 60 physicians, the
OFV reduced approximately one third and eventually reached an ideal of zero when the
number of available physicians is 90. Moreover, results indicate a notable reduction in the
OFV when S1 and S2 are removed considering 50 physicians. Experiments show that these
two constraints represent a minor influence on the OFV when the number of physicians
is 60 or more. Such results indicate that the majority of the violations concern overtime
constraints.

6.5 Extendedmodel results

This section provides the results when using the extended model for the generated roster
of April and May of 2019. Since a CPLEX license is required for commercial use, only
Coin-OR CBC was used for the computational experiments in this section. Table 7 pro-
vides the results employing Coin-OR CBC standalone solver (second column) and using the
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Fig. 4 OFV impact when varying the number of physicians and removing constraints

Table 7 Results using Coin-OR
CBC standalone solver and the
F&O matheuristic

20 min 10 min
Coin-OR CBC F&O
Gap (%) Gap (%)

April 2019 0.05 1.83

May 2019 0.09 2.46

F&O matheuristic (third column). The objective of this experiment is not a direct compar-
ison between the exact and heuristic method. Instead, they are complementary, being the
F&O matheuristic employed mainly when fast results must be available in reduced time.
Results show that the standalone solver was capable of reaching near-optimum results with a
relative gap of less than 0.1% within 20 min. Another experiment, using the F&Omatheuris-
tic with a 10 min time limit, demonstrated that the algorithm is a good alternative when
results are needed quickly. The gaps (last column), calculated relative to the lower bound
provided by theMIP solver, were 1.83% and 2.46% for the months of April andMay, respec-
tively.

Note that both the F&Omatheuristic and the standalone MIP solver are used in practice at
HCPA. The F&Omatheuristic method is employed to generate fast solutions when the roster
of a newmonth is going to be organized. During this process, managers may change the input
data, including days off requests, vacations, constraints violation weight, and recompute the
roster several times.When this process is more stable, the exact method is executed for longer
runtimes to generate near-optimum final rosters.

Tables 8 and 9 provide the most relevant constraint violation analysis concerning the
rosters generated for April and May of 2019. The first column represents the physician
identification, while the S1 column provides the maximum of two consecutive night shift
violations. Column S4 details the number of incomplete worked weekends, column S5/S6
provides the contracted hours (in parentheses), where positive and negative values indicate
whether the respective physician worked more or less than their contracted hours. Observe
that Early and Late shifts have 6 h and Night shifts 12 h. However, the majority of the
physicians’ contracts are not a multiple of six, and therefore it is technically impossible for
most physicians to work their precise contractual hours. Column S7 presents the maximum
number of worked weekends in parentheses and the number effectively worked. Column
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Table 8 April 2019—Roster analysis

Name S1 S4 S5/S6 S7 S8 S10 S12

P1 0 0 (100) + 8 (2) 1 (24) 0 0 [0, 10, 0, 0, 0, 0]

P2 0 1 (100) + 2 (2) 2 (36) 0 12 [12, 0, 0, 0, 0, 0]

P3 0 2 (100) + 2 (2) 2 (36) 0 0 [15, 0, 0, 0, 0, 0]

P4 0 1 (100) + 2 (2) 2 (36) 0 12 [12, 0, 0, 0, 0, 0]

P5 0 2 (100) + 2 (2) 2 (36) 0 0 [0, 12, 0, 0, 0, 0]

P6 0 1 (115) + 5 (2) 2 (36) 0 − 12 [0, 14, 0, 0, 0, 0]

P7 0 0 (72) 0 (2) 1 (24) 0 0 [0, 8, 0, 0, 0, 0]

P8 0 0 (60) 0 (2) 1 (24) 0 0 [0, 0, 0, 0, 6, 0]

P9 0 0 (83) + 1 (2) 1 (24) 0 0 [0, 10, 0, 0, 0, 0]

P10 0 2 (100) + 8 (2) 2 (36) 0 0 [0, 11, 0, 0, 0, 0]

P11 0 1 (100) + 2 (2) 2 (36) 0 − 12 [11, 0, 0, 0, 0, 0]

P12 0 1 (100) + 2 (2) 2 (36) 0 12 [12, 0, 0, 0, 0, 0]

P13 0 1 (100) + 2 (2) 2 (36) 0 12 [0, 12, 0, 0, 0, 0]

P14 0 0 (48) 0 (2) 1 (24) 0 0 [0, 0, 0, 0, 5, 0]

P15 0 2 (100) + 2 (2) 2 (36) 0 0 [12, 0, 0, 0, 0, 0]

P16 0 0 (125) + 1 (2) 2 (48) 0 0 [0, 0, 14, 0, 0, 0]

P17 1 1 (68) + 4 (2) 2 (36) 0 − 12 [7, 1, 0, 0, 0, 0]

P18 0 2 (100) + 2 (2) 2 (36) 0 0 [11, 0, 0, 0, 0, 0]

P19 0 1 (100) + 2 (2) 2 (36) 0 12 [0, 0, 12, 0, 0, 0]

P20 0 2 (100) + 8 (2) 2 (36) 0 0 [0, 0, 13, 0, 0, 0]

P21 0 1 (100) + 2 (2) 2 (36) 0 12 [0, 0, 0, 13, 0, 0]

P22 0 2 (150) 0 (2) 2 (36) 0 0 [7, 0, 0, 13, 0, 0]

P23 0 1 (100) + 2 (2) 2 (36) 0 − 12 [0, 0, 0, 12, 0, 0]

P24 0 1 (100) + 2 (2) 2 (36) 0 12 [0, 0, 12, 0, 0, 0]

P25 0 0 (125) − 11 (2) 2 (48) 0 0 [13, 0, 0, 0, 0, 0]

P26 0 1 (100) + 2 (2) 2 (36) 0 12 [0, 0, 0, 0, 12, 0]

P27 0 2 (100) + 2 (2) 2 (36) 0 0 [0, 0, 0, 12, 0, 0]

P28 0 2 (100) + 2 (2) 2 (36) − 12 0 [0, 0, 0, 14, 0, 0]

P29 0 1 (100) + 8 (2) 2 (36) 0 − 12 [10, 0, 0, 0, 0, 0]

P30 0 2 (100) − 4 (2) 2 (36) 0 0 [0, 11, 0, 0, 0, 0]

P31 0 1 (100) + 2 (2) 2 (36) 0 − 12 [0, 7, 5, 0, 0, 0]

P32 0 2 (100) − 4 (2) 2 (36) 0 0 [0, 0, 11, 0, 0, 0]

P33 0 1 (65) + 1 (2) 1 (24) 0 12 [0, 0, 1, 0, 7, 0]

P34 0 2 (100) − 4 (2) 2 (36) 0 0 [0, 0, 0, 0, 12, 0]

P35 0 2 (125) − 5 (2) 2 (36) 0 0 [0, 0, 0, 0, 0, 16]

P36 0 1 (100) + 2 (2) 2 (36) 0 12 [0, 0, 0, 12, 0, 0]

P37 0 1 (125) + 7 (2) 2 (36) 0 − 12 [0, 0, 0, 0, 11, 5]

P38 1 1 (100) − 4 (2) 2 (36) 0 − 12 [0, 0, 0, 0, 11, 0]

P39 0 2 (125) − 11 (3) 2 (36) 0 0 [0, 0, 0, 0, 0, 12]

P40 0 0 (100) + 2 (2) 1 (36) − 12 0 [0, 0, 0, 14, 0, 0]

123



386 Annals of Operations Research (2021) 302:363–390

Table 8 continued

Name S1 S4 S5/S6 S7 S8 S10 S12

P41 0 1 (100) + 2 (2) 2 (36) 0 − 12 [0, 7, 0, 0, 5, 0]

P42 0 1 (100) + 2 (2) 2 (36) 0 12 [3, 10, 0, 0, 0, 0]

P43 0 1 (100) + 2 (2) 2 (36) 0 − 12 [0, 5, 7, 0, 0, 0]

P44 0 1 (100) + 2 (2) 2 (36) 0 12 [0, 0, 0, 0, 0, 13]

P45 0 1 (100) + 2 (2) 2 (36) 0 − 12 [3, 9, 0, 0, 0, 0]

P46 0 1 (125) − 5 (2) 2 (36) 0 − 12 [0, 0, 0, 0, 0, 15]

P47 0 1 (125) − 5 (2) 2 (36) 0 − 12 [0, 0, 0, 0, 0, 15]

P48 0 1 (125) − 11 (2) 2 (36) 0 12 [0, 0, 0, 0, 0, 14]

Overtime: 99 h; debt: 64 h; difference: + 35 h

S8 provides the ideal number of worked hours on non-business days in parentheses, where
positive and negative values indicate if the physician worked more or less than the ideal.
These ideal hours vary from one physician to another, depending on the total number of
working hours and the seniority of the contract. Column S10 presents the difference between
worked day and night shifts (day–night) for which the result should, ideally, be zero. Finally,
column S12 details the number of times a physician was allocated for each area. For example,
Physician 1 was scheduled to work ten times at Area2 and zero times in other areas (in the
example there are six areas).

From Table 8, it can be observed that there are a low number of violations concerning
constraint maximum number of consecutive worked night shifts (S1). The maximum num-
ber of worked weekends (S7), which for the majority of physicians was limited to two,
had no violations. The same tendency is observed for ideal working hours on non-business
days (S8), which was always equal or below the stipulated value. Although incomplete
worked weekends (S4) presented a few violations, they were still within an acceptable
range. Constraint S10 only presented multiples of 12 violations because this is the min-
imum number of working hours on non-business days. This constraint presented more
violations, but it is acceptable given the reduced number of assigned areas (S12), which
is desirable.

Table 8, which represents April of 2019, was a month where almost all physicians were
available the entire month contributing to less overtime. Because of that, some physicians
worked fewer hours than their contract stipulates. Before the solverwas implemented,manual
rosters were deployed to the physicians with an average of 400 overtime hours.

Table 9, which corresponds to May of 2019, had more physicians on vacation compared
to Table 8 (April of 2019). Overtime was also more prevalent (+ 231), however, still far
below the average (+ 400) when the roster was organized manually. Another consequence is
the number of working hours on non-business days (S8) and the day and night shift balance
(S10), which presented more violations compared to the previous month.

Managers considered the presented resultsmuch better than those generatedmanually. The
primary reasons being the reduction of overtime, better distribution of overtime and working
hours on non-business days between physicians. Another important remark is the reduction
of mistakes in the roster. For example, scheduling a physician for a Night shift on the last
day of the previous month and an Early or Late shift the first day of the next month, was a
common error when the rosters were organized manually. Moreover, the development of the
overview tables improved the transparency of how the rosters are prepared and organized.
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Table 9 May 2019—Roster analysis

Name S1 S4 S5/S6 S7 S8 S10 S12

P1 0 1 (104) + 4 (2) 2 (36) 0 − 12 [0, 10, 0, 0, 0, 0]

P2 0 2 (52) + 8 (2) 2 (24) 0 0 [6, 0, 0, 0, 0, 0]

P3 0 2 (104) + 4 (2) 2 (36) 0 0 [7, 0, 0, 0, 9, 0]

P4 0 1 (72) 0 (2) 2 (24) + 12 − 12 [7, 0, 0, 0, 0, 0]

P5 0 1 (52) + 2 (2) 1 (24) 0 12 [0, 7, 0, 0, 0, 0]

P6 0 0 (130) + 8 (2) 1 (36) 0 24 [0, 13, 0, 6, 0, 0]

P7 0 2 (104) + 4 (2) 2 (36) 0 0 [0, 10, 0, 2, 0, 0]

P8 0 0 (60) 0 (2) 1 (24) 0 0 [0, 0, 0, 0, 6, 0]

P9 0 0 (86) + 10 (2) 1 (24) 0 0 [0, 10, 0, 0, 0, 0]

P10 0 1 (104) + 4 (2) 2 (36) 0 12 [0, 11, 0, 0, 0, 0]

P11 0 0 (52) + 2 (2) 1 (24) 0 0 [6, 0, 0, 0, 0, 0]

P12 0 2 (104) + 4 (2) 2 (36) 0 0 [9, 0, 4, 0, 0, 0]

P13 0 1 (104) + 4 (2) 2 (36) 0 − 12 [0, 9, 0, 3, 0, 0]

P14 0 1 (30) + 6 (2) 1 (12) 0 12 [0, 0, 0, 0, 4, 0]

P15 0 0 (104) + 4 (2) 1 (36) 0 0 [10, 3, 0, 0, 0, 0]

P16 0 0 (130) + 2 (2) 2 (48) 0 0 [0, 0, 16, 0, 0, 0]

P17 0 1 (104) + 4 (2) 2 (36) 0 − 12 [10, 0, 0, 0, 0, 0]

P18 0 1 (104) + 10 (2) 2 (36) 0 − 12 [9, 0, 0, 0, 3, 0]

P19 0 2 (116) + 10 (2) 2 (36) 0 0 [0, 0, 14, 0, 0, 0]

P20 0 0 (104) + 4 (2) 2 (36) + 12 0 [0, 0, 12, 0, 0, 0]

P21 0 0 (104) + 4 (2) 1 (36) 0 0 [0, 0, 0, 12, 0, 0]

P22 0 2 (156) + 6 (2) 2 (36) 0 0 [5, 0, 0, 13, 3, 0]

P23 0 2 (88) + 2 (2) 2 (24) 0 0 [0, 0, 0, 10, 0, 0]

P24 0 0 (104) + 4 (2) 2 (36) + 12 0 [0, 0, 12, 0, 0, 0]

P25 0 1 (95) + 1 (2) 2 (36) 0 12 [8, 0, 0, 0, 4, 0]

P26 0 2 (104) + 4 (2) 2 (36) 0 0 [0, 0, 0, 0, 12, 0]

P27 0 2 (104) + 4 (2) 2 (36) 0 0 [0, 0, 0, 14, 0, 0]

P28 0 2 (52) + 2 (2) 2 (24) 0 0 [0, 0, 0, 6, 0, 0]

P29 0 0 (104) + 4 (2) 2 (36) + 12 0 [11, 0, 0, 0, 0, 0]

P30 0 2 (104) + 4 (2) 2 (36) 0 0 [0, 11, 0, 0, 0, 0]

P31 0 0 (104) + 4 (2) 2 (36) + 12 0 [7, 4, 0, 0, 0, 0]

P32 0 2 (104) + 10 (2) 2 (36) 0 0 [0, 0, 13, 0, 0, 0]

P33 0 1 (104) + 10 (2) 2 (36) 0 − 12 [0, 0, 0, 0, 14, 0]

P34 0 2 (52) + 2 (2) 2 (24) 0 0 [0, 0, 0, 0, 6, 0]

P35 0 1 (130) + 8 (2) 2 (36) 0 − 12 [0, 0, 0, 0, 0, 18]

P36 0 0 (104) + 4 (2) 2 (36) + 12 0 [0, 0, 0, 13, 0, 0]

P37 0 0 (130) + 8 (2) 2 (36) + 12 0 [0, 0, 0, 0, 11, 6]

P38 0 2 (104) + 4 (2) 2 (36) 0 0 [0, 0, 0, 0, 13, 0]

P39 0 2 (130) + 2 (3) 3 (36) + 12 0 [0, 3, 0, 0, 0, 12]
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Table 9 continued

Name S1 S4 S5/S6 S7 S8 S10 S12

P40 0 0 (104) + 4 (2) 2 (36) + 12 0 [0, 0, 0, 14, 0, 0]

P41 0 0 (104) + 4 (2) 2 (36) + 12 0 [0, 11, 0, 0, 1, 0]

P42 0 0 (104) + 10 (2) 2 (36) + 12 0 [2, 10, 0, 0, 0, 0]

P43 0 1 (104) + 4 (2) 2 (36) + 12 12 [0, 0, 0, 0, 0, 13]

P44 0 0 (104) + 10 (2) 2 (36) + 12 0 [7, 3, 0, 0, 0, 4]

P45 0 2 (52) + 8 (2) 2 (24) 0 − 24 [0, 0, 0, 0, 0, 6]

P46 0 1 (130) + 8 (2) 2 (36) 0 − 12 [0, 0, 0, 0, 0, 18]

P47 1 1 (130) + 2 (2) 2 (36) + 12 36 [0, 0, 0, 0, 0, 16]

Overtime: 231 h; debt: 0 h; difference: + 231 h

7 Conclusions

The present paper proposed an integer programming formulation and a fix-and-optimize
matheuristic for the PRP. Moreover, a comparison between constraints present in the NRP
and the studied PRPdemonstrate similarities and differences between these problems.Abasic
modelwas developed, addressing themost common constraints to generate a physician roster.
The extended model aims to improve the balance of overtime, working hours during non-
business days and working hours during day and night shifts. Such constraints are important
to be considered when real-world solving methods are developed because the resulting roster
is fair between the scheduled physicians.

Computational experiments indicate that both MIP solvers, CPLEX and Coin-OR CBC,
were capable of generating optimal and near-optimal results, respectively, when solving small
instances with up to 50 physicians. For these small instances, the computation times of Coin-
OR CBC were similar to CPLEX. Open-source solver such as Coin-OR CBC, therefore, is
a suitable alternative to commercial solvers when the number of physicians to schedule is
limited. For larger instances, with 100 and 150 physicians, both solvers were unable to find
feasible solutions in most of the instances within an acceptable computation time limit.

A fix-and-optimize matheuristic was proposed to improve these results employing the
standalone solvers. Near-optimum results were generated for instances with 50 physicians
in 10 min. Moreover, utilizing instances with 100 and 150 physicians, even with short com-
putation time limits (20 and 30 min), the F&O matheuristic generated good results. For the
larger instances (150 physicians) the LAHC proposed by Sanchotene et al. (2018) obtained
slightly better results when compared to the F&O matheuristic.

Manual rosters had an average of 400 h of overtime. This number was reduced to 35 and
231 using the proposed IP formulation in April and May of 2019. The primary reason for the
significant reduction is due to the capability of physician reallocation in different locations.
It was not possible with manual scheduling because the number of possibilities for a human
to organize the roster rendered the problem very difficult to solve manually. Optimality for
instances with 100 and 150 physicians was not proved.

The development of a general personnel rostering model covering constraints present
in both nurse and physician rostering problems is a perspective for future research. Such
a model would have the advantage of covering several constraints present in real-world
scenarios, maximizing the possibility of its applicability in practice.

123



Annals of Operations Research (2021) 302:363–390 389

Acknowledgements The authors would like to thank staff members of Hospital de Clínicas de Porto Alegre
(HCPA) that collaboratewith thiswork.Alberto F.KummerNetowould like to thank theCAPES–Coordination
for the Improvement of Higher Education Personnel–for his doctoral scholarship. This research has the support
of FAPERGS, Project PqG 17/2551-0001201-1.

References

Beaulieu, H., Ferland, J. A., Gendron, B., & Michelon, P. (2000). A mathematical programming approach for
scheduling physicians in the emergency room. Health Care Management Science, 3(3), 193–200.

Bilgin, B., Demeester, P., Mısır, M., Vancroonenburg, W., Vanden Berghe, G., &Wauters, T. (2010). A hyper-
heuristic combined with a greedy shuffle approach to the nurse rostering competition. In Proceedings of
the 8th international conference on the practice and theory of automated Timetabling (PATAT’10).

Bruni, R., & Detti, P. (2014). A flexible discrete optimization approach to the physician scheduling problem.
Operations Research for Health Care, 3(4), 191–199.

Brunner, J. O., Bard, J. F., & Kolisch, R. (2009). Flexible shift scheduling of physicians. Health Care Man-
agement Science, 12(3), 285–305.

Brunner, J. O., & Edenharter, G. M. (2011). Long term staff scheduling of physicians with different experience
levels in hospitals using column generation. Health Care Management Science, 14(2), 189–202.

Burke, E. K., & Curtois, T. (2011). New computational results for nurse rostering benchmark instances.
Technical report. Retrieved September 30, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.227.6178&rep=rep1&type=pdf.

Burke, E. K., De Causmaecker, P., Petrovic, S., & Vanden Berghe, G. (2006). Metaheuristics for handling time
interval coverage constraints in nurse scheduling. Applied Artificial Intelligence, 20(9), 743–766.

Burke, E. K., Li, J., & Qu, R. (2010). A hybrid model of integer programming and variable neighbourhood
search for highly-constrained nurse rostering problems. European Journal of Operational Research,
203(2), 484–493.

Ceschia, S., Dang, N., De Causmaecker, P., Haspeslagh, S., & Schaerf, A. (2019). The second international
nurse rostering competition. Annals of Operations Research, 274(1), 171–186.

Della Croce, F., & Salassa, F. (2014). A variable neighborhood search based matheuristic for nurse rostering
problems. Annals of Operations Research, 218(1), 185–199.

Erhard, M., Schoenfelder, J., Fügener, A., & Brunner, J. O. (2018). State of the art in physician scheduling.
European Journal of Operational Research, 265(1), 1–18.

Ernst, A., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of
applications, methods and models. European Journal of Operational Research, 153(1), 3–27.

Gomes, R. A.M., Toffolo, T. A.M., & Santos, H. G. (2017). Variable neighborhood search accelerated column
generation for the nurse rostering problem. Electronic Notes in Discrete Mathematics, 58, 31–38.

Gunawan, A., &Lau, H. C. (2013).Master physician scheduling problem. Journal of the Operational Research
Society, 64(3), 410–425.

Haspeslagh, S., De Causmaecker, P., Schaerf, A., & Stølevik, M. (2014). The first international nurse rostering
competition 2010. Annals of Operations Research, 218(1), 221–236.

Legrain, A., Omer, J., &Rosat, S. (2019). A rotation-based branch-and-price approach for the nurse scheduling
problem. Mathematical Programming Computation,. https://doi.org/10.1007/s12532-019-00172-4.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Stützle, T., & Birattari, M. (2016). The irace pack-
age: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.
https://doi.org/10.1016/j.orp.2016.09.002.

Petrovic, S., & Vanden Berghe, G. (2012). A comparison of two approaches to nurse rostering problems.
Annals of Operations Research, 194(1), 365–384.

Puente, J., Gómez, A., Fernández, I., & Priore, P. (2009). Medical doctor rostering problem in a hospital
emergency department by means of genetic algorithms. Computers & Industrial Engineering, 56(4),
1232–1242.

Römer, M., & Mellouli, T. (2016). A direct MILP approach based on state-expanded network flows and
anticipation for multi-stage nurse rostering under uncertainty. In Proceedings of the 11th international
confenference on practice and theory of automated timetabling (PATAT-2016) (pp. 549–551).

Rousseau, L. M., Pesant, G., & Gendreau, M. (2002). A general approach to the physician rostering problem.
Annals of Operations Research, 115(1), 193–205.

Salassa, F., & Vanden Berghe, G. (2012). A stepping horizon view on nurse rostering. In Proceedings of
the 9th international confenference on practice and theory of automated timetabling (PATAT-2012) (pp.
161–174).

123



390 Annals of Operations Research (2021) 302:363–390

Sanchotene, T. C., Buriol, L. S., & Kummer Neto, A. F. (2018). Abordagem Heurística para Solução do
Problema de Alocação de Médicos do HCPA. Retrieved September 23, 2019, from https://lume.ufrgs.
br/handle/10183/185051.

Santos, H. G., Toffolo, T. A. M., Gomes, R. A. M., & Ribas, S. (2016). Integer programming techniques for
the nurse rostering problem. Annals of Operations Research, 239(1), 225–251. https://doi.org/10.1007/
s10479-014-1594-6.

Smet, P. (2018). Constraint reformulation for nurse rostering problems. InProceedings of the 12th international
conference of the practice and theory of automated timetabling (pp 69–80).

Stolletz, R., & Brunner, J. O. (2012). Fair optimization of fortnightly physician schedules with flexible shifts.
European Journal of Operational Research, 219(3), 622–629.

Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., & Housos, E. (2012). A systematic two phase approach for
the nurse rostering problem. European Journal of Operational Research, 219(2), 425–433.

Van Huele, C., & Vanhoucke, M. (2014). Analysis of the integration of the physician rostering problem and
the surgery scheduling problem. Journal of Medical Systems, 38(6), 43.

Wickert, T. I., Sartori, C., & Buriol, L. S. (2016). A fix-and-optimize VNS algorithm applied to the
nurse rostering problem. In Proceedings of the 6th international workshop on model-based meta-
heuristics (Matheuristics-2016) (pp. 1–12). Retrieved September 30, 2019, from http://iridia.ulb.ac.be/
IridiaTrSeries/link/IridiaTr2016-007.pdf.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


