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OPTIMAL CONVERGENCE TRADING WITH UNOBSERVABLE

PRICING ERRORS

SÜHAN ALTAY, KATIA COLANERI, AND ZEHRA EKSI

Abstract. We study a dynamic portfolio optimization problem related to convergence
trading, which is an investment strategy that exploits temporary mispricing by simultane-
ously buying relatively underpriced assets and selling short relatively overpriced ones with
the expectation that their prices converge in the future. We build on the model of Liu and
Timmermann [22] and extend it by incorporating unobservable Markov-modulated pricing
errors into the price dynamics of two co-integrated assets. We characterize the optimal
portfolio strategies in full and partial information settings both under the assumption of
unrestricted and beta-neutral strategies. By using the innovations approach, we provide
the filtering equation that is essential for solving the optimization problem under partial
information. Finally, in order to illustrate the model capabilities, we provide an example
with a two-state Markov chain.

1. Introduction

Convergence-type trading strategies have become one of the most popular trading strate-
gies that are used to capitalize on market inefficiencies, or deviations from “equilibrium,”
especially with the rapid developments in algorithmic and high-frequency trading. For a
typical convergence trade, temporary mispricing is exploited by simultaneously buying rel-
atively underpriced assets and selling short relatively overpriced assets in anticipation that
at some future date their prices will have become closer. Thus one can profit by the extent
of the convergence. A prime example of a convergence trade is a pairs trading strategy that
involves a long position and a short position in a pair of similar stocks that have moved
together historically and hence an investor can profit from the relative value trade arising
from the cointegration between asset price dynamics involved in the trade. Other examples
of convergence-type trading strategies can be given as risk arbitrage (known also as merger
arbitrage) that speculates on successful completion of a merger of two companies or cash and
carry trade that tries to benefit from pricing inefficiencies between spot market and futures
market of the same underlying stock or commodity by simultaneously placing opposite bets
on spot and futures markets.

In this work, we extend the convergence trade model given by Liu and Timmermann [22]
that investigate the dynamic optimal portfolio allocation via expected utility maximization
from terminal wealth, with two co-integrated assets with pricing errors and a market index.
Liu and Timmermann [22] show that under recurring and non-recurring “arbitrage” opportu-
nities, optimal portfolio allocations could deviate from conventional long-short delta-neutral
strategies and it can be optimal to hold both risky assets long (or short) at the same time.
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We extend Liu and Timmermann [22] mainly in two directions. First, we assume that pricing
errors related to the co-integrated assets are modulated by a continuous-time, finite-state
Markov chain, which is taken to be unobservable and hence needs to be filtered out. Taking
pricing errors (or “alphas” as commonly referred in finance literature) dependent on a hidden
Markov chain captures certain salient features of convergence trade. Although most of the
existing literature assumes that pricing errors are fully observable, in reality, those errors,
albeit having a stochastic nature, cannot be known precisely or may depend on some un-
observable state variables that change accordingly to certain factors in the economy or the
market. By modeling those pricing errors depending on an unobservable regime-switching
factor, we would like to build a more realistic representation for convergence trading. The
second extension of our model is that we allow capital asset pricing model (CAPM) betas of
two risky assets to be different. That enables us to show the optimal portfolio allocation for
beta-neutral pairs trading, which is designed to keep the portfolio’s beta zero all the time
and hence achieve market neutrality. It is a common market practice among pairs traders
to have a beta-neutral portfolio to avoid market risk. Moreover, allowing different betas
also enables us to account for “betting against beta” strategies that involve going short with
high-beta stocks and going long with low-beta ones. Betting against beta type strategies are
often associated with fluctuating low alpha Frazzini and Pedersen [14], which also justifies
our choice of modeling pricing errors under regime switching and partial information.

There is a growing stream of literature about optimal convergence trading. Liu and
Longstaff [21] has a partial equilibrium examination of convergence trading strategies, where
the mispricing is modeled using a Brownian bridge. Jurek and Yang [17] incorporate an
Ornstein–Uhlenbeck process to model the spread for non-myopic investors and solve the dy-
namic portfolio allocation for constant relative risk aversion and recursive Epstein–Zin utility
function. By building on the results of Jurek and Yang [17], Liu and Timmermann [22] solve
a similar problem by focusing both on recurring and non-recurring arbitrage opportunities
in a continuous error-correction model with two co-integrated assets and a market index. Lei
and Xu [20] extend Liu and Timmermann [22] by incorporating transaction costs. Inspired
by the dynamic pairs trading model of Mudchanatongsuk et al. [23], Tourin and Yan [26]
develop an optimal portfolio strategy to invest in two risky assets and the money market ac-
count, assuming that log-prices are co-integrated, and solve the optimal portfolio allocation
problem for the exponential utility. Cartea and Jaimungal [9] extend Tourin and Yan [26]
to allow the investor to trade in multiple co-integrated assets. Chiu and Wong [10] investi-
gates the optimal dynamic trading of cointegrated assets using the classical mean-variance
portfolio selection criterion. Angoshtari [3] studies the necessary and sufficient conditions
for well-posedness and no-arbitrage for the model of Liu and Timmermann [22] by focusing
on the concept of investor nirvana.

Considering similar problems under regime-switching and/or partial information in the
literature, studies focusing on the dynamic portfolio choice problem are rather limited. Lee
and Papanicolaou [19] solve the optimal pairs trading problem within a power utility set-
ting, where the drift uncertainty is modeled by a continuous Gaussian mean-reverting process
and necessitates Kalman filtering to extract the unobservable state process. Altay et al. [2]
extend the pairs trading model of Mudchanatongsuk et al. [23] by incorporating regime
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switching under partial information and risk penalization. However, classical portfolio se-
lection problems, which do not cover portfolios involving co-integrated assets, in a full or
partial information and/or Markov regime-switching framework can be found, for example,
in Zhou and Yin [28], Bäuerle and Rieder [6], and Sotomayor and Cadenillas [24] for the full
information case with Markov regime switching or Bäuerle and Rieder [7], Björk et al. [8]
and Frey et al. [15] for the partial information case.

In summary, we have the following key contributions. First, we compute the optimal
unrestricted and beta-neutral strategies both in full and partial information settings for a
log-utility trader by using dynamic programming. Second, we characterize the value function
as the unique (classical) solution of the Hamilton–Jacobi–Bellman (HJB) equation, which is
reduced to a system of ordinary differential equations (ODE) in the full information case, and
given by a system of partial differential equations (PDE) in the partial information case. We
also provide verification results for both cases. Third, to solve the convergence trade problem
under partial information we compute the filtering equation by applying the innovations
approach. Having the filter dynamics enables us to study the equivalent reduced problem
where unobservable states of the Markov chain are replaced by their optional projection over
the available filtration. Comparing optimal strategies under full and partial information,
we obtain that the certainty equivalence principle holds, i.e., the optimal portfolio strategy
in the latter case can be obtained by replacing the unobservable state variable with its
filtered estimate. Finally, we analyze an example with a two-state Markov chain numerically
and demonstrate certain features of our proposed model. In particular, we illustrate the
dominance of unrestricted strategies over beta-neutral strategies. Moreover, we show that a
trader who uses averaged data (in terms of parameters) is not performing better than the
trader who uses a Markov modulated model in a full information setting. For the partial
information case, our example suggests that there is a non-negative information premium,
indicating that the fully informed trader has an advantage over the partially informed one.

The remainder of the paper is organized as follows. Section 2 introduces the model setting
and the notation. In Section 3 we study the portfolio optimization problem in a full informa-
tion setting with regime switching. In Section 4 we solve the utility maximization problem
under partial information. In Section 5, we provide a numerical analysis of an example with
a two-state Markov chain. We conclude with Section 6. In order to improve the flow of the
paper we provide proofs of all results in the Appendix.

2. Model Setting and Notation

We study a modification of the continuous-time error-correction model of Liu and Tim-
mermann [22] in a regime-switching setup under both full and partial information. Precisely
we fix a probability space (Ω,G,P) and a finite time horizon T which coincides with the ter-
minal time of an investment. We also introduce a complete and right-continuous filtration
G = {Gt, t ∈ [0, T ]}, representing the full information flow, and assume that all processes
defined below are adapted to G.

Let Y be a continuous-time finite-state Markov chain taking values in E = {e1, . . . , eK},
for K ≥ 2 , where, without loss of generality, we assume that ei is the i-th canonical vector
in RK , for every i ∈ {1, . . . , K}. We denote by Q = (qij)i,j∈{1,...,K} the infinitesimal generator
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of Y , with qij > 0 for every i 6= j and qii = −
∑

j 6=i q
ij , and let Π = (Π1, . . .ΠK) be its initial

distribution.

Remark 2.1. The finite-state nature of the Markov chain implies that for every t ∈ [0, T ],

and every function f : E → R we have f(Yt) =
∑K

i=1 f
i1{Yt=ei} where f i = f(ei), for every

i ∈ {1, . . . , K}.

We consider a market model where a trader can invest in a riskless asset with constant
rate of return r ≥ 0 and three risky assets with price processes S(m), S(1) and S(2), where the
first one represents the market index and the other two are co-integrated assets. We assume
that the price dynamics of market index is given by

dS
(m)
t

S
(m)
t

= (r + µm) dt+ σm dB
(m)
t , S(m) > 0,

where µm ∈ R is the market risk premium, σm > 0 is the market volatility and B(m)

is a standard Brownian motion. Moreover co-integrated asset prices are described by the
following SDEs,

dS
(1)
t

S
(1)
t

= (r + β1µm) dt+β1σm dB
(m)
t +σ dB

(0)
t + b1 dB

(1)
t −λ1(Yt)(Xt− α1(Yt)) dt, (2.1)

dS
(2)
t

S
(2)
t

= (r + β2µm) dt+β2σm dB
(m)
t +σ dB

(0)
t +b2 dB

(2)
t +λ2(Yt)(Xt− α2(Yt)) dt, (2.2)

with S
(1)
0 > 0 and S

(2)
0 > 0. Coefficients β1 ∈ R, β2 ∈ R, b1 > 0, b2 > 0 and σ > 0 are

constant parameters and (B(0), B(1), B(2)) is a three-dimensional standard Brownian motion
independent of B(m).

We define the spread process X by Xt = log S
(1)
t − log S

(2)
t , for every t ∈ [0, T ]. Here X

represents the mean-reverting component of pricing errors. We assume that λ1(Yt)+λ2(Yt) >
0 P-a.s. for every t ∈ [0, T ], so that X becomes a stationary process with the dynamics

dXt =
(
Γ1 − λ1(Yt)(Xt − α1(Yt))− λ2(Yt)(Xt − α2(Yt))

)
dt

+ (β1 − β2) σm dB
(m)
t + b1dB

(1)
t − b2 dB

(2)
t , X0 ∈ R,

where

Γ1 = (β1 − β2)µm −
1

2

(
(β2

1 − β2
2)σ

2
m + b21 − b22

)
. (2.3)

In (2.1) and (2.2), the infinitesimal expected returns are

(r + β1µm) dt− λ1(Yt)(Xt− α1(Yt)) dt

and
(r + β2µm) dt+ λ2(Yt)(Xt− α2(Yt)) dt,

respectively. It is evident from the form of infinitesimal returns that if λj(·) is chosen to be
identical to zero or Xt is equal to αj(·), for every j ∈ {1, 2}, asset price dynamics satisfy the
CAPM relation, meaning that CAPM establishes the expected returns correctly and there
is no mispricing in either asset. On the other hand, for example, if −λ1(Y )(X−α1(Y )) > 0,
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the first asset has a higher expected return than it is justified by its exposure to market risk,
and hence has a positive alpha, meaning it is undervalued. By choosing λ1 and λ2 dependent
on the hidden Markov chain Y , we therefore, postulate that pricing errors (or alphas) depend
on some common factor in the economy or the market that can not be directly observed by
the trader. Also, as it is suggested by Liu and Timmermann [22], one can interpret those
pricing errors as reflecting momentarily positive or negative liquidity shocks, which may
vanish in liquid markets. For example, because of liquidity effects, stocks listed in S&P 500
have overstated betas Vijh [27], which in turn affects pricing errors. By assuming a regime-
switching framework for pricing errors, we are also able to model such liquidity effects. This
type of liquidity effects and related mispricing is actually very important for trades involving
dual-listed companies (or so-called “Siamese twin” companies), which are incorporated in
different countries and listed in different exchanges simultaneously while operating as a single
entity. For such companies, since shares listed in different exchanges have same control rights
and dividends are based on the same cash flow, most of the mispricing between two stocks is
due to liquidity effects arising from stock exchanges that individual shares are traded in and
hence prone to different regimes; see De Jong et al. [11] for more on stock price differentials
of dual-listed companies. We should also remark that when we take β1 = β2 and b1 = b2,
the model becomes a regime-switching version of the original one suggested by Liu and
Timmermann [22] that involves two assets with the same payoff trading at different prices.

3. Optimal Convergence Trade under Regime Switching

Let W h be the value of a portfolio h = (h(m), h(1), h(2)), where quantities h(m)
t , h

(1)
t and h

(2)
t

denote fractions of the wealth invested at any time t ∈ [0, T ] in the market index S(m) and in
the co-integrated assets with prices S(1) and S(2), respectively. Consequently the percentage
of wealth invested in the riskless asset is 1−h(m)−h(1)−h(2). We introduce now the suitable
set of strategies.

Definition 3.1. A G-admissible portfolio strategy is a self-financing, G-predictable strategy
h = (h(m), h(1), h(2)) such that

E

[∫ T

0

(
h
(m)
t

2
+ h

(1)
t

2
+ h

(2)
t

2
)
dt

]
< ∞. (3.1)

The set of G-admissible strategies is denoted by A.

For every h = (h(m), h(1), h(2)) ∈ A, the dynamics of the convergence trading portfolio is
given by

dW h
t

W h
t

=
(
r +

(
h
(m)
t + h

(1)
t β1 + h

(2)
t β2

)
µm + h

(2)
t λ2(Yt)(Xt − α2(Yt))

− h
(1)
t λ1(Yt)(Xt − α1(Yt))

)
dt + σm

(
h
(m)
t + h

(1)
t β1 + h

(2)
t β2

)
dB

(m)
t

+ σ
(
h
(1)
t + h

(2)
t

)
dB

(0)
t + b1h

(1)
t dB

(1)
t + b2h

(2)
t dB

(2)
t , W h

0 > 0.

We consider a trader with logarithmic preferences and who aims to maximize the expected
utility from terminal wealth at time T in a market with regime switching. In this section, we
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assume that the trader may directly observe the state of the Markov chain Y that influences
the dynamics of price processes and the spread. Formally, we address the following problem

Maximize Et,w,x,i[logW h
T ] over all h ∈ A, (3.2)

where Et,w,x,i denotes the conditional expectation given Wt = w, Xt = x and Yt = ei. We
define the value function corresponding to problem (3.2) as

V (t, w, x, i) := sup
h∈A

Et,w,x,i
[
logW h

T

]
.

Notice that for a given h ∈ A, W h is a controlled process. For the sake of notational
simplicity from now on we suppress h dependency and write W instead of W h.

In Theorem 3.1, we address the optimization problem by applying dynamic programming.
Our goal is to identify the optimal strategy as well as to characterize the value function as
the unique solution of the corresponding HJB equation. This approach permits to examine
the value function of the control problem in detail. One could alternatively derive the
stochastic representation of the value function and characterize it up to the solution of
a system of partial differential equations via Feynman–Kac type arguments for Markov-
modulated diffusion processes; see, e.g., Baran et al. [5] and Escobar et al. [12].

In the sequel, we will use the following notation for the partial derivatives: for every
function g : [0, T ]×R+ ×R → R, we write, for instance, ∂g

∂t
= gt. Also, by Remark 2.1 we

have that λj(ei) = λi
j and αj(ei) = αi

j, for j ∈ {1, 2} and i ∈ {1, . . . , K}.

Theorem 3.1. Consider a trader endowed with a logarithmic utility function. Then the
optimal portfolio strategy h∗ = (h(1)∗, h(2)∗, h(m)∗) ∈ A is

h(1)∗(t, x, i) = −
λi
1(x− αi

1) + λi
2(x− αi

2)̺2
b21 + b22̺2

,

h(2)∗(t, x, i) =
λi
2(x− αi

2) + λi
1(x− αi

1)̺1
b22 + b21̺1

,

h(m)∗(t, x, i) =
µm

σ2
m

− β1h
(1)∗(t, x, i)− β2h

(2)∗(t, x, i),

with ̺1 =
σ2

σ2+b2
1

and ̺2 =
σ2

σ2+b2
2

. The value function is of the form

V (t, w, x, i) = log(w) +m(t, i)x2 + n(t, i)x+ u(t, i), (3.6)

where functions m(t, i), n(t, i) and u(t, i) for i ∈ {1, . . . , K} solve the following system of
ordinary differential equations

mt(t, i)− 2(λi
1 + λi

2)m(t, i) +

K∑

j=1

m(t, j)qij +Θi
1 = 0, (3.7)

nt(t, i)− (λi
1 + λi

2)n(t, i) +
K∑

j=1

n(t, j)qij + 2(Γ1 + λi
1α

i
1 + λi

2α
i
2)m(t, i)−Θi

2 = 0,

ut(t, i) +

K∑

j=1

u(t, j)qij + Γ2m(t, i) + (Γ1 + λi
1α

i
1 + λi

2α
i
2)n(t, i) + Θi

3 = 0, (3.8)
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with terminal conditions m(T, i) = 0, n(T, i) = 0 and u(T, i) = 0 for all i ∈ {1, . . . , K}, and
where Γ1 is given in (2.3) and

Θi
1 =

b21(λ
i
2)

2 + b22(λ
i
1)

2 + σ2 (λi
1 + λi

2)
2

2 (b21b
2
2 + σ2(b21 + b22))

,

Θi
2 =

αi
1λ

i
1(λ

i
1(b

2
2 + σ2) + λi

2σ
2) + αi

2λ
i
2(λ

i
2(b

2
1 + σ2) + λi

1σ
2)

b21b
2
2 + σ2(b21 + b22)

,

Θi
3 =

(αi
1λ

i
1b2)

2 + (αi
2λ

i
2b1)

2 + σ2(αi
1λ

i
1 + αi

2λ
i
2)

2

2 (b21b
2
2 + σ2(b21 + b22))

+ r +
µ2
m

2σ2
m

,

Γ2 = σ2
m(β1 − β2)

2 + b21 + b22.

We provide the proof of the Theorem 3.1 in the Appendix.

Remark 3.2 (Discussion on the optimal trading strategy.). The optimal trading strategy is
Markov modulated and has a typical structure of a mean-variance portfolio weights. More
specifically, numerator of each portfolio weight h(j)∗, j ∈ {1, 2}, is associated with regime-
switching parameters, λ1(Y ), λ2(Y ) and α1(Y ), α2(Y ), related to the co-integration between
S(1) and S(2), or equivalently, to pricing errors. The denominator, on the other hand, is akin
to the idiosyncratic risk components, b1, b2 and σ. We should also emphasize that h(1)∗ and
h(2)∗ do not depend on market parameters, β1, β2, µm and σm, since the market exposure of
each asset is covered by investing in the market index. ̺1 and ̺2 can be seen as the relative
idiosyncratic variation of S(1) (resp. S(2) ) with respect to S(2) (resp. S(1)). The role of
̺1 is actually to scale the contribution of pricing error and the independent idiosyncratic
variance of S(2) in h(1)∗. Naturally, ̺2 has the analogous interpretation. Note that when
σ = 0, meaning that there is no correlation between S(1) and S(2), those contributions vanish
and the optimal portfolio weights in each stock only depend on their own pricing errors and
idiosyncratic risks. The structure of the market portfolio weight is similar to that in Liu
and Timmermann [22] and given by the sum of Sharpe’s ratio of the market index and a
linear combination of h(1)∗ and h(2)∗, weighted by their corresponding betas. Finally as h(1)∗

and h(2)∗ are prone to different regimes so is h(m)∗, even if the market index dynamics is
independent of the Markov chain.

3.1. Optimal Beta-Neutral Investment. To achieve market neutrality, traders may chose
investment strategies so that the resulting portfolio has zero (CAPM) beta. The goal of this
section is to characterize this type of trading strategies which are called beta-neutral. We
should also remind the reader that this type of strategies can also be used for “betting against
betas” type strategies in which high beta asset (short leg) is deleveraged so that its betas
has been decreased to 1 and the low beta asset (long leg) is leveraged so that its beta has
become 1. We start with a formal definition.

Definition 3.3. A G-admissible beta-neutral portfolio strategy is G-predictable self-financing
strategy hβ = (h(β,1), h(β,2), h(β,m)) such that

β1h
(β,1)
t + β2h

(β,2)
t = 0, t ∈ [0, T ],

and satisfying E

[∫ T

0

(
h
(β,m)
t

2
+ h

(β,1)
t

2
)
dt
]
< ∞. We denote the set of G-admissible beta-

neutral strategies by Aβ.
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In the next theorem we compute the optimal beta-neutral investment strategies and the
corresponding value function. The proof of this result replicates that of Theorem 3.1 and it
is therefore omitted.

Theorem 3.2. Consider a trader with a logarithmic utility function. Then the optimal
beta-neutral investment strategy hβ∗ = (h(β,1)∗, h(β,2)∗, h(β,m)∗) ∈ Aβ is given by

h(β,1)∗(t, x, i) = −
λi
1(x− αi

1) +
β1

β2

λi
2(x− αi

2)

b21 +
β2

1

β2

2

b22 + σ2
(
1− β1

β2

)2 ,

h(β,2)∗(t, x, i) = −
β1

β2

h(β,1)∗(t, x, i),

h(β,m)∗(t, x, i) =
µm

σ2
m

.

The value function is of the form

V (t, w, x, i) = log(w) +m(t, i)x2 + n(t, i)x+ u(t, i),

where the functions m(t, i), n(t, i) and u(t, i) for i ∈ {1, . . . , K} solve the following system
of ordinary differential equations

mt(t, i)− 2(λi
1 + λi

2)m(t, i) +
K∑

j=1

m(t, j)qij + Φi
1 = 0,

nt(t, i)− (λi
1 + λi

2)n(t, i) +

K∑

j=1

n(t, j)qij + 2(Γ1 + λi
1α

i
1 + λi

2α
i
2)m(t, i)− Φi

2 = 0,

ut(t, i) +

K∑

j=1

u(t, j)qij + Γ2m(t, i) + (Γ1 + λi
1α

i
1 + λi

2α
i
2)n(t, i) + Φi

3 = 0,

with terminal conditions m(T, i) = 0, n(T, i) = 0 and u(T, i) = 0 for all i ∈ {1, . . . , K}, and
where Γ1 and Γ2 are as given in Theorem 3.1 and

Φi
1 =

(β2λ
i
1 + β1λ

i
2)

2

2
(
b21β

2
2 + b22β

2
1 + σ2 (β1 − β2)

2) ,

Φi
2 =

(αi
1β2λ

i
1 + αi

2β1λ
i
2) (β1λ

i
2 + β2λ

i
1)

b21β
2
2 + b22β

2
1 + σ2 (β1 − β2)

2 ,

Φi
3 =

(αi
1β2λ

i
1 + αi

2β1λ
i
2)

2

2
(
b21β

2
2 + b22β

2
1 + σ2 (β1 − β2)

2) + r +
µ2
m

2σ2
m

.

Remark 3.4. Notice that the ratio β1/β2 plays the role of ̺2 in Theorem 3.1. In addition,
setting β1 = β2 in the current context corresponds to the so-called delta-neutral strategies.
This is a class of investment strategies that satisfy h(δ,1) = −h(δ,2). In other terms, this
amounts to invest the same capital in each of the co-integrated stocks. In this setting the



9

optimal delta-neutral strategy is given by

h(δ,1)∗(t, x, i) = −h(δ,2)∗(t, x, i) = −
λi
1(x− αi

1) + λi
2(x− αi

2)

b21 + b22
,

h(δ,m)∗(t, x, i) =
µm

σ2
m

.

4. Optimal Convergence Trade under Partial Information

The goal of this section is to study the utility maximization problem related to conver-
gence trade from the point of view of a partially informed investor. Therefore we now
assume that the investor cannot directly observe the state of the Markov chain Y , and that
her information comes from the observation of price processes S(m), S(1) and S(2). Mathe-
matically, the available information flow is given by filtration F := {Ft, t ∈ [0, T ]}, where
Ft = σ(S

(1)
u , S

(2)
u , S

(m)
u , 0 ≤ u ≤ t). Since the investor chooses how to allocate her wealth

according to the available information, we will now consider the following set admissible
strategy.

Definition 4.1. An F-admissible portfolio strategy is a self-financing and F-predictable strat-
egy h = (h(m), h(1), h(2)) that satisfies integrability condition (3.1), and AF is the set of all
F-admissible strategies.

In order to solve the optimization problem under partial information we first infer infor-
mation about the state of the Markov chain Y from the observation process (S(1), S(2), S(m)),
using filtering techniques. The idea is to determine the conditional distribution of the unob-
servable state process Y , given the observed history. To this, for every functions f : E → R

we define the filter π(f) as the optional projection of the process f(Y ) on the available
filtration, i.e.

πt(f) = E [f(Yt)|Ft] , t ∈ [0, T ].

Due to the nature of process Y , we get that

πt(f) =

K∑

i=1

f(ei)P (Yt = ei|Ft) , t ∈ [0, T ].

Therefore, solving the filtering problem amounts to compute conditional state probabilities,

πi
t := P (Yt = ei|Ft) , t ∈ [0, T ],

for every i ∈ {1, . . . , K}. In the sequel we will use the notation π to indicate the K-
dimensional process (π1, . . . , πK)⊤ and πt(f) = f⊤πt =

∑K

i=1 f
iπi

t where f = (f 1, . . . , fK)⊤

and f i = f(ei) for every i ∈ {1, . . . , K}. We will use the innovations approach to characterize
processes πi for i ∈ {1, . . . , K}. Consider the following processes

R
(1)
t = −

∫ t

0

λ1(Ys)(Xs − α1(Ys))ds+ σB
(0)
t + b1B

(1)
t , t ∈ [0, T ],

R
(2)
t =

∫ t

0

λ2(Ys)(Xs − α2(Ys))ds+ σB
(0)
t + b2B

(2)
t , t ∈ [0, T ],
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and observe that the triplets (S(1), S(2), S(m)) and (R(1), R(2), S(m)) generate the same infor-
mation flow. Then we define (G,P)-Brownian motions Z(1) and Z(2) by

Z
(1)
t =

σB
(0)
t + b1B

(1)
t

σ1
, Z

(2)
t =

σB
(0)
t + b2B

(2)
t

σ2
, t ∈ [0, T ],

where σ1 =
√

σ2 + b21 and σ2 =
√
σ2 + b22. Note that Z(1) and Z(2) are correlated Brownian

motions with correlation coefficient ρ = σ2

σ1σ2

∈ [0, 1] and that there exists a (G,P)-Brownian

motion Z̃2 independent of Z1 such that Z2 = ρZ1 +
√

1− ρ2Z̃2. We now introduce the
innovation process I = (I(1), I(2))⊤ in the following way. Define

µ1(Xt, Yt) = −λ1(Yt)(Xt − α1(Yt)), t ∈ [0, T ],

µ2(Xt, Yt) = λ2(Yt)(Xt − α2(Yt)), t ∈ [0, T ],

and denote by πt(µi) = E
[
µi(Xt, Yt)|F

S
t

]
= µi(Xt)

⊤
πt where, for i ∈ {1, 2} and t ∈ [0, T ]

vector µi(Xt) = (µi(Xt, e1), . . . , µi(Xt, eK)); then we get that

I
(1)
t =Z

(1)
t +

∫ t

0

µ1(Xu, Yu)− µ1(Xu)
⊤
πu

σ1
du,

I
(2)
t = Z̃

(2)
t +

∫ t

0

σ1(µ2(Xu, Yu)− µ2(Xu)
⊤
πu)− ρσ2(µ1(Xu, Yu)− µ1(Xu)

⊤
πu)

σ1σ2

√
1− ρ2

du,

for every t ∈ [0, T ]. We will use also the matrix/vector form

It = Zt +

∫ t

0

Σ−1(A(Xu, Yu)− πu(A))du, t ∈ [0, T ],

where Z = (Z(1), Z̃(2))⊤, A(X, Y ) = (µ1(X, Y ), µ2(X, Y ))⊤,

Σ =

(
σ1 0

σ2ρ σ2

√
1− ρ2

)
.

Remark 4.2. The innovation process I has two important features. First, I is an (F,P)-
Brownian motion; see, for instance, Bain and Crisan [4, Proposition 2.30]. Second, by the
independence between the Markov chain Y and the vector (B(m), B(0), B(1), B(2)) driving the
observation we get that the filtration generated by (S(m), R(1), R(2)) and that generated by
(S(m), I(1), I(2)) are the same; see Allinger and Mitter [1, Theorem 1]. Then we can apply
Jacod and Shiryaev [16, Theorem III.4.34-(a)] and get that every (F,P)-local martingale M
admits the following representation

Mt = M0 +

∫ t

0

γu dIu, t ∈ [0, T ], (4.1)

for some F-predictable 2-dimensional process γ such that
∫ T

0

‖γu‖
2 du < ∞, P− a.s.

The filtering equation is computed in the next proposition. The proof of this result is
given in Appendix.
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Proposition 4.3. For every i ∈ {1, . . . , K}, conditional state probabilities of the process Y
satisfy the following system of SDEs

dπi
t =

K∑

j=1

qjiπj
tdt +H i(Xt,πt)dIt (4.2)

with πi
0 = p0, where for i = 1, . . . , K, H i(X,π) := {H i(Xt,πt), t ≥ 0} is the 2-dimensional

process with components

H i,(1)(Xt,πt) =
πi
t(µ1(Xt, ei)− µ1(Xt)

⊤
πt)

σ1

H i,(2)(Xt,πt) =
πi
t

(
σ1(µ2(Xt, ei)− µ2(Xt)

⊤
πt)− σ2ρ(µ1(Xt, ei)− µ1(Xt)

⊤
πt)
)

σ1σ2

√
1− ρ2

,

for every t ∈ [0, T ] with σ1 =
√

σ2 + b21 and σ2 =
√
σ2 + b22.

Having the dynamics of the filtered probabilities enables us to derive a semimartingale
decomposition for the co-integrated asset price processes with respect to the information
filtration. Precisely, we have that

dS
(1)
t

S
(1)
t

= (r + β1µm)dt + β1σmdB
(m)
t + σ1dI

(1) + µ1(Xt)
⊤
πtdt,

dS
(2)
t

S
(2)
t

= (r + β2µm)dt + β2σmdB
(m)
t + σ2ρdI

(1)
t + σ2

√
1− ρ2dI

(2)
t + µ2(Xt)

⊤
πtdt,

with S
(1)
0 > 0 and S

(2)
0 > 0, and the market index price process S(m) which is not affected

by the Markov chain, preserves its dynamics. This leads to the following for the spread and
the wealth processes

dXt =
(
Γ1 +

(
µ1(Xt)

⊤
πt − µ2(Xt)

⊤
πt

))
dt

+ (β1 − β2)σmdB
(m)
t + (σ1 − ρσ2)dI

(1)
t − σ2

√
1− ρ2dI

(2)
t , X0 ∈ R,

dW h
t

W h
t

=
(
r+
(
h
(m)
t + h

(1)
t β1+ h

(2)
t β2

)
µm+

(
h
(1)
t µ1(Xt)

⊤
πt+ h

(2)
t µ2(Xt)

⊤
πt

))
dt

+ σm

(
h
(m)
t + h

(1)
t β1 + h

(2)
t β2

)
dB

(m)
t + (σ1h

(1)
t + ρσ2h

(2)) dI
(1)
t

+ σ2

√
1− ρ2h

(2)
t dI

(2)
t , W h

0 > 0, (4.3)

respectively. Moreover, thanks to uniqueness of the solution of the filtering equation we can
consider the (K + 2)-dimensional process (W,X, π) as the state process and introduce the
equivalent optimal control problem under full information, called the separated problem; see,
e.g., Fleming and Pardoux [13]. The optimization problem we address now is

Maximize Et,w,x,p[logWT ] over all h ∈ AF (4.4)

where Et,w,x,p denotes the conditional expectation given Wt = w, Xt = x and πt = p, where
(w, x,p) ∈ R+ × R × ∆K , with ∆K denoting the (K − 1)-dimensional simplex. Next, we



12

resort to the HJB approach to solve problem (4.4). We define the value function by

V (t, w, x,p) := sup
h∈AF

Et,w,x,p [logWT ] .

In order to get explicit form for the value function up to the solution of a system of PDEs
we restrict to the case where λ1(y) = λ1 ∈ R and λ2(y) = λ2 ∈ R. In this case coefficients
H(i),1(X, π) and H(i),2(X, π), for i = 1, . . . , K in equation (4.2) do not depend on X and are
given by

H i,(1)(Xt,πt) = H i,(1)(πt) =
λ1π

i
t(α

i
1 −α

⊤
1 πt)

σ1

,

H i,(2)(Xt,πt) = H i,(2)(πt) =
−λ2σ1π

i
t(α

i
2 −α

⊤
2 πt)− σ2λ1ρπ

i
t(α

i
1 −α

⊤
1 πt)

σ1σ2

√
1− ρ2

,

for every t ∈ [0, T ].

Theorem 4.1. Suppose that λ1(y) = λ1 ∈ R and λ2(y) = λ2 ∈ R with λ1 + λ2 > 0
and assume that the investor has logarithmic utility preferences. Then the optimal portfolio
strategy h∗ = (h(1)∗, h(2)∗, h(m)∗) ∈ AF is

h(1)∗(t, x,p) =
µ1(x)

⊤p− µ2(x)
⊤p̺2

b21 + b22̺2
,

h(2)∗(t, x,p) =
µ2(x)

⊤p− µ1(x)
⊤p̺1

b22 + b21̺1
,

h(m)∗(t, x,p) =
µm

σ2
m

− β1h
(1)∗(t, x,p)− β2h

(2)∗(t, x,p).

The value function is of the form

V (t, w, x,p) = log(w) + m̄(t)x2 + n̄(t,p)x+ ū(t,p),

where function m̄(t) solves the ordinary differential equation

m̄t(t)− 2m̄(t)(λ1 + λ2) + Θ1 = 0 (4.8)

with terminal condition m̄(T ) = 0 and functions n̄(t,p) and ū(t,p) solve the following system
of partial differential equations

n̄t(t,p)− n̄(t,p)(λ1 + λ2) +
K∑

i,j=1

n̄pi(t,p)q
jipj + 2(Γ1 + λ1α

⊤
1 p+ λ2α

⊤
2 p)m̄(t)

+
1

2

K∑

i,j=1

n̄pipj(t,p)
(
H i,(1)(p)Hj,(1)(p) +H i,(2)(p)Hj,(2)(p)

)
−Θ2(p) = 0, (4.9)
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ūt(t,p) + Γ2m̄(t) + (Γ1 + λ1α
⊤
1 p+ λ2α

⊤
2 p)n̄(t,p) + Θ3(p)

+
K∑

i=1

ūpi(t,p)q
jipj +

1

2

K∑

i,j=1

ūpipj (t,p)(H
i,(1)(p)Hj,(1)(p) +H i,(2)(p)Hj,(2)(p))

+

K∑

i=1

n̄pi(t,p)

(
b21√

σ2 + b21
H i,(1)(p)−

√
σ2(b21 + b22) + b21b

2
2√

σ2 + b21
H i,(2)(p)

)
= 0 (4.10)

with terminal conditions n̄(T,p) = 0 and ū(T,p) = 0 and where Γ1 and Γ2 are the same of
Theorem 3.1 and

Θ1 =
(σ2 + b22)λ

2
1 + (σ2 + b21)λ

2
2 + 2σ2λ1λ2

2(σ2b21 + σ2b22 + b21b
2
2)

,

Θ2(p) =
λ1α

⊤
1 p(λ1(b

2
2 + σ2) + λ2σ

2) + λ2α
⊤
2 p(λ2(b

2
1 + σ2) + λ1σ

2)

b21b
2
2 + σ2(b21 + b22)

,

Θ3(p) =
(λ1b2α

⊤
1 p)

2 + (λ2b1α
⊤
2 p)

2 + σ2(λ1α
⊤
1 p+ λ2α

⊤
2 p)

2

2 (b21b
2
2 + σ2(b21 + b22))

+ r +
µ2
m

2σ2
m

.

The proof of Theorem 4.1 is given in Appendix. We observe here that the function m̄
driving the quadratic term is independent of p. Mathematically this is due to the fact that λ1

and λ2 are assumed to be constant and therefore the trader does not account for the effect of
partial information on the quadratic level of the current spread. Optimal portfolio strategy
under partial information shares similar properties of the full information one (see Remark
3.2), except that unobserved parameters are replaced by the filtered estimates. That is, the
certainty equivalence principle holds for the optimization problem under partial information;
see Kuwana [18] and Bäuerle and Rieder [6].

4.1. Optimal Beta-Neutral Investment under Partial Information. For comparison
purposes we also investigate the structure of strategies leading to zero (CAPM) beta in
the partial information setting. This means to consider investment strategies of the form
outlined below.

Definition 4.4. An F-admissible beta-neutral investment strategy is an F-predictable self-
financing investment strategy hβ = (h(β,1), h(β,2), h(β,m)) such that

β1h
(β,1)
t + β2h

(β,2)
t = 0, t ∈ [0, T ]

with E

[∫ T

0

(
h
(β,m)
t

2
+ h

(β,1)
t

2
)
dt
]
< ∞. We denote by AF,β the set of all F-admissible beta-

neutral strategies.

The optimal beta-neutral investment strategy under restricted information and the cor-
responding value function are given in Theorem 4.2 below. The proof is similar to that of
Theorem 4.1 and it is therefore omitted.

Theorem 4.2. Assume that λ1(y) = λ1 ∈ R and λ2(y) = λ2 ∈ R with λ1 + λ2 > 0 and
consider a trader with a logarithmic utility function. Then, the optimal beta-neutral strategy



14

under partial information hβ∗ = (h(β,1)∗, h(β,2)∗, h(β,m)∗) ∈ AF,β is

h(β,1)∗(t, x,p) = −
λ1(x−α

⊤
1 p) +

β1

β2λ2(x−α
⊤
2 p)

b21 + b22
β2

1

β2

2

+ σ2
(
1− β1

β2

)2 ,

h(β,2)∗(t, x,p) = −
β1

β2
h(β,1)∗(t, x, i),

h(β,m)∗(t, x,p) =
µm

σ2
m

.

The value function is of the form

V (t, w, x,p) = log(w) + m̄(t)x2 + n̄(t,p)x+ ū(t,p),

where function m̄(t) solves the ordinary differential equation

m̄t(t)− 2m̄(t)(λ1 + λ2) + Φ1 = 0,

with the terminal condition m̄(T ) = 0 and functions n̄(t,p) and ū(t,p) solve the following
system of partial differential equations

n̄t(t,p) + 2m̄(t)(Γ1 + λ1α1 + λ2α2)− n̄(t,p)(λ1 + λ2) +

K∑

i,j=1

n̄pi(t,p)q
jipj

+
1

2

K∑

i,j=1

n̄pipj(t,p)
(
H i,(1)(p)Hj,(1)(p) +H i,(2)(p)Hj,(2)(p)

)
− Φ2(p) = 0,

ūt(t,p) + (Γ1 + λ1α1 + λ2α2)n̄(t,p) + Γ2m̄(t) + Φ3(p)

+

K∑

i,j=1

ūpi(t,p)q
jipj +

1

2

K∑

i,j=1

ūpipj(t,p)(H
i,(1)(p)Hj,(1)(p) +H i,(2)(p)Hj,(2)(p))

+
K∑

i=1

n̄pi(t,p)

(
b21√

σ2 + b21
H i,(1)(p)−

√
σ2(b21 + b22) + b21b

2
2√

σ2 + b21
H i,(2)(p)

)
= 0

with terminal conditions n̄(T,p) = 0 and ū(T,p) = 0 and where Γ1 and Γ2 are the same of
Theorem 3.1 and

Φ1 =
(β2λ1 + β1λ2)

2

2
(
b21β

2
2 + b22β

2
1 + σ2 (β1 − β2)

2) ,

Φ2(p) =

(
β2λ1α

⊤
1 p+ β1λ2α

t
2opp

)
(β1λ2 + β2λ1)

b21β
2
2 + b22β

2
1 + σ2 (β1 − β2)

2 ,

Φ3(p) =

(
β2λ1α

⊤
1 p+ β1λ2α

⊤
2 p
)2

2
(
b21β

2
2 + b22β

2
1 + σ2 (β1 − β2)

2) + r +
µ2
m

2σ2
m

.
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Finally we again observe that for β1 = β2 we recover delta-neutral strategies in partial
information which are given by

h(δ,1)∗(t, x,p) = −h(δ,2)∗(t, x,p) = −
λ1(x−α

⊤
1 p) + λ1(x−α

⊤
1 p)

b21 + b22
,

h(δ,m)∗(t, x,p) =
µm

σ2
m

.

5. Numerical Study with a 2-State Markov Chain

In this section, we consider a 2-state Markov chain Y , that is, E = {e1, e2}. Here we resort
to a numerical approach in order to get qualitative characteristics of optimal strategies and
the value function both under full and partial information. In the sequel, we fix the values
for the following parameters as w = 1, r = 0.02, β1 = 1.2, β2 = 1.05, σm = .35, µm = 0.05
and σ = 0.3.

5.1. Optimization problem under full information. We first consider the full informa-
tion setting where the trader is assumed to observe the state of the Markov chain. We begin
with a simulation of a data set where we generate a Markov chain and the price processes,
respectively. In Figure 1 we investigate the behavior of the optimal investment strategy for
the simulated data. Clearly, we see that strategies depend on different regimes and present
jumps at the jump times of the Markov chain. We also observe that the resulting optimal
portfolio weights for the first and second assets change sign through time. In particular, we
have long-long, long-short and short-short type optimal portfolios, which may indicate the
flexibility of our modeling framework.
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Figure 1. Optimal trading strategy for simulated data. Parameter values:
b1 = 0.3, b2 = 0.2, λ1

1 = 0.5, λ2
1 = −0.3, λ1

2 = −0.2, λ2
2 = 0.6, α1 = α2 = 0,

x = 0.01, q12 = 0.01, q21 = 0.02.

Next we investigate the properties of the value function. To this, we solve the system
of ODEs in Theorem 3.1 numerically. Figure 2 summarizes our results. Let (p, 1 − p)
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denote the stationary distribution of the Markov chain Y . We consider two traders, one
of which ignores the Markov modulated nature of the underlying parameters and use the
averaged data λi = pλ1

i +(1−p)λ2
i . The second trader, on the other hand, behaves optimally

under our Markov modulated model. We set q12 = 0.7 and q21 = 0.2, and compute p =
q21/(q12+q21) = 0.22. Then, we get λ1 = −0.12 and λ2 = 0.45. In Figure 2 we plot V Av(t, x),
the value function obtained in the model assuming averaged data, and Ep[V (t, x, Yt)] =
pV (t, x, 1) + (1− p)V (t, x, 2). We observe that Ep[V (t, x, Yt)] > V Av(t, x), that is, averaged
data does not suffice to obtain the optimal value for the convergence trade problem and
hence on the average, the second trader performs better than the first one. We repeat this
analysis for the case of beta-neutral trading and obtain same qualitative results.

In Figure 2 we also illustrate the dominance of the unrestricted strategies over the beta-
neutral ones. This is quite natural since by restricting the set of admissible strategies, the
trader could not realize all the benefits resulting from the co-integration between S(1) and
S(2). The gap between values depends on the choice of parameters and in particular it
increases in initial spread (x) and time to maturity (T − t).

5.2. Optimization problem under partial information. We now consider the partial
information case. Since conditional state probabilities π1 and π2 satisfy π1

t +π2
t = 1 for every

t ∈ [0, T ], we can reduce the number of state variables for the optimization problem. In the
following we denote by p = p1 and 1 − p = p2. In Figure 3 we plot the optimal strategies
followed by a fully informed investor who observes the state of the underlying Markov chain
Y and the partially informed one who can only estimate the state of Y through observation
of prices, for the simulated data. We observe that while the informed investor suddenly
changes his behavior according to the change in the state of the Markov chain, portfolio
weights for the partially informed investor are subject to the smoothing effect of filtering. The
difference between portfolio allocation under full and partial information crucially depends
on the amplitude of the noise.

Now we measure the advantage of the fully informed investor over the partially informed
one. In order to do that, we consider the process L defined by

Lt = E
[
V f(t,Wt, Xt, Yt)− V p(t,Wt, Xt,πt)|{Wt = w} ∨ Ft

]
, t ∈ [0, T ],

where V f represents the value function corresponding to the full information setting and
V p that corresponding to the partial information one. The process L represents the loss of
utility due to partial information (see, e.g., Lee and Papanicolaou [19] for the definition). By
the form of value functions and Markov property of the pair (X,π) we get that there exists a
function l(t, x,p) such that Lt = l(t, Xt,πt), P−a.s. for every t ∈ [0, T ]. In Figure 4 we plot
the loss of utility in the 2-state Markov chain case. We observe that it is always grater than
or equal to zero, meaning that information premium exists and it is always nonnegative.
Moreover it is larger when conditional state probabilities are close to 0.5. This reflects the
fact that more uncertainty about the state of the Markov chain leads to higher losses in
utility.

6. Conclusion

In this paper, we have considered an extension to a regime-switching framework of the
model proposed by Liu and Timmermann [22]. We have studied the optimization problem
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Figure 2. Optimal value corresponding to Markov regime-switching (RS)
case and averaged data (AV) case for unrestricted and β-neutral trading as a
function of initial spread (x) (upper panel) and time to maturity (T-t) (lower
panel). Parameter values: T-t=2, b1 = 0.3, b2 = 0.5, λ1

1 = 0.5, λ2
1 = −0.3,

λ1
2 = −0.1, λ2

2 = 0.6, α1 = α2 = 0, x = 0.5, q12 = 0.7, q21 = 0.2.

for a trader with logarithmic utility preferences under different levels of information. We
have assumed that the mean-reverting component of pricing errors depends on a hidden
Markov switching factor which may or may not be directly observed by the investor.

In the full information setting, that is when the state of the Markov chain is observable,
we have computed the optimal strategy and characterized the value function as the unique
(classical) solution of the HJB equation. In this framework, we can reduce the HJB to a
system of ODEs. We have also discussed the structure of beta-neutral strategies, achieved
by taking long and short positions in such a way that the impact of the overall market is
minimized. In the partial information case, we have transformed the original problem into
the so-called reduced (or separated) problem via filtering by replacing unobservable states of
the Markov chain with their optional projections over the available filtration. Then we have
addressed the resulting control problem by dynamic programming, and we have represented
the value function in terms of the solution of a system of PDEs. Beta-neutral strategies are
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formation (h(·)

p ) for simulated data. Parameter values: λ1 ≡ 0.2, λ2 ≡ 0.15,
α1
1 = −0.4, α2
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2 = 0.5, α2
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Figure 4. Loss of utility due to partial information as a function of estimated
state probability (p) and time to maturity (T-t). Parameter values: λ1 ≡ 0.3,
λ2 ≡ 0.4, α1

1 = 0.5, α2
1 = −0.2, α1

2 = 0.2, α2
2 = −0.3, x = 0.05, q12 = 0.2,

q21 = 0.5.
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also obtained in the partial information framework. Finally, we have studied a numerical
example with a two-state Markov chain. We have concluded that averaged data is not
sufficient to obtain the optimal value in the full information case, and that there is always
positive premium due to information superiority when we compare the optimal value under
full and partial information.

Appendix: Proofs

Proof of Theorem 3.1. Existence: We denote by Lh
G the generator of the process (t,W,X, Y ),

that is

Lh
GF (t, w, x, i) = Ft(t, w, x, i)+

(
Γ1 + λi

1α
i
1 + λi

2α
i
2 −(λi

1+λi
2)x
)
Fx(t, w, x, i)

+w
(
r +µm

(
h(m)+h(1)β1+h(2)β2

)
+h(2)λi

2(x− αi
2)−h(1)λi

1(x− αi
1)
)
Fw(t, w, x, i)

+
1

2
w2
(
σ2
m

(
h(m)+h(1)β1+h(2)β2

)
2+σ2

(
h(1)+h(2)

)
2+(h(1)b1)

2+(h(2)b2)
2
)
Fww(t, w, x, i)

+w
(
σ2
m(β1−β2)

(
h(m)+h(1)β1+h(2)β2

)
+h(1)b1−h(2)b2

)
Fwx(t, w, x, i)

+
1

2
Γ2Fxx(t, w, x, i) +

K∑

j=1

F(t, w, x, j)qij,

for every function F (·, i) ∈ C1,2,2([0, T ]×R+ ×R), i.e. bounded, differentiable with respect
to t and twice differentiable with respect to w and x, for every i ∈ {1, . . . , K}.

Suppose that the value function V (·, i) ∈ C1,2,2([0, T ]×R+ ×R) for every i ∈ {1, . . . , K}.
Then it solves the HJB equation given by

0 = sup
h∈A

LhV (t, w, x, i) (A.1)

for every i ∈ {1, . . . , K}, subject to the terminal condition V (T, w, x, i) = log(w), for all
(w, x) ∈ R+×R and i ∈ {1, . . . , K}. It follows from the form of the utility function that for
all i ∈ {1, . . . , K} the value function can be rewritten as V (t, w, x, i) = log(w)+ν(t, x, i), for
some function ν(t, x, i) such that ν(T, x, i) = 0. Inserting the ansatz for the value function
in equation (A.1) and taking first order conditions leads to

0 =
µm

σ2
m

− h(1)β1 − h(2)β2 − h(m),

0 =β1µm −λi
1(x− αi

1)−β1σ
2
m

(
h(m)+h(1)β1+h(2)β2

)
−σ2(h(1)+h(2))−h(1)b21,

0 =β2µm +λi
2(x− αi

2)−β2σ
2
m

(
h(m)+h(1)β1+h(2)β2

)
−σ2(h(1)+h(2))−h(2)b22.

Second order conditions imply that portfolio weights given in (3.3)-(3.5) are candidates to
be optimal strategies. Next, we insert the optimal portfolio weights in the HJB equation.
This yields the following PDE:

0 =νt(t, x, i) + Θi
1x

2 −Θi
2x+Θi

3 +
K∑

j=1

ν(t, x, j)qij+
1

2
Γ2νxx(t, x, i)

+
(
Γ1 + λi

1α
i
1 + λi

2α
i
2 − (λi

1 + λi
2)x
)
νx(t, x, i). (A.2)
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We conjecture that ν(t, x, i) = m(t, i)x2 +n(t, i)x+ u(t, i). Substituting this ansatz in (A.2)
results in a quadratic equation for x. Setting the coefficients of the terms x2, x and the
independent term to zero yields that the functions m, n and u solve the system of ODEs
given in (3.7)-(3.8); see, e.g., Teschl [25, Theorem 3.9]).

Verification: In the sequel we verify martingale conditions that ensure that V in (3.6) is
indeed the value function. To this, let v(t, w, x, i) be a solution of the HJB equation (A.1)
and h ∈ A and admissible control. By Itô’s formula we get

v(T,W h
T , XT , YT ) = v(t, w, x, i) +

∫ T

t

Lv(r,W h
r , Xr, Yr) dr

+

∫ T

t

σmvw(r,W
h
r , Xr, Yr)W

h
r

(
h(m)
r + h(1)

r β1 + h(2)
r β2

)
dB(m)

r

+

∫ T

t

σm + vx(r,W
h
r , Xr, Yr) (β1 − β2) dB

(m)
r

+

∫ T

t

vw(r,W
h
r , Xr, Yr)W

h
r σ
(
h(1)
r + h(2)

r

)
dB(0)

r

+

∫ T

t

(
vw(r,W

h
r , Xr, Yr)W

h
r b1h

(1)
r + vx(r,W

h
r , Xr, Yr)b1

)
dB(1)

r

+

∫ T

t

(
vw(r,W

h
r , Xr, Yr)W

h
r b2h

(2)
r − vx(r,W

h
r , Xr, Yr)b2

)
dB(2)

r

+

∫ T

t

K∑

j=1

v(r,W h
r , Xr, j)− v(r,W h

r , Xr, Yr−)(m− ν)(dr × {j}).

The last term in the expression above corresponds to the compensated integral with respect
to the jump measure of Y , that is

∫ T

t

K∑

j=1

v(r,W h
r , Xr, j)− v(r,W h

r , Xr, Yr−)(m− ν)(dr × {j}) =

∑

t≤r≤T

∆v(r,W h
r , Xr, Yr)−

∫ T

t

K∑

j=1

v(r,W h
r , Xr, j)− v(r,W h

r , Xr, Yr−)q
Y
r−

j dr.

where ∆v(t,W h
t , Xt, Yt) = v(t,W h

t , Xt, Yt)− v(t,W h
t , Xt, Yt−) for every t ∈ [0, T ],

m([0, t]× {j}) :=
∑

n≥1

1{YTn=j}1{Tn≤t}, j ∈ {1, . . . , K}, t ∈ [0, T ],

is the jump measure of Markov chain Y with the compensator

ν([0, t]× {j}) =

∫ t

0

∑

i 6=j

qij1{Y
r−

=i} dr, j ∈ {1, . . . , K}, t ∈ [0, T ].
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and {Tn}n∈N is the sequence of jump times of Y . Since v satisfies equation (A.1) we get

v(T,W h
T , XT , YT ) ≤

v(t, w, x, i) +

∫ T

t

σmvw(r,W
h
r , Xr, Yr)W

h
r

(
h(m)
r + h(1)

r β1 + h(2)
r β2

)
dB(m)

r

+

∫ T

t

σm + vx(r,W
h
r , Xr, Yr) (β1 − β2) dB

(m)
r

+

∫ T

t

vw(r,W
h
r , Xr, Yr)W

h
r σ
(
h(1)
r + h(2)

r

)
dB(0)

r

+

∫ T

t

(
vw(r,W

h
r , Xr, Yr)W

h
r b1h

(1)
r + vx(r,W

h
r , Xr, Yr)b1

)
dB(1)

r

+

∫ T

t

(
vw(r,W

h
r , Xr, Yr)W

h
r b2h

(2)
r − vx(r,W

h
r , Xr, Yr)b2

)
dB(2)

r

+

∫ T

t

K∑

j=1

v(r,W h
r , Xr, j)− v(r,W h

r , Xr, Yr−)(m− ν)(dr × {j}).

The form of v and integrability condition (3.1) ensure that integrals with respects to Brown-
ian motions B(m), B(0), B(1), B(2) and the compensated jump measure m−ν are true (G,P)-
martingales. Then, taking expectations we get that

V (t, w, x, i) ≤ v(t, w, x, i),

and the equality holds if h is a maximizer of equation (A.1). �

Proof of Proposition 4.3. In the following we use the notation ĝ(Yt) = E [g(Yt)|Ft], t ∈ [0, T ].
Consider the semimartingale decomposition of f(Y ) given by

f(Yt) = f(Y0) +

∫ t

0

〈Qf , Yu−〉 du+M
(1)
t , t ∈ [0, T ],

where M (1) is a (G,P)-martingale. Now, projecting over F leads to

f̂(Yt)− f̂(Y0)−

∫ t

0

〈Qf , Ŷu−〉 du = M
(2)
t , t ∈ [0, T ],

where M (2) is an (F,P)-martingale. Using the martingale representation in (4.1) we get

f̂(Yt)− f̂(Y0)−

∫ t

0

〈Qf , Ŷu−〉 du =

∫ t

0

γu dIu, t ∈ [0, T ].

Let mt = It +
∫ t

0
XuΣ

−1 ̂A(Xu, Yu) du, for every t ∈ [0, T ]. Computing the product f(Y ) ·m
and projecting on F, we obtain

̂f(Yt) ·mt =

∫ t

0

mu〈Qf , Ŷu〉 du+

∫ t

0

XuΣ
−1 ̂f(Yu)A(Xu, Yu) du+M

(3)
t , (A.3)



22

for every t ∈ [0, T ] and for some (F,P)-martingale M (3). We now compute the product

f̂(Y ) ·m as

f̂(Yt) ·mt =

∫ t

0

mu〈Qf , Ŷu〉 du+

∫ t

0

XuΣ
−1f̂(Yu) ̂A(Xu, Yu) du+

∫ t

0

γu du+M
(4)
t . (A.4)

for every t ∈ [0, T ], where M (4) is an (F,P)-martingale. Comparing the finite variation terms
in (A.3) and (A.4), we get

γ
(1)
t =

̂f(Yt)µ1(Xt, Yt)− f̂(Yt) ̂µ1(Xt, Yt)

σ1
,

γ
(2)
t =

σ1( ̂f(Yt)µ2(Xt, Yt)− f̂(Yt) ̂µ2(Xt, Yt))− σ2ρ( ̂f(Yt)µ1(Xt, Yt)− f̂(Yt) ̂µ1(XtYt))

σ1σ2

√
1− ρ2

,

for every t ∈ [0, T ]. By taking f(Yt) = 1{Yt=ei}, we obtain the result. Finally, since the drift
and diffusion coefficients in (4.2) are continuous, bounded and locally Lipschitz, we get that
π = (π1, . . . , πK) is the unique strong solution of the system (4.2) . �

Proof of Theorem 4.1. Existence: For notational ease we set σ1 =
√

σ2 + b21 and σ2 =√
σ2 + b22. Assume first that function V (t, w, x,p) is regular. Then it satisfies the following

HJB equation

0 = sup
h∈AF

Lh
FV (t, w, x,p) (A.5)

subject to the terminal condition V (T, w, x,p) = log(w), for all w > 0, x ∈ R and for every
p ∈ ∆K , where Lh

F is given by

Lh
Ff(t, w, x,p) =

{
ft + fx

(
Γ1 + µ1(x)

⊤p− µ2(x)
⊤p
)
+

K∑

i,j=1

fpiq
jipj

+
(
r +

(
h(m) + h(1)β1 +h(2)β2

)
µm + h(1)

µ1(x)
⊤p+ h(2)

µ2(x)
⊤p
)
wfw(t, w, x,p)

+
1

2
fxxΓ2 +

1

2

K∑

i,j=1

fpipj (H
(i),1(p)H(j),1(p) +H(i),2(p)H(j),2(p))

+
1

2
fwww

2
(
(h(m) + h(1)β1 +h(2)β2)

2σ2
m + (σ1h

(1) + ρσ2h
(2))2 + σ2

2(1− ρ2)h(2)2
)

+ fwxw
(
σ2
m(β1 − β2)(h

(m) + h(1)β1 +h(2)β2) + σ2
1h

(1) − σ2
2h

(2) − ρσ1σ2(h
(1) − h(2))

)

+
K∑

i=1

fwpiw
(
H(i),1(p)(σ1h

(1) + ρσ2h
(2)) +H(i),2(p)

√
1− ρ2h(2)σ2

)

+

K∑

i=1

fxpi
(
(σ1 − ρσ2)H

(i),1(p)−H(i),2(p)σ2

√
1− ρ2

)}

for every function f : [0, T ]×R+×R×∆K → R, which is bounded, differentiable with respect
to time and twice differentiable with respect to (w, x,p) with bounded derivatives. By the
form of the utility function we have that the value function has the form V (t, w, x, π) =
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log(w) + v(t, x, π), for some function v(t, x, π), such that v(T, x,p) = 0 for all (x,p) ∈
(R × ∆K). By inserting the first ansatz in equation (A.5) and considering the first order
condition we get that the candidate for an optimal strategy is given by (4.5), (4.6),(4.7).
Since V (t, w, x,p) is concave and increasing in w, the second order condition implies that
(4.5),(4.6) and (4.7) is the maximizer and the optimal portfolio strategy. Here, we choose v
of the form v(t, x,p) = m̄(p)x2 + n̄(t,p)x+ ū(t,p). Inserting this ansatz in equation (A.5)
leads to the system of linear partial differential equations in (4.8), (4.9), (4.10).
Verification: To conclude that V is the value function, we show a verification result. Let
Ṽ (t, w, x,p) be a solution of (A.5) with the boundary condition Ṽ (T, w, x,p) = log(w). Let
h ∈ AF be an F-admissible control, let W h the solution to equation (4.3). By applying Itô’s
formula we get

Ṽ (T,W h
T , XT ,πT ) = Ṽ (t, z, s,p) +

∫ T

t

Lh
FṼ (u,W h

u , Xu,πu) du

+

∫ T

t

(
Ṽw(u,W

h
u , Xu,πu)W

h
u (h

(m)
u +h(1)

u β1+h(2)
u β2)+Ṽx(u,W

h
u , Xu,πu)(βi−β2)

)
σmdB

(m)
u

+

∫ T

t

(
Ṽw(u,W

h
u , Xu,πu)W

h
u (σ1h

(1) + ρσ2h
(2)) + (σ1 − ρσ2)Ṽx(u,W

h
u , Xu,πu)

)
dI(1)u

+

∫ T

t

K∑

i=1

Ṽpi(u,W
h
u , Xu,πu)H̄

(i),1(πt)dI
(1)
u

+

∫ T

t

(
σ2

√
1− ρ2(Ṽw(u,W

h
u , Xu,πu)W

h
u h

(2)
u −Ṽx(u,W

h
u , Xu,πu))

)
dI(2)u

+

∫ T

t

K∑

i=1

Ṽpi(u,W
h
u , Xu,πu)H

(i),2(πt)dI
(2)
u .

By equation (A.5) we get

Ṽ (T,W h
T , XT ,πT ) ≤ Ṽ (t, w, x,p)

+
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+
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+
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u , Xu,πu)H

(i),2(πt)dI
(2)
u . (A.6)
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Note that stochastic integrals with respect to B(m), I(1) and I(2) are true martingales. This
is a consequence of the fact that function Ṽ (t, w, x,p) = log(w)+ m̄(t)x2+ n̄(t,p)x+ ū(t,p)
solves the HJB equation, that (h(m), h(1), h(2)) is an F-admissible strategy and that functions
m̄(t), n̄(t,p), ū(t,p) and their derivatives are bounded over the compact interval [0, T ]×∆K .
Then taking the expectation on both sides of inequality (A.6) implies that V (t, w, x,p) ≤

Ṽ (t, w, x,p). Moreover if (h(m)∗, h(1)∗, h(2)∗) is a maximizer of equation (A.5), then we obtain
the equality V (t, w, x,p) = Ṽ (t, w, x,p). �
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