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Abstract
Most microeconomic and game theoretic models of individual choice overlook adjustment
costs. Rather often, the modeler’s concern is just with improvement of objectives. This
optic doesn’t quite fit agents somewhat tied to status quo. If rational, any such agent reasons
whethermoving to another state beworth his while. For that, the realized gainsmust outweigh
the inconveniences of the move. Choosing games as chief setting, this paper offers some
observations as to the fact that strategy change usually entails cost.

Keywords Adjustment costs · Proximal methods · Stationary states · Games

1 Introduction

Game theory and microeconomics—henceforth just called theory—abounds in agent-based
models of decision problems. However, even among those models concerned with just a
single agent, many display three objectionable features. First, the concerned agent should,
with little or no hesitation, leap directly to a best choice. Second, his behavior ought be totally
goal-oriented—and never affected by any cost of change. Third, he is often depicted as fully
detached from history, precedence or status quo.

Such modelling of individual behavior begs immediate objections. Indeed, an agent’s
choice may emerge step-wise; his cost of change can be considerable; and each arrival stems
from some point of departure.

It’s comforting therefore, that algorithms geared toward best or better choice, have—at
least since Cauchy (1847)—been coached as iterative processes. These require more than just
one step. It also comforts that recent decades have brought forward procedures that expressly
account for adjustment costs.1

If several agents take part, an important fourth feature adds extra complexity, namely:
How can participants foresee or observe actions taken by others—and respond to these?

1 References include (Attouch and Bolte 2009; Attouch and Soubeyran 2011; Attouch and Peypouquet 2019;
Flåm and Antipin 1997; Iusem et al. 2003; Rockafellar 1976) and Teboulle (1997). Many of these use the label
“ proximal point ” algorithm, and most rely on maximal monotonicity.
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Regrettably, much theory sidesteps all four features. In fact, large parts move straight to
steady states or terminal outcomes, if any, called equilibria (Osborne and Rubinstein 1994;
Vega-Redondo 2003). Thereby, many studies shun queries as to equilibrium emergence and
strategic learning (Fudenberg and Levine 1994; Peyton Young 2004). Serious issues about
perfection, selection and stability of equilibrium then escape attention (van Damme 1991;
Harsanyi and Selten 1988; Samuelson 1997; Selten 1975).

In social sciences, various concepts of steady-state solutions exert considerable attraction—
for good reasons. Each instance describes how parties behave, communicate or fare in
equilibrium. However, off such special states, the underlying concept can, by itself, hardly
explain attainment of a solution.2 To emphasize or justify some “focal” state as particularly
plausible, at least one stable process ought eventually approximate or reach that distinguished
outcome (Fisher 1983).

Two hypotheses have often been invoked to this end. Either is tempting but neither quite
attractive. One posits that agents, even out of equilibrium, behave as in it. The other presumes
that each party acts throughout as though fully foresighted, marvelously competent, and
perfectly rational.

More realistic approaches ought tolerate imperfections in agents’ capacities to choose,
foresee or know.3 Accordingly, here below, local perceptions replace global views, and
improvements substitute for full optimization. While seeking own betterment, agents adapt,
but usually in somewhat moderate or myopic manner (Miller and Page 2007) . If so, might
they eventually come to a halt? And then, where?

These questions motivate the paper. For preparation, Sect. 2 considers just one agent,
isolated from others. By contrast, Sect. 3 lets him play normal-form games among non-
cooperative strategists. Then, convexity, in one form or another, plays important roles.
Section 4 dispenses with convexity, letting play unfold in metric spaces. Provided cost of
change exceeds the distance, the metric setting may frame proximal procedures and Nash
equilibria in new manners; see Theorem 4.1 and its corollary. Section 5 concludes by briefly
considering extensive-form games of Stackelberg variety.

The two main novelties come late in the paper: Theorem 4.2 leans on Caristi’smetric fixed
point theorem to consider existence of strong Nash equilibria. Theorem 5.1 contends with
topological assumptions for convergence to Stackelberg solutions of the principal-agent sort.

The paper addresses various readers. Included are operation researchers and computer
scientists concerned with multi-agent interaction, optimizers using proximal procedures, and
theorists who consider fixed points or games in metric spaces.

2 Preliminaries concerning the single agent

This section introduces notations and preliminaries. To begin with, and to simplify, it consid-
ers just one agent.4 Actually, he holds a “position” x . If deviating from x to x̂ , that transition
gives him net benefit b(x̂ |x ). His improvement or betterment

(x̂, x) �→ b(x̂ |x ) ∈ R∪ {−∞}

2 For examle, in markets, how might price-taking behavior emerge (Fisher 1983; Flåm 2019)?
3 To emphasize agents’ bounded rationality appears condescending, not quite in line with the ethos of
economics. Likewise, methaphors about muddling through can hardly help or guide analysis.
4 The two results of this section hold though, in the multi-agent settings of Sects. 3 and 4.
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equals −∞ if (x̂, x) /∈ X × X for some non-empty viability set X in the ambient space
X of alternatives. The “probabilistic” notation b(x̂ |x ) emphasizes that the agent, while
conditioned by his point of departure x , seeks a suitable point of arrival x̂ . In particular,
given x ∈ X , he might

maximize b(x̂ |x ) subject to x̂ ∈ X . (1)

Many formalized decision problems mention no point of departure - or implicitly, regard the
latter to be of no or negligible importance. Moreover, upon leaping directly to a very best
choice, the agent seemingly incurs no cost for “dislodging” himself. 5 To wit, classical and
customary instances let

b(x̂ |x ) = β(x̂) − β(x)

for some gross benefit function β : X → R∪ {−∞}, having effective domain X := β−1(R).
Since x is sunk already, this model incorporates no adjustment costs. The agent in ques-
tion appears fully goal-driven—and never troubled by friction or inertia. More realistically,
proximal point methods (Rockafellar 1976; Teboulle 1997) posit

b(x̂ |x ) = β(x̂) − β(x) − c(x̂ |x ) (2)

for some (adjustment) cost function c : X × X → R+∪ {+∞} which vanishes on the
diagonal: c(x |x ) = 0 ∀x ∈ X .6 No symmetry is presumed; it may well happen that
c(x̂ |x ) �= c(x

∣
∣x̂ ); the forward fare can differ from the backward one. It often appears

natural though, that c satisfies the triangle inequality: c(x̂ |x ) + c(x̌
∣
∣x̂ ) ≥ c(x̌ |x ). Then, (

2) makes a direct move x → x̌ preferable to any indirect one x → x̂ → x̌ .7

(2) supports the standing interpretation that b(x̂ |x ) denotes additional benefit in arrival
state x̂, net of cost c(x̂ |x ) incurred upon departing directly from x .

If x̂ = x, the agent stays put; otherwise, hemoves . Amove from x to x̂ is declared (strictly)
improving iff b(x̂ |x ) > 0. Naturally, suppose that staying put entails no improvement; that
is, b(x |x ) ≤ 0 for all x ∈ X . In many cases, b(x |x ) = 0.

Stationary states stand out by allowing no improvements. They solve problem (1) by
bringing up contingent fixed points:

Definition 2.1 (stationary states). x ∈ X is declared stationary for the bivariate mapping
(x̂, x) ∈ X × X �→ b(x̂ |x ) ∈ R iff

x ∈ argmax
{

b(x̂ |x ) : x̂ ∈ X
}

.

Each stationary point x makes b(· |x ) ≤ 0 on X , and in most cases b(x |x ) = 0.

This framing of the agent’s decision problem begs the question: Is there some stationary
state? The following positive (albeit particular) answer is just a restatement of Ky Fan’s
inequality (Aubin and Ekeland 1984; Fan 1972):

Theorem 2.1 (on existence of stationary states). Suppose X is a non-empty compact convex
subset of a topological vector space X. Also suppose b(x̂ |x ) be quasi-concave in x̂ ∈ X ,

lower semicontinuous in x ∈ X , and b(x |x ) ≤ 0 ∀x . Then there exists at least one stationary
state.

5 In extremis, such costs are sometimes construed as merely computational.
6 The assumption that c ≥ 0 isn’t innocous. It relates to the agent’s motivation (Scitovsky 1992). If c(x̂ |x ) <

0, he appreciates change per se. The paper doesn’t pursue this line of reasoning.
7 If moreover, c(x̂ |x ) = 0 ⇐⇒ x̂ = x, then adjustment cost is an asymmetric distance (Farokhinia and
Taslim 2013).
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Theorem 2.1 points to topological vector spaces as tractable settings. It also emphasizes
the important role of closed convex preferences.8

Granted existence of at least one stationary state, how might the agent eventually reach
one of those—and come to rest there? As in Polak (1997), Zangwill (1969) it’s convenient
to model his step-wise adjustments in terms of a point-to-set correspondence A : X ⇒ X . It
appears natural to have

A(x) ⊆ {

x̂ ∈ X : b(x̂ |x ) ≥ 0
}

. (3)

From some accidental or historical point x0 ∈ X , there emanates an iterative process

xk+1 ∈ A(xk), k = 0, 1, . . . (4)

Proposition 2.1 (on appropriate cluster points). Let X be a closed subset of a topological
space X. Suppose (4) generates a summable sequence k �→ b(xk+1

∣
∣xk ) ≥ 0. Further

suppose that each non-stationary point x ∈ X has some neighborhoodN and number δ > 0
such that

b(χ̂ |χ ) ≥ δ for all χ̂ ∈ A(χ) when χ ∈ X ∩ N . (5)

Then, either the sequence (xk) is finite with a stationary last point—or, every cluster point
of the infinite sequence must be stationary.

Proof. In the viable set X , let x = limk∈K xk for some infinite subsequence K of natural
numbers. Suppose x isn’t stationary. With no loss of generality, take xk ∈ N for all k ∈ K .

Then, it obtains the contradiction

+∞ >

∞
∑

k=0

b(xk+1
∣
∣
∣xk ) ≥

∑

k∈K
b(xk+1

∣
∣
∣xk ) = +∞.

Granted (3), if process (4) reaches a stationary point x (Definition 2.1), and

x̂ ∈ A(x)& x̂ �= x �⇒ b(x̂ |x ) > 0, (6)

then
A(x) = {x} and b(x |x ) = 0. (7)

For these reasons, instance (2) and (3), always with c ≥ 0, will be central and henceforth
called the workhorse model.

The results of this section apply directly to interaction among several agents i ∈ I , each
just choosing his component xi of an overall profile x = (xi ). Such settings are commonly
framed as games—considered next.

3 Non-cooperative games

Henceforth I always denotes a finite ensemble of “players”, at least two of them. Then, by
a strategy profile x = (xi ) is meant a mapping i ∈ I �→ xi ∈ Xi where Xi is a non-empty
“viability set” in some ambient space Xi of alternatives. Let X := �i∈IXi . Further, posit
X := �i∈I Xi , except under other notice.

Given a strategy-profile x = (xi ) ∈ X , suppose member i ∈ I anticipates net benefit
bi (x̂i |x ) ∈ R upon deviating unilaterally, within his viability set Xi , from actual strategy

8 Section 4 specializes to metric spaces but dispenses with convexity.
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xi to another one x̂i . Then, by assumption, bi (x̂i |x ) already incorporates eventual cost of
change. In terms of the residual profile x−i := (x j ) j �=i , actually implemented by his rivals,
player i acts as though the updated version equals (x̂i , x−i ). That belief is justified iff he
alone deviates.

Definition 3.1 (Non-cooperative stationary states). A strategy profile x = (xi ) ∈ X is
declared multi-agent stationary (or simply stationary) iff

xi ∈ argmax
{

bi (x̂i |x ) : x̂i ∈ Xi
} ∀i ∈ I . (8)

In much studied, but special instances, multi-agent stationarity adds nothing to the concept
of Nash equilibrium (Osborne and Rubinstein 1994):

Proposition 3.1 (on multi-agent stationary states as Nash equilibria). Suppose player i ∈ I
worships gross benefit βi : X → R∪ {−∞} , with domβi := β−1

i (R) = X, and that

bi (x̂i |x ) = βi (x̂i , x−i ) − βi (xi , x−i ). (9)

Then, a state x ∈ X is multi-agent stationary ( 8) iff it’s a Nash equilibrium of the non-
cooperative game G := (βi , Xi )i∈I , meaning

xi ∈ argmax
{

βi (x̂i , x−i ) : x̂i ∈ Xi
} ∀i ∈ I .

It’s objectionable that Proposition 3.1 mentions no adjustment costs. Each player agent
appears fully goal-driven. Nobody is ever troubled by friction or inertia. More realistically,
instead of (9), following the lead of proximal point methods and workhorse model (2) , (3),
one may posit

bi (x̂i |x ) = βi (x̂i , x−i ) − βi (x) − ci (x̂i |x ) (10)

for some cost function ci : Xi ×X → R+∪ {+∞}which is nil when x̂i = xi .9 That function
could be asymmetric in the agent’s own arguments (x̂i , xi ). The dependence of ci (x̂i |x )

on the entire profile x fits games featuring congestion (Rosenthal 1973) or use of common
resources (Flåm 2017). That feature of (10) differs from the two-player games in Attouch
et al. (2007) where ci (x̂i |x ) = ci (x̂i |xi ).

If a Nash solution isn’t unique, (10) also bears on equilibrium refinement, selection and
stability (van Damme (1991); Harsanyi and Selten (1988)) ; see the remark below on strong
equilibria, motivating Theorem 4.2. While x̂i �→ βi (x̂i , x−i ) is the customary Nash max-
imand, (10) subtracts a perturbation ci (x̂i |x ) ≥ 0 which disappears in equilibrium but is
apt to affect behavior elsewhere; see Geanakoplos (2000).10 Indeed, out of equilibrium,
considerable cost of change may steady a player’s trembling hand and focus his mind.

Inwhatever form, bi (x̂i |x ) is meant tomeasure cardinal betterment for player i .Contend-
ing with ordinal comparisons, there is a noteworthy link to characterization and existence
of stationary points:

Proposition 3.2 (on concave ordinal improvements). For each i ∈ I , suppose Xi is a non-
empty compact convex subset of some topological vector space Xi . Further suppose that

bi (x̂i |x ) > 0 �⇒ βi (x̂i , x−i ) > βi (x) (11)

9 Provided (10) be concave in x̂i and continuous in x, the function b(x̂ |x ) := ∑

i∈I bi (x̂i |x ) fits Theo-
rem 2.1.
10 Conversely, costs of change could— by way of coercion, habit formation or inertia—lock agents into
equilibria which otherwise would not withstand minor nudges.
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with gross benefit function βi : X → R concave in x̂i ∈ Xi and jointly continuous in x ∈ X .

Then, there exists at least one Nash equilibrium in the game G = (βi , Xi )i∈I . Each such
equilibrium x is stationary (Definition 2.1) for

b(x̂ |x ) :=
∑

i∈I
[βi (x̂i , x−i ) − βi (x)]. (12)

When moreover, bi (xi |x ) = 0 ∀i, that equilibrium is multi-agent stationary (8).

Proof b(x̂ |x ) is concave in x̂, continuous in x, and b(x |x ) = 0 for all x ∈ X . By Ky Fan’s
inequality (Theorem 2.1 ), there exists a point x ∈ X such that b(x̂ |x ) ≤ 0 for all x̂ ∈ X .

Consequently, βi (x̂i , x−i ) ≤ βi (x) for each x̂i ∈ Xi and i ∈ I . So, x = (xi ) is a Nash
equilibrium and stationary (Definition 2.1) for (12). Provided bi (xi |x ) = 0 ∀i, condition (8)
is also satisfied.

Maintaining the conditions on βi , Proposition 3.2 fits the instance (10) when ci (x̂i |x ) ≥ 0
is convex in x̂i and continuous in x . Then, it also enters within the frames of Theorem 3.1.

Monderer and Shapley (1996) studied non-cooperative games G = (βi , Xi )i∈I in which

βi (x̂i , x−i ) − βi (x) > 0 �⇒ P(x̂i , x−i ) − P(x) > 0

for some player-independent generalized ordinal potential P : X → R∪ {−∞}with P finite
on X . Then, P may replace βi in (11).

In many games, strategic interaction works via objectives and constraints; see (Flåm
and Ruszczyński 2008; Flåm 2017) and references therein. In fact, besides the individual
restrictions that xi ∈ Xi ∀i, choice could also be subject to coupling constraints in that each
strategyprofile x = (xi )must belong to a non-empty, “non-rectangular” subset X � �i∈I Xi .
Then, still with cost of strategy change embedded in bi (x̂i |x ), letting

b(x̂ |x ) :=
∑

i∈I
bi (x̂i |x ), (13)

a profile x ∈ X is stationary—and declared a generalized Nash equilibrium - iff (Defini-
tion 2.1) holds. Theorem 2.1 immediately entails

Theorem 3.1 (on stationary states and generalized Nash equilibria). Suppose X is a non-
empty compact convex subset of a topological vector space X. If (x̂, x) ∈ X × X �−→
b(x̂ |x ) ∈ R(13) is quasi-concave in x̂ , lower semicontinuous in x, and b(x |x ) ≤ 0, then
there exists a generalized Nash equilibrium.

Remark (on strongNash equilibria). Present several players, expression (13) hides, or glosses
over, the important fact that, in general, individual benefits need neither be comparable nor
transferable—whence do not easily add to form a meaningful overall criterion. So, while
format (13) may shed light on computation or existence of stationary points, it doesn’t
necessarily suit models of disequilibrium dynamics.

All the same, workhorse instance (2), (3) is apt to select strong Nash equilibria, with-
standing joint deviations of several players. Partly for that reason, partly for the value a
non-standard, novel setting, the next section lets the said instance be central.
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4 Cost of displacement in metric spaces

This section specializes one feature but generalizes another. The space X is metric now
but convexity plays no role any longer. A main motivation is to loosen the grips convexity
conditions hold on game theory.

Here, to bring different problems under a common umbrella and save space, x ∈ X

denotes either the position of an isolated optimizer or the strategy profile x = (xi ) of several
interacting agents i ∈ I .

For greater flexibility in modelling step-wise adaptations, one may replace the time-
invariant A in (4) with stage-dependent correspondences Ak : X ⇒ X to have

xk+1 ∈ Ak(xk), k = 0, 1, . . . (14)

Definition 4.1 (On asymptotic closure and regularity) In a metric space (X, d), a limiting
correspondence A : X ⇒ X closes the sequence (Ak) if

(x̂ k, xk) → (x̂, x) with x̂ k ∈ Ak(xk) implies x̂ ∈ A(x). (15)

(Ak) is declared asymptotically regular if xk+1 ∈ Ak(xk) yields d(xk+1, xk) → 0.11

The rest of this section only considers workhorse model (2), (3) with c ≥ 0. Suppose the
effective domain domβ := β−1(R) =: X of the gross benefit function β : X → R∪ {−∞}
is closed.

For illustration of (14), replace functions β, c with stage-dependent versions βk :
X → R∪ {−∞}, domβk containing X , ck : X × X → R+∪ {+∞} , and posit

Ak(x) :=
{

x̂ ∈ X : βk+1(x̂) − βk(x) ≥ ck(x̂ |x )
}

. (16)

Proposition 4.1 (on convergence). Let (X, d) be complete metric, X ⊆ X non-empty closed
, and the sequence Ak (16) closed by the workhorse correspondence

x ∈ X ⇒ A(x) = {

x̂ ∈ X : β(x̂) − β(x) ≥ c(x̂ |x ) ≥ 0
}

.

Suppose any sequence xk+1 ∈ Ak(xk), k = 0, 1.. , has lim supβk(xk) finite and

ck(xk+1
∣
∣
∣xk ) ≥ δd(xk+1, xk)

for some number δ > 0. Then, (Ak) is asymptotically regular, and any sequence (xk)
generated by (14) & (16) converges to a stationary point (Definition 2.1).

Proof By telescoping,

+ ∞ > lim supβk(xk) − β0(x0) ≥
∞
∑

k=0

ck(xk+1
∣
∣
∣xk ) ≥ δ

∞
∑

k=0

d(xk+1, xk). (17)

Since the metric space is complete, (17) implies that xk → x for some unique limit x . Also
by (17), there is asymptotic regularity: d(xk+1, xk) → 0. Hence, by closure (15), x ∈ A(x),
and stationarity obtains.

Contendingwithout convexity here, existence of a stationary point (Definition 2.1) requires
other arguments. For such, a minor addition to Caristi’s theorem (Caristi 1976) will do:

11 Condition (15) requires that A contains or equals the graphical upper limit of (Ak ); see (Aubin and
Frankowska 1992).
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Theorem 4.1 (on singleton fixed points of a correspondence). Let the space (X , d) be com-
plete metric, A : X ⇒ X a point-to-set correspondence with non-empty values, and
β : X → R bounded above, upper semicontinuous. If, for each x ∈ X and x̂ ∈ A(x),

β(x̂) − β(x) ≥ d(x̂, x), (18)

then, A has a fixed point x at which A(x) reduces to a singleton (7).

Proof following (Kirk 1976), is included for completeness. The binary relation

x̂ � x ⇐⇒ β(x̂) − β(x) ≥ d(x̂, x)

defines a partial order on X . Consider totally ordered subsets of X , all containing some fixed
reference point. By Zorn’s lemma, there exists a totally ordered X ⊆ X which is maximal
under set inclusion ⊆. Let X = {xn : n ∈ N } for some index set or “net” N , totally ordered
in the same manner: xn̂ � xn ⇐⇒ n̂ � n.

The net n ∈ N �→ β(xn) ∈ R is increasing. Being bounded above, limn↑ β(xi ) =: r ∈ R

is well defined (Kelley 1955). Consequently, given any ε > 0, there exists n(ε) ∈ N such
that

n � n(ε) �⇒ r ≥ β(xn) ≥ r − ε.

Therefore, if n̂ � n � n(ε), then

ε ≥ β(xn̂) − β(xn) ≥ d(xn̂, xn).

This proves that (xn)n∈N is a Cauchy net (Kelley 1955), hence has a limit x . Now, in the last
string, let n̂ ↑, and invoke the upper semicontinuity of β, to get

β(x) − β(xn) ≥ lim
n̂↑

β(xn̂) − β(xn) ≥ d(x, xn),

and thereby, x � xn . Since X is maximal under inclusion, x ∈ X . Also, for any x̂ ∈ A(x),
it follows from (18) that x̂ � x . So, again since X is maximal under inclusion, x̂ ∈ X . But
thereby, x � x̂ . The upshot is that {x} = A(x).

Specializing A to be the workhorse model (2) and (3), with c ≥ 0, it follows forthwith:

Corollary 4.1 (on singleton stationary point).Let (X , d) be a complete metric space, and
β : X → R bounded above, upper semicontinuous. For each x ∈ X , suppose the set

A(x) ⊆ {

x̂ ∈ X
∣
∣b(x̂ |x ) := β(x̂) − β(x) − c(x̂ |x ) ≥ 0

}

is non-empty, with c(· |x ) ≥ d(·, x) upper semicontinuous.12 Then, there exists a stationary
point x (Definition 2.1)at which

{x} = A(x) = argmax
{

x̂ ∈ X : b(x̂ |x )
}

.

Concluding this section is ametric existence theorem on strong Nash equilibrium. As cus-
tomary, a player may impact the objectives of others but, less common, also their constraints.
Moreover, the selected equilibrium becomes strong by withstanding joint deviations. From
Theorem & Corollary 4.1 follows directly:

12 Thus (6) and (7) hold.
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Theorem 4.2 (on strong Nash equilibria). Let agent i ∈ I choose his strategy xi in a subset
Xi of a complete metric space (Xi , di ). Suppose non-cooperative play be constrained to
a non-empty closed set X ⊆ �i∈I Xi in the product space X = �i∈IXi , endowed with
compatible metric d. Let agent i worship maximization of own benefit (xi , x−i ) = x ∈
X �→ βi (xi , x−i ) ∈ R, assumed bounded above and upper semicontinuous. Then, under
the hypotheses of Corollary 4.1, and using workhorse model A, with specification (12), there
exist a Nash equilibrium x ∈ X which is strong in that

(xi )i∈I =: xI ∈ argmax

{
∑

i∈I
βi (x̂I , x−I) : (x̂I , x−I) ∈ X

}

∀I ⊆ I .

5 Stackelberg games

Stationarity (8) captures non-cooperative equilibrium in strategic-form games where players
commit their moves once and simultaneously. That form hardly illuminates extensive-form
instances where players act step by step.13 In such games, some “protocol” governs who
moves next—on the basis of which information.

To illustrate some of the difficulties that emerge, this section concludes by considering, in
some generality, the most “simple” yet utterly important setting of Stackelberg sort (Lignola
and Morgan 2017). Merely two players take part: I = {±1}. Each moves just once but in
specific order.

The leading player 1 first chooses some x1 ∈ X1. Observing that choice, the other player
−1 responds, choosing some x−1 ∈ X−1. Thereafter, each collects his benefit βi (xi , x−i ).
Every set Xi is a compact topological space. As before, let X := �i∈I Xi .

In essence, the follower reduces to a strategic dummy. He is just an “agency”, a robot who
selects some best response

x−1 ∈ R(x1) := argmax
{

β−1(x̂−1, x1) : x̂−1 ∈ X−1
}

. (19)

By contrast, up front, the leader ought

maximize β1(x1,R(x1)) subject to x1 ∈ X1.

His task is often rather demanding. He had better foresee or guess— or outright be told—the
entire response correspondenceR(·) (19). Moreover, if someR(x1) isn’t a singleton, which
selection therein appears appropriate?14

Suppose the two agents play this stage game iteratively, each remembering his most
recent choice. Can they eventually learn—and implement—an equilibrium of the underlying
Nash–Stackelberg variety?15 For a positive answer, suppose players, upon entering stage
k = 0, 1, ..,withmost recent choices xki ∈ Xi , already sunk, use conditional benefit functions

(xi , x−i ) �→ βk
i (xi

∣
∣
∣xki , x−i ) ≤ βi (xi , x−i )∀i . (20)

13 Following Sect. 1.2.2 in Polak (1997), players might memorize the preceding path of play. Moreover,
history could affect continuation. These ideas are not pursued here.
14 He might then foresee some extremal response, giving him benefit β1(x1) :=
extr

{

β1(x1, x−1) : x−1 ∈ R(x1)
}

where extr = sup (resp. inf) reflects optimism (pessimism) (Lig-
nola and Morgan 2017).
15 Even computation of equilibrium is demanding or difficult; see the oligopolistic market setting studied in
Outrata and Valdman (2019).
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Inequality (20) reflects two features. First, agent i incurs some non-negative cost by deviating
from his last choice xki . Second, each conditional benefit β

k
i underestimates the true version

βi . Suppose that

xk →X x �⇒ lim supβk
1 (χ1

∣
∣
∣xk1 , xk−1) ≥ lim inf β1(χ1, x

k−1) ∀χ1 ∈ X1. (21)

Similarly, suppose the condition xk−1 →X−1 x−1 & χk →X χ implies

lim supβk−1(χ
k−1

∣
∣
∣xk−1 , χk

1 ) ≥ lim inf β−1(χ
k). (22)

Assumptions (21) and (22) capture that ultimately, as play settles, adjustment costs disappear.
For (21), provided the leader’s choice xk1 ∈ X1 converges to some x1, asymptotically his cost
of change doesn’t affect his benefit. For (22), provided xk−1 →X−1 x−1 and the strategy pair
χk ∈ X converges to some χ, asymptotically the follower’s cost of change has no impact on
his benefit.16

At stage k the leader believes or expects that the follower will apply a single-valued
response function rk : X1 → X−1—not necessarily a selection of R (19). His belief or
expectationmust, however, be approximately rational in so far as, for anymost recentχ1, χ−1,

βk−1(r
k(χ1) |χ−1 , χ1) ≥ sup

χ̂−1∈ X−1

βk−1(χ̂−1 |χ−1 , χ1) − εk with εk → 0+. (23)

On these premises, at stage k, the leader chooses an update

xk+1
1 ∈ Ak

1(x
k
1 ) := argmax βk

1 (·
∣
∣
∣xk1 , rk(·)). (24)

After observing xk+1
1 , the follower comes up with a best response

xk+1
−1 ∈ Ak−1(x

k−1, x
k+1
1 ) := argmax βk−1(·

∣
∣
∣xk−1 , xk+1

1 ). (25)

The resulting process is not construed as realizing equilibrium play in an infinitely repeated
stage game.More simply, the limit should just qualify as Nash outcome in a single interaction
over two stages. Note that because of the sequential mode of play, the coupled updates (24
), (25) do not fit (16). Nonetheless, it holds:

Theorem 5.1 (convergence in Stackelberg games). Let hypotheses (20)–(23) be in vigor.
Suppose each function x ∈ X �→ βi (x) is upper semicontinuous, and that the leader’s
objective β1(x1, x−1) is lower semicontinuous in x−1 ∈ X−1. Also suppose that for any
point χ = (χ1, χ−1) ∈ X and sequence χk

1 ∈ X1 → χ1, there exists a sequence χk−1 ∈
X−1 → χ−1 such that χk := (χk

1 , χk−1) yields

lim inf β−1(χ
k) ≥ β−1(χ). (26)

If rk converges continuously to some r : X1 → X−1, meaning

xk1 →X1 x1 �⇒ rk(xk1 ) → r(x1), (27)

then it holds for each limit x1 = lim xk1 ∈ X1 of the leader’s play (24) that

x1 ∈ argmax β1(·, r(·)) and x−1 := r(x1) ∈ argmax β−1(·, x1) = R(x1). (28)

16 (20) holds if

βk
i

(

xi
∣
∣
∣xki , xk−i

)

= βi (xi , x
k−i ) − cki

(

xi
∣
∣
∣xki

)

with cki ≥ 0. Moreover, (21) and (22) hold when each cki → 0+.
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If moreover, (X1, d) is a metric space, and d(xk+1
1 , xk1 ) → 0, each cluster point x1 of (xk1 )

satisfies (28).

Proof Player 1 chooses xk1 at stage k. Suppose x1 = lim xk1 . Then, by continuous convergence
of the response functions (27),

x−1 := lim rk(xk+1
1 ) = lim rk(xk1 ) = r(x1).

is well defined. With x = (xi ), it holds for any χ1 ∈ X1 that

β1(x) ≥ lim supβ1(x
k+1
1 , rk(xk+1

1 )) ≥(20) lim supβk
1 (x

k+1
1

∣
∣
∣xk1 , rk(xk+1

1 ))

≥(24) lim supβk
1 (χ1

∣
∣
∣xk1 , rk(χ1))

≥(21) lim inf β1(χ1, r
k(χ1)) ≥ β1(χ1, r(χ1)).

The first inequality derives from the upper semicontinuity of β1. The last follows from the
lower semicontinuity of β1(χ1, ·) and (27). Thus, x1 ∈ argmax β1(·, r(·)).

Further, for the same sequence xk1 → x1 and any χ−1 ∈ X−1 there exists a sequence
χk−1 →X−1 χ−1 such that (26) holds with (xk1 , χ

k−1) → (x1, χ−1). So,

β−1(x) ≥ lim supβ−1(r
k(xk+1

1 ), xk+1
1 ) ≥(20) lim supβk−1(r

k(xk+1
1 )

∣
∣
∣xk−1 , xk+1

1 )

≥(23) lim sup[βk−1(χ
k+1
−1

∣
∣
∣xk−1 xk+1

1 ) − εk] (since εk → 0+)

≥(22) lim inf β−1(χ
k+1
−1 , xk+1

1 ) ≥ β−1(χ−1, x1).

The first inequality derives from the upper semicontinuity of β−1; the last from (26). Thus,
x−1 ∈ argmax β−1(·, x1), and the proof is complete.

Invoking numerous assumptions, Theorem 5.1 proves existence and learning of Nash–
Stackelberg equilibrium in an extensive game, featuring just two players, each moving just
once, a leader ahead of the follower. It appears that several followers could be accommodated.

Admittedly, the modelling leaves several open ends. In particular, what sort of approxi-
mations βk

i might be expedient? What learning scheme, if any, could justify which response
functions rk? And, when will these functions converge continuously? These questions go
beyond the scope of this paper. Suffice it to say that, for finite-action games, fictitious playmay
offer insights (Brown 1951; Fudenberg and Levine 1994; Robinson 1951; Shapley 1964).
For games with continuous actions spaces, see the proximal point procedures in Caruso et al.
(2018).

Much criticism of economics and operations research centers on the paradigm of opti-
mizing behavior (Scitovsky 1992). Both fields of inquiry depict agents who know what they
are doing and do the best they can. This paper rather emphasizes that agents, within their
circumstances, just contend with—but invariably seek—eventual improvements, if any. On
that simpler premise, some equilibrium may eventually obtain.
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