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Abstract

Let X be the constrained random walk on Z2 having increments (1,0), (—1,1), (0,—1)
with jump probabilities A\(My,), u1 (My), and pe(My,) where M is an irreducible aperiodic
finite state Markov chain. The process X represents the lengths of two tandem queues
with arrival rate A(M}), and service rates pi(My), and ua(My). We assume that the
average arrival rate with respect to the stationary measure of M is less than the average
service rates, i.e., X is assumed stable. Let 7, be the first time when the sum of the
components of X equals n for the first time. Let Y be the random walk on Z x Z, having
increments (—1,0), (1,1), (0,—1) with probabilities A\(M}), p1(My), and pa(My). Let 7
be the first time the components of Y are equal. For z € R, z(1) + z(2) < 1, z(1) > 0,
and x, = [nz|, we show that P,,_s. (1),2,(2)),m) (T < ©) approximates P, m)(Tn < 7o)
with exponentially vanishing relative error as n — oo0. For the analysis we define a
characteristic matrix in terms of the jump probabilities of (X, M). The 0-level set of
the characteristic polynomial of this matrix defines the characteristic surface; conjugate
points on this surface and the associated eigenvectors of the characteristic matrix are
used to define (sub/super) harmonic functions which play a fundamental role both in our
analysis and the computation / approximation of Py, (T < o).

Keywords: Markov modulation, regime switch, multidimensional constrained random
walks, exit probabilities, rare events, queueing systems, characteristic surface, superhar-
monic functions, affine transformation
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1 Introduction and Definitions

A stochastic processes X is said to be Markov modulated if its dynamics depend on the
state of a secondary Markov process M modeling the environment within which X operates
[7. Markov modulation/regime switch is one of the most popular methods of building richer
models for a wide range of applications from finance to computer networks to queueing
theory. This paper studies the approximation of the probability of a large excursion in the
busy cycle of a constrained random walk X whose dynamics are modulated by a Markov
process M. We assume M to be external, i.e, the transition probabilities of M do not depend
on X. Constrained random walks arise naturally when there are barriers that keep a process
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within a domain, for example: computers/ algorithms sharing resources on a system, financial
positions that have shortselling constraints, or queueing systems. If X represents a queueing
system, a large excursion corresponds to a buffer overflow event; the analysis, simulation
and approximation of probabilities of such events for ordinary (non-modulated) constrained
random walks have received considerable attention at least since [6] 4]; for further references
and a literature review we refer the reader to [I1I]. To the best of our knowledge, there is
hardly any study on the same probability for modulated constrained random walks: we are
aware of only [9] treating the development of asymptotically optimal importance sampling
algorithms for the approximation of the buffer overflow event. For this reason, this work will
focus on one of the simplest multidimensional constrained random walks, the tandem walk,
arising from the modeling of two servers working in tandem. Next we describe the dynamics
of this process and give a precise definition of the buffer overflow probability of interest.

Our main process is a random walk X with increments {I, Is, I3, ...}, constrained to
remain in Zi:

Xo=2€Z2, Xpp1=Xp+7(Xp,Ip)k=1,2,3,...

(2,0) = v, ifrt+wve Zi,
m(x,v) = )
0, otherwise.

The map 7 ensures that when X is on the constraining boundaries
0; ={xeZ?: x(i)=0}, i=1,2,

it cannot jump out of Z2 . We assume the distribution of the increments Iy to be modulated

by a Markov Chain M with state space M (with finite size | M|) and with transition matrix
P e RW'X‘M‘. To ease analysis and notation we will assume P to be irreducible and
aperiodic, which implies that it has a unique stationary measure w on M, i.e., m = wP.
Let #, = o({Mj,j < k+ 1},{X;,j < k}), ie., the o-algebra generated by M and X. The
increments I form an independent sequence given M and the increment [, has the following
distribution given .%j_1:

Ik € {(070)7 (170)7 (_17 1)7 (07 _1)}7
P(Ik‘ = (07O)|9k‘*1) = 1{Mk¢Mk71}

P(Ik = (1,0)|ﬁk—1) = A(Mk?)l{Mk=Mk—1}
P(Iy = (=1, )| Fk-1) = p1 (M) Lag, =,y
P(Ix = (0, =1)[Fk—1) = p2(Mp) s~y )

The dynamics of X are shown in Figure[Ill = The process (X, M) is the embedded random
walk of a continuous time queueing system consisting of two tandem queues whose arrival
and service rates are determined by a finite state Markov process M.

We assume (X, M) to be stable:

DT (A(m) = pi(m))m(m)P(m,m) <0, i =1,2. (1)
meM

In addition to (), we need two further technical assumptions for our analysis see ([21) and
[28). Stability means that the queueing system represented by (X, M) serves customers
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Figure 1: Markov modulated constrained random walk (X, M); the left figure shows dy-

namics in a given layer, the right figure shows jumps between layers representing regime
switches

faster, on average, than the customer arrival rate; this keeps the lengths of both queues close
to 0 at all times with high probability; but (X, M) being a random process, components of
X can grow arbitrarily large if one waits long enough. For a stable constrained random walk
such as (X, M) it is natural to measure time in cycles that restart each time X hits 0. If
the system represented by this walk has a shared buffer where all customers wait (or where
packets are stored, if, e.g., (X, M) represents a network of two computers / processes) then a
natural question is the following: what is the probability that the shared buffer overflows in
a given cycle? To express this problem mathematically we introduce the following notation:
the region

A, ={zeZ% :z(1) +2(2) <n} (2)

and the exit boundary
0A, = {zeZ3 1 z(1) + 2(2) = n}. (3)

A¢ denotes the interior A,, — d; U d2. Similarly, Zi’o denotes Zi — 01 U 0y. Let 7, be the first
time X hits 0A,:
o =inf{k >0: X, € dA,},n=0,1,2,3,.. (4)

Then the buffer overflow probability described above is
Pn(x,m) = Py m) (Ta < 7). (5)
The Markov property of (X, M) implies that p,, is (X, M)-harmonic i.e., it satisfies
pu(,m) = By pn(z + 7(x, 1), M1)], 2 € Ay — 0An,  pu(z,m) =1,2 € 0A,.

This is a system of equations satisfied by p,,, where the number of unknowns is in the order of
|M|n?. More generally, for a d dimensional system the number of unknowns grows like |M|n?,
making the computation of p, via a direct solution of the linear system resource intensive
even for moderate values of n. This justifies the development of approximations of p, and
the main goal of the present work is to find easily computable and accurate approximations
of p,. Stability and the bounded increments of X suggest that when x is away from the exit
boundary 0A,, p, decays exponentially in n, making the buffer overflow event rare. The
approximation of p,, even when there is no modulation turns out to be a nontrivial problem.



There are two sources of difficulty: multidimensionality, and the discontinuous dynamics of
the problem on the constraining boundaries. Asymptotically optimal importance sampling
algorithms for the non-modulated setup were constructed in [2], which proposed a dynamic
importance sampling algorithm based on subsolutions of a related Hamilton Jacobi Bellman
(HJB) and its boundary conditions. The approach of [2] is tightly connected to the large
deviations analysis of p,,, which identifies the exponential decay rate of p,,. Large deviations
analysis is based on transforming p, to V,, = —(1/n) log p,, scaling space by 1/n and taking
limits; the limit V' of V,, satisfies the HJB equation mentioned above. The works [10] 1]
obtained sharp estimates of p, for the non-modulated two dimensional tandem walk using an
affine transformation of the process X; see Figure 2l and the summary below. Another goal
of the present work is to show that this affine transformation approach can be extended to
the analysis of p,, of the Markov modulated constrained random walk. As the present article
shows, this extension turns out to be possible but Markov modulation complicates almost
every aspect of the problem: the underlying functions, the geometry of the characteristic
surfaces, the limit analysis, etc. A detailed comparison with the non-modulated case is given
in Section

To the best our knowledge, there is very limited research on the analysis of the overflow
probability p, for Markov modulated constrained random walks; we are only aware of the
article [9] which develops asymptotically optimal importance sampling algorithms for the
approximation of p, for the (X, M) process studied in the present work. In doing this, a
necessary step is also to compute the large deviation decay rate of p,,; this was also done for
z = 01in [9]. The analysis in this work is based on the sub and supersolutions of a limit HJB
equation. Next is a summary of our analysis and main results.

1.1 Summary of analysis and main results

The starting point of our analysis is transforming X to another process Y™ by an affine
transformation moving the origin to the point (n,0) on the exit boundary; as n goes to
infinity, Y™ converges to the limit process Y constrained only on dy; Figure 2] shows these
transformations.

Figure 2: The transformation of (X, M)

The formal definition of the limit process Y is as follows: define

. (=10
n= (3.



Define the constraining map

(,0) v, fy+veZxZy,
m(y,v) =
1 0, otherwise.

Then the limit process Y is the M-modulated constrained random walk on Z x Z, with
increments

Jk = IQIk . (6)
Yk+1 = Yk + 7T1(Yk, Jk)

Define the region
B={yeZxZy:y(l) >y(2)}

and the exit boundary
0B ={yeZxZ;:y(l)=y(2)}.

Let 7 be the hitting time
T =inf{k>0:Y;€dB}.

Y is a process constrained to Z x Z, with the constraining boundary ds; we will denote the
interior Z x Z — 0o of this set by Z x Z9 . Define the affine transformations

T, =ney + I
where (e, e2) is the standard basis for R2. Our main approximation result is the following:

Theorem (Theorem [61]). For any x € R%, (1) + z(2) < 1, (1) > 0, and m € M there
exist constants ¢ > 0, pe (0,1) and N > 0 such that

|P Tn,m (Tn < 7—0) —P Tnlzn),m (T < OO)| on
(anm) (T @n)m) < ™
P(acn,m) (T < TO)

forn > N, where x,, = |nx|.

Theorem states that, as n increases, P(7, (5,),m)(7 < o) gives a very good approxi-
mation of P, ..)(7, < 70). Parallel to the non-modulated case treated in [I1], the proof of
Theorem consists of the following steps 1) the difference between the events {7, < 79}
and {7 < o} can be characterized by the event “X first hits ¢; then do and then 0A,” 2)
the probability of this detailed event is very small compared to the probabilities of the events
{7, < 70} and {7 < 0}. The challenges arise from the implementation of these steps in the
Markov modulated framework.

To bound the probabilities appearing in (7)) we will use (Y, M)-(super)harmonic functions
constructed from single and conjugate points on a characteristic surface H (see (I4])) associ-
ated with (Y, M). The characteristic surface is the 0-level set of the characteristic polynomial
of the characteristic matrix A (see (I2)) defined in terms of the transition matrix P and the
jump probabilities A(-), u1(-) and pa(-). The characteristic polynomial is of degree 3| M| and
therefore the characteristic curve doesn’t have a simple algebraic parametrization; for this
reason, in the modulated case, the identification of points on the characteristic surface relies
on the decomposition of the the surface into |M| components, by an eigenvalue analysis of
A and the implicit function theorem. The decomposition is given in subsection 21l and the
points relevant for our analysis are identified in Propositions 2.8 21Tl and These points
all lie on the innermost component corresponding to the largest eigenvalue of A.



In the presence of a modulating Markov chain, harmonic functions are constructed in
general from | M| + 1 points on the characteristic surface, which makes analysis based on
them more complex. For this reason, we will switch to superharmonic functions whenever we
can, which can be constructed from just two points. An upper bound for P, ,,, (1 < o) using
these functions is given in Section Bl Section @ constructs an upper bound for the detailed
event described above characterizing the difference of the events {7, < 70} and {r < o}.
A lower bound for P, ,,)(T, < 7o) based on subharmonic functions constructed from the
functions of Section 2] is given in Section [l These elements are combined in Section [G to
prove our main approximation theorem, Theorem

With Theorem we know that P(,,,) (7, < 70) can be approximated very well with
P 7, (@),m)(T < ). In the non-modulated case, a linear combination of two Y-harmonic
functions constructed from points on the characteristic surface gives an exact formula for
Py(t < o0). This is no longer possible when there is modulation; Sections [0 and [ devel-
ops increasingly accurate approximate formulas for P, ., (7 < 00) using (Y, M)-harmonic
functions constructed from further points on the characteristic surface under further linear
independence assumptions (see (T7), ([89)), see Propositions [[Il and Propositions for the
(Y, M)-harmonic functions constructed in these sections. As opposed to the limit analy-
sis which uses points only on the innermost component of the characteristic surface, the
construction of harmonic functions uses points on all components of the characteristic sur-
face. Propositions and find bounds on the relative error of the approximations of
P(ym)(T < o0) provided by these functions based on the values they take on dB. Section
gives a numerical example showing the effectiveness of the resulting approximations. Section
compares the analysis of the current work with the non-modulated tandem walk treated in
[10, 11] and the non-modulated parallel walk treated in [12]. Section [[I] comments on future
work.

2 (sub/super)Harmonic functions of (Y, M)
A function h on Z x Z4 x M is said to be (Y, M)-harmonic if
E(y,m [h(Y1, M1)] = h(y,m), (y,m) € Z x Ly x M; (8)

if we replace = with > [<], h is said to be (Y, M)-subharmonic [superharmonic].
For the case [M| = 1 (i.e., no modulation), [I0} 1] use Y-harmonic functions which are
linear combinations of exponential functions

y = [(8,),y] = BrD¥D¥? (8a) e C, (9)

and (B, «) lies on a characteristic surface associated with the process. Markov modulation
introduces an additional state variable m, which leads to the following generalization of ()

(y,m) = §/O D) d i), (10)

where d : M — C is an arbitrary function on M. Let [(8, «, d), ] denote the function given
(I0). We would like to choose (8, a, d) so that [(5, «, d), -] is (Y, M )-harmonic at least over the
interior Z x Z9 . To this end, introduce the local characteristic polynomial for the modulating
state m € M:

p(3,vm) = M) + i (ma -+ pua(m) (1)



To define the global characteristic polynomial introduce the |[M| x | M| matrix A:

P(mq,ms), my # Mo,

A(B, O‘)mlmw = {

P(m17m1)p(/87a7m)7 mi = ma,

(m1,m2) € M2. Let I denote the |M| x | M| identity matrix. Attempting to find functions
of the form [(3, a, d), ] that satisfy (8]) leads to the following characteristic equation:

A(p,)d = d, (12)

i.e,
p(B,a) = det(I — A(S,a)) =0, (13)
and d is an eigenvector of A(f3,«) for the eigenvalue 1. The p(-,-) of ([I3) is the global

characteristic polynomial for the modulated process (Y, M). Define the characteristic surface

for the interior:
M= {(ﬁ,a,d) e CHMI: A(Ba)d = d, d # 0} . (14)

Points on H give us (Y, M)-harmonic functions on Z x Z..
Proposition 2.1. If (8, «,d) € H then [(B, ., d), ] satisfies &) for y e Z x Z5..
Pmof. By definition

y (y,m) [(5aa d) (Yi’Ml)]

= >, Pmn)[(B ad),(yn)

neM,n#m
+ P(m,m)(A(m)[(8,a,d), (y + (=1,0),m)] + p(m)[(B, @, d), (y + (1,1),m)]
+ p2(m)[(B, a,d), (y + (0, 1), m)])

Expand [(8, o, d), ((y +v),m)] terms:

= Z P<m7n)[<57a7 d)7 (yvn)]

neM,n#m
_|_P(m7m)()\(m)/@y(l)*ye)*lay@)d(m) +M1( )/By —y(2) ay(2)+1d< )

+ MQ(m)ﬁy(l)*y@)Hay(2)*1d(m))

Factor out [(8, a, d), (y,m)] from the last three terms:

= Y Pmn)(B.a,d),(y.n)] + Plm,m)(3,a.d), (y,m)]p(5, a,m)

neM,n#m

O R IOPNTC) ( Z P(m,n)d(n) + P(m,m)d(m)p(ﬁ,a,m)> .

neM,n#m

The expression in parenthesis equals the m!” term of the vector A(f, a)d, which equals d(m)
because (3, a,d) € H means A(f,a)d = d. Therefore,

= g0 Dd(m) = (8,0, d), (y,m)].
This proves the claim of the proposition. O

The previous proposition gives us (Y, M)-harmonic functions on Z x Z9 . we next study
the geometry of H, this will be useful in defining (Y, M )-(super/sub) harmonic functions over
all of Z x 7.



2.1 Geometry of the characteristic surface

Define 1%, the projection of H onto its first two dimensions:
H = {(B,a) € C? : p(B, ) = O};

we will to refer to HP® as the characteristic surface for the interior as well, which is justified
by the next lemma; its proof follows from basic linear algebra.

Lemma 2.1. For each (B,a) € HP* there is at least one parameter family of points
{(B,a,¢cd), ce C—{0}} = H, for some d e CMI —{0}. Conversely, for each (8,c,d) € H,
we have (5, «) € HP*. Furthermore, all points on H can be obtained from those on HP?.

BMIaMIp is a polynomial of degree 3| M| in (8, ), which makes, in general, the analysis
of the geometry of H5® nontrivial. A natural approach to the study of the geometry of
this curve is through the eigenvalues of A(f,«). The next two propositions show that the
curve HP® decomposes into |[M| distinct pieces over any region D where A(3, ) has simple
eigenvalues.

Proposition 2.2. Let D c C? or D < R? be open and simply connected and suppose A(3, )
has simple eigenvalues for all (B,a) € D. Then the eigenvalues of A can be written as |M|
distinct smooth functions A;(5,a) on D.

Proof. The argument is the same for both real and complex variables. That the eigenvalues
Aj can be defined smoothly in a neighborhood of any (3,«) € D follows from [8, Theorem
5.3] and the assumption that they are distinct. Once defined locally, one extends them to all
of D through continuous extension, which is possible because D is simply connected. O

Most of our analysis will be based on (3,a) € D = Ri’” =R% — 01 U dy. For (B,a) € Ri’”,
A(f, a) is an irreducible matrix with positive entries. Perron-Frobenius Theorem implies that
A(S, ) has a simple positive eigenvalue dominating all of the other eigenvalues in absolute
value with an eigenvector with strictly positive entries. Aj(5,«) will always denote this
largest eigenvalue. Furthermore, if A(/3,«) has distinct real eigenvalues for (3, a) € Ri’g, we
will label them so that

Aj(B,a) > Ai(B, @), for j <1,

i.e., the eigenvalues are assumed to be sorted in descending order.
For D and A; as in Proposition define

LY ={(B,a) € D: Aj(B,a) = 1}.
The last proposition implies
Proposition 2.3. Let D and Aj, j =1,2,3,...,| M|, be as in Proposition [Z2 Then
D~ HPe = UM e (15)
where LU denotes disjoint union.
The proof follows from the definitions involved. For D = Ri’o we will omit the superscript

2,0

R
D and write £; instead of £ y .

If A(B,«) has simple real eigenvalues for (3, «) € ]R%r’o we can define
Rj = {(8,a) e R>": A;(B,a) < 1}.
The continuity of A; implies £; = 0R;.



Proposition 2.4. Suppose A(S,«) has simple real eigenvalues for (5,a) € Ri’g. Then the
curve L; is strictly contained inside the curve Ljiq for j =1,2,...,|M| — 1.

Proof. All diagonal entries of A(f3, «) tend to oo when (5, ) — 8Ri’0. This and Gershgorin’s
Theorem [5, Appendix 7], imply A;(5,a) — o for (8,a) — 8]1%1’0. This implies in particular
that R; is a compact subset of Ri’g. Secondly, Aj 11 < Ajimplies R; < Rj41; the compactness
of these sets, the strictness of the inequality A;11(5,a) < A;(8, ) imply that OR; = L; lies
strictly within R;4q with strictly positive distance from the boundary L1 of R;1; this
proves the claim of the proposition. O

In Sections [ and § we will employ the following assumption and the above decomposition
of HP® to identify points on HP® to be used in the construction of (Y, M)-harmonic functions:

. y , 2,
Assumption 1. A(S, ) has real distinct eigenvalues for (3, a) € RY°.

To show that Assumption [lis not vacuous, we now give a class of matrices A that satisfies
it. The following definitions are from [I, page 57]: a matrix is said to be totally nonnegative
(totally positive) if all of its minors of any degree are nonnegative (positive). A totally
nonnegative matrix is said to be oscillatory if some positive integer power of the matrix is
totally positive. If A is oscillatory, Assumption [I] holds:

Proposition 2.5. Suppose A(B, «) is an oscillatory matriz for all (8, «) € Ri’g, then A(S3, «)
has |[M| distinct eigenvalues over ]R%r’o.

This proposition is a basic fact on oscillatory matrices [1l (6.28)]. [II (6.26)] identifies a
particularly simple class of oscillatory matrices:

Proposition 2.6. Suppose G(1,1), G(1,2), G|M|—1,|M|), G(|M|,|M|) and G(j,j — 1),
G(1,7), G(4,7+1), j =2,3,...,IM|—1 are all strictly positive and the rest of the components
of G are all zero, i.e., G is tridiagonal with strictly positive entries. Then G is an oscillatory
matriz.

We will call any tridiagonal matrix with strictly positive entries on the three diagonals
“strictly tridiagonal.” By the above proposition any strictly tridiagonal matrix is oscillatory.
In particular, if the transition matrix P is strictly tridiagonal, A(f,«) will also be of the
same form for all (3, ) € R%; therefore, for such P Assumption [ holds.

The decomposition of HA A ]R%r’o into £; is shown in Figure [3] for the transition matrix

06 04 0
P=1[(01 04 05]. (16)
0 02 08

The matrix P of ([I6) is strictly tridiagonal; therefore, Proposition [Z6lapplies and A (S, «)
has distinct real eigenvalues for all (3,a) € Ri’o and we have the decomposition (3] of
HB A ]R%r’o given by Propositions and 24t Figure B shows H2® and its components Lj;
the jump probabilities for this example are

01 04 05
0.12 041 0.47 (17)
0.09 0.39 0.52

where the " row equals (\(7), p1(7), 2 (7).
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Figure 3: Real section of the characteristic surface HA® = u?zlﬁj for the parameter values
given in (I6) and ([I7)). On the right: detailed graph around the origin

By Proposition 2.1l and Lemma 2.1] each point on any of the curves depicted in Figure
gives a Y-harmonic function on Z x Z9 . Most of our analysis will be based on points on
the innermost curve L1, the 1-level curve of the largest eigenvalue Aq; before identifying the
relevant points, let us look at two different methods of constructing (Y, M)-(super)harmonic
functions from points on HA*.

2.2 Construction of (Y, M)-harmonic and superharmonic functions

We can proceed in two ways to get functions that satisfy

E(y,m)[h(Y1, M1)] = h(y,m) or E(, ) [h(Y1, M1)] < h(y,m) for y € 0z as well as the interior.
The first is by defining the characteristic polynomial ps, the boundary matrix As, and the
boundary surface Ho associated with do and using points on H N Ho:

p2(B,a,m) = )\(m)% + pi(m)a + pa(m), me M,
. ) P(ma,ma), my # ma 2
A2(B,O‘)m1,m2 = {P(ml,ml)pg(ﬁ,a,m), my = m, ’(mlam2) e M,
My = {(B,a, d) e C*MI . Ay (8,0))d = d,d # o} . (18)

10



Define Ay 1 (8, @) to be the largest eigenvalue of As(f3,a). Parallel to the interior case, define

Hy" = {
Lo = {

(B,a) € C* : pa(B,a) = 0},
(B,0) e R : Ag1(B,0) = 1}.

Proposition 2.7. [(5,«,d),] is (Y, M)-harmonic if (5,c«,d) € H N Ha.

Proof. Proposition 2] says that for (8, a,d) € H, [(5,«,d), ] satisfies the harmonicity con-
dition when y € Z x Z, — 0. Similar to the proof of Proposition 211 we would like to show
that [(8, a, d),-] is (Y, M)-harmonic on 02 when (8, «, d) € Hy. By definition

IE:(y,m) [(/87 «, d)7 (Y17 Ml)]
= ), Pmn)(B a,d),(y,n)]
neM,n#m
+ P(m,m)Am)[(8, @, d), (y + (=1,0),m)] + p(m)[(5, @, @), (y + (1,1),m]
+ pa(m)[(B, v, d), (y, m)])
= ), Pmn)(B a,d),(y,n)]
neM,n#m
+ P(m,m)(ANm) YD d(m) + un (m) 5N ad(m) + pa(m) 6N d(m))

= Y, Pm.n)(B a,d),(y.n)] + P(m.m)[(8,a.d), (y.m)]p2(8, a,m)
neM,n#m

= gy ( Z P(m,n)d(n) + P(m,m)d(m)pg(ﬂ,a,m)> )

neM,n#m

The expression in parenthesis equals the m!? term of the vector As(j, a))d, which equals
d(m) because (3, a,d) € Ha means Ay (5, a))d = d. Therefore,

= /By(l)d(m) = [(57 «, d)7 (y7 m)]
This argument and Proposition 2] prove the claim of the proposition. ]

The real sections of HA* and 7—[260‘ are 1 dimensional curves and their intersection will in
general consist of finitely many points. In the analysis of the tandem walk with no modulation,
these points can easily be identified explicitly. There turn out to be three of them, of which
only one is nontrivial (i.e., different from 0 and 1). In the present case, there will in general
be 3| M| — 2 nontrivial points on HP A Hga; one of these which lies on £1 n L9 can be
identified using the implicit function theorem and the stability assumption (II); this point
and the (Y, M)-harmonic function it defines are given in Proposition and below. For
the argument we need two auxiliary linear algebra results, Lemmas [A 1] and [A.2] given in the
appendix.

Proposition 2.8. Under the stability assumption (1)) there exists unique 0 < p; < 1 such
that (p1,p1) € L1 0 L1 C HPY A ’Hga, i.e., 1 is the largest eigenvalue of A(p1,p1) and
As(p1,p1).

11



Proof. For q € R? define
H(q) = —log A4 (eq(l),eq(2)> . (19)

By [9, Lemma 4.2, 4.3], H is convex in q. Proceeding parallel to [9, Proof of Lemma 4.4,
page 515] define f(A,r) = det(AI — A(e",e")). We know that f(Ai(e",e"),r) =0 for r € R.
To prove our proposition, we will apply the implicit function theorem to f at (1,0) to prove
that r — Aq(e",e") is strictly increasing at r = 0. Differentiating f at (1,0) with respect to
r gives

of
or

= 2, (A(m) = pa(m))P(m,m)det(I — P)™™,
(1,0) meM

which equals, by Lemma [A.2] for some constant ¢ > 0,

= ¢ > (Am) = p1(m)) P (m, m)m(m)
meM

<0

where the last inequality follows from the stability assumption (). Similarly, differentiation
of f at (1,0) with respect to A gives:

of

FIN =1.

(1,0)

This implies that the implicit function theorem is applicable to f; the last two display give:

%Al(en oo > 0.

On the other hand, Gershgorin’s Theorem implies Aj(e",e") — o0 as r — —oo (because of
the A(m)/f term appearing in the diagonal terms of A, tending to +oo with 8 = €”). To
sum up: we have that Aj(e”,e") is strictly monotone at r = 0 (decreases when 7 decreases)
and it tends to infinity as r — —oo. Then, by the continuity of Ay, there must exist at least
one point in (—o0,0) where Aj(e”, e") takes the value 1; the convexity of H implies that such
a point is unique, i.e., there is a unique point r7* < 0 such that Al(er*,e”*) = 1. Setting
p1L = e proves the proposition. ]

Let d; be an eigenvector of A(py,p1) corresponding to the eigenvalue 1; because 1 is the
largest eigenvalue of A(p1,p1) and because A(py,p1) is irreducible and aperiodic, we can
choose d; so that all of its components are strictly positive. The point (p1, p1,d1) € H N Ha
and Proposition [Z7] give us our first (Y, M)-harmonic function:

Proposition 2.9.
hPl = [(,01,p1,d1),'] (20)
is (Y, M )-harmonic.

The second way of obtaining (Y, M)-harmonic functions is through conjugate points on
#P. The function aMlp is a polynomial of degree 2| M| in a. By the fundamental of theorem
of algebra, a/Mlp has 2| M| roots, ai(B), ..., az(B),..., anm|(B), in C for each fixed 8 € C;
points (8, ;) € HP*, i = 1,2,...,2| M| are said to be conjugate points. In the non-modulated
case, i.e., when |M| = 1, ap is only of second order, therefore, the conjugate points come

12



in pairs, and given one of the points in the pair, the other can be computed easily; in the
modulated case, there are obviously no simple formulas to obtain all of the conjugate points
given one among them, because computation of conjugate points involves finding the roots
of a polynomial of degree 2| M]|.

For (B, «a,d) € H define

c(B,a,d) e CM, ¢(B, o, d)(m) = P(m,m)uz(m)d(m) <1 - é) . (21)

(07

One can take linear combinations of functions defined by conjugate points to define (Y, M)-
harmonic functions. This is based on the following lemma

Lemma 2.2. Suppose (B,a,d) € H. Then, for (y,m) € dy x M,

E(ym) [(8, . d), (Y1, M1)] = [(B, v, ), (y,m)] = B*De(B, a,d)(m), (22)
where ¢ is defined as in [21).
Proof. The computation in the proof of Proposition 2] gives

IE(y,m) [(/85 «, d)’ (Yla Ml)] (23)
= pv ( > P(m,n)d(n)+ P(m,m)d(m)pQ(ﬁ,a,m)> :
neM,n#m
On the other hand, (3, a,d) € H means
[(8, v, d), (y,m)] (24)
= ¥Wd(m) = pv®) ( Z P(m,n)d(n) + P(m,m)d(m)p(ﬂ,a,m)) .
neM,n#m

Subtracting the last display from (23]) gives
E(y,m) [h(Yl’ My )] - h(y, m)
= 3P m)pa(m)dm) (12 ) = 9 0c(5.0.)(m),
a

which proves (22]). O

We now identify a family of (Y, M)-harmonic functions constructed from conjugate points

on H:

Proposition 2.10. For g € C let (8,a4,d;) i = 1,2,...,1 < 2|M| be distinct conjugate
points on H. Take any subcollection {i1,iz,...,ix}, k < | such that c(B,a;,,d;;) are linearly
dependent, i.e., there exists be CF, b # 0, such that

M?r

B,O‘zja zj) = 0. (25)

]:

Then .
h(y,m) = Y b(i)(B, iy, diy), ] (26)

j=1
is (Y, M)-harmonic.

13



Proof. We already know from Proposition 2] harmonic functions of the form

[(B, a;,d;), -] are (Y, M)-harmonic in the interior Z x Z, — 03. So, their linear combinations
are also (Y, M)-harmonic in the interior and we need to check the harmonicity for y € do. By
Lemma 2.2

Ey. [(8, i, di), (Y1, M1)] = [(B, 0w di), (y, )] = B*Pe(B, as, dy).

Taking linear combinations of these with weight vector b gives:

E(y )[h(Yi,Ml)] ( IBy @ (Z b /Baa’L]7 l])>

which equals 0 € R*™M| by (@23]). This proves that & is (Y, M)-harmonic on . O

For any 8 € C such that p(8, ) = 0 has distinct roots, ai, az,...,as ), all different from
B, we have, by definition, ¢(8,a;,d;) # 0 for all j = 1,2,...,2|M|. Therefore, for such 3,
and for any subcollection oy, ajy, ..., aj, , with k > |[M| + 1, we can find a nonzero vector b
satisfying (25]).

We will call a (Y, M)-harmonic function dB-determined if it of the form,

(y,m) = Eym)[f (Yr, Mr) 1z co0y]

for some function f. The function (y,m) + P, (7 < o) is the unique dB-determined
(Y, M)-harmonic function taking the value 1 on ¢B. Among the functions of the form
[(8,a,d), -], the closest we get to this type of behavior is when o = 1: for a = 1, [(8, 1,d), (y,m)]
depends only on m for y € 0B. Therefore, a = 1 play a key role in computing/approximating
Pym) (7 < ). The next proposition identifies a point on £y of the form (p2,a = 1) with
0<pr <.

Proposition 2.11. Under assumption (1) there exists 0 < pa < 1 such that (p2,1) € L1 <
HP e, 1 is the largest eigenvalue of A(pa, 1).

Proof. The proof is parallel to that of Proposition [Z8 We now define f(A,r) = det(AI —
A(e", 1)) and observe, by assumption () and Lemma [A2]

aé‘f = > (A(m) = p2(m))P(m,m) det(I — P)"™"™
"o meM
meM

for some constant ¢ > 0. The rest of the proof proceeds as in the proof of Proposition 228 [

Recall that (p2,1) € L1, i.e., 1 is the largest eigenvalue of A(pa,1); the irreducibility of A
implies that the eigenvectors corresponding to 1 have strictly negative or positive components;
let dy denote a right eigenvector of A(pg,1) corresponding to the eigenvalue 1 with strictly
positive components. Proposition 2] and the previous proposition imply that [(p2,1,d2), -]
is (Y, M)-harmonic on Z x Z — 05. All of the prior works ([10} 11l [12]), use a conjugate point
of (p2,1) to construct a Y-harmonic function. In the present case, in general, (p3,1) will
have 2| M| — 1 conjugate points. Figure [ suggests that only one of these conjugate points
lies on Lq; we will use (po,1) along with this conjugate to define a (Y, M)-superharmonic

14



function. This will be in two steps. Proposition identifies the relevant conjugate point;
Proposition 2.14] constructs the superharmonic function. We will use the superharmonic
function in Sections [ and @ below in our analysis of the relative error ().

The identification of the conjugate point requires the following assumption:

Y, (p2ua(m) = pa(m)) P(m,m) det(I — A(pz, 1))"™™ < 0. (27)
meM

Remark 2.1] comments on this assumption and Proposition 2.13] gives simple conditions
under which (27) holds.

Proposition 2.12. Let (pa2,1), p2 € (0,1), be the point on Ly identified in Proposition [2Z11.
Then there exists a unique point (p2,af) € L1, of € (0,1) if (1) holds.

Proof. Set r9 = log(p2). Proof is parallel to those of Propositions and 2.IT] and is based on
the analysis of the function H of (1)) at the point (re,0) via the implicit function theorem.
Define f(A,r) = det(AI — A(ps,e”)) and observe

of

o = D (pzpa(m) — pr (m)) P (m,m) det(I — A(pz, 1))™"™",

(T270) meM

which, by assumption (27)), is strictly less than 0. The rest of the proof goes as that of
Proposition O

Remark 2.1. Assumption (27) ensures that (p2,1) has a conjugate point on the principal
characteristic surface L1 with o component less than 1. There is no corresponding assumption
in the non-modulated tandem case, because, in that setup, the conjugate of (p2,1) is (p2,p1)
whose o component py s always less than 1 by the stability assumption. In the simple con-
strained random walk case (treated in [19]) the corresponding assumption is r> < pips (see
12, Display (14)))

The condition of < 1 is needed for the superharmonic function constructed in Proposition

to be bounded on 0B, see Proposition [32.
Proposition 2.13. FEach of the following conditions is sufficient for (1) to hold:

1. X(m)/u2(m) < 1, A(m) < pi(m) for all m € M and the ratio \(m)/u2(m) does not
depend on m,

2. pa(m) < pi(m) for all me M.

Proof. If A(m)/p2(m) < 1 does not depend on m we can denote the common ratio by ph < 1.
Substituting (3, a) = (ph, 1) we see that A(p), 1) = P. This implies that the root p, identified
in Proposition [ZTT] must equal p,. Setting pa = pfy, on the left side of [27]) gives

> (papa(m) — g (m)) P (m,m) det(I — A(ps, 1))

meM
= > (Phpa(m) — pa(m))P(m,m)det(I — A(py, 1))™"™
meM
= > (A(m) = g (m)) P (m,m) det(T — A(pg, 1))™™
meM
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det(I — A(p2,1))™™ > 0 by Lemma [A1] and A(m) < p1(m) by assumption; these and the
last line imply (27):

< 0.

That the condition ps(m) < pi(m) for all m € M implies ([27) follows from a similar argu-
ment. U

Remark 2.2. The argument used in the proof above can be used to prove that the conjugate
point (p2, af) satisfies af > 1 if one replaces < with > in ([271).

For the rest of our analysis we will need a further assumption:

p1 # p2, (28)

where p; is the first (or the second) component of the point on £1 n L identified in Propo-
sition and py is the § component of the point on £; identified in Proposition 2111
Assumption (28]) generalizes the assumption gy # po in [10, 11, 12].The following lemma
identifies sufficient conditions for (28]) to hold.

Lemma 2.3. If p1(m) > pa(m) for allm e M, or pui(m) < pe(m) for all m e M, then (28])
holds.

Proof. The matrix D = A(pg,pa) — A(p2,1) is a diagonal matrix whose m!" entry equals
(1 — p2)(p2(m) — p1(m)). Suppose pa(m) > pi(m) for all m € M; then py € (0,1) implies
that D has strictly positive entries.

We have then:

A(p2, p2)dy = A(p2,1)dy + Dd,
=dy + Ddy
> (1+6)ds (29)

for some € > 0; here we have used 1) ds is an eigenvector of A(pz,1) corresponding to the
eigenvalue 1 and 2) D has strictly positive entries. We know by [0, Proof of Theorem 1,
Chapter 16] that

A1(A(p2, p2)) = supfe : 3z € R, A(pa, po)a > exr}. (30)
This and ([29) imply that the largest eigenvalue of A(po, p2) is strictly greater than 1. This

implies po2 < p1. That pi(m) > po(m) for all m € M implies ps > p; follows from the same
argument applied to A(pg,1)ds ;. O
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0.4 T T T T r
/] DAl

Figure 4: p; — p2 and af — p2 have the same sign (Lemma [2.4)); the points marked with 'x’
are (p2, p2), (p2,af) and (1, p2); the point marked with 'o’ is (p1, p1)

Lemma 2.4. Let (p2,af) be the conjugate point of (p2,1) on Ly identified in Proposition
212 Then p1 > py implies af > p2 and p1 < p2 implies o < pa.

Figure [ illustrates this lemma.

Proof. By definition p; is the unique positive number strictly less than 1 satisfying Ay (p1, p1) =
1; pa < p1 implies Aj(p2,p2) > 1. But of satisfies A1(p2,a5) = 1 and Aj(p2,p) < 1 for
p € (af, p2]. Tt follows that ps < af. The argument for the opposite implication is simi-
lar. O

Remark 2.3. By the previous lemma the assumption 28) is equivalent to
al # pa. (31)

Remark 2.4. p; is the unique solution of A1(5,5) =1 on (0,1); similarly py is the unique
solution of A1(8,1) =1 on (0,1). That Ay is the largest eigenvalue of A(S,«) and the above
facts imply that py [p2] is the largest root of p(B,B) [p(B,1)] on (0,1). Therefore, one can
state the assumption [28]) also as follows: “the largest roots of p(B,5) and p(5,1) on (0,1)
differ.”

By definition, 1 is the largest eigenvalue of A(p2, a}); let da 1 denote a right eigenvector of
this matrix with strictly positive entries. Next proposition constructs a (Y, M )-superharmonic
function that we will use to find upper bounds on approximation errors; this is one of the
key steps of our argument.
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Proposition 2.14. Under assumption [28) one can choose a constant ¢y € R
(co >0 for af < p2 and co <0 for of > p2) so that

hp2 = [(p2717d2)7'] + CO[(p27aT7d2,17']7 (32)
is a (Y, M)-superharmonic function.

Proof. By their construction, the conjugate points (p2,1) and (p2,af) lie on £4. This
and Proposition 1] imply that the functions [(p2,1,d2), ] and [(p2, of,d2,1), ]| are (Y, M)-
harmonic on Z x Z, — 0. This implies the same for their linear combination h,,. Therefore,
to prove that hy, is (Y, M)-superharmonic, it suffices to check this on 0s.

By definition h,, is superharmonic on 0o if

IE(y,m) [hPQ (Yl’ Ml)] < hP2 (ya m)
for y = (k,0) and m € M. By Lemma 2.2]

IE:(y,m) [(p27 1, d2)7 (Y17 Ml)] - [(p27 1, d2)7 (y,
E(ym)l(p2, a1, d2,1), (Y1, M1)] = [(p2, 0, da,1), (v,

)]
)]

C<p27 17 dQ)(m)7

m)] = p
m)| = pISC(pQ?aT?le)(m)?

where ¢(-, -, -) is defined as in (ZI]). The last two lines give

IE:(y,m) [hp2 (Y17 Ml)] - hP2 (y7 m) = p]2'C (C(pg, 1, dQ)(m) + COC(p27 O‘T? d2,1)(m)) : (33)

For h,, to be superharmonic, the right side of the last display must be negative. The sign of
this expression is determined by

C(p27 L, d2)(m) + C()C(pg, Offa d271)(m)' (34)

The definition 21]) of ¢ and ps < 1 and dz(m) > 0 for all m € M imply that the first term
is strictly positive for all m € M. Define

dmax = max ¢(p2,1,d2)(m) > 0.
meM

The sign of the second term in ([34]) depends on whether af < p2 or af > ps. For af < po,
the definition [2II) of ¢ and ds 1 (m) > 0 for all m € M imply that the ¢ term in ([B4]) is strictly
negative for all m. Define

dhax = max c(p2,af,da1)(m) < 0. (35)
meM
If we choose ¢y > 0 so that
dmax + codpax < 0, (36)

B4) will be strictly less than 0 for all m. This and (&3] imply that h,, is superharmonic for
any co satisfying (30).

For af > py the argument remains the same except that we replace the max in (B5) with
min and ¢g < 0. ]

In the next section we will use h,, to find bounds on the approximation error ().
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3 Upper bound for P, (7 < ®)

As we saw in Proposition 2.I4] above, (Y, M)-superharmonic functions can be constructed
from just two conjugate points on £, < HA.

We will need an upper bound on P, ,,)(7 < o) in our analysis of the relative error ([);
in the non-modulated tandem walk treated in [I0] [I1], this probability can be represented
exactly using the harmonic functions constructed from points on the characteristic surface,
which also obviously serves as an upper bound. In the present case, we will construct an upper
bound for P, ) (7 < 00) from (Y, M)-harmonic and superharmonic functions constructed in
Propositions and 2141 The next proposition constructs the necessary function the one
following it derives the upper bound.

Proposition 3.1. Let h,, = [(p1,p1,d1),-] be as in @) and h,, be as in B2). One can
choose ¢1 = 0 so that

2 min B (5,m) + b (5,m) > 0 (37

for af < p2 one can choose ¢; = 0.

Proof. By its definition,
hpa(y,m) = da(m) + co(a)*Pda (m), (38)

for y € 0B. We know by Proposition 214l that ¢y > 0 for af < pa. This, af >0, da1(m) >0
imply

. © i
min g, (y,m) > min da(m) > 0,

which implies [B7) with ¢; = 0.
For af > pa2, cp < 0 and (B8)) can take negative values for small y(2). But 0 < of < 1
implies that there exists ky > 0 such that

By (y, m) = mi/l\n/l d2(m)/2 >0, yedB, y(2) = k. (39)
me

On the other hand, d;(m) > 0 for all m € M and p; > 0 imply that h,, (y,m) > 0 for all
y € 0B, m € M. Then one can choose ¢; > 0 so that

cidy (m)p?f(z) + dy(m) + co(a’f)y(z)dg,l(m) > géljl\fl/l dy(m)/2, ye B, y(2) < ko, (40)
since this inequality concerns only finitely many y € 0B. ¢; chosen thus, (89) and (@) imply

D). O

Proposition 3.2. Let ¢; = 0, co > 0 be as in Proposition [31]

1
Pym)(T < 00) < . (hpy (y,m) + c1hp, (y,m)) . (41)

Proof. For ease of notation set
f = hp2 + Clhpl;
p1, p2.af € (0,1) implies
sup |f(y,m)| < 0.
yeB,meM
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Furthermore, by Propositions and T4 f is (Y, M)-superharmonic. These imply that
kv f(Yinr, Mk A7) is @ bounded supermartingale. Then by the optional sampling theorem
(B Theorem 5.7.6])

IE(y,m) [f(YT’MT)l{T<OO}] < f(yam);
this, Y; € 0B when 7 < o0 and ([B7) imply
C2P(y7m) (T < OO) < f(y’m)a

which gives ({I]). O

4 Upper bound for P, (01 <012 <7, < 7)

Define
o; =inf{k>0:X,€0}i=12 (42)

and
012 ginf{k;>0:Xkeé’2, k?m}; (43)

o0; is the first time X hits ¢; and o1 2 is the first time X hits Jy after hitting 0;. In the next
section we find an upper bound on the probability P, ,, (01 < 012 < 7 < 70), We will use
this bound in the analysis of the approximation error in the proof of Theorem Define

p=p1Vps (44)
The goal of the section is to prove
Proposition 4.1. For any € > 0 there exists ng > 0 such that
P($7m)(01 <012 <Tp <Tp) < p"(l_e) (45)
forn =ng and (x,m) € A,.

We split the proof into cases p; > pz and py > p;. The first subsection below treats the
first case p1 > po, the next gives the changes needed for the latter.
Let A, denote the characteristic matrix for oy:

p1(B,a,m) = )\(m)l + p1(m) + ,ug(m)g, me M,

B
P(mi,ms), #
A1(57O‘)m1,m2 = (ml m2) e 7(m17m2) e M2
P<m17m1)p1(/87a7m)7 mi1 = ma,

We will use the following fact several times in our analysis.

Lemma 4.1. The function
(2,m) = [(p2, 1, da), (L), m)] = g~ " dy(m) (46)
is (X, M)-harmonic on Z% — 0s.

Proof. We know by Proposition [ZTland (p2,1,d2) € H that [(p2,1,d2), ] is (Y, M)-harmonic
on Z x 7., which implies that {g]) is (X, M )-harmonic on Zi’o; this and A;(p2,1) = A(p2,1)
imply the (X, M)-harmonicity of (6] on 0;. O

20



4.1 p1>p2

To prove (5) we will construct a corresponding supermartingale; applying the optional sam-
pling theorem to the supermartingale will give our desired bound. The event {07 < 012 <
Tn < To} consists of three stages: X first hits 0; then 0y and finally 0A,, without ever hitting
0. If h is an (X, M)-superharmonic function, it follows from the definitions that h(X, M) is a
supermartingale. We will construct our supermartingale by applying three functions (one for
each of the above stages) to (X, M): the function for the first stage is the constant p}', which
is trivially superharmonic. The function for the second stage will be a constant multiple of
(x,m) — hy, (T, (x), m). By Proposition 28, (x,m) — h,, (T, (), m) is (X, M)-harmonic on
Z%r — 01. One can check directly that it is in fact subharmonic on ¢;. The definition of the
supermartingale S will involve terms to compensate for this. The function for the third stage
is

hs : (x,m) — hp,(Tn(z),m) + cihy, (Th(x),m), v € A,, me M,

= hp,((n —2(1),2(2)),m) + crhy, ((n — x(1),2(2)), m),

= py @) (d2(m) + CoaTm@)du(m)) +erp) ™ Wy (m), (47)
where ¢; = 0 is chosen as in Proposition B1] and ¢g is as in Proposition 2214l The next two
propositions imply that hs is (X, M)-superharmonic on Zi — 0.
Proposition 4.2. For py > p2, hy,(T,(-),+) is superharmonic on all of Z2.

Proof. That hy, (T,,(-),-) is (X, M)-superharmonic on Z2 — o follows from Proposition 214
(i.e., from the fact that h,,(-,-) is (Y, M)-harmonic). Therefore, it suffices to prove that
hpy (T (+), ) is superharmonic on 0. hy, (Ty,(:),-) is a sum of two functions:

hPQ (Tn(')’ ) = [(,02, 1, d2)’ (Tn(')’ )] + CO[(IO2’ O‘T’ d2,1)’ (Tn(')’ )] (48)

Let us show that each of these summands is (X, M)- superharmonic on ¢;. The first summand
is (X, M)-harmonic (and therefore, superharmonic) on ¢; by Lemma[Il To treat the second
term in (E8]) recall the following: p2 < p; implies p2 < af (Lemma 24]); then, by Proposition
214 ¢y < 0. Therefore, if we can show that [(p2, af,d2.1), (Tn(-),-)] is (X, M)-subharmonic
on 07 we will be done. Let us now see that this is indeed the case.

For ease of notation set

B, m) = [(p2 0 daa ). (Tu(@),m)] = o~ " @ 0™y (m).
A calculation parallel to the proof of Proposition 1] shows
Eemy [A(X1, M1)] = h(w,m) = da,y (m)us (m)(1 = af)py " > 0, (49)

for x € 01, i.e., h is (X, M)-subharmonic on 0;. This completes the proof of this proposition.
]

Proposition 4.3. h,, (T,,(-),") is harmonic (and therefore superharmonic) on Z2 — dy. It is
subharmonic on 01 where it satisfies

B m) oy (Tn (X1), M1)] = hpy (T (), m) = di(m)pa(m)(1 = p1)py > 0. (50)
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The proof is parallel to the computation given in the proof of Proposition 2] and is
omitted. We can now define the supermartingale that we will use to prove (43)):

hy, k<o,

S]/C = ho(Xp, My), o1 <k< 01,2,
hs( Xk, My), k> 01,2,

Sy = S5, — cskpt,

where

o = WX da(m) + ¢; max,uepn di(m) =0 (51)
3 min,ep di(m) ’

hi = c4pt, ¢4 = c3maxdi(m) >0,
meM
) —z(1
ha = el (Tu(), ) = esl(pr, pr,dr), (Tu(), )] = eapi " Veli (), (52)
c5 = c3(1 — p1) max dy(m)pi(m). (53)
meM

Two comments: hq is a constant function, independent of z and m, and h; > hy on 0;.
Proposition 4.4. S is a supermartingale.

Proof. The claim follows mostly from the fact that the functions involved in the definition
of " are (X, M)-superharmonic away from ¢;. The term that breaks superharmonicity on
01 1s [(p1, p1,d1), (Th(Xg), My)]; the —cskp}] term in the definition of S is introduced to
compensate for this. The details are as follows.

The (X, M )-harmonicity of hy, ho and hg implies

E(J},m) [S],C+1 |ﬁk] = Sli:

for Xj, € Z2% — 01 U 0a; i.e., S}, satisfies the martingale equality condition for X € Z2 — 1 U 0s;
this implies that S} satisfies the supermartingale inequality condition over the same event.

he and hs are (X, M)-superharmonic on d, by Propositions and (hq is trivially so
because it is constant); this implies

E(z.m) [Sks1| Z1] < S

for X}, € 0o and k # o12. For k = 012 we have S} | = h3(Xy11, My1). This, the (X, M)-
superharmonicity of hg on 0o implies

E(2m)[Sts1l- k] = E(gm) [h3(Xpg1, Myt1)]-F]
< ha(Xg, My) (54)

for k = 012. On the other hand,
S,; = h2(Xk7Mk) for k = 01,2- (55)
The definitions of ¢3, he and hs in (B1), (B2) and [{T), p2 < p1 and ¢y < 0 imply

hg(l',m) < hg(l’,m)
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for x € d5. This and (BH) imply
hs (X, Mk) < ha(Xy, My) = S,
for k = o012. The last display and (54]) imply
E (m) [Sk411Fk] < S,

ie., §" and S are (X, M)-supermartingales for k = oy 9 as well.
It remains to prove

E(2,m)[Sk+1|Fk] < Sk, when X}, € d;. (56)
The cases to be treated here are: k = 01, 01 <k < o012 and k > 01 2.
For k = o1, we have S}, = hy(Xy, My,) = c3ptdi(My) and S) 1 = ho(Xpy1, Mi11); these

and hy = hg on ¢ imply

E(zm) [Sk+1-Zk] — Sk (57)
= Em)lcahp, (Tn(Xgs1), Myy1)|-Fk] — capidi(My) — csp7,

By (B0) and o1 = k, this equals
< cady (M) pn (M) (1 = p1)pt — espy'-

By the definition of c¢s:
= pres(1 = p1)(di(Mi)pr(My) — max dy(m)u1(m)) < 0,

which proves (B8] for k£ = o;.

For oy <k < o012, S}, = hao(Xk, M) = cghy, (T (X), My); therefore the above argument
applies to this case as well (except for the last step which is not needed here because S}, and
Sy, are defined by applying the same function ho to (Xgi1, My41) and (Xy, My)).

Finally, to treat the case X}, € 01 and k > 012 we start with

E(wm)[Sk411-Zk] — Sk = E(gm) [Sky11Fk] — Sy — espT,
Sy = h3(Xg, My) for k > o12. Then by the definition of hs:

= E(zm) [Ppo (Tn(Xk+1), Mi41) + 1l (Tn(Xp41), Mi41)| k]
— Py (T (X)), M) — c1hp, (T5(Xg), My) — espys

= (E(zm) oo (T (Xpp1), M 1) | Fi] — o (Tn (X)), My))

+ Elerhp, (Tn(Xpt1), Mis1)[Fr] — crhp, (Tn(Xk), My) — cspt-

The (X, M)-superharmonicity of h,,(T,(-), -) implies that the difference inside the parenthesis
is negative, therefore:

< Eleihpy (Tn(Xkg1), Mi1)|-78] — cihp, (Tn(Xk), My) — csp7-
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Proposition B3] ((G0)) now gives
= c1dy (M) pa (M) (1 = p1)pt — cspy'-
By its definition (B3)), c5 > c1dy(m)ug(m)(1 — p1) for all m € M, which implies:
<0.
This proves (B6]) for £ > 012 and completes the proof of this proposition. O
We are now ready to give a proof of Proposition 1l for p; > pa:

Proof of Proposition [{.1]; case p1 > pa. By its definition ([@4]), p of @3] equals p; for p; > po.
We begin by truncating time: [9, Theorem A.2] implies that there exists ¢g > 0 and Ny > 0
such that

2n
IP)(m,m) (Tn ATy > Cﬁn) <SP

for n > Ny. Then:
P(a:,m) (0’1 <012 <Tp < 7'0) (58)
= P(m,m)(al <012 < Tp <7T0,Tn A To < CN)
+ P(Lm)(al <012 <Tp <Tp,Tp AT > cen)
< IP)(J:,m) (01 <012 <Tp <70, Tn ANTo S CGTL) + p%"

for n > Ny. Therefore, to prove (@) it suffices to bound the first term on the right side of
the last inequality. Now apply the optional sampling theorem to the supermartingale S at
the bounded stopping time 7 = 79 A 7, A cgn:

IE(azz,m) [STO/\Tn/\Csn] < S(] = C4,0?.
By definition, Sy = S,/C — cskpl; substituting this in the last display gives:
—esconpt + B m)[S7] < capt

IE(m,m) [Sq/—] < (64 + nC5C6)p711_

By its definition, Sj > 0, therefore restricting it to an event makes the last expectation
smaller:
IE(:):,m) [54—1{01<01,2<Tn<7'0<06n}] < (C4 + nC5c6)p7f.

On the set {01 < 012 < 7, < 79 < cen}, we have 7 = 7, and S, = h3(X,,, M,,);
by definition X, € 0A,. By definition of h3 and by Proposition Bl hs(z,m) = c¢o > 0 for
x € 0A,,. These and the last display imply

P m)(01 < 012 < T < 70 < cgn) < (ca + nesce)py

Substitute this in (58) to get

Pizmy(o1 <012 < Tph < 79) < prf(l_gn)
where
en = Llog, ,, <w> ;
n co
setting ng = Ny so that €, < e for n = ng gives ([@3)). O
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4.2 p1r<pe

The previous subsection gave a proof of Proposition [ATlfor p, < p;. The only changes needed
in this proof for p; < pa concern the functions used in the definition of the supermartingale
S; the needed changes are:

1. Modify the function ho for the second stage,

2. The function hj is no longer superharmonic on d1; quantify how much it deviates from
superharmonicity on 01,

3. Modify the constants used in the definition of S in accordance with these changes.

The next two propositions deal with the first two items above; the definition of the
supermartingale (taking also care of the third item) is given after them.

The convexity of ¢ — —log(Ai(e?,e?)) and Ai(p1,p1) = 1 imply Aq(p2,p2) < 1 for
p2 > p1. Let dJ be a right eigenvector of A(pa, p2) with strictly positive entries.

Proposition 4.5. The function

fi(@m) = [(p2,p2,d3), (Tu(x),m)]

is superharmonic on Zi — 01. On 01 it satisfies

B () [f (X1, M1)] = f(2,m) < d (m)pa(m) (1 — p2) . (59)

The proof is parallel to that of Proposition d.3land follows from Aj(p2, p2) < 1, Aa(p2, p2) =
A(p2, p2) and the definitions involved.

Proposition 4.6. Let hs be as in [@1); hs is (X, M)-superharmonic on Z% — 01; on 0y it
satisfies

E (am) [P3(X1, M1)] — ha(z,m) = codo,i (m)u (m)(1 — af)py " > 0. (60)

Proof. Lemma 2.4l and pa > p; imply af < po; this and Proposition Bl imply that ¢; in the
definition of hg is 0; i.e.,

ha(,m) = hyg (Tu(a),m) = o~V (dy(m) + co(ad)™@ s (m) ) ;

That hg is (X, M)-superharmonic on Z% — d; follows from the same property of h,, (see
Proposition Z14). On the other hand, again by Proposition ZI4] af < p2 implies that ¢
in the definition of h,, satisfies ¢cg > 0. By Lemma Bl (x,m) — [(p2,1,d2), (Tn(x),m)] is
(X, M)-harmonic on 0;; (60) follows from these and (49). O

p2 > p1 implies po > of (Lemma[24); this and Proposition BIlimply ¢; = 0; p2 > of and
Proposition 2214l imply ¢g > 0. That ¢y > 0 and ¢; = 0 lead to the following modifications in
the definition of S’:

h1, k < o,

Sy = ha( Xy, My), o1 <k <012,
hs3( Xk, My), k> o012,

Sy = S}, — cskph,
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where

0g = DBXmeM (da(m) + coda1(m))

)

min,,c g d;(m)

. . +
hi = capy, ¢4 = cg maxd, (m),
meM

ha = esl(p2, p2,d3), (T (), )] = espy " Vg (),
¢5 = c3(1 = po) max dy (m)p1(m) + co(1 — af) max da,y (m)p (m).

The modification in c3 ensures hy = hs on 0o; ¢g > 0 implies that hg is no longer superhar-
monic on d1; the second term in ¢; compensates for this.

Proposition 4.7. S as defined above is a supermartingale for pa > py.

Proof. With the modifications made as above, the proof proceeds exactly as in the case
p1 > p2 (Proposition [£4]) and follow from the following facts: hy = hy on 01, hy = hg on 0y
(these are guaranteed by the choices of the constants ¢4, ¢3); (X, M)-superharmonicity of hy
and h3 on Zi — 01 (guaranteed by Propositions and [L0)), the —cskphy term compensating
for the lack of (X, M)-superharmonicity of hs and hy on ¢, (guaranteed by (B9) and (G60) and
the choice of the constant cz). O

Proof of Proposition [{.1]; case py > p1. With S defined as above, the proof given for the case
p1 > p2 works without change. O

5 Lower bound for P, (7, < 79)

To get an upper bound on the relative error ([7), we need a lower bound on the probability
P(2,m)(Tn < 70). We will get the desired bound by applying the optional sampling theorem,
this time to an (X, M)-submartingale. This we will do, following [12], by constructing a
suitable (X, M )-subharmonic function. As opposed to superharmonic functions, subharmonic
functions are simpler to construct.

Proposition 5.1.

(:C, m) = [(,02, 1, d2)’ (Tn(x)’ m)] v [(pl’ P1, dl)’ (Tn(x)’ m)] (61)
= o Oy ) v gV o

is (X, M)-subharmonic on Z2.

Proof. We know by Lemma that

E(m,m) [(p2a 1, d2)a (Tn(Xl), Ml)] - [(P2, 15 d2), ('Ia m)]
= 05~V P(m,m)us(m)da(m) (1~ p2) > 0,

ie, (x,m) — [(p2,1,d2), (z,m)] is (X, M )-subharmonic on 0.
That(z,m) — [(p2,1,d2), (Tn(z), m)] is (X, M)-subharmonic on Z2 — o follows from Lemma
@I Then, (z,m) — [(p2,1,dz), (x,m)] is (X, M)-subharmonic on all of Z2.

Similarly, Proposition and (B0) imply that (z,m) — [(p1,p1,d1), (z,m)] is (X, M)-
subharmonic on all of Z2.

The maximum of two subharmonic functions is again subharmonic. This and the above

facts imply the (X, M )-subharmonicity of (1. O
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Proposition 5.2.
P (zm) (T < T0)

> <max(d2(m) v dy (m))> o (62)

meM

n—(x(1)+x(2 n—zx(1l n n
(O dan) v V() o) v g i) ).

Proof. Set
gla,m) = py IO dy () v otV (m);

by the previous proposition g is (X, M)-subharmonic. By its definition, g is positive and
bounded from above for x € Z2.. It follows that

Sk = g(XTn/\T()/\k" M’rn/\’ro/\k)
is a bounded positive submartingale. By definition
E[g(XTn/\To’ MTn/\TO)] = E[g(XTn?MTn)]‘{Tn<T0}] + E[g(XTO’ MTO)l{’TOS’Tn}]‘ (63)
That X,, € 0A, implies g(X;,, M,,) = g(k,n — k) for some k < n; then

9(Xr,, Mr,) < max(dz(m) v di(m)).

This, (63])) and the optional sampling theorem applied to s at time 7, A 7o give

P($7m) (Tn < TO) <£§g}é(d2 (m) v dy (m))> + g(o’ m)P(x,m) (TO < Tn) = g(x’ m)

P(zm) (70 < 7o) < 1 implies

(1mx(dam) v da(m)) P < ) > gl ) = maglg(0, )}

this and max[g(0,m)] = py max da(m) v p} max di(m) give ([62). O
meM meM meM

6 Completion of the limit analysis

This section puts together the results of the last two sections to derive an exponentially
decaying upper bound on the relative error (7). As in previous works [10, [IT] 12], this task
is simplified if we express the Y process in the x coordinates thus:

Xk = Tn(Yk)§

X has the same dynamics as X, except that it is not constrained on ¢;. In this section we
will set the initial condition using the scaled coordinate = € R%, x(1) + x(2) < 1, the initial
condition for the X and X will be

XQ = XQ = [nxj

As in the non-modulated case, the following relation between X and X will be very useful:
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Lemma 6.1. Let 012 be as in @3). Then

Xk (1) + Xg(2) = Xp(1) + Xk(2)
for k < oqp.

This lemma is the analog of [10, Proposition 7.2], which expresses the same fact for the
non-modulated two dimensional tandem walk; the proof is unchanged because it does not
depend on the modulating process. Example sample paths of X and X up to time 012
demonstrating Lemma are shown in Figure

A

\/

(2,0)
Figure 5: A sample path of X} (left) and X (right)

Define
T, = inf{k > 0: X}, € 0A,,},
g12 = inf{k >0: Xk(l) + Xk(Q) =0, k> o1}

X and X have identical dynamics upto time o7; g1,2 is the first time after (o, i.e., the
first time X and X hit 1) that the sum of the components of X equals 0. By the definitions
of Xand VY, 7, =T.

What follows is an upper bound similar to (@5]) for the X process. This is a generalization
of [I0, Proposition 7.5] to the present setup:

Proposition 6.1. For any € > 0 there exists ng > 0 such that
P(r,m)(gl <012 <Tph < ) < pn(l—f) (64)
for n>ng and (z,m) € A,

Proof. As in [0}, Proposition 7.5] we partition the event {1 < 012 < 7, < o0} into whether
X hits 0A,, before or after it hits {x € Z x Z, : (1) + (2) = 0}:

P(m,m) (0'1 <012 <Tph < OO) (65)
= P(m,m)(al <012 <Tph <012 < OO) + P(;}:,m)(al <012<012<Tp < OO)

Lemma implies
X01,2 (1) + X01,2 (2) = X01,2 (1) + X01,2 (2)

i.e., at time 019, X and X will be on the same line {z € Z x Z, : (1) + (2) = k} for some
ke {1,2,...,n —1}. Then for we {01 < 012 < 7,} the fully constrained sample path X (w)
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cannot hit 0 before the path X (w) hits {x € Z x Z, : x(1) + x(2) = 0} and it cannot hit 0A,,
after X hits {x € Zx Z, : (1) +x(2) = n} (intuitively: more constraints on X push it faster
to 0A,, and slower to 0 than less constraints do the process X): these give

{0'1 <012 < Tn < 5’172 < OO} (e {0’1 <012 <Tp < To};

the bound (@) on the probability of the last event and (65]) imply that there exists n; > 0
such that

P(x,m)(al <012 <Tp < OO) < pn(l_e/Q) + P($7m)(0'1 <012<012<Tp < OO) (66)

for n > nq.

To bound the last probability we observe that X5, , lies on {z € Zx Z : x(1)+x(2) = 0};
by Proposition B2} starting from this line, the probability of X ever hitting {z € Z x Z, :
z(1) + 2(2) = n} is bounded from above by

(a1 = 2(1).2(2)).m) + erhyy (n = (1), 2(2)),m)
< - (ABda(m) + crpies (m):

this and the strong Markov property of X give:
Prpmy(01 <012 <012 < Tp < ©) < c7p”
where ¢7 is a constant depending on di, ds, ¢; and ¢y. Substituting this in (66]) gives

n(1—e/2)

IP>(:1:,m) (Jl <012 <Tp < OO) <p + C7pn,

for n > ny. This implies the statement of the proposition. U
Finally, we state and prove our main theorem:

Theorem 6.1. For any z € R2, z(1) + (2) < 1, and m € M (if p1 > p2 and z(2) <
1 —log(p1)/log(p2) we also require x(1) > 0 ) there exists cg > 0 and N > 0 such that

P(enm) (Tn < 70) = P(r, () m) (T <0)|

< 67
P(:vn,m) (Tn < TO) r ( )

forn > N, where z,, = |nx]|.

Proof. Proposition 5.2 the choice of z (i.e., (1) + 2(2) < 1 and z(1) > 0 and furthermore
x(2) < 1 —1log(p1)/log(p2)) when p; > po) imply the lower bound

P(m,m) (Th < 70) = pn(172c8) .

for some constant 1/2 > cg > 0 depending on z.
By definition X hits dA,, exactly when Y hits 0B, i.e., 7,, = 7; therefore, P m) (T <
OO) = P(Tn(xn),m)(T < OO) and

P2, m) (Tn < 70) = P13, (20),m) (T < 0|
P(xn,m) (’Tn < ’7'0)
‘P(ggmm) (Tn < To) — ]P)(xn,m)(fn < OO)‘
P(mn,m) (Tn < 7'0)

(69)
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We partition the probabilities of events {7, < 79} and {7 < o0} as follows

Pam)(Tn < 70) = Py m)(Tn < 01 < 70) + P(g, m) (01 < T < 012 A T0)

+ P(xn,m)(al <012 <Tp < TO) (70)

P, (@n)m) (T < 0) = P, (2,),m) (T < 01) + P(1, (2,),m) (01 < 7 < 012)

+ P(Tn(a:n),m) (0'1 <012 <7< OO) (71)
Lemma says the processes X and X move together until they hit 0, so
P(mmm) (Tn <01 < TO) = P(Tn(xn),m) (T < Ul)-

After hitting i, the sum of the components of X and X are still equal until one of the
processes hits do. Lemma [6.1] now gives

P(aﬁn,m) (0’1 <Tp <012 A To) = ]P)(Tn($n)7m) (0'1 <7< 0'172).

The last two equalities, Propositions ], [6.1], and partitions (Z0)), (7I)) imply that there exists
ng > 0 such that

| P(mn,m) (0'1 <012 <Tp < 7'0) — P(Tn(a:n),m) (0'1 <012 <7< oo) |< pn(l—cs) (72)

for n > ng. Substituting the last bound and (68]) in (69) gives (67). O

7 Computation of P(7 < )

Theorem B.Ttells us that P (7, (z,),m) (T < 00) approximates P, ) (7, < 70) very well. In this
section we develop approximate formulas for P, ,,)(7 < c0). Recall that a (Y, M)-harmonic
function is said to be 0B-determined if it of the form

(ya m) — E(y,m) [f(Y’T7 MT)1{7-<OO}]

for some function f. The function
(y, m) = IP)(y,m) (T < OO) (73)

is (Y, M)-harmonic with f = 1 on 0B. Furthermore, by definition it is ¢ B-determined, (for
([@3), f is the function taking the constant value 1 on dB). Our approach to the approximation
of Py ) (T < ) is based on the classical superposition principle: take linear combinations
of the (Y, M)-harmonic functions identified in Propositions 2.7 and to approximate the
value 1 on 0B as closely as possible. We need our (Y, M)-harmonic functions to be 0B-
determined; the next lemma identifies a simple condition for functions of the form (74)) to be
0B-determined.

Lemma 7.1. Suppose (3, j,d;) are points on H and suppose

k
Wy, m) = 3, bG8, a5, ), ), (74)
j=1
k=1, is (Y, M)-harmonic. If |B| <1 and |a;| <1 then h is 0B-determined.
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This generalizes [10, Proposition 2.2, 4.10] to the Markov modulated setup.

Proof. Define the region U = {y € Z x Zy : 0 < y(1) — y(2) < n} and the boundaries of U
oUy ={yeZxZy :y(l) —y(2) = n} and oUs = 0B. Define v, = inf{k : Y}, € oU;}. We
make the following claim: starting from a point y € U, (Y, M) hits 0U; u U in finite time,
i.e., v, A T < o0 almost surely. Let us first prove this claim. For each modulating state m,
the sample path of (Y, M) consisting only of increments (0, —1) hits 0Us in at most n steps
and the probability of this path is (A(m)P(m,m))". Then if we set

e = min (\(m)P(m,m))"

we have
P(%m)(T A Up = n) < (1 — E).

An iteration of this inequality and the Markov property of (Y, M) give

P (T AUy =kn) < (1—e)F,

y,m)

Letting &k — o0 gives
P(y,m) (T N Up = OO) =0. (75)

Definition ([74) and |o;| < 1, |8| < 1 imply that h is bounded on B. This and that h is
(Y, M)-harmonic imply that

Sk = h(YT/\vn/\ka MT/\vn/\k:)

is a bounded martingale. The optional sampling theorem applied to this martingale and (75])
imply

h(y,m) = IE(y,m) [h(YT/\Un7MT/\Un)] (76)
= IE(y,m) [h(YT? MT)1{7<vn}] + IE(y,m) [h(va Mvn)l{vn<r}]'

That |a;| < 1 implies |h(Y,,,, My, )| < ¢B™ for some constant ¢ > 0. Therefore,

lim B, [A(Ye, , My, )1, <r}] < ¢ lim g7 =0

n—0o0 n—0o0

The last expression, that lim,,_,« v, = 00 and letting n — oo in (@) imply

h(y, m) = By [A(Yr, M) 17 <o,
i.e, h(y,m) is 0B-determined. O
The last lemma and 0 < p; < 1 imply
Lemma 7.2. h,, is 0B-determined.

Recall that we have constructed a (Y, M)-superharmonic function, h,, from the roots
(p2,1), (pa, aF) € HP*. We would like to strengthen this to a (Y, M)-harmonic function. This
requires the use of further conjugate points of (p2,1) (in addition to (p2,a7)). The next
lemma shows that under Assumptions [l and (27) we have sufficient number of conjugate
points of (p2,1) to work with:
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Lemma 7.3. Let (p2,af) be the point conjugate to (p2,1) identified in Proposition [Z12.
Under Assumptions Il and 1), there exists [M| — 1 additional conjugate points (pa,a),
J=2,3,...,|IM|, of (p2,1) with 0 < af <ajf.

Proof. We know that Aj(p2,of) = 1; then Aj(p2,af) < 1 for j = 2,3,...,|M|. On the other
hand, Gershgorin’s Theorem implies limq_.g Aj(p2, ) = 0. These and the continuity of A;
imply the existence of o} € (0,a}) such that Aj(p2,a}) = 1. O

To construct our (Y, M)-harmonic functions from the points identified in the previous
lemma we need the following assumption:

c(an 1,d2) € Span (C(P2aa;‘<,d2,j),j = 152’ CEE) |M|) . (77)

Remark 7.1. By definition, c(p2, o, da j) = 0 if aj = pa. Therefore, only those j satisfying
of # p2 have a role in determining Span c(pg,a;-‘,dgvj),j =1,2,.., \M\) . In this sense,
assumption (TD) can be seen as an extension of BI) (or, equivalently, of [28])).

Remark 7.2. The linear independence of c(pg,a;-‘,dg,j), Jj =12 .. |M)|, is sufficient for
([TD) to hold. That c(B,3,d) = 0 implies that ps # o for all j = 1,2,..,|[M| is a necessary
condition for this independence.

Now on to the (Y, M)-harmonic function:

Proposition 7.1. Let (p2,a}) be the conjugate points of (p2,1) identified in Proposition[Z12
and Lemma[7.3 Under the additional assumption ([2), one can find a vector by 1 € R™ such

that
[M]

b = [(p2, 1, d2), -] + D bo1(j)[(p2, 0 da ), ] (78)
j=1
is (Y, M)-harmonic and 0B-determined.

Proof. Assumption (77)) implies that the collection of vectors
c(p2,1,d2), c(po, af, dyj), j =1,2,...,|M| are linearly dependent. Therefore, by Proposition
210, there exists a vector ' € RMI+1 guch that

n1

V(O0)(p2, 1, da), -]+ Y U (Dl(p20 0, dojy), ]
k=1

is (Y, M)-harmonic. Assumption (7)) implies that one can choose V' so that ' (0) # 0.
Renormalizing the last display by o'(0) gives (Z8). That b,, is dB-determined follows from
0<a;‘f<1,p2<1andLemma|E1 O

Next proposition constructs an approximation of P, (7 < 00) with bounded relative
error from functions b,, and h,,.

Proposition 7.2. There exist constants cg, cig and c11 such that
Pymy (T < ) < h*(y,m) < cgP(ym) (T < 0) (79)

where
pa0 = c11(hp2 + cthm)- (80)
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Proof. The proof is similar to that of Proposition Bl That 0 < of < 1, j = 2,3,...,[M|
imply that
[(p2: 05, dag), (K, kom)] = (af)*da j(m) — 0 (81)

as k — oo. We further have
[(p2,1,da), (k, k,m)] = da(m) > 0, (82)
for all £ > 0. This and (BI)) imply that there exists ky > 0 such that
bp, (k, k,m) > nrzrélj\r}( da(m)/2 (83)
for all £ > kg. On the other hand,
hpy (B, kym) = [(p1, p1,da), (k kym)] = di(m)pf > 0, (84)
for all k. Then we can choose c¢jg > 0 large enough so that

hpQ(kakam) +Clohpl (kakam) = m{/I\}l d2(m)/2 (85)
me

for all k& < ko. The last display, (83) and the positivity of cioh,, imply that the last display
holds for all £ and m € M. Set

-1
= in d 2
C11 <nrlré1/{}t 2(m)/ ) >

and h*" be as in (B0). That (85) holds for & > 0 and m € M implies
ha’0|aB > 1.

By Lemma and Proposition [T h? is (Y, M)-harmonic and dB-determined. This and
the last display imply,

ha,O(y’ m) = IE(y,m) [hmo (YT, MT)1{7—<00}] = IP)(y,m) (7— < OO) (86)

This proves the first inequality in ([79). To choose ¢g so that the second inequality in ([79)
holds we note the following: (81]), (82]) and (84]) imply

co= max h*(k km)< .
k=0,meM
Now the same argument giving (86]) implies the second inequality in (79). O

Proposition 7.3. Fiz m € M and x € R, such that 0 < z(1) + z(2) < 1; furthermore
assume x(1) > 0 if p; > pa and x(2) < 1—log(p1)/log(p2); set x, = |nxz|. Then h*°(T,(x,))
approzimates P, ..\ (T, < 7o) with relative error whose limsup in n is bounded by |cg — 1].

Proof. We know by the previous proposition that h%° approximates Pry.m) (1 < o0) with
relative error bounded by |cg — 1|; we also know by Theorem that

P 1, (20),m) (T < ) approximates P, .)(Tn < 7o) with vanishing relative error. These two
imply the statement of the proposition. O
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8 Improving the approximation

Proposition[Z3tells us that A% of (80) approximates P(ym) (7 < o0) and therefore P, ) (1, <
7o) with bounded relative error. The works [10, [I1l, [12] covering the non-modulated case are
able to construct progressively better approximations (i.e., reduction of the relative error)
by using more harmonic functions constructed from conjugate points (in the tandem case
with no modulation, one is able to construct an exact representation of P,(7 < o) so no
reduction in relative error is necessary). This is possible because the function in [10} [T, 12]
corresponding to h,,, takes the value 1 on 0B away from the origin. Thus, by and large, that
single function provides an excellent approximation of P, (7 < o) for points away from 0s.
Rest of the harmonic functions are added to the approximation to improve the approximation
along 0s.

When a modulating chain is present, the situation is different. Note that (&), (82) imply
that the value of h,, on 0B, away from the origin, is determined by the eigenvector dp and
in general, the components of dy will change with m. We need to improve b, itself so that
we have a (Y, M)-harmonic function that is close to 1 on 0B away from the origin.

How is this to be done? Remember that the construction of b,, began with fixing o = 1
and solving

BMIp(8,1) = 0; (87)

p2 is the largest root of this equation in the interval (0,1). Then we fixed f = py in
aMlp(py,a) = 0 and solved for a to find the conjugate points (pQ,Oc;‘) of (p2,1); from
these points we constructed b,,. Now to get our (Y, M)-harmonic function that almost takes
the value 1 on 0B away from the origin we will use the rest of the roots of (87) in (0,1). The
next lemma shows that under the stability assumption and the simpleness of all eigenvalues,
|M|—1 real 8 roots exist that lies in the interval (0, p2). The proposition after that constructs
the desired (Y, M)-harmonic function from these roots.

Lemma 8.1. Under the stability assumption (1), and Assumption [1 ( all eigenvalues of
A(B,«) are real and simple for (B,a) € R%°) there exist paj, j = 2,3,...,|M|, such that
P2 > P22 > 02,3 > e > p2,|M| >0 and {62 #* 0, €3 # O,...,6|M| #+ 0} C RM such that

A(PQ,ja 1)ej = €5, ] = 2737"'7 ‘M‘7
holds.

The proof is parallel to that of Lemma[.3] and is based on Gershgorin’s Theorem and the
fact that Aj(ps,1) <1 for j =2,3,...,|M|.

Each of the points (p2;,1) will in general have 2|M| — 1 conjugate points. To get 0B-
determined (Y, M )-harmonic functions from these we need the analog of ([Z) for each (p2,;, 1):
Assumption 2. For each j = 2,3, ..., | M| there exists m; < | M| conjugate points (p27j704;:l),
1=1,2,....,mj, of (p2,j,1) and eigenvectors 0 # e;; € RM such that

la¥)| <1, 1=1,2,..,mj,
A(paj,aj )ej = ej

c(p2,j.1,€;5) € Span(c(pg,j,a;"l,ej,l),l =1,2,..,m;). (88)
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Remark 8.1. Similar to the comments made in Remark [7.3, a set of sufficient conditions
for BR) is 1) mj = [M| and 2) c(p2,j. 05 ej0), L= 1,2,...,[M| are linearly independent.
By ¢(-,-,-)’s definition, linear independence of these vectors require a;:l # pa2,j, which is, yet
another generalization of the assumption p1 # pa.

Remark 8.2. One can introduce assumptions similar to 2T) which imply, with an argument
similar to the proof of Lemma[7.3, that (p2,j,1) has |[M| — j conjugate points in the interval
(0,1). But in general, this number of conjugate points will not suffice for (88]) to hold and
when constructing (Y, M)-harmonic functions with = paj, j = 2,3,...,|M|, we will use
conjugate points with complex or negative v components. Instead of introducing even more
assumptions similar to 27)), we directly incorporate (88)) as an assumption.

To get our (Y, M)-harmonic function converging to 1 on the tail of dB (see ([@2]) below
for the precise statement) we need one more condition:

1 € Span(dy, ez, ..., €| rq|)- (89)

A sufficient condition for (89) is that the vectors listed on the right of this display are linearly
independent.

Proposition 8.1. Lete;, j = 2,3, ..., | M| be as in Lemmal8dl. and let dy be as in Proposition
211 Under Assumptions [d and (89) there exist vectors by; € R™, j = 2,3,..,|M| and
by € RMI such that

hpQ’j (y’ m) = [(pQ,j, 15 6]'), (ya m)] (90)
+ 3 b (D(p2, oy ega), (y,m)], G = 2,3, M,
=1

and
| M|

b= ba(1)hy, + ) b2(j)by, (91)

j=2

are all (Y, M)-harmonic and 0B-determined; furthermore
lim h(k,k,m) — 1 (92)
k—o0

for all m e M.

Proof. The existence of the vector by j, j = 2,3, ..., | M|, so that b, ; defined in @) is (Y, M)-

harmonic follows from () and the argument given in the construction of h,, (see the proof
of Proposition [C1]). By (89) there is a vector by such that

M|
by )+ Z by(j)e;(m) =1

for all m € M. Then b as defined in ([@T) satisfies

M| | M|
bk, k,m) =1+ by(1 Zb21 of)edy j(m) + > ba(j Zb% DEe;(m);
j=2
laf| <1, [af;| <1 imply that the last two sums go to 0 with k. This gives ([@2). O
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In Lemma BT we found points on {a = 1}nH?® in addition to (ps, 1) identified in, we used
these points above in the construction of h. Similarly, one can go along the line 8 = « to find
points on H* other than (py,p1) defining further simple 0B-determined (Y, M)-harmonic
functions:

Lemma 8.2. Under the stability assumption (1), and Assumption[d (A(B, «) has real distinct
eigenvalues for (B, «) € ]Ri’g) there exist p1, k = 2,3,..,|M|, such that p1 > p12 > p13 >
> ppm) >0 and {fo#0, f3 # 0,.., fim) # 0} c RM! such that

A(prj,p1)fi=f5 7=2,3,....|M]|,
holds.

The proof is parallel to that of Lemma[73] and is based on Gershgorin’s Theorem and the
fact that A;(p1, p1) < Ai(p1,p1) =1 for j =2,3,...,|M|.

One can use the points identified in the previous lemma to construct further 0 B-determined
(Y, M)-harmonic functions.

Lemma 8.3. Let p1j, fj, j =2,3,...,|M|, be as in Lemma[8A Then

[(pl,ja Pl,j7 f])7 ']7 ] = 27 37 ceey ‘M‘7
are 0B-determined (Y, M)-harmonic.

Proof. By definition, (p1;,p1,) € HP* and A(p1j,p15)f;i = f;- Again, A(B, ) = As(B, )
for all g follows from and p2(8,5,m) = p(5,3) and the definitions of A and As. Then
A(p1j,p15)fi = Aa(p1rj,p1)fj = fj, ie., (p1j,p1,, f) € Ha (i.e., the characteristic surface
of 0o, see ([I8)). This and Proposition 27 imply that [(p1 ;,p15, fj). ] is (Y, M)-harmonic.
That it is 0 B-determined follows from [p; ;| < 1 and Lemma [l O

The function [(8, a, d), -] is complex valued for any (53, o, d) € ‘H with complex components
and such points and the functions they define can also be used to improve the approximation;
see the next section for an example. The next proposition gives an upper bound on the
relative error of an approximation of P, ) (T < o0) in terms of the values the approximation
takes on the boundary 0B; it covers cases when complex valued (3, «,d) € H is used in the
construction of the approximation. For any z € C, let R(z) denote its real part.

Proposition 8.2. Let h: Z x Z, — C be 0B-determined and (Y, M)-harmonic. Then
[R(h)(y, m) = Pym) (T < 0)]|

max <c* 93
(y,m)eBxM ]P’(y,m) (T < OO) ( )
where
e h — 1. 94
T B ) =1 &4

The proof is similar to that of Proposition

Proof. That h is 0 B-determined (Y, M )-harmonic implies the same for its real and imaginary
parts. For any complex number z we have |R(z) — 1| < |z — 1|; these and (@4)) give

max |R(h)(y',m) — 1] < c*.

y'€edB,meM
Then
(1= ) freoy SR (Yr, Mr)lrcony < (14 €)ooy
Applying E(, ,)[-] to all terms above implies (03)). O
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9 Numerical example

This section demonstrates the performance of our approximation results on a numerical
example. For parameter values P, \(+), p1(-) and po(-) we take those listed in (6] and (IT),
for which | M| = 3. We know by Proposition that for P as in ({I0]), A(5, «) has distinct
positive eigenvalues for (3, «) € Ri’o. Furthermore, the rates (I7) satisfy A(m) < p1(m), p2(m)
for all m € M, therefore, the stability assumption () is also satisfied. Computing the right
side of ([27)) at (p2,1) shows that the parameter values (I8 and () satisfy ([21). Therefore:

1.

By Proposition [}, the function b,, is well defined and dB-determined and (Y, M)-
harmonic. Furthermore, we know by Lemma that there are paj, 7 = 2,3, ..., |[M]|,
such that 0 < pa; < p2 and (p2j,1) € HP for all j. We solve

p(p2,j,a) =0

for « for the parameter values assumed in the section and verify that Assumption
holds with m; = | M| for all j; this and Proposition BIlimply that the (Y, M)-harmonic
0B-determined function b defined in ([@I]) and satisfying (92]) is well defined.

. PropositionsZ.8 Z-9and Lemmal[l. 2 apply and give the ¢ B-determined (Y, M )-harmonic

function h,, = [(p1,p1,d1),],

. Lemmas and apply and give the dB-determined (Y, M)-harmonic functions

hPl,j = [(pl,j7p17j7fj)7']7 J= 2737""|M|'

In addition to these functions, we can fix an integer K > 0, and construct K - |[M| further
(Y, M )-harmonic functions of the form

| M|
beg = 2. b (D[(Brjs Oty Bt -, (95)
=0

for k=1,2,...,K, B  and j = 1,2,....,[M]|, as follows:

1.

1. 27
Set ag jo =R ek RiT , R€(0,1) to be determined below; note that ay, ;o depends only
on k; including j as an index simplifies notation in (@3] and below.

. For each k, 55, j = 1,2,....,| M|, are the S-roots of

p(agjo0,6) =0 (96)

satisfying 3] < 1;

o ag gl 0 =1,2,..,| M|, are the a-roots of

P(Brj ) = 0; (97)

with |a| < 1 which are distinct from oy, ;0.

. dy ;1 is an eigenvector of A(SBy j, o ;1) 1,e., (Brj, i di i) € H,

for each (k,j) the vector by, ; solves

M|
> bk (De(Br s ga) = 0, (98)
=0
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where by, ;(1) is the I*h component of the vector by ;. For by, k=1,2,..,Kandj = 1,2,..|M]|
to be well defined, (Y, M)-harmonic and 0B-determined we need 1) for each k, the equation
[@6]) needs to have at least | M| [-roots with absolute value less than 1; 2) for each k and
J, the equation (@7) needs to have at least | M| solutions different from «y, ;o with absolute
value less than 1; 3) for each k and j the equation (@8]) needs to have a nontrivial solution
by ;. Here we have two parameters to set: K and R; for the purposes of this numerical
example we set R = 0.7, and K = 5. Upon solving ([@6]), [@7) and (@8] with these parameter
values we observe that they have sufficient number of solutions for b, ; to be well defined and
(Y, M)-harmonic and ¢B-determined.

We have now 1 + 6| M|, dB-determined (Y, M )-harmonic functions to construct our ap-
proximation of P, ., (7 < o0); the approximation will be of the form

M| K,|M]
R = R(RR), K =+ ¢ih,, + Z bil(p1,js P15, d1z), ] + Z Gjkhjk,  (99)
j=2 k=1j=1

where ¢; and ¢;, are C valued coefficients to be chosen so that h®K |55 is as close to 1 as
possible. As in [I0, Section 8.2], one simple way to do this is to choose these (K + 1)|M]|
coefficients so that h®¥ (y,y,m) = 1 for y = 0,1,2,.., K and m € M. This defines a (K +
1)|M| x (K 4 1)| M| system; for our parameter values (K = 5 and | M| = 3) this is an 18 x 18
system, and it does turn out to have a unique solution. Once the ¢; and ¢;  are determined
through this solution, an upper bound on the approximation relative error can be computed
via Proposition B2} it suffices to compute ¢* of ([@4); for h**¥ of (@) it turns out to be

¢* = 0.00367;

therefore, by Proposition 82, h*X approximates Pym) (T < o0) with relative error bounded
by this quantity. By Theorem[G.Ilwe know that P(7; (z,.),m)(T < 00) approximates P, m)(Tn <
70) with vanishing relative error for x,, = [nx|, x(1) > 0; it follows from these that h®* (n —
Ty (1), 2,(2)) will approximate P, ,)(7, < 7o) with relative error bounded by c* for n
large. Let us see how well this approximation works in practice. Figure [0 gives the level
curves of — log(h®® (n —z(1),2(2),1)) and — log P (om) (Tn < 70); P(g,m) (T < 7o) is computed
by iterating the harmonic equation satisfied by this probability; for n = 60, this iteration
converges in less than 1000 steps. As can be seen, and agreeing with the analysis above,
these lines completely overlap except for a narrow region around the origin.

38



10 20 30 40 50 60
z1

Figure 6: Level curves of —log(h®* (n — (1), %(2),1)) and —log P, ;) (7 < 70)

|log(h® ¥ (n—z(1),2(2),1)—log Ps (1, <70)]
[log Py (T <70)]

Figure 7: The relative error
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Figure [7 shows the relative error

|log(h®& (n — 2(1),2(2),1)) — log Pzm) (Tn < 70)]
|10g IP)(J:,m) (Tn < 7—0)|

)

we see that it is virtually 0 except for the same region around 0 where it is bounded by 0.02.
This narrow layer of where the relative error spikes corresponds to the region 1 — z(2) <
log(p2)/log(p1) identified in Theorem

10 Comparison with earlier works

The present work shows how one can approximate the probability P, (7, < 70) by

Pym) (1 < o0) with exponentially vanishing relative error and constructs analytical approxi-
mation formulas for the latter. This is done by extending the approach of [I0} [I1] to Markov
modulated dynamics. In this section, we compare the analysis of the modulated case treated
in this work with the non-modulated two tandem case treated in [I0, 1I] and the non-
modulated two dimensional simple random walk treated in [12].

Harmonic functions The nonmodulated analysis uses functions of the form

y — [(8,0),y] = YWY ¥ where (3,a) are chosen from the roots of a characteristic
polynomial of second order associated with the process Y. Markov modulation brings an
additional state variable m, leading to functions of the form (y,m) — [(5,a,d), (y,m)] =
pYW-¥(2) ¥ d(m). The characteristic surface is now defined in terms of eigenvalue and
eigenvector equations of a characteristic matrix depending on (3, a) € C2.

Geometry of the characteristic surface The characteristic surface in [10, 11} 12] is the
1-level curve of a rational function which can be represented as a second degree polynomial
in each of the 3, a variables; the projection of the characteristic surface to R? is a smooth
closed curve bounding a convex region. Conjugate points on this curve come in pairs and
have elementary formulas. The characteristic curve in the modulated case is the 0-level
curve of the characteristic polynomial of a characteristic matrix and can be represented as
a 2| M| degree polynomial in each of the variables; its projection to ]R%r consists of | M|
components, one for each eigenvalue A; of the characteristic matrix. The error analysis is
based on the level curve of the largest eigenvalue while the computation of P, (1 < o0)
uses points on all components. There are in general no simple formulas for the roots of a
polynomial greater than degree 4 and the formulas for degree 4 are fairly complex; therefore,
for IM| = 2 (i.e., even for the simplest nontrivial Markov modulated constrained random
walk with two modulating states) the points on these curves no longer have simple formulas
and identification of the relevant points (Propositions 2.8 211l and [Z12] Lemmas [T3]
and B2)) requires matrix / eigenvalue analysis and the implicit function theorem.

Assumptions We use the point (pa,1) and its conjugate (p2,af) lying on £; to define
(Y, M)-superharmonic functions to use in our limit analysis. The existence of (p2,1) € L1,
follows from the stability assumption (IJ). The identification of the conjugate point (p2, o)
requires the additional assumption ([27)) ensuring o < 1. A similar assumption is not needed
in the non-modulated tandem case, because when there is no modulation, i.e., when | M| = 1,
the conjugate of (p2, 1) is (p2, p1) and p; < 1 by the stability assumption. For the constrained
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random walk representing two parallel queues treated in [I2], the assumption corresponding
to 1) is 72 < pap1, where 7 is utilization rate of the whole system.

The assumption p; # py (see ([28])) generalizes the assumption gy # pe from the non-
modulated tandem case and the parallel case treated in [II, 12]. The computation of
P(ym)(T < 0) needs progressively more general versions of this assumption (see (7)), Remark
and Assumption [2]).

Analysis The approximation error analysis in the non-modulated case is based on the
subsolutions of a limit HJB equation and Y-harmonic functions. These works use these
subsolutions to construct supermartingales which are then used to find upper bounds on
error probabilities. In this work we construct the supermartingales directly using (Y, M)-
superharmonic functions constructed from points on the characteristic surface. Because Y
has one less constraint compared to X, these functions can be subharmonic on the boundary
where Y is not constrained. To overcome this, we introduce a decreasing term to the definition
of the supermartingale.

In the tandem case there is an explicit formula for P,(7 < 00); this formula is used
directly in the analysis of the error probability. There is obviously no explicit formula for the
corresponding probability in the Markov modulated case. Instead, we derive an upper bound
on it in Section [ using again (Y, M)-superharmonic functions; this upperbound is used in
the error analysis of Section [

Computation of the limit probability In the non-modulated tandem case treated in
[I1], Py(7 < o) can be represented exactly as a linear combination of h,, and h,,; so the
computation of Py (7 < c0) is trivial for the nonmodulated two dimensional tandem walk. In
the parallel case treated in [12], P,(7 < o0) can be represented exactly as a linear combination
of h,, and h, when 7?2 = p1pe; when this doesn’t hold [12] develops approximations of
Py(1 < ) from harmonic functions constructed from conjugate points on the characteristic
surface, which is an application of the principle of superposition. For the modulated case we
use the same principle but Markov modulation complicates the construction of the functions
used in the approximation. The identification of the points on the characteristic surface
requires the solution of 2| M| degree polynomial equations (first the az component is fixed to
identify possible f components; then for each of the identified 3’s, the polynomial is solved in
« to find the relevant conjugate points). Eigenvectors corresponding to these points are then
computed and finally we solve a linear equation to find the coefficients of the exponential
functions (see, for example, the by ; vector in (@5]) and (@8)). The corresponding process is
trivial when there is no modulation. In [II] and [I2] the function h,, plays a central role in
the approximation of P, (7 < c0) because it equals approximately 1 away from the origin; due
to Markov modulation there can be in general no function constructed from a single point
and its conjugates that takes a fixed value on 0B. To deal with this, we use an appropriate
linear combination of functions constructed from multiple points and their conjugates on the
characteristic surface so that the linear combination takes the value 1 away from the origin

(Proposition B1).

11 Conclusion

The current work develops approximate formulas for the exit probability of the two dimen-
sional tandem walk with modulated dynamics. Our main approximation Theorem says
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that Pz, (2,,),m)(T < ) approximates P, ..)(7, < 70) with relative error vanishing expo-
nentially fast with n. To compute the exit probability, we first construct ¢B-determined
(Y, M)-harmonic functions from single and conjugate points on the corresponding character-
istic surface and then with their linear combinations, approximate the boundary value 1 of
the harmonic function P(, ,,,)(7 < c0). In the non-modulated tandem case treated in [I0], the
probability P, (7 < 00) can be represented in any dimension exactly using harmonic functions
constructed from points on the characteristic surface. As is seen in the present work, even
dimension two entails considerable difficulties. Whether an extension to higher dimensions is
possible is a question we would like to tackle in future work.

The work [10] gives a formula for P, (7 < o) for the non-modulated tandem walk when
p1 = p2 based on harmonic functions with polynomial terms. Whether similar computations
can be carried out for P(, ,,)(7 < ) in the modulated case when p; = ps is another question
for future research.

The assumption (27) plays a key role in our analysis; it ensures that various functions
such as h,, whose construction involves the point (p2,a}) remain bounded on ¢B. We think
that new ideas will be needed to treat the case when (27]) doesn’t hold; this remains for future
work.

The computations and the error analysis in the present work depend on the dynamics of
the process and the geometry of the exit boundary. A significant problem for future research
is to extend these to other dynamics in two or higher dimensions and to other exit boundaries.
The simple random walk dynamics (i.e., increments (1,0), (—1,0), (0,1) and (0, —1)) and the
rectangular exit boundary appear to be the most natural to study in immediate future work.

A  Two lemmas

For a square matrix G, let G*J denote the matrix obtained by removing the i** row and j*
column of G.

Lemma A.1. For ng € {2,3,4,...}, suppose G is an ng x ng irreducible and aperiodic matriz
with nonnegative entries. Then det ((A1(G)I — G)"") > 0 for all i € {1,2,...,n0}, where I is
the ng X ng tdentity matriz.

Proof. The argument is the same for all i € {1,2,...,n0}; so it suffices to argue for i = 1.
Suppose the claim is not true and

det (A(G)I — G)M) <0, (100)

Consider the function u — g(u) = det ((uI — G’)l’l)7 u = 0. The multilinearity and continuity
of det implies lim,, ~o, g(u) = co. This implies that if (I00) is true there must be ug > A;(G)
such that

det ((uoI — G)') = 0. (101)

The matrix G! is nonnegative, therefore, it has a largest eigenvalue A;(G') with an eigen-
vector v = 0. The equality (I0T]) implies

A(GYY) = ug = A(G). (102)

That G is irreducible and aperiodic implies that G is strictly positive; its largest eigenvalue
is

A (G™) = A (G)™.
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The matrix (G™)!! has strictly positive entries and therefore its largest eigenvalue A ((G™)!1)
has an eigenvalue vy with strictly positive entries. For two vectors z,y € R?, let > y and
x > y denote componentwise comparison. The inequality

(Gno)l,l > (Gl,l)no
implies
(Gno)l’l’vl > A (Gl’l)no’vl. (103)
On the other hand
AL ((G™)YY) = sup{c: Fz e RO (G™)M e > e}, (104)
(see [Bl, Proof of Theorem 1, Chapter 16]). This and (I03)) imply
A ((G™)51) = A(GHH™. (105)

Define v3 = [1;v2] € R™; it follows from (G™)Ylwy = A;((G™)1,1)wvs, the strict posi-
tivity of the components of G™ and vy that one can choose § > 0 small enough so that

G"vz > (A1((G™)M! +6) ws;

This and
A (G™) = sup{c: Jr e R}’ G"x > cx}

imply
A (G™) > Aq ((G™)H).

The last inequality, (I05]) and ([I02]) imply
AM(G)™ = A(G™) > Mi((G™)M) = Ai(GH)™ = A(G)™,
which is a contradiction. O

In our analysis we need the following fact from [9]; its proof is elementary and follows
from the multilinearity of the determinant function and the previous lemma.

Lemma A.2. Let G be an aperiodic and irreducible transition matriz. Then the row vector
whose it component equals det ((I — G)“) is the unique (upto scaling by a positive number)

left eigenvector associated with the eigenvalue 1 of G.
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