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Abstract

Let X be the constrained random walk on Z2

` having increments p1, 0q, p´1, 1q, p0,´1q
with jump probabilities λpMkq, µ1pMkq, and µ2pMkq where M is an irreducible aperiodic
finite state Markov chain. The process X represents the lengths of two tandem queues
with arrival rate λpMkq, and service rates µ1pMkq, and µ2pMkq. We assume that the
average arrival rate with respect to the stationary measure of M is less than the average
service rates, i.e., X is assumed stable. Let τn be the first time when the sum of the
components of X equals n for the first time. Let Y be the random walk on ZˆZ` having
increments p´1, 0q, p1, 1q, p0,´1q with probabilities λpMkq, µ1pMkq, and µ2pMkq. Let τ
be the first time the components of Y are equal. For x P R2

`, xp1q ` xp2q ă 1, xp1q ą 0,
and xn “ tnxu, we show that Ppn´xnp1q,xnp2qq,mqpτ ă 8q approximates Ppxn,mqpτn ă τ0q
with exponentially vanishing relative error as n Ñ 8. For the analysis we define a
characteristic matrix in terms of the jump probabilities of pX,Mq. The 0-level set of
the characteristic polynomial of this matrix defines the characteristic surface; conjugate
points on this surface and the associated eigenvectors of the characteristic matrix are
used to define (sub/super) harmonic functions which play a fundamental role both in our
analysis and the computation / approximation of Ppy,mqpτ ă 8q.

Keywords: Markov modulation, regime switch, multidimensional constrained random
walks, exit probabilities, rare events, queueing systems, characteristic surface, superhar-
monic functions, affine transformation
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1 Introduction and Definitions

A stochastic processes X is said to be Markov modulated if its dynamics depend on the
state of a secondary Markov process M modeling the environment within which X operates
[7]. Markov modulation/regime switch is one of the most popular methods of building richer
models for a wide range of applications from finance to computer networks to queueing
theory. This paper studies the approximation of the probability of a large excursion in the
busy cycle of a constrained random walk X whose dynamics are modulated by a Markov
process M . We assume M to be external, i.e, the transition probabilities of M do not depend
on X. Constrained random walks arise naturally when there are barriers that keep a process
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within a domain, for example: computers/ algorithms sharing resources on a system, financial
positions that have shortselling constraints, or queueing systems. If X represents a queueing
system, a large excursion corresponds to a buffer overflow event; the analysis, simulation
and approximation of probabilities of such events for ordinary (non-modulated) constrained
random walks have received considerable attention at least since [6, 4]; for further references
and a literature review we refer the reader to [11]. To the best of our knowledge, there is
hardly any study on the same probability for modulated constrained random walks: we are
aware of only [9] treating the development of asymptotically optimal importance sampling
algorithms for the approximation of the buffer overflow event. For this reason, this work will
focus on one of the simplest multidimensional constrained random walks, the tandem walk,
arising from the modeling of two servers working in tandem. Next we describe the dynamics
of this process and give a precise definition of the buffer overflow probability of interest.

Our main process is a random walk X with increments tI1, I2, I3, ...u, constrained to
remain in Z

2
`:

X0 “ x P Z
2
`, Xk`1

.
“ Xk ` πpXk, Ikq, k “ 1, 2, 3, ...

πpx, vq
.

“

#

v, if x ` v P Z
2
`,

0, otherwise.

The map π ensures that when X is on the constraining boundaries

Bi
.

“ tx P Z
2 : xpiq “ 0u, i “ 1, 2,

it cannot jump out of Z2
`. We assume the distribution of the increments Ik to be modulated

by a Markov Chain M with state space M (with finite size |M|) and with transition matrix

P P R
|M|ˆ|M|
` . To ease analysis and notation we will assume P to be irreducible and

aperiodic, which implies that it has a unique stationary measure π on M, i.e., π “ πP .

Let Fk
.

“ σptMj , j ď k ` 1u, tXj , j ď kuq, i.e., the σ-algebra generated by M and X. The
increments I form an independent sequence given M and the increment Ik has the following
distribution given Fk´1:

Ik P tp0, 0q, p1, 0q, p´1, 1q, p0,´1qu,

PpIk “ p0, 0q|Fk´1q “ 1tMk‰Mk´1u

PpIk “ p1, 0q|Fk´1q “ λpMkq1tMk“Mk´1u

PpIk “ p´1, 1q|Fk´1q “ µ1pMkq1tMk“Mk´1u

PpIk “ p0,´1q|Fk´1q “ µ2pMkq1tMk“Mk´1u.

The dynamics of X are shown in Figure 1. The process pX,Mq is the embedded random
walk of a continuous time queueing system consisting of two tandem queues whose arrival
and service rates are determined by a finite state Markov process M .

We assume pX,Mq to be stable:

ÿ

mPM

pλpmq ´ µipmqqπpmqP pm,mq ă 0, i “ 1, 2. (1)

In addition to (1), we need two further technical assumptions for our analysis see (27) and
(28). Stability means that the queueing system represented by pX,Mq serves customers
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µ2pmq

M “ |M|

M “ |M| ´ 1

M “ 2

M “ 1

µ1pmq

BAn

λpmq

Figure 1: Markov modulated constrained random walk pX,Mq; the left figure shows dy-
namics in a given layer, the right figure shows jumps between layers representing regime
switches

faster, on average, than the customer arrival rate; this keeps the lengths of both queues close
to 0 at all times with high probability; but pX,Mq being a random process, components of
X can grow arbitrarily large if one waits long enough. For a stable constrained random walk
such as pX,Mq it is natural to measure time in cycles that restart each time X hits 0. If
the system represented by this walk has a shared buffer where all customers wait (or where
packets are stored, if, e.g., pX,Mq represents a network of two computers / processes) then a
natural question is the following: what is the probability that the shared buffer overflows in
a given cycle? To express this problem mathematically we introduce the following notation:
the region

An “
 

x P Z
2
` : xp1q ` xp2q ď n

(

(2)

and the exit boundary
BAn “

 

x P Z
2
` : xp1q ` xp2q “ n

(

. (3)

Ao
n denotes the interior An ´ B1 Y B2. Similarly, Z2,o

` denotes Z2
` ´ B1 Y B2. Let τn be the first

time X hits BAn:
τn

.
“ inftk ě 0 : Xk P BAnu, n “ 0, 1, 2, 3, .. (4)

Then the buffer overflow probability described above is

pnpx,mq
.

“ Ppx,mqpτn ă τ0q. (5)

The Markov property of pX,Mq implies that pn is pX,Mq-harmonic i.e., it satisfies

pnpx,mq “ Epx,mqrpnpx ` πpx, I1q,M1qs, x P An ´ BAn, pnpx,mq “ 1, x P BAn.

This is a system of equations satisfied by pn, where the number of unknowns is in the order of
|M|n2. More generally, for a d dimensional system the number of unknowns grows like |M|nd,
making the computation of pn via a direct solution of the linear system resource intensive
even for moderate values of n. This justifies the development of approximations of pn and
the main goal of the present work is to find easily computable and accurate approximations
of pn. Stability and the bounded increments of X suggest that when x is away from the exit
boundary BAn, pn decays exponentially in n, making the buffer overflow event rare. The
approximation of pn, even when there is no modulation turns out to be a nontrivial problem.
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There are two sources of difficulty: multidimensionality, and the discontinuous dynamics of
the problem on the constraining boundaries. Asymptotically optimal importance sampling
algorithms for the non-modulated setup were constructed in [2], which proposed a dynamic
importance sampling algorithm based on subsolutions of a related Hamilton Jacobi Bellman
(HJB) and its boundary conditions. The approach of [2] is tightly connected to the large
deviations analysis of pn, which identifies the exponential decay rate of pn. Large deviations
analysis is based on transforming pn to Vn “ ´p1{nq log pn, scaling space by 1{n and taking
limits; the limit V of Vn satisfies the HJB equation mentioned above. The works [10, 11]
obtained sharp estimates of pn for the non-modulated two dimensional tandem walk using an
affine transformation of the process X; see Figure 2 and the summary below. Another goal
of the present work is to show that this affine transformation approach can be extended to
the analysis of pn of the Markov modulated constrained random walk. As the present article
shows, this extension turns out to be possible but Markov modulation complicates almost
every aspect of the problem: the underlying functions, the geometry of the characteristic
surfaces, the limit analysis, etc. A detailed comparison with the non-modulated case is given
in Section 10.

To the best our knowledge, there is very limited research on the analysis of the overflow
probability pn for Markov modulated constrained random walks; we are only aware of the
article [9] which develops asymptotically optimal importance sampling algorithms for the
approximation of pn for the pX,Mq process studied in the present work. In doing this, a
necessary step is also to compute the large deviation decay rate of pn; this was also done for
x “ 0 in [9]. The analysis in this work is based on the sub and supersolutions of a limit HJB
equation. Next is a summary of our analysis and main results.

1.1 Summary of analysis and main results

The starting point of our analysis is transforming X to another process Y n by an affine
transformation moving the origin to the point pn, 0q on the exit boundary; as n goes to
infinity, Y n converges to the limit process Y constrained only on B2; Figure 2 shows these
transformations.

pY,Mq

nen0nen

pX,Mq

Tn n Ñ 8

BBn
BBBAn

pY n,Mq

Figure 2: The transformation of pX,Mq

The formal definition of the limit process Y is as follows: define

I2
.
“

ˆ

´1 0
0 1

˙

.
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Define the constraining map

π1py, vq “

#

v, if y ` v P Z ˆ Z`,

0, otherwise.

Then the limit process Y is the M -modulated constrained random walk on Z ˆ Z` with
increments

Jk
.

“ I2Ik : (6)

Yk`1 “ Yk ` π1pYk, Jkq.

Define the region
B

.
“ ty P Z ˆ Z` : yp1q ě yp2qu

and the exit boundary
BB

.
“ ty P Z ˆ Z` : yp1q “ yp2qu .

Let τ be the hitting time
τ

.
“ inf tk ě 0 : Yk P BBu .

Y is a process constrained to Z ˆ Z` with the constraining boundary B2; we will denote the
interior Z ˆ Z` ´ B2 of this set by Z ˆ Z

o
`. Define the affine transformations

Tn “ ne1 ` I2

where pe1, e2q is the standard basis for R2. Our main approximation result is the following:

Theorem (Theorem 6.1). For any x P R
2
`, xp1q ` xp2q ă 1, xp1q ą 0, and m P M there

exist constants c ą 0, ρ P p0, 1q and N ą 0 such that

|Ppxn,mqpτn ă τ0q ´ PpTnpxnq,mqpτ ă 8q|

Ppxn,mqpτn ă τ0q
ă ρcn, (7)

for n ą N , where xn “ tnxu.

Theorem 6.1 states that, as n increases, PpTnpxnq,mqpτ ă 8q gives a very good approxi-
mation of Ppxn,mqpτn ă τ0q. Parallel to the non-modulated case treated in [11], the proof of
Theorem 6.1 consists of the following steps 1) the difference between the events tτn ă τ0u
and tτ ă 8u can be characterized by the event “X first hits B1 then B2 and then BAn” 2)
the probability of this detailed event is very small compared to the probabilities of the events
tτn ă τ0u and tτ ă 8u. The challenges arise from the implementation of these steps in the
Markov modulated framework.

To bound the probabilities appearing in (7) we will use pY,Mq-(super)harmonic functions
constructed from single and conjugate points on a characteristic surface H (see (14)) associ-
ated with pY,Mq. The characteristic surface is the 0-level set of the characteristic polynomial
of the characteristic matrix A (see (12)) defined in terms of the transition matrix P and the
jump probabilities λp¨q, µ1p¨q and µ2p¨q. The characteristic polynomial is of degree 3|M| and
therefore the characteristic curve doesn’t have a simple algebraic parametrization; for this
reason, in the modulated case, the identification of points on the characteristic surface relies
on the decomposition of the the surface into |M| components, by an eigenvalue analysis of
A and the implicit function theorem. The decomposition is given in subsection 2.1 and the
points relevant for our analysis are identified in Propositions 2.8, 2.11 and 2.12. These points
all lie on the innermost component corresponding to the largest eigenvalue of A.
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In the presence of a modulating Markov chain, harmonic functions are constructed in
general from |M| ` 1 points on the characteristic surface, which makes analysis based on
them more complex. For this reason, we will switch to superharmonic functions whenever we
can, which can be constructed from just two points. An upper bound for Ppy,mqpτ ă 8q using
these functions is given in Section 3. Section 4 constructs an upper bound for the detailed
event described above characterizing the difference of the events tτn ă τ0u and tτ ă 8u.
A lower bound for Ppx,mqpτn ă τ0q based on subharmonic functions constructed from the
functions of Section 2 is given in Section 5. These elements are combined in Section 6 to
prove our main approximation theorem, Theorem 6.1.

With Theorem 6.1 we know that Ppx,mqpτn ă τ0q can be approximated very well with
PpTnpxq,mqpτ ă 8q. In the non-modulated case, a linear combination of two Y -harmonic
functions constructed from points on the characteristic surface gives an exact formula for
Pypτ ă 8q. This is no longer possible when there is modulation; Sections 7 and 8 devel-
ops increasingly accurate approximate formulas for Ppy,mqpτ ă 8q using pY,Mq-harmonic
functions constructed from further points on the characteristic surface under further linear
independence assumptions (see (77), (89)), see Propositions 7.1 and Propositions 8.1 for the
pY,Mq-harmonic functions constructed in these sections. As opposed to the limit analy-
sis which uses points only on the innermost component of the characteristic surface, the
construction of harmonic functions uses points on all components of the characteristic sur-
face. Propositions 7.2 and 8.2 find bounds on the relative error of the approximations of
Ppy,mqpτ ă 8q provided by these functions based on the values they take on BB. Section 9
gives a numerical example showing the effectiveness of the resulting approximations. Section
10 compares the analysis of the current work with the non-modulated tandem walk treated in
[10, 11] and the non-modulated parallel walk treated in [12]. Section 11 comments on future
work.

2 (sub/super)Harmonic functions of pY,Mq

A function h on Z ˆ Z` ˆ M is said to be pY,Mq-harmonic if

Epy,mqrhpY1,M1qs “ hpy,mq, py,mq P Z ˆ Z` ˆ M; (8)

if we replace “ with ě [ď], h is said to be pY,Mq-subharmonic [superharmonic].
For the case |M| “ 1 (i.e., no modulation), [10, 11] use Y -harmonic functions which are

linear combinations of exponential functions

y ÞÑ rpβ, αq, ys “ βyp1q´yp2qαyp2q, pβ, αq P C, (9)

and pβ, αq lies on a characteristic surface associated with the process. Markov modulation
introduces an additional state variable m, which leads to the following generalization of (9)

py,mq ÞÑ βyp1q´yp2qαyp2qdpmq, (10)

where d : M ÞÑ C is an arbitrary function on M. Let rpβ, α,dq, ¨s denote the function given
(10). We would like to choose pβ, α,dq so that rpβ, α,dq, ¨s is pY,Mq-harmonic at least over the
interior ZˆZ

o
`. To this end, introduce the local characteristic polynomial for the modulating

state m P M:

ppβ, α,mq
.
“ λpmq

1

β
` µ1pmqα ` µ2pmq

β

α
; (11)
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To define the global characteristic polynomial introduce the |M| ˆ |M| matrix A:

Apβ, αqm1 ,m2

.
“

#

P pm1,m2q, m1 ‰ m2,

P pm1,m1qppβ, α,mq, m1 “ m2,

pm1,m2q P M2. Let I denote the |M| ˆ |M| identity matrix. Attempting to find functions
of the form rpβ, α,dq, ¨s that satisfy (8) leads to the following characteristic equation:

Apβ, αqd “ d, (12)

i.e,
ppβ, αq

.
“ detpI ´ Apβ, αqq “ 0, (13)

and d is an eigenvector of Apβ, αq for the eigenvalue 1. The pp¨, ¨q of (13) is the global
characteristic polynomial for the modulated process pY,Mq. Define the characteristic surface
for the interior:

H
.
“
!

pβ, α,dq P C
2`|M| : Apβ, αqd “ d, d ‰ 0

)

. (14)

Points on H give us pY,Mq-harmonic functions on Z ˆ Z
o
`.

Proposition 2.1. If pβ, α,dq P H then rpβ, α,dq, ¨s satisfies (8) for y P Z ˆ Z
o
`.

Proof. By definition

Epy,mq rpβ, α,dq, pY1,M1qs

“
ÿ

nPM,n‰m

P pm,nqrpβ, α,dq, py, nqs

` P pm,mqpλpmqrpβ, α,dq, py ` p´1, 0q,mqs ` µ1pmqrpβ, α,dq, py ` p1, 1q,mqs

` µ2pmqrpβ, α,dq, py ` p0,´1q,mqsq

Expand rpβ, α,dq, ppy ` vq,mqs terms:

“
ÿ

nPM,n‰m

P pm,nqrpβ, α,dq, py, nqs

` P pm,mqpλpmqβyp1q´yp2q´1αyp2qdpmq ` µ1pmqβyp1q´yp2qαyp2q`1dpmq

` µ2pmqβyp1q´yp2q`1αyp2q´1dpmqq

Factor out rpβ, α,dq, py,mqs from the last three terms:

“
ÿ

nPM,n‰m

P pm,nqrpβ, α,dq, py, nqs ` P pm,mqrpβ, α,dq, py,mqsppβ, α,mq

“ βyp1q´yp2qαyp2q

˜

ÿ

nPM,n‰m

P pm,nqdpnq ` P pm,mqdpmqppβ, α,mq

¸

.

The expression in parenthesis equals the mth term of the vector Apβ, αqd, which equals dpmq
because pβ, α,dq P H means Apβ, αqd “ d. Therefore,

“ βyp1q´yp2qαyp2qdpmq “ rpβ, α,dq, py,mqs.

This proves the claim of the proposition.

The previous proposition gives us pY,Mq-harmonic functions on Z ˆ Z
o
`. we next study

the geometry of H, this will be useful in defining pY,Mq-(super/sub) harmonic functions over
all of Z ˆ Z`.

7



2.1 Geometry of the characteristic surface

Define Hβα, the projection of H onto its first two dimensions:

H
βα .

“ tpβ, αq P C
2 : ppβ, αq “ 0u;

we will to refer to Hβα as the characteristic surface for the interior as well, which is justified
by the next lemma; its proof follows from basic linear algebra.

Lemma 2.1. For each pβ, αq P Hβα there is at least one parameter family of points
tpβ, α, cdq, c P C ´ t0uu Ă H, for some d P C

|M| ´ t0u. Conversely, for each pβ, α,dq P H,
we have pβ, αq P Hβα. Furthermore, all points on H can be obtained from those on Hβα.

β|M|α|M|p is a polynomial of degree 3|M| in pβ, αq, which makes, in general, the analysis
of the geometry of Hβα nontrivial. A natural approach to the study of the geometry of
this curve is through the eigenvalues of Apβ, αq. The next two propositions show that the
curve Hβα decomposes into |M| distinct pieces over any region D where Apβ, αq has simple
eigenvalues.

Proposition 2.2. Let D Ă C
2 or D Ă R

2 be open and simply connected and suppose Apβ, αq
has simple eigenvalues for all pβ, αq P D. Then the eigenvalues of A can be written as |M|
distinct smooth functions Λjpβ, αq on D.

Proof. The argument is the same for both real and complex variables. That the eigenvalues
Λj can be defined smoothly in a neighborhood of any pβ, αq P D follows from [8, Theorem
5.3] and the assumption that they are distinct. Once defined locally, one extends them to all
of D through continuous extension, which is possible because D is simply connected.

Most of our analysis will be based on pβ, αq P D “ R
2,o
`

.
“ R

2
` ´ B1 Y B2. For pβ, αq P R

2,o
` ,

Apβ, αq is an irreducible matrix with positive entries. Perron-Frobenius Theorem implies that
Apβ, αq has a simple positive eigenvalue dominating all of the other eigenvalues in absolute
value with an eigenvector with strictly positive entries. Λ1pβ, αq will always denote this
largest eigenvalue. Furthermore, if Apβ, αq has distinct real eigenvalues for pβ, αq P R

2,o
` , we

will label them so that
Λjpβ, αq ą Λipβ, αq, for j ă i,

i.e., the eigenvalues are assumed to be sorted in descending order.
For D and Λj as in Proposition 2.2 define

L
D
j

.
“ tpβ, αq P D : Λjpβ, αq “ 1u.

The last proposition implies

Proposition 2.3. Let D and Λj, j “ 1, 2, 3, ..., |M|, be as in Proposition 2.2. Then

D X H
βα “ \

|M|
j“1L

D
j (15)

where \ denotes disjoint union.

The proof follows from the definitions involved. For D “ R
2,o
` we will omit the superscript

D and write Lj instead of L
R
2,o
`

j .

If Apβ, αq has simple real eigenvalues for pβ, αq P R
2,o
` we can define

Rj
.

“ tpβ, αq P R
2,o
` : Λjpβ, αq ď 1u.

The continuity of Λj implies Lj “ BRj .

8



Proposition 2.4. Suppose Apβ, αq has simple real eigenvalues for pβ, αq P R
2,o
` . Then the

curve Lj is strictly contained inside the curve Lj`1 for j “ 1, 2, ..., |M| ´ 1.

Proof. All diagonal entries of Apβ, αq tend to 8 when pβ, αq Ñ BR2,o
` . This and Gershgorin’s

Theorem [5, Appendix 7], imply Λjpβ, αq Ñ 8 for pβ, αq Ñ BR2,o
` . This implies in particular

thatRj is a compact subset of R2,o
` . Secondly, Λj`1 ă Λj impliesRj Ă Rj`1; the compactness

of these sets, the strictness of the inequality Λj`1pβ, αq ă Λjpβ, αq imply that BRj “ Lj lies
strictly within Rj`1 with strictly positive distance from the boundary Lj`1 of Rj`1; this
proves the claim of the proposition.

In Sections 7 and 8 we will employ the following assumption and the above decomposition
of Hβα to identify points on Hβα to be used in the construction of pY,Mq-harmonic functions:

Assumption 1. Apβ, αq has real distinct eigenvalues for pβ, αq P R
2,o
` .

To show that Assumption 1 is not vacuous, we now give a class of matrices A that satisfies
it. The following definitions are from [1, page 57]: a matrix is said to be totally nonnegative
(totally positive) if all of its minors of any degree are nonnegative (positive). A totally
nonnegative matrix is said to be oscillatory if some positive integer power of the matrix is
totally positive. If A is oscillatory, Assumption 1 holds:

Proposition 2.5. Suppose Apβ, αq is an oscillatory matrix for all pβ, αq P R
2,o
` , then Apβ, αq

has |M| distinct eigenvalues over R
2,o
` .

This proposition is a basic fact on oscillatory matrices [1, (6.28)]. [1, (6.26)] identifies a
particularly simple class of oscillatory matrices:

Proposition 2.6. Suppose Gp1, 1q, Gp1, 2q, Gp|M| ´ 1, |M|q, Gp|M|, |M|q and Gpj, j ´ 1q,
Gpj, jq, Gpj, j`1q, j “ 2, 3, ..., |M|´1 are all strictly positive and the rest of the components
of G are all zero, i.e., G is tridiagonal with strictly positive entries. Then G is an oscillatory
matrix.

We will call any tridiagonal matrix with strictly positive entries on the three diagonals
“strictly tridiagonal.” By the above proposition any strictly tridiagonal matrix is oscillatory.
In particular, if the transition matrix P is strictly tridiagonal, Apβ, αq will also be of the
same form for all pβ, αq P R

2
`; therefore, for such P Assumption 1 holds.

The decomposition of Hβα X R
2,o
` into Lj is shown in Figure 3 for the transition matrix

P “

¨

˝

0.6 0.4 0
0.1 0.4 0.5
0 0.2 0.8

˛

‚. (16)

The matrix P of (16) is strictly tridiagonal; therefore, Proposition 2.6 applies andApβ, αq
has distinct real eigenvalues for all pβ, αq P R

2,o
` and we have the decomposition (15) of

Hβα X R
2,o
` given by Propositions 2.3 and 2.4; Figure 3 shows Hβα and its components Lj;

the jump probabilities for this example are

¨

˝

0.1 0.4 0.5
0.12 0.41 0.47
0.09 0.39 0.52

˛

‚ (17)

where the ith row equals pλpiq, µ1piq, µ2piqq.
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Figure 3: Real section of the characteristic surface Hβα “ Y3
j“1Lj for the parameter values

given in (16) and (17). On the right: detailed graph around the origin

By Proposition 2.1 and Lemma 2.1 each point on any of the curves depicted in Figure
3 gives a Y -harmonic function on Z ˆ Z

o
`. Most of our analysis will be based on points on

the innermost curve L1, the 1-level curve of the largest eigenvalue Λ1; before identifying the
relevant points, let us look at two different methods of constructing pY,Mq-(super)harmonic
functions from points on Hβα.

2.2 Construction of pY,Mq-harmonic and superharmonic functions

We can proceed in two ways to get functions that satisfy
Epy,mqrhpY1,M1qs “ hpy,mq or Epy,mqrhpY1,M1qs ď hpy,mq for y P B2 as well as the interior.
The first is by defining the characteristic polynomial p2, the boundary matrix A2, and the
boundary surface H2 associated with B2 and using points on H X H2:

p2pβ, α,mq
.
“ λpmq

1

β
` µ1pmqα ` µ2pmq, m P M,

A2pβ, αqm1 ,m2

.
“

#

P pm1,m2q, m1 ‰ m2

P pm1,m1qp2pβ, α,mq, m1 “ m2,
, pm1,m2q P M

2,

H2
.
“
!

pβ, α,dq P C
2`|M| : A2pβ, αqqd “ d,d ‰ 0

)

. (18)
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Define Λ2,1pβ, αq to be the largest eigenvalue of A2pβ, αq. Parallel to the interior case, define

H
βα
2

.
“ tpβ, αq P C

2 : p2pβ, αq “ 0u,

L2,1
.
“ tpβ, αq P R

2
` : Λ2,1pβ, αq “ 1u.

Proposition 2.7. rpβ, α,dq, ¨s is pY,Mq-harmonic if pβ, α,dq P H X H2.

Proof. Proposition 2.1 says that for pβ, α,dq P H, rpβ, α,dq, ¨s satisfies the harmonicity con-
dition when y P Z ˆ Z` ´ B2. Similar to the proof of Proposition 2.1, we would like to show
that rpβ, α,dq, ¨s is pY,Mq-harmonic on B2 when pβ, α,dq P H2. By definition

Epy,mq rpβ, α,dq, pY1 ,M1qs

“
ÿ

nPM,n‰m

P pm,nqrpβ, α,dq, py, nqs

` P pm,mqpλpmqrpβ, α,dq, py ` p´1, 0q,mqs ` µ1pmqrpβ, α,dq, py ` p1, 1q,ms

` µ2pmqrpβ, α,dq, py,mqsq

“
ÿ

nPM,n‰m

P pm,nqrpβ, α,dq, py, nqs

` P pm,mqpλpmqβyp1q´1dpmq ` µ1pmqβyp1qαdpmq ` µ2pmqβyp1qdpmqq

“
ÿ

nPM,n‰m

P pm,nqrpβ, α,dq, py, nqs ` P pm,mqrpβ, α,dq, py,mqsp2pβ, α,mq

“ βyp1q

˜

ÿ

nPM,n‰m

P pm,nqdpnq ` P pm,mqdpmqp2pβ, α,mq

¸

.

The expression in parenthesis equals the mth term of the vector A2pβ, αqqd, which equals
dpmq because pβ, α,dq P H2 means A2pβ, αqqd “ d. Therefore,

“ βyp1qdpmq “ rpβ, α,dq, py,mqs.

This argument and Proposition 2.1 prove the claim of the proposition.

The real sections of Hβα and H
βα
2 are 1 dimensional curves and their intersection will in

general consist of finitely many points. In the analysis of the tandem walk with no modulation,
these points can easily be identified explicitly. There turn out to be three of them, of which
only one is nontrivial (i.e., different from 0 and 1). In the present case, there will in general

be 3|M| ´ 2 nontrivial points on Hβα X H
βα
2 ; one of these which lies on L1 X L2,1 can be

identified using the implicit function theorem and the stability assumption (1); this point
and the pY,Mq-harmonic function it defines are given in Proposition 2.8 and 2.9 below. For
the argument we need two auxiliary linear algebra results, Lemmas A.1 and A.2 given in the
appendix.

Proposition 2.8. Under the stability assumption (1) there exists unique 0 ă ρ1 ă 1 such

that pρ1, ρ1q P L1 X L2,1 Ă Hβα X H
βα
2 , i.e., 1 is the largest eigenvalue of Apρ1, ρ1q and

A2pρ1, ρ1q.

11



Proof. For q P R
2 define

Hpqq
.

“ ´ log Λ1

´

eqp1q, eqp2q
¯

. (19)

By [9, Lemma 4.2, 4.3], H is convex in q. Proceeding parallel to [9, Proof of Lemma 4.4,
page 515] define fpΛ, rq

.
“ detpΛI ´ Aper, erqq. We know that fpΛ1per, erq, rq “ 0 for r P R.

To prove our proposition, we will apply the implicit function theorem to f at p1, 0q to prove
that r ÞÑ Λ1per, erq is strictly increasing at r “ 0. Differentiating f at p1, 0q with respect to
r gives

Bf

Br

ˇ

ˇ

ˇ

ˇ

p1,0q

“
ÿ

mPM

pλpmq ´ µ1pmqqP pm,mqdetpI ´ P qm,m,

which equals, by Lemma A.2, for some constant c ą 0,

“ c
ÿ

mPM

pλpmq ´ µ1pmqqP pm,mqπpmq

ă 0

where the last inequality follows from the stability assumption (1). Similarly, differentiation
of f at p1, 0q with respect to Λ gives:

Bf

BΛ

ˇ

ˇ

ˇ

ˇ

p1,0q

“ 1.

This implies that the implicit function theorem is applicable to f ; the last two display give:

d

dr
Λ1per, erq|p0,0q ą 0.

On the other hand, Gershgorin’s Theorem implies Λ1per, erq Ñ 8 as r Ñ ´8 (because of
the λpmq{β term appearing in the diagonal terms of A, tending to `8 with β “ er). To
sum up: we have that Λ1per, erq is strictly monotone at r “ 0 (decreases when r decreases)
and it tends to infinity as r Ñ ´8. Then, by the continuity of Λ1, there must exist at least
one point in p´8, 0q where Λ1per, erq takes the value 1; the convexity of H implies that such
a point is unique, i.e., there is a unique point r˚ ă 0 such that Λ1per

˚

, er
˚

q “ 1. Setting
ρ1 “ er

˚

proves the proposition.

Let d1 be an eigenvector of Apρ1, ρ1q corresponding to the eigenvalue 1; because 1 is the
largest eigenvalue of Apρ1, ρ1q and because Apρ1, ρ1q is irreducible and aperiodic, we can
choose d1 so that all of its components are strictly positive. The point pρ1, ρ1,d1q P H X H2

and Proposition 2.7 give us our first pY,Mq-harmonic function:

Proposition 2.9.

hρ1
.

“ rpρ1, ρ1,d1q, ¨s (20)

is pY,Mq-harmonic.

The second way of obtaining pY,Mq-harmonic functions is through conjugate points on
Hβα. The function α|M|p is a polynomial of degree 2|M| in α. By the fundamental of theorem
of algebra, α|M|p has 2|M| roots, α1pβq, ..., α2pβq,..., α2|M|pβq, in C for each fixed β P C;

points pβ,αiq P Hβα, i “ 1, 2, ..., 2|M| are said to be conjugate points. In the non-modulated
case, i.e., when |M| “ 1, αp is only of second order, therefore, the conjugate points come

12



in pairs, and given one of the points in the pair, the other can be computed easily; in the
modulated case, there are obviously no simple formulas to obtain all of the conjugate points
given one among them, because computation of conjugate points involves finding the roots
of a polynomial of degree 2|M|.

For pβ, α,dq P H define

cpβ, α,dq P C
M, cpβ, α,dqpmq

.
“ P pm,mqµ2pmqdpmq

ˆ

1 ´
β

α

˙

. (21)

One can take linear combinations of functions defined by conjugate points to define pY,Mq-
harmonic functions. This is based on the following lemma

Lemma 2.2. Suppose pβ, α,dq P H. Then, for py,mq P B2 ˆ M,

Epy,mq rpβ, α,dq, pY1 ,M1qs ´ rpβ, α,dq, py,mqs “ βyp1qcpβ, α,dqpmq, (22)

where c is defined as in (21).

Proof. The computation in the proof of Proposition 2.1 gives

Epy,mq rpβ, α,dq, pY1,M1qs (23)

“ βyp1q

˜

ÿ

nPM,n‰m

P pm,nqdpnq ` P pm,mqdpmqp2pβ, α,mq

¸

.

On the other hand, pβ, α,dq P H means

rpβ, α,dq, py,mqs (24)

“ βyp1qdpmq “ βyp1q

˜

ÿ

nPM,n‰m

P pm,nqdpnq ` P pm,mqdpmqppβ, α,mq

¸

.

Subtracting the last display from (23) gives

Epy,mqrhpY1,M1qs ´ hpy,mq

“ βyp1qP pm,mqµ2pmqdpmq

ˆ

1 ´
β

α

˙

“ βyp1qcpβ, α,dqpmq,

which proves (22).

We now identify a family of pY,Mq-harmonic functions constructed from conjugate points
on H:

Proposition 2.10. For β P C let pβ, αi, diq i “ 1, 2, ..., l ď 2|M| be distinct conjugate
points on H. Take any subcollection ti1, i2, ..., iku, k ď l such that cpβ, αij , dij q are linearly
dependent, i.e., there exists b P C

k, b ‰ 0, such that

k
ÿ

j“1

bpjqcpβ, αij , dij q “ 0. (25)

Then

hpy,mq “
k
ÿ

j“1

bpjqrpβ, αij , dij q, ¨s (26)

is pY,Mq-harmonic.
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Proof. We already know from Proposition 2.1, harmonic functions of the form
rpβ, αi, diq, ¨s are pY,Mq-harmonic in the interior Z ˆ Z` ´ B2. So, their linear combinations
are also pY,Mq-harmonic in the interior and we need to check the harmonicity for y P B2. By
Lemma 2.2

Epy,¨q rpβ, αi, diq, pY1,M1qs ´ rpβ, αi, diq, py, ¨qs “ βyp1qcpβ, αi, diq.

Taking linear combinations of these with weight vector b gives:

Epy,¨q rhpY1,M1qs ´ hpy, ¨q “ βyp1q

˜

k
ÿ

j“1

bpjqcpβ, αij , dij q

¸

which equals 0 P R
|M| by (25). This proves that h is pY,Mq-harmonic on B2.

For any β P C such that ppβ, αq “ 0 has distinct roots, α1, α2,...,α2|M|, all different from
β, we have, by definition, cpβ, αj , djq ‰ 0 for all j “ 1, 2, ..., 2|M|. Therefore, for such β,
and for any subcollection αj1 , αj2 , ..., αjk , with k ě |M| ` 1, we can find a nonzero vector b

satisfying (25).
We will call a pY,Mq-harmonic function BB-determined if it of the form,

py,mq ÞÑ Epy,mqrfpYτ ,Mτ q1tτă8us

for some function f . The function py,mq ÞÑ Ppy,mqpτ ă 8q is the unique BB-determined
pY,Mq-harmonic function taking the value 1 on BB. Among the functions of the form
rpβ, α,dq, ¨s, the closest we get to this type of behavior is when α “ 1: for α “ 1, rpβ, 1,dq, py,mqs
depends only on m for y P BB. Therefore, α “ 1 play a key role in computing/approximating
Ppy,mqpτ ă 8q. The next proposition identifies a point on L1 of the form pρ2, α “ 1q with
0 ă ρ2 ă 1.

Proposition 2.11. Under assumption (1) there exists 0 ă ρ2 ă 1 such that pρ2, 1q P L1 Ă
Hβα; i.e., 1 is the largest eigenvalue of Apρ2, 1q.

Proof. The proof is parallel to that of Proposition 2.8. We now define fpΛ, rq “ detpΛI ´
Aper, 1qq and observe, by assumption (1) and Lemma A.2,

Bf

Br

ˇ

ˇ

ˇ

ˇ

p1,0q

“
ÿ

mPM

pλpmq ´ µ2pmqqP pm,mqdetpI ´ P qm,m

“ c
ÿ

mPM

pλpmq ´ µ2pmqqP pm,mqπpmq ă 0

for some constant c ą 0. The rest of the proof proceeds as in the proof of Proposition 2.8.

Recall that pρ2, 1q P L1, i.e., 1 is the largest eigenvalue of Apρ2, 1q; the irreducibility of A
implies that the eigenvectors corresponding to 1 have strictly negative or positive components;
let d2 denote a right eigenvector of Apρ2, 1q corresponding to the eigenvalue 1 with strictly
positive components. Proposition 2.1 and the previous proposition imply that rpρ2, 1,d2q, ¨s
is pY,Mq-harmonic on ZˆZ` ´ B2. All of the prior works ([10, 11, 12]), use a conjugate point
of pρ2, 1q to construct a Y -harmonic function. In the present case, in general, pρ2, 1q will
have 2|M| ´ 1 conjugate points. Figure 3 suggests that only one of these conjugate points
lies on L1; we will use pρ2, 1q along with this conjugate to define a pY,Mq-superharmonic
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function. This will be in two steps. Proposition 2.12 identifies the relevant conjugate point;
Proposition 2.14 constructs the superharmonic function. We will use the superharmonic
function in Sections 3 and 4 below in our analysis of the relative error (7).

The identification of the conjugate point requires the following assumption:

ÿ

mPM

pρ2µ2pmq ´ µ1pmqqP pm,mqdetpI ´ Apρ2, 1qqm,m ă 0. (27)

Remark 2.1 comments on this assumption and Proposition 2.13 gives simple conditions
under which (27) holds.

Proposition 2.12. Let pρ2, 1q, ρ2 P p0, 1q, be the point on L1 identified in Proposition 2.11.
Then there exists a unique point pρ2, α

˚
1q P L1, α

˚
1 P p0, 1q if (27) holds.

Proof. Set r2 “ logpρ2q. Proof is parallel to those of Propositions 2.8 and 2.11 and is based on
the analysis of the function H of (19) at the point pr2, 0q via the implicit function theorem.
Define fpΛ, rq “ detpΛI ´ Apρ2, e

rqq and observe

Bf

Br

ˇ

ˇ

ˇ

ˇ

pr2,0q

“
ÿ

mPM

pρ2µ2pmq ´ µ1pmqqP pm,mqdetpI ´ Apρ2, 1qqm,m,

which, by assumption (27), is strictly less than 0. The rest of the proof goes as that of
Proposition 2.8.

Remark 2.1. Assumption (27) ensures that pρ2, 1q has a conjugate point on the principal
characteristic surface L1 with α component less than 1. There is no corresponding assumption
in the non-modulated tandem case, because, in that setup, the conjugate of pρ2, 1q is pρ2, ρ1q
whose α component ρ1 is always less than 1 by the stability assumption. In the simple con-
strained random walk case (treated in [12]) the corresponding assumption is r2 ă ρ1ρ2 (see
[12, Display (14)]).

The condition α˚
1 ă 1 is needed for the superharmonic function constructed in Proposition

2.14 to be bounded on BB, see Proposition 3.2.

Proposition 2.13. Each of the following conditions is sufficient for (27) to hold:

1. λpmq{µ2pmq ă 1, λpmq ă µ1pmq for all m P M and the ratio λpmq{µ2pmq does not
depend on m,

2. µ2pmq ă µ1pmq for all m P M.

Proof. If λpmq{µ2pmq ă 1 does not depend on m we can denote the common ratio by ρ1
2 ă 1.

Substituting pβ, αq “ pρ1
2, 1q we see that Apρ1

2, 1q “ P . This implies that the root ρ2 identified
in Proposition 2.11 must equal ρ1

2. Setting ρ2 “ ρ1
2 on the left side of (27) gives

ÿ

mPM

pρ2µ2pmq ´ µ1pmqqP pm,mqdetpI ´ Apρ2, 1qqm,m

“
ÿ

mPM

pρ1
2µ2pmq ´ µ1pmqqP pm,mqdetpI ´ Apρ2, 1qqm,m

“
ÿ

mPM

pλpmq ´ µ1pmqqP pm,mqdetpI ´ Apρ2, 1qqm,m
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detpI ´ Apρ2, 1qqm,m ą 0 by Lemma A.1, and λpmq ă µ1pmq by assumption; these and the
last line imply (27):

ă 0.

That the condition µ2pmq ă µ1pmq for all m P M implies (27) follows from a similar argu-
ment.

Remark 2.2. The argument used in the proof above can be used to prove that the conjugate
point pρ2, α

˚
1 q satisfies α˚

1 ą 1 if one replaces ă with ą in (27).

For the rest of our analysis we will need a further assumption:

ρ1 ‰ ρ2, (28)

where ρ1 is the first (or the second) component of the point on L1 XL2,1 identified in Propo-
sition 2.8 and ρ2 is the β component of the point on L1 identified in Proposition 2.11.
Assumption (28) generalizes the assumption µ1 ‰ µ2 in [10, 11, 12].The following lemma
identifies sufficient conditions for (28) to hold.

Lemma 2.3. If µ1pmq ą µ2pmq for all m P M, or µ1pmq ă µ2pmq for all m P M, then (28)
holds.

Proof. The matrix D “ Apρ2, ρ2q ´ Apρ2, 1q is a diagonal matrix whose mth entry equals
p1 ´ ρ2qpµ2pmq ´ µ1pmqq. Suppose µ2pmq ą µ1pmq for all m P M; then ρ2 P p0, 1q implies
that D has strictly positive entries.

We have then:

Apρ2, ρ2qd2 “ Apρ2, 1qd2 ` Dd2

“ d2 ` Dd2

ą p1 ` ǫqd2 (29)

for some ǫ ą 0; here we have used 1) d2 is an eigenvector of Apρ2, 1q corresponding to the
eigenvalue 1 and 2) D has strictly positive entries. We know by [5, Proof of Theorem 1,
Chapter 16] that

Λ1pApρ2, ρ2qq “ suptc : Dx P R
|M|
` ,Apρ2, ρ2qx ě cxu. (30)

This and (29) imply that the largest eigenvalue of Apρ2, ρ2q is strictly greater than 1. This
implies ρ2 ă ρ1. That µ1pmq ą µ2pmq for all m P M implies ρ2 ą ρ1 follows from the same
argument applied to Apρ2, 1qd2,1.
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Figure 4: ρ1 ´ ρ2 and α˚
1 ´ ρ2 have the same sign (Lemma 2.4); the points marked with ’x’

are pρ2, ρ2q, pρ2, α
˚
1q and p1, ρ2q; the point marked with ’o’ is pρ1, ρ1q

Lemma 2.4. Let pρ2, α
˚
1q be the conjugate point of pρ2, 1q on L1 identified in Proposition

2.12. Then ρ1 ą ρ2 implies α˚
1 ą ρ2 and ρ1 ă ρ2 implies α˚

1 ă ρ2.

Figure 4 illustrates this lemma.

Proof. By definition ρ1 is the unique positive number strictly less than 1 satisfying Λ1pρ1, ρ1q “
1; ρ2 ă ρ1 implies Λ1pρ2, ρ2q ą 1. But α˚

1 satisfies Λ1pρ2, α
˚
1q “ 1 and Λ1pρ2, ρq ď 1 for

ρ P pα˚
1 , ρ2s. It follows that ρ2 ă α˚

1 . The argument for the opposite implication is simi-
lar.

Remark 2.3. By the previous lemma the assumption (28) is equivalent to

α˚
1 ‰ ρ2. (31)

Remark 2.4. ρ1 is the unique solution of Λ1pβ, βq “ 1 on p0, 1q; similarly ρ2 is the unique
solution of Λ1pβ, 1q “ 1 on p0, 1q. That Λ1 is the largest eigenvalue of Apβ, αq and the above
facts imply that ρ1 [ρ2] is the largest root of ppβ, βq [ppβ, 1q] on p0, 1q. Therefore, one can
state the assumption (28) also as follows: “the largest roots of ppβ, βq and ppβ, 1q on p0, 1q
differ.”

By definition, 1 is the largest eigenvalue of Apρ2, α
˚
1q; let d2,1 denote a right eigenvector of

this matrix with strictly positive entries. Next proposition constructs a pY,Mq-superharmonic
function that we will use to find upper bounds on approximation errors; this is one of the
key steps of our argument.
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Proposition 2.14. Under assumption (28) one can choose a constant c0 P R

( c0 ą 0 for α˚
1 ă ρ2 and c0 ă 0 for α˚

1 ą ρ2) so that

hρ2
.

“ rpρ2, 1,d2q, ¨s ` c0rpρ2, α
˚
1 ,d2,1, ¨s, (32)

is a pY,Mq-superharmonic function.

Proof. By their construction, the conjugate points pρ2, 1q and pρ2, α
˚
1q lie on L1. This

and Proposition 2.1 imply that the functions rpρ2, 1,d2q, ¨s and rpρ2, α
˚
1 ,d2,1q, ¨s are pY,Mq-

harmonic on Z ˆ Z` ´ B2. This implies the same for their linear combination hρ2 . Therefore,
to prove that hρ2 is pY,Mq-superharmonic, it suffices to check this on B2.

By definition hρ2 is superharmonic on B2 if

Epy,mqrhρ2pY1,M1qs ď hρ2py,mq

for y “ pk, 0q and m P M. By Lemma 2.2,

Epy,mqrpρ2, 1,d2q, pY1,M1qs ´ rpρ2, 1,d2q, py,mqs “ ρk2cpρ2, 1,d2qpmq,

Epy,mqrpρ2, α
˚
1 ,d2,1q, pY1,M1qs ´ rpρ2, α

˚
1 ,d2,1q, py,mqs “ ρk2cpρ2, α

˚
1 ,d2,1qpmq,

where cp¨, ¨, ¨q is defined as in (21). The last two lines give

Epy,mqrhρ2pY1,M1qs ´ hρ2py,mq “ ρk2 pcpρ2, 1,d2qpmq ` c0cpρ2, α
˚
1 ,d2,1qpmqq . (33)

For hρ2 to be superharmonic, the right side of the last display must be negative. The sign of
this expression is determined by

cpρ2, 1,d2qpmq ` c0cpρ2, α
˚
1 ,d2,1qpmq. (34)

The definition (21) of c and ρ2 ă 1 and d2pmq ą 0 for all m P M imply that the first term
is strictly positive for all m P M. Define

dmax
.

“ max
mPM

cpρ2, 1,d2qpmq ą 0.

The sign of the second term in (34) depends on whether α˚
1 ă ρ2 or α

˚
1 ą ρ2. For α

˚
1 ă ρ2,

the definition (21) of c and d2,1pmq ą 0 for all m P M imply that the c term in (34) is strictly
negative for all m. Define

d˚
max

.
“ max

mPM
cpρ2, α

˚
1 ,d2,1qpmq ă 0. (35)

If we choose c0 ą 0 so that
dmax ` c0d

˚
max ă 0, (36)

(34) will be strictly less than 0 for all m. This and (33) imply that hρ2 is superharmonic for
any c0 satisfying (36).

For α˚
1 ą ρ2 the argument remains the same except that we replace the max in (35) with

min and c0 ă 0.

In the next section we will use hρ2 to find bounds on the approximation error (7).
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3 Upper bound for Ppy,mqpτ ă 8q

As we saw in Proposition 2.14 above, pY,Mq-superharmonic functions can be constructed
from just two conjugate points on L1 Ă Hβα.

We will need an upper bound on Ppy,mqpτ ă 8q in our analysis of the relative error (7);
in the non-modulated tandem walk treated in [10, 11], this probability can be represented
exactly using the harmonic functions constructed from points on the characteristic surface,
which also obviously serves as an upper bound. In the present case, we will construct an upper
bound for Ppy,mqpτ ă 8q from pY,Mq-harmonic and superharmonic functions constructed in
Propositions 2.10 and 2.14. The next proposition constructs the necessary function the one
following it derives the upper bound.

Proposition 3.1. Let hρ1 “ rpρ1, ρ1,d1q, ¨s be as in (20) and hρ2 be as in (32). One can
choose c1 ě 0 so that

c2
.

“ min
yPBB,mPM

hρ2py,mq ` c1hρ1py,mq ą 0; (37)

for α˚
1 ă ρ2 one can choose c1 “ 0.

Proof. By its definition,

hρ2py,mq “ d2pmq ` c0pα˚
1qyp2qd2,1pmq, (38)

for y P BB. We know by Proposition 2.14 that c0 ą 0 for α˚
1 ă ρ2. This, α

˚
1 ą 0, d2,1pmq ą 0

imply
min
yPBB

hρ2py,mq ě min
mPM

d2pmq ą 0,

which implies (37) with c1 “ 0.
For α˚

1 ą ρ2, c0 ă 0 and (38) can take negative values for small yp2q. But 0 ă α˚
1 ă 1

implies that there exists k0 ą 0 such that

hρ2py,mq ě min
mPM

d2pmq{2 ą 0, y P BB, yp2q ě k0. (39)

On the other hand, d1pmq ą 0 for all m P M and ρ1 ą 0 imply that hρ1py,mq ą 0 for all
y P BB, m P M. Then one can choose c1 ą 0 so that

c1d1pmqρ
yp2q
1 ` d2pmq ` c0pα˚

1qyp2qd2,1pmq ą min
mPM

d2pmq{2, y P BB, yp2q ď k0, (40)

since this inequality concerns only finitely many y P BB. c1 chosen thus, (39) and (40) imply
(37).

Proposition 3.2. Let c1 ě 0, c2 ą 0 be as in Proposition 3.1

Ppy,mqpτ ă 8q ď
1

c2
phρ2py,mq ` c1hρ1py,mqq . (41)

Proof. For ease of notation set
f “ hρ2 ` c1hρ1 ;

ρ1, ρ2, α
˚
1 P p0, 1q implies

sup
yPB,mPM

|fpy,mq| ă 8.
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Furthermore, by Propositions 2.8 and 2.14 f is pY,Mq-superharmonic. These imply that
k ÞÑ fpYk^τ ,Mk^τ q is a bounded supermartingale. Then by the optional sampling theorem
([3, Theorem 5.7.6])

Epy,mqrfpYτ ,Mτ q1tτă8us ď fpy,mq;

this, Yτ P BB when τ ă 8 and (37) imply

c2Ppy,mqpτ ă 8q ď fpy,mq,

which gives (41).

4 Upper bound for Ppx,mqpσ1 ă σ1,2 ă τn ă τ0q

Define
σi

.
“ inftk ě 0 : Xk P Biu; i “ 1, 2, (42)

and
σ1,2

.
“ inftk ě 0 : Xk P B2, k ě σ1u; (43)

σi is the first time X hits Bi and σ1,2 is the first time X hits B2 after hitting B1. In the next
section we find an upper bound on the probability Ppx,mqpσ1 ă σ1,2 ă τn ă τ0q, we will use
this bound in the analysis of the approximation error in the proof of Theorem 6.1. Define

ρ
.

“ ρ1 _ ρ2. (44)

The goal of the section is to prove

Proposition 4.1. For any ǫ ą 0 there exists n0 ą 0 such that

Ppx,mqpσ1 ă σ1,2 ă τn ă τ0q ď ρnp1´ǫq (45)

for n ě n0 and px,mq P An.

We split the proof into cases ρ1 ą ρ2 and ρ2 ą ρ1. The first subsection below treats the
first case ρ1 ą ρ2, the next gives the changes needed for the latter.

Let A1 denote the characteristic matrix for B1:

p1pβ, α,mq
.
“ λpmq

1

β
` µ1pmq ` µ2pmq

β

α
, m P M,

A1pβ, αqm1 ,m2

.
“

#

P pm1,m2q, m1 ‰ m2

P pm1,m1qp1pβ, α,mq, m1 “ m2,
, pm1,m2q P M

2.

We will use the following fact several times in our analysis.

Lemma 4.1. The function

px,mq ÞÑ rpρ2, 1,d2q, pTnpxq,mqs “ ρ
n´pxp1q`xp2qq
2 d2pmq (46)

is pX,Mq-harmonic on Z
2
` ´ B2.

Proof. We know by Proposition 2.1 and pρ2, 1,d2q P H that rpρ2, 1,d2q, ¨s is pY,Mq-harmonic
on ZˆZ

o
`, which implies that (46) is pX,Mq-harmonic on Z

2,o
` ; this and A1pρ2, 1q “ Apρ2, 1q

imply the pX,Mq-harmonicity of (46) on B1.
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4.1 ρ1 ą ρ2

To prove (45) we will construct a corresponding supermartingale; applying the optional sam-
pling theorem to the supermartingale will give our desired bound. The event tσ1 ă σ1,2 ă
τn ă τ0u consists of three stages: X first hits B1 then B2 and finally BAn without ever hitting
0. If h is an pX,Mq-superharmonic function, it follows from the definitions that hpX,Mq is a
supermartingale. We will construct our supermartingale by applying three functions (one for
each of the above stages) to pX,Mq: the function for the first stage is the constant ρn1 , which
is trivially superharmonic. The function for the second stage will be a constant multiple of
px,mq ÞÑ hρ1pTnpxq,mq. By Proposition 2.8, px,mq ÞÑ hρ1pTnpxq,mq is pX,Mq-harmonic on
Z
2
` ´ B1. One can check directly that it is in fact subharmonic on B1. The definition of the

supermartingale S will involve terms to compensate for this. The function for the third stage
is

h3 : px,mq ÞÑ hρ2pTnpxq,mq ` c1hρ1pTnpxq,mq, x P An, m P M,

“ hρ2ppn ´ xp1q, xp2qq,mq ` c1hρ1ppn ´ xp1q, xp2qq,mq,

“ ρ
n´pxp1q`xp2qq
2

´

d2pmq ` c0α
˚
1
xp2q

d2,1pmq
¯

` c1ρ
n´xp1q
1 d1pmq, (47)

where c1 ě 0 is chosen as in Proposition 3.1 and c0 is as in Proposition 2.14. The next two
propositions imply that h3 is pX,Mq-superharmonic on Z

2
` ´ B1.

Proposition 4.2. For ρ1 ą ρ2, hρ2pTnp¨q, ¨q is superharmonic on all of Z2
`.

Proof. That hρ2pTnp¨q, ¨q is pX,Mq-superharmonic on Z
2
` ´ B1 follows from Proposition 2.14

(i.e., from the fact that hρ2p¨, ¨q is pY,Mq-harmonic). Therefore, it suffices to prove that
hρ2pTnp¨q, ¨q is superharmonic on B1. hρ2pTnp¨q, ¨q is a sum of two functions:

hρ2pTnp¨q, ¨q “ rpρ2, 1,d2q, pTnp¨q, ¨qs ` c0rpρ2, α
˚
1 ,d2,1q, pTnp¨q, ¨qs. (48)

Let us show that each of these summands is pX,Mq- superharmonic on B1. The first summand
is pX,Mq-harmonic (and therefore, superharmonic) on B1 by Lemma 4.1. To treat the second
term in (48) recall the following: ρ2 ă ρ1 implies ρ2 ă α˚

1 (Lemma 2.4); then, by Proposition
2.14, c0 ă 0. Therefore, if we can show that rpρ2, α

˚
1 ,d2,1q, pTnp¨q, ¨qs is pX,Mq-subharmonic

on B1 we will be done. Let us now see that this is indeed the case.
For ease of notation set

hpx,mq “ rpρ2, α
˚
1 ,d2,1q, pTnpxq,mqs “ ρ

n´pxp1q`xp2qq
2 α˚

1
xp2q

d2,1pmq.

A calculation parallel to the proof of Proposition 2.1 shows

Epx,mq rhpX1,M1qs ´ hpx,mq “ d2,1pmqµ1pmqp1 ´ α˚
1qρ

n´xp2q
2 ą 0, (49)

for x P B1, i.e., h is pX,Mq-subharmonic on B1. This completes the proof of this proposition.

Proposition 4.3. hρ1pTnp¨q, ¨q is harmonic (and therefore superharmonic) on Z
2
` ´ B1. It is

subharmonic on B1 where it satisfies

Epx,mqrhρ1pTnpX1q,M1qs ´ hρ1pTnpxq,mq “ d1pmqµ1pmqp1 ´ ρ1qρn1 ą 0. (50)
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The proof is parallel to the computation given in the proof of Proposition 2.1 and is
omitted. We can now define the supermartingale that we will use to prove (45):

S1
k

.
“

$

’

&

’

%

h1, k ď σ1,

h2pXk,Mkq, σ1 ă k ď σ1,2,

h3pXk,Mkq, k ą σ1,2,

Sk
.

“ S1
k ´ c5kρ

n
1 ,

where

c3
.

“
maxmPM d2pmq ` c1maxmPM d1pmq

minmPM d1pmq
ą 0, (51)

h1
.

“ c4ρ
n
1 , c4

.
“ c3 max

mPM
d1pmq ą 0,

h2
.

“ c3hρ1pTnp¨q, ¨q “ c3rpρ1, ρ1,d1q, pTnp¨q, ¨qs “ c3ρ
n´xp1q
1 d1p¨q, (52)

c5
.

“ c3p1 ´ ρ1q max
mPM

d1pmqµ1pmq. (53)

Two comments: h1 is a constant function, independent of x and m, and h1 ě h2 on B1.

Proposition 4.4. S is a supermartingale.

Proof. The claim follows mostly from the fact that the functions involved in the definition
of S1 are pX,Mq-superharmonic away from B1. The term that breaks superharmonicity on
B1 is rpρ1, ρ1,d1q, pTnpXkq,Mkqs; the ´c5kρ

n
1 term in the definition of S is introduced to

compensate for this. The details are as follows.
The pX,Mq-harmonicity of h1, h2 and h3 implies

Epx,mqrS
1
k`1|Fks “ S1

k

for Xk P Z
2
` ´B1YB2; i.e., S

1
k satisfies the martingale equality condition for Xk P Z

2
` ´B1YB2;

this implies that Sk satisfies the supermartingale inequality condition over the same event.
h2 and h3 are pX,Mq-superharmonic on B2 by Propositions 4.2 and 4.3 (h1 is trivially so

because it is constant); this implies

Epx,mqrS
1
k`1|Fks ď S1

k

for Xk P B2 and k ‰ σ1,2. For k “ σ1,2 we have S1
k`1 “ h3pXk`1,Mk`1q. This, the pX,Mq-

superharmonicity of h3 on B2 implies

Epx,mqrS
1
k`1|Fks “ Epx,mqrh3pXk`1,Mk`1q|Fks

ď h3pXk,Mkq (54)

for k “ σ1,2. On the other hand,

S1
k “ h2pXk,Mkq for k “ σ1,2. (55)

The definitions of c3, h2 and h3 in (51), (52) and (47), ρ2 ă ρ1 and c0 ă 0 imply

h3px,mq ď h2px,mq
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for x P B2. This and (55) imply

h3pXk,Mkq ď h2pXk,Mkq “ S1
k

for k “ σ1,2. The last display and (54) imply

Epx,mqrS
1
k`1|Fks ď S1

k,

i.e., S1 and S are pX,Mq-supermartingales for k “ σ1,2 as well.
It remains to prove

Epx,mqrSk`1|Fks ď Sk, when Xk P B1. (56)

The cases to be treated here are: k “ σ1, σ1 ă k ă σ1,2 and k ą σ1,2.

For k “ σ1, we have S1
k “ h1pXk,Mkq “ c3ρ

n
1d1pMkq and S1

k`1 “ h2pXk`1,Mk`1q; these
and h1 ě h2 on B1 imply

Epx,mqrSk`1|Fks ´ Sk (57)

“ Epx,mqrc3hρ1pTnpXk`1q,Mk`1q|Fks ´ c3ρ
n
1d1pMkq ´ c5ρ

n
1 ,

By (50) and σ1 “ k, this equals

ď c3d1pMkqµ1pMkqp1 ´ ρ1qρn1 ´ c5ρ
n
1 .

By the definition of c5:

“ ρn1c3p1 ´ ρ1qpd1pMkqµ1pMkq ´ max
mPM

d1pmqµ1pmqq ď 0,

which proves (56) for k “ σ1.

For σ1 ă k ă σ1,2, S1
k “ h2pXk,Mkq “ c3hρ1pTnpXkq,Mkq; therefore the above argument

applies to this case as well (except for the last step which is not needed here because S1
k and

S1
k`1 are defined by applying the same function h2 to pXk`1,Mk`1q and pXk,Mkq).
Finally, to treat the case Xk P B1 and k ą σ1,2 we start with

Epx,mqrSk`1|Fks ´ Sk “ Epx,mqrS
1
k`1|Fks ´ S1

k ´ c5ρ
n
1 ,

S1
k “ h3pXk,Mkq for k ą σ1,2. Then by the definition of h3:

“ Epx,mqrhρ2pTnpXk`1q,Mk`1q ` c1hρ1pTnpXk`1q,Mk`1q|Fks

´ hρ2pTnpXkq,Mkq ´ c1hρ1pTnpXkq,Mkq ´ c5ρ
n
1 ,

“
`

Epx,mqrhρ2pTnpXk`1q,Mk`1q|Fks ´ hρ2pTnpXkq,Mkq
˘

` Erc1hρ1pTnpXk`1q,Mk`1q|Fks ´ c1hρ1pTnpXkq,Mkq ´ c5ρ
n
1 .

The pX,Mq-superharmonicity of hρ2pTnp¨q, ¨q implies that the difference inside the parenthesis
is negative, therefore:

ď Erc1hρ1pTnpXk`1q,Mk`1q|Fks ´ c1hρ1pTnpXkq,Mkq ´ c5ρ
n
1 .
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Proposition 4.3 ((50)) now gives

“ c1d1pMkqµ1pMkqp1 ´ ρ1qρn1 ´ c5ρ
n
1 .

By its definition (53), c5 ą c1d1pmqµ1pmqp1 ´ ρ1q for all m P M, which implies:

ď 0.

This proves (56) for k ą σ1,2 and completes the proof of this proposition.

We are now ready to give a proof of Proposition 4.1 for ρ1 ą ρ2:

Proof of Proposition 4.1; case ρ1 ą ρ2. By its definition (44), ρ of (45) equals ρ1 for ρ1 ą ρ2.
We begin by truncating time: [9, Theorem A.2] implies that there exists c6 ą 0 and N0 ą 0
such that

Ppx,mqpτn ^ τ0 ą c6nq ď ρ2n1 ,

for n ą N0. Then:

Ppx,mqpσ1 ă σ1,2 ă τn ă τ0q (58)

“ Ppx,mqpσ1 ă σ1,2 ă τn ă τ0, τn ^ τ0 ď c6nq

` Ppx,mqpσ1 ă σ1,2 ă τn ă τ0, τn ^ τ0 ą c6nq

ď Ppx,mqpσ1 ă σ1,2 ă τn ă τ0, τn ^ τ0 ď c6nq ` ρ2n1

for n ą N0. Therefore, to prove (45) it suffices to bound the first term on the right side of
the last inequality. Now apply the optional sampling theorem to the supermartingale S at
the bounded stopping time τ “ τ0 ^ τn ^ c6n:

Epx,mq rSτ0^τn^c6ns ď S0 “ c4ρ
n
1 .

By definition, Sk “ S1
k ´ c5kρ

n
1 ; substituting this in the last display gives:

´c5c6nρ
n
1 ` Epx,mqrS

1
τ s ď c4ρ

n
1

Epx,mqrS
1
τ s ď pc4 ` nc5c6qρn1 .

By its definition, S1
k ą 0, therefore restricting it to an event makes the last expectation

smaller:

Epx,mqrS
1
τ1tσ1ăσ1,2ăτnăτ0ďc6nus ď pc4 ` nc5c6qρn1 .

On the set tσ1 ă σ1,2 ă τn ă τ0 ď c6nu, we have τ “ τn and S1
τn “ h3pXτn ,Mτnq;

by definition Xτn P BAn. By definition of h3 and by Proposition 3.1 h3px,mq ě c2 ą 0 for
x P BAn. These and the last display imply

c2Ppx,mqpσ1 ă σ1,2 ă τn ă τ0 ď c6nq ď pc4 ` nc5c6qρn1 .

Substitute this in (58) to get

Ppx,mqpσ1 ă σ1,2 ă τn ă τ0q ď ρ
np1´ǫnq
1

where

ǫn “
1

n
log1{ρ1

ˆ

c4 ` nc5c6

c2

˙

;

setting n0 ě N0 so that ǫn ă ǫ for n ě n0 gives (45).
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4.2 ρ1 ă ρ2

The previous subsection gave a proof of Proposition 4.1 for ρ2 ă ρ1. The only changes needed
in this proof for ρ1 ă ρ2 concern the functions used in the definition of the supermartingale
S; the needed changes are:

1. Modify the function h2 for the second stage,

2. The function h3 is no longer superharmonic on B1; quantify how much it deviates from
superharmonicity on B1,

3. Modify the constants used in the definition of S in accordance with these changes.

The next two propositions deal with the first two items above; the definition of the
supermartingale (taking also care of the third item) is given after them.

The convexity of q ÞÑ ´ logpΛ1peq, eqqq and Λ1pρ1, ρ1q “ 1 imply Λ1pρ2, ρ2q ă 1 for
ρ2 ą ρ1. Let d

`
2 be a right eigenvector of Apρ2, ρ2q with strictly positive entries.

Proposition 4.5. The function

f : px,mq ÞÑ rpρ2, ρ2,d
`
2 q, pTnpxq,mqs

is superharmonic on Z
2
` ´ B1. On B1 it satisfies

Epx,mqrfpX1,M1qs ´ fpx,mq ď d`
2 pmqµ1pmqp1 ´ ρ2qρn2 . (59)

The proof is parallel to that of Proposition 4.3 and follows from Λ1pρ2, ρ2q ă 1, A2pρ2, ρ2q “
Apρ2, ρ2q and the definitions involved.

Proposition 4.6. Let h3 be as in (47); h3 is pX,Mq-superharmonic on Z
2
` ´ B1; on B1 it

satisfies

Epx,mq rh3pX1,M1qs ´ h3px,mq “ c0d2,1pmqµ1pmqp1 ´ α˚
1qρ

n´xp2q
2 ą 0. (60)

Proof. Lemma 2.4 and ρ2 ą ρ1 imply α˚
1 ă ρ2; this and Proposition 3.1 imply that c1 in the

definition of h3 is 0; i.e.,

h3px,mq “ hρ2pTnpxq,mq “ ρ
n´pxp1q`xp2qq
2

´

d2pmq ` c0pα˚
1qxp2qd2,1pmq

¯

;

That h3 is pX,Mq-superharmonic on Z
2
` ´ B1 follows from the same property of hρ2 (see

Proposition 2.14). On the other hand, again by Proposition 2.14, α˚
1 ă ρ2 implies that c0

in the definition of hρ2 satisfies c0 ą 0. By Lemma 4.1 px,mq ÞÑ rpρ2, 1,d2q, pTnpxq,mqs is
pX,Mq-harmonic on B1; (60) follows from these and (49).

ρ2 ą ρ1 implies ρ2 ą α˚
1 (Lemma 2.4); this and Proposition 3.1 imply c1 “ 0; ρ2 ą α˚

1 and
Proposition 2.14 imply c0 ą 0. That c0 ą 0 and c1 “ 0 lead to the following modifications in
the definition of S1:

S1
k

.
“

$

’

&

’

%

h1, k ď σ1,

h4pXk,Mkq, σ1 ă k ď σ1,2,

h3pXk,Mkq, k ą σ1,2,

Sk
.

“ S1
k ´ c5kρ

n
2 ,
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where

c3
.

“
maxmPM pd2pmq ` c0d2,1pmqq

minmPM d`
2 pmq

,

h1
.

“ c4ρ
n
2 , c4

.
“ c3 max

mPM
d`
2 pmq,

h4
.

“ c3rpρ2, ρ2,d
`
2 q, pTnp¨q, ¨qs “ c3ρ

n´xp1q
2 d`

2 p¨q,

c5
.

“ c3p1 ´ ρ2q max
mPM

d`
2 pmqµ1pmq ` c0p1 ´ α˚

1q max
mPM

d2,1pmqµ1pmq.

The modification in c3 ensures h4 ě h3 on B2; c0 ą 0 implies that h3 is no longer superhar-
monic on B1; the second term in c5 compensates for this.

Proposition 4.7. S as defined above is a supermartingale for ρ2 ą ρ1.

Proof. With the modifications made as above, the proof proceeds exactly as in the case
ρ1 ą ρ2 (Proposition 4.4) and follow from the following facts: h1 ě h4 on B1, h4 ě h3 on B2
(these are guaranteed by the choices of the constants c4, c3); pX,Mq-superharmonicity of h4
and h3 on Z

2
` ´ B1 (guaranteed by Propositions 4.5 and 4.6), the ´c5kρ

n
2 term compensating

for the lack of pX,Mq-superharmonicity of h3 and h4 on B1 (guaranteed by (59) and (60) and
the choice of the constant c5).

Proof of Proposition 4.1; case ρ2 ą ρ1. With S defined as above, the proof given for the case
ρ1 ą ρ2 works without change.

5 Lower bound for Ppx,mqpτn ă τ0q

To get an upper bound on the relative error (7), we need a lower bound on the probability
Ppx,mqpτn ă τ0q. We will get the desired bound by applying the optional sampling theorem,
this time to an pX,Mq-submartingale. This we will do, following [12], by constructing a
suitable pX,Mq-subharmonic function. As opposed to superharmonic functions, subharmonic
functions are simpler to construct.

Proposition 5.1.

px,mq ÞÑ rpρ2, 1,d2q, pTnpxq,mqs _ rpρ1, ρ1,d1q, pTnpxq,mqs (61)

“ ρ
n´pxp1q`xp2qq
2 d2pmq _ ρ

n´xp1q
1 d1pmq

is pX,Mq-subharmonic on Z
2
`.

Proof. We know by Lemma 2.2 that

Epx,mqrpρ2, 1,d2q, pTnpX1q,M1qs ´ rpρ2, 1,d2q, px,mqs

“ ρ
n´xp1q
2 P pm,mqµ2pmqd2pmqp1 ´ ρ2q ą 0,

i.e, px,mq ÞÑ rpρ2, 1,d2q, px,mqs is pX,Mq-subharmonic on B2.
Thatpx,mq ÞÑ rpρ2, 1,d2q, pTnpxq,mqs is pX,Mq-subharmonic on Z

2
` ´B2 follows from Lemma

4.1. Then, px,mq ÞÑ rpρ2, 1,d2q, px,mqs is pX,Mq-subharmonic on all of Z2
`.

Similarly, Proposition 4.3 and (50) imply that px,mq ÞÑ rpρ1, ρ1,d1q, px,mqs is pX,Mq-
subharmonic on all of Z2

`.
The maximum of two subharmonic functions is again subharmonic. This and the above

facts imply the pX,Mq-subharmonicity of (61).
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Proposition 5.2.

Ppx,mqpτn ă τ0q

ě

ˆ

max
mPM

pd2pmq _ d1pmqq

˙´1

(62)

ˆ

ˆ

ρ
n´pxp1q`xp2qq
2 d2pmq _ ρ

n´xp1q
1 d1pmq ´ ρn2 max

mPM
d2pmq _ ρn1 max

mPM
d1pmq

˙

.

Proof. Set

gpx,mq “ ρ
n´pxp1q`xp2qq
2 d2pmq _ ρ

n´xp1q
1 d1pmq;

by the previous proposition g is pX,Mq-subharmonic. By its definition, g is positive and
bounded from above for x P Z

2
`. It follows that

sk “ gpXτn^τ0^k,Mτn^τ0^kq

is a bounded positive submartingale. By definition

ErgpXτn^τ0 ,Mτn^τ0qs “ ErgpXτn ,Mτnq1tτnăτ0us ` ErgpXτ0 ,Mτ0q1tτ0ďτnus. (63)

That Xτn P BAn implies gpXτn ,Mτnq “ gpk, n ´ kq for some k ă n; then

gpXτn ,Mτnq ď max
mPM

pd2pmq _ d1pmqq.

This, (63) and the optional sampling theorem applied to s at time τn ^ τ0 give

Ppx,mqpτn ă τ0q

ˆ

max
mPM

pd2pmq _ d1pmqq

˙

` gp0,mqPpx,mqpτ0 ď τnq ě gpx,mq.

Ppx,mqpτ0 ď τnq ď 1 implies

ˆ

max
mPM

pd2pmq _ d1pmqq

˙

Ppx,mqpτn ă τ0q ě gpx,mq ´ max
mPM

rgp0,mqs;

this and max
mPM

rgp0,mqs “ ρn2 max
mPM

d2pmq _ ρn1 max
mPM

d1pmq give (62).

6 Completion of the limit analysis

This section puts together the results of the last two sections to derive an exponentially
decaying upper bound on the relative error (7). As in previous works [10, 11, 12], this task
is simplified if we express the Y process in the x coordinates thus:

X̄k
.

“ TnpYkq;

X̄ has the same dynamics as X, except that it is not constrained on B1. In this section we
will set the initial condition using the scaled coordinate x P R

2
`, xp1q ` xp2q ă 1, the initial

condition for the X and X̄ will be

X0 “ X̄0 “ tnxu.

As in the non-modulated case, the following relation between X̄ and X will be very useful:
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Lemma 6.1. Let σ1,2 be as in (43). Then

Xkp1q ` Xkp2q “ X̄kp1q ` X̄kp2q

for k ď σ1,2.

This lemma is the analog of [10, Proposition 7.2], which expresses the same fact for the
non-modulated two dimensional tandem walk; the proof is unchanged because it does not
depend on the modulating process. Example sample paths of X and X̄ up to time σ1,2
demonstrating Lemma 6.1 are shown in Figure 5.

p3, 3q p3, 3q

p2, 0q

p1, 1q

Figure 5: A sample path of Xk(left) and X̄k(right)

Define

τ̄n
.
“ inftk ą 0 : X̄k P BAnu,

σ̄1,2
.
“ inftk ą 0 : X̄kp1q ` X̄kp2q “ 0, k ě σ1u.

X and X̄ have identical dynamics upto time σ1; σ̄1,2 is the first time after (σ1, i.e., the
first time X and X̄ hit B1) that the sum of the components of X̄ equals 0. By the definitions
of X̄ and Y , τ̄n “ τ.

What follows is an upper bound similar to (45) for the X̄ process. This is a generalization
of [10, Proposition 7.5] to the present setup:

Proposition 6.1. For any ǫ ą 0 there exists n0 ą 0 such that

Ppx,mqpσ1 ă σ1,2 ă τ̄n ă 8q ď ρnp1´ǫq (64)

for n ą n0 and px,mq P An.

Proof. As in [10, Proposition 7.5] we partition the event tσ1 ă σ1,2 ă τ̄n ă 8u into whether
X̄ hits BAn before or after it hits tx P Z ˆ Z` : xp1q ` xp2q “ 0u:

Ppx,mqpσ1 ă σ1,2 ă τ̄n ă 8q (65)

“ Ppx,mqpσ1 ă σ1,2 ă τ̄n ă σ̄1,2 ă 8q ` Ppx,mqpσ1 ă σ1,2 ă σ̄1,2 ă τ̄n ă 8q

Lemma 6.1 implies
X̄σ1,2

p1q ` X̄σ1,2
p2q “ Xσ1,2

p1q ` Xσ1,2
p2q

i.e., at time σ1,2, X and X̄ will be on the same line tx P Z ˆ Z` : xp1q ` xp2q “ ku for some
k P t1, 2, ..., n ´ 1u. Then for ω P tσ1 ă σ1,2 ă τ̄nu the fully constrained sample path Xpωq
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cannot hit 0 before the path X̄pωq hits tx P Z ˆ Z` : xp1q ` xp2q “ 0u and it cannot hit BAn

after X̄ hits tx P ZˆZ` : xp1q `xp2q “ nu (intuitively: more constraints on X push it faster
to BAn and slower to 0 than less constraints do the process X̄): these give

tσ1 ă σ1,2 ă τ̄n ă σ̄1,2 ă 8u Ă tσ1 ă σ1,2 ă τn ă τ0u;

the bound (45) on the probability of the last event and (65) imply that there exists n1 ą 0
such that

Ppx,mqpσ1 ă σ1,2 ă τ̄n ă 8q ď ρnp1´ǫ{2q ` Ppx,mqpσ1 ă σ1,2 ă σ̄1,2 ă τ̄n ă 8q (66)

for n ą n1.

To bound the last probability we observe that X̄σ̄1,2
lies on tx P ZˆZ` : xp1q`xp2q “ 0u;

by Proposition 3.2, starting from this line, the probability of X̄ ever hitting tx P Z ˆ Z` :
xp1q ` xp2q “ nu is bounded from above by

1

c2
phρ2ppn ´ xp1q, xp2qq,mq ` c1hρ1ppn ´ xp1q, xp2qq,mqq

ď
1

c2
pρn2d2pmq ` c1ρ

n
1d1pmqq ;

this and the strong Markov property of X̄ give:

Ppx,mqpσ1 ă σ1,2 ă σ̄1,2 ă τ̄n ă 8q ď c7ρ
n

where c7 is a constant depending on d1, d2, c1 and c2. Substituting this in (66) gives

Ppx,mqpσ1 ă σ1,2 ă τ̄n ă 8q ď ρnp1´ǫ{2q ` c7ρ
n,

for n ą n1. This implies the statement of the proposition.

Finally, we state and prove our main theorem:

Theorem 6.1. For any x P R
2
`, xp1q ` xp2q ă 1, and m P M (if ρ1 ą ρ2 and xp2q ă

1 ´ logpρ1q{ logpρ2q we also require xp1q ą 0 ) there exists c8 ą 0 and N ą 0 such that

|Ppxn,mqpτn ă τ0q ´ PpTnpxnq,mqpτ ă 8q|

Ppxn,mqpτn ă τ0q
ă ρc8n (67)

for n ą N , where xn “ tnxu.

Proof. Proposition 5.2, the choice of x (i.e., xp1q ` xp2q ă 1 and xp1q ą 0 and furthermore
xp2q ă 1 ´ logpρ1q{ logpρ2q) when ρ1 ą ρ2) imply the lower bound

Ppx,mqpτn ă τ0q ě ρnp1´2c8q (68)

for some constant 1{2 ą c8 ą 0 depending on x.
By definition X̄ hits BAn exactly when Y hits BB, i.e., τ̄n “ τ ; therefore, Ppxn,mqpτ̄n ă

8q “ PpTnpxnq,mqpτ ă 8q and

|Ppxn,mqpτn ă τ0q ´ PpTnpxnq,mqpτ ă 8q|

Ppxn,mqpτn ă τ0q
(69)

“
|Ppxn,mqpτn ă τ0q ´ Ppxn,mqpτ̄n ă 8q|

Ppxn,mqpτn ă τ0q
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We partition the probabilities of events tτn ă τ0u and tτ ă 8u as follows

Ppxn,mqpτn ă τ0q “ Ppxn,mqpτn ă σ1 ă τ0q ` Ppxn,mqpσ1 ă τn ď σ1,2 ^ τ0q

` Ppxn,mqpσ1 ă σ1,2 ă τn ă τ0q (70)

PpTnpxnq,mqpτ ă 8q “ PpTnpxnq,mqpτ ă σ1q ` PpTnpxnq,mqpσ1 ă τ ď σ1,2q

` PpTnpxnq,mqpσ1 ă σ1,2 ă τ ă 8q. (71)

Lemma 6.1 says the processes X and X̄ move together until they hit B1, so

Ppxn,mqpτn ă σ1 ă τ0q “ PpTnpxnq,mqpτ ă σ1q.

After hitting B1, the sum of the components of X and X̄ are still equal until one of the
processes hits B2. Lemma 6.1 now gives

Ppxn,mqpσ1 ă τn ď σ1,2 ^ τ0q “ PpTnpxnq,mqpσ1 ă τ ď σ1,2q.

The last two equalities, Propositions 4.1, 6.1, and partitions (70), (71) imply that there exists
n0 ą 0 such that

| Ppxn,mqpσ1 ă σ1,2 ă τn ă τ0q ´ PpTnpxnq,mqpσ1 ă σ1,2 ă τ ă 8q |ď ρnp1´c8q (72)

for n ą n0. Substituting the last bound and (68) in (69) gives (67).

7 Computation of Ppτ ă 8q

Theorem 6.1 tells us that PpTnpxnq,mqpτ ă 8q approximates Ppxn,mqpτn ă τ0q very well. In this
section we develop approximate formulas for Ppy,mqpτ ă 8q. Recall that a pY,Mq-harmonic
function is said to be BB-determined if it of the form

py,mq ÞÑ Epy,mqrfpYτ ,Mτ q1tτă8us

for some function f . The function

py,mq ÞÑ Ppy,mqpτ ă 8q (73)

is pY,Mq-harmonic with f “ 1 on BB. Furthermore, by definition it is BB-determined, (for
(73), f is the function taking the constant value 1 on BB). Our approach to the approximation
of Ppy,mqpτ ă 8q is based on the classical superposition principle: take linear combinations
of the pY,Mq-harmonic functions identified in Propositions 2.7 and 2.10 to approximate the
value 1 on BB as closely as possible. We need our pY,Mq-harmonic functions to be BB-
determined; the next lemma identifies a simple condition for functions of the form (74) to be
BB-determined.

Lemma 7.1. Suppose pβ, αj , djq are points on H and suppose

hpy,mq “
k
ÿ

j“1

bpjqrpβ, αj , djq, ¨s, (74)

k ě 1, is pY,Mq-harmonic. If |β| ă 1 and |αj | ď 1 then h is BB-determined.
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This generalizes [10, Proposition 2.2, 4.10] to the Markov modulated setup.

Proof. Define the region U “ ty P Z ˆ Z` : 0 ď yp1q ´ yp2q ď nu and the boundaries of U
BU1 “ ty P Z ˆ Z` : yp1q ´ yp2q “ nu and BU2 “ BB. Define υn

.
“ inftk : Yk P BU1u. We

make the following claim: starting from a point y P U , pY,Mq hits BU1 Y BU2 in finite time,
i.e., υn ^ τ ă 8 almost surely. Let us first prove this claim. For each modulating state m,
the sample path of pY,Mq consisting only of increments p0,´1q hits BU2 in at most n steps
and the probability of this path is pλpmqP pm,mqqn. Then if we set

ε “ min
mPM

pλpmqP pm,mqqn

we have
Ppy,mqpτ ^ υn ě nq ď p1 ´ εq.

An iteration of this inequality and the Markov property of pY,Mq give

Ppy,mqpτ ^ υn ě knq ď p1 ´ εqk.

Letting k Ñ 8 gives
Ppy,mqpτ ^ υn “ 8q “ 0. (75)

Definition (74) and |αj | ď 1, |β| ă 1 imply that h is bounded on B. This and that h is
pY,Mq-harmonic imply that

Sk “ hpYτ^υn^k,Mτ^υn^kq

is a bounded martingale. The optional sampling theorem applied to this martingale and (75)
imply

hpy,mq “ Epy,mqrhpYτ^υn ,Mτ^υnqs (76)

“ Epy,mqrhpYτ ,Mτ q1tτăυnus ` Epy,mqrhpYυn ,Mυnq1tυnďτus.

That |αj | ď 1 implies |hpYυn ,Mυnq| ď cβn for some constant c ą 0. Therefore,

lim
nÑ8

Epy,mqrhpYυn ,Mυnq1tυnďτus ď c lim
nÑ8

βn “ 0.

The last expression, that limnÑ8 υn “ 8 and letting n Ñ 8 in (76) imply

hpy,mq “ Epy,mqrhpYτ ,Mτ q1tτă8us,

i.e, hpy,mq is BB-determined.

The last lemma and 0 ă ρ1 ă 1 imply

Lemma 7.2. hρ1 is BB-determined.

Recall that we have constructed a pY,Mq-superharmonic function, hρ2 from the roots
pρ2, 1q, pρ2, α

˚
1q P Hβα. We would like to strengthen this to a pY,Mq-harmonic function. This

requires the use of further conjugate points of pρ2, 1q (in addition to pρ2, α
˚
1q). The next

lemma shows that under Assumptions 1 and (27) we have sufficient number of conjugate
points of pρ2, 1q to work with:
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Lemma 7.3. Let pρ2, α
˚
1q be the point conjugate to pρ2, 1q identified in Proposition 2.12.

Under Assumptions 1 and (27), there exists |M| ´ 1 additional conjugate points pρ2, α
˚
j q,

j “ 2, 3, ..., |M|, of pρ2, 1q with 0 ă α˚
j ă α˚

1 .

Proof. We know that Λ1pρ2, α
˚
1q “ 1; then Λjpρ2, α

˚
1q ă 1 for j “ 2, 3, ..., |M|. On the other

hand, Gershgorin’s Theorem implies limαÑ0 Λjpρ2, αq “ 8. These and the continuity of Λj

imply the existence of α˚
j P p0, α˚

1 q such that Λjpρ2, α
˚
j q “ 1.

To construct our pY,Mq-harmonic functions from the points identified in the previous
lemma we need the following assumption:

cpρ2, 1,d2q P Span
`

cpρ2, α
˚
j ,d2,jq, j “ 1, 2, ..., |M|

˘

. (77)

Remark 7.1. By definition, cpρ2, αj ,d2,jq “ 0 if αj “ ρ2. Therefore, only those j satisfying

α˚
j ‰ ρ2 have a role in determining Span

´

cpρ2, α
˚
j ,d2,jq, j “ 1, 2, ..., |M|

¯

. In this sense,

assumption (77) can be seen as an extension of (31) (or, equivalently, of (28)).

Remark 7.2. The linear independence of cpρ2, α
˚
j ,d2,jq, j “ 1, 2, ..., |M|, is sufficient for

(77) to hold. That cpβ, β,dq “ 0 implies that ρ2 ‰ α˚
j for all j “ 1, 2, .., |M| is a necessary

condition for this independence.

Now on to the pY,Mq-harmonic function:

Proposition 7.1. Let pρ2, α
˚
j q be the conjugate points of pρ2, 1q identified in Proposition 2.12

and Lemma 7.3. Under the additional assumption (77), one can find a vector b2,1 P R
m1 such

that

hρ2
.
“ rpρ2, 1,d2q, ¨s `

|M|
ÿ

j“1

b2,1pjqrpρ2, α
˚
j ,d2,jq, ¨s (78)

is pY,Mq-harmonic and BB-determined.

Proof. Assumption (77) implies that the collection of vectors
cpρ2, 1,d2q, cpρ2, α

˚
j ,d2,jq, j “ 1, 2, ..., |M| are linearly dependent. Therefore, by Proposition

2.10, there exists a vector b1 P R
|M|`1 such that

b1p0qrpρ2, 1,d2q, ¨s `
n1
ÿ

k“1

b1pjqrpρ2, α
˚
jk
,d2,jkq, ¨s

is pY,Mq-harmonic. Assumption (77) implies that one can choose b1 so that b1p0q ‰ 0.
Renormalizing the last display by b1p0q gives (78). That hρ2 is BB-determined follows from
0 ă α˚

j ď 1, ρ2 ă 1 and Lemma 7.1.

Next proposition constructs an approximation of Ppy,mqpτ ă 8q with bounded relative
error from functions hρ2 and hρ1 .

Proposition 7.2. There exist constants c9, c10 and c11 such that

Ppy,mqpτ ă 8q ă ha,0py,mq ă c9Ppy,mqpτ ă 8q (79)

where
ha,0

.
“ c11phρ2 ` c10hρ1q. (80)
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Proof. The proof is similar to that of Proposition 3.1. That 0 ă α˚
j ă 1, j “ 2, 3, ..., |M|

imply that
rpρ2, α

˚
j ,d2,jq, pk, k,mqs “ pα˚

j qkd2,jpmq Ñ 0 (81)

as k Ñ 8. We further have

rpρ2, 1,d2q, pk, k,mqs “ d2pmq ą 0, (82)

for all k ě 0. This and (81) imply that there exists k0 ą 0 such that

hρ2pk, k,mq ą min
mPM

d2pmq{2 (83)

for all k ą k0. On the other hand,

hρ1pk, k,mq “ rpρ1, ρ1,d1q, pk, k,mqs “ d1pmqρk1 ą 0, (84)

for all k. Then we can choose c10 ą 0 large enough so that

hρ2pk, k,mq ` c10hρ1pk, k,mq ě min
mPM

d2pmq{2 (85)

for all k ď k0. The last display, (83) and the positivity of c10hρ1 imply that the last display
holds for all k and m P M. Set

c11
.

“

ˆ

min
mPM

d2pmq{2

˙´1

,

and ha,0 be as in (80). That (85) holds for k ě 0 and m P M implies

ha,0|BB ě 1.

By Lemma 7.2 and Proposition 7.1 ha,0 is pY,Mq-harmonic and BB-determined. This and
the last display imply,

ha,0py,mq “ Epy,mqrh
a,0pYτ ,Mτ q1tτă8us ě Ppy,mqpτ ă 8q. (86)

This proves the first inequality in (79). To choose c9 so that the second inequality in (79)
holds we note the following: (81), (82) and (84) imply

c9
.

“ max
kě0,mPM

ha,0pk, k,mq ă 8.

Now the same argument giving (86) implies the second inequality in (79).

Proposition 7.3. Fix m P M and x P R
2
`, such that 0 ă xp1q ` xp2q ă 1; furthermore

assume xp1q ą 0 if ρ1 ą ρ2 and xp2q ď 1´ logpρ1q{ logpρ2q; set xn “ tnxu. Then ha,0pTnpxnqq
approximates Ppxn,mqpτn ă τ0q with relative error whose lim sup in n is bounded by |c9 ´ 1|.

Proof. We know by the previous proposition that ha,0 approximates Ppy,mqpτ ă 8q with
relative error bounded by |c9 ´ 1|; we also know by Theorem 6.1 that
PpTnpxnq,mqpτ ă 8q approximates Ppxn,mqpτn ă τ0q with vanishing relative error. These two
imply the statement of the proposition.
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8 Improving the approximation

Proposition 7.3 tells us that ha,0 of (80) approximates Ppy,mqpτ ă 8q and therefore Ppx,mqpτn ă
τ0q with bounded relative error. The works [10, 11, 12] covering the non-modulated case are
able to construct progressively better approximations (i.e., reduction of the relative error)
by using more harmonic functions constructed from conjugate points (in the tandem case
with no modulation, one is able to construct an exact representation of Pypτ ă 8q so no
reduction in relative error is necessary). This is possible because the function in [10, 11, 12]
corresponding to hρ2 , takes the value 1 on BB away from the origin. Thus, by and large, that
single function provides an excellent approximation of Pypτ ă 8q for points away from B2.
Rest of the harmonic functions are added to the approximation to improve the approximation
along B2.

When a modulating chain is present, the situation is different. Note that (81), (82) imply
that the value of hρ2 on BB, away from the origin, is determined by the eigenvector d2 and
in general, the components of d2 will change with m. We need to improve hρ2 itself so that
we have a pY,Mq-harmonic function that is close to 1 on BB away from the origin.

How is this to be done? Remember that the construction of hρ2 began with fixing α “ 1
and solving

β|M|ppβ, 1q “ 0; (87)

ρ2 is the largest root of this equation in the interval p0, 1q. Then we fixed β “ ρ2 in
α|M|ppρ2, αq “ 0 and solved for α to find the conjugate points pρ2, α

˚
j q of pρ2, 1q; from

these points we constructed hρ2 . Now to get our pY,Mq-harmonic function that almost takes
the value 1 on BB away from the origin we will use the rest of the roots of (87) in p0, 1q. The
next lemma shows that under the stability assumption and the simpleness of all eigenvalues,
|M|´1 real β roots exist that lies in the interval p0, ρ2q. The proposition after that constructs
the desired pY,Mq-harmonic function from these roots.

Lemma 8.1. Under the stability assumption (1), and Assumption 1 ( all eigenvalues of
Apβ, αq are real and simple for pβ, αq P R

2o
` ) there exist ρ2,j , j “ 2, 3, ..., |M|, such that

ρ2 ą ρ2,2 ą ρ2,3 ą ¨ ¨ ¨ ą ρ2,|M| ą 0 and te2 ‰ 0, e3 ‰ 0,...,e|M| ‰ 0u Ă R
M such that

Apρ2,j , 1qej “ ej , j “ 2, 3, ..., |M|,

holds.

The proof is parallel to that of Lemma 7.3 and is based on Gershgorin’s Theorem and the
fact that Λjpρ2, 1q ă 1 for j “ 2, 3, ..., |M|.

Each of the points pρ2,j , 1q will in general have 2|M| ´ 1 conjugate points. To get BB-
determined pY,Mq-harmonic functions from these we need the analog of (77) for each pρ2,j , 1q:

Assumption 2. For each j “ 2, 3, ..., |M| there exists mj ď |M| conjugate points pρ2,j , α
˚
j,lq,

l “ 1, 2, ...,mj , of pρ2,j , 1q and eigenvectors 0 ‰ ej,l P R
M such that

|α˚
j,l| ă 1, l “ 1, 2, ...,mj ,

Apρ2,j , α
˚
j,lqej,l “ ej,l

cpρ2,j , 1,ejq P Spanpcpρ2,j , α
˚
j,l,ej,lq, l “ 1, 2, ..,mjq. (88)
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Remark 8.1. Similar to the comments made in Remark 7.2, a set of sufficient conditions
for (88) is 1) mj “ |M| and 2) cpρ2,j, α

˚
j,l,ej,lq, l “ 1, 2, ..., |M| are linearly independent.

By cp¨, ¨, ¨q’s definition, linear independence of these vectors require α˚
j,l ‰ ρ2,j, which is, yet

another generalization of the assumption ρ1 ‰ ρ2.

Remark 8.2. One can introduce assumptions similar to (27) which imply, with an argument
similar to the proof of Lemma 7.3, that pρ2,j , 1q has |M| ´ j conjugate points in the interval
p0, 1q. But in general, this number of conjugate points will not suffice for (88) to hold and
when constructing pY,Mq-harmonic functions with β “ ρ2,j, j “ 2, 3, ..., |M|, we will use
conjugate points with complex or negative α components. Instead of introducing even more
assumptions similar to (27), we directly incorporate (88) as an assumption.

To get our pY,Mq-harmonic function converging to 1 on the tail of BB (see (92) below
for the precise statement) we need one more condition:

1 P Spanpd2,e2, ...,e|M|q. (89)

A sufficient condition for (89) is that the vectors listed on the right of this display are linearly
independent.

Proposition 8.1. Let ej , j “ 2, 3, ..., |M| be as in Lemma 8.1. and let d2 be as in Proposition
2.11. Under Assumptions 2 and (89) there exist vectors b2,j P R

mj , j “ 2, 3, .., |M| and
b2 P R

|M| such that

hρ
2,j

py,mq
.

“ rpρ2,j , 1,ejq, py,mqs (90)

`

mj
ÿ

l“1

b2,jplqrpρ2,j , α
˚
j,l,ej,lq, py,mqs, j “ 2, 3, ..., |M|,

and

h
.

“ b2p1qhρ2 `

|M|
ÿ

j“2

b2pjqhρ
2,j

(91)

are all pY,Mq-harmonic and BB-determined; furthermore

lim
kÑ8

hpk, k,mq Ñ 1 (92)

for all m P M.

Proof. The existence of the vector b2,j, j “ 2, 3, ..., |M|, so that hρ2,j defined in (90) is pY,Mq-
harmonic follows from (2) and the argument given in the construction of hρ2 (see the proof
of Proposition 7.1). By (89) there is a vector b2 such that

b2p1qd2pmq `

|M|
ÿ

j“2

b2pjqejpmq “ 1

for all m P M. Then h as defined in (91) satisfies

hpk, k,mq “ 1 ` b2p1q

|M|
ÿ

j“1

b2,1pjqpα˚
j qkd2,jpmq `

|M|
ÿ

j“2

b2pjq

mj
ÿ

l“2

b2,jpiqpα˚
j,lq

kej,lpmq;

|α˚
j | ă 1, |α˚

j,l| ă 1 imply that the last two sums go to 0 with k. This gives (92).
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In Lemma 8.1 we found points on tα “ 1uXHβα in addition to pρ2, 1q identified in, we used
these points above in the construction of h. Similarly, one can go along the line β “ α to find
points on Hβα other than pρ1, ρ1q defining further simple BB-determined pY,Mq-harmonic
functions:

Lemma 8.2. Under the stability assumption (1), and Assumption 1 (Apβ, αq has real distinct
eigenvalues for pβ, αq P R

2,o
` q there exist ρ1,k, k “ 2, 3, .., |M|, such that ρ1 ą ρ1,2 ą ρ1,3 ą

¨ ¨ ¨ ą ρ1,|M| ą 0 and tf2 ‰ 0, f3 ‰ 0,...,f|M| ‰ 0u Ă R
|M| such that

Apρ1,j , ρ1,jqfj “ fj, j “ 2, 3, ..., |M|,

holds.

The proof is parallel to that of Lemma 7.3 and is based on Gershgorin’s Theorem and the
fact that Λjpρ1, ρ1q ă Λ1pρ1, ρ1q “ 1 for j “ 2, 3, ..., |M|.

One can use the points identified in the previous lemma to construct further BB-determined
pY,Mq-harmonic functions.

Lemma 8.3. Let ρ1,j , fj, j “ 2, 3, ..., |M|, be as in Lemma 8.2. Then

rpρ1,j , ρ1,j ,fjq, ¨s, j “ 2, 3, ..., |M|,

are BB-determined pY,Mq-harmonic.

Proof. By definition, pρ1,j , ρ1,jq P Hβα and Apρ1,j , ρ1,jqfj “ fj. Again, Apβ, βq “ A2pβ, βq
for all β follows from and p2pβ, β,mq “ ppβ, βq and the definitions of A and A2. Then
Apρ1,j, ρ1,jqfj “ A2pρ1,j , ρ1,jqfj “ fj, i.e., pρ1,j , ρ1,j ,fq P H2 (i.e., the characteristic surface
of B2, see (18)). This and Proposition 2.7 imply that rpρ1,j , ρ1,j ,fjq, ¨s is pY,Mq-harmonic.
That it is BB-determined follows from |ρ1,j | ă 1 and Lemma 7.1.

The function rpβ, α, dq, ¨s is complex valued for any pβ, α, dq P H with complex components
and such points and the functions they define can also be used to improve the approximation;
see the next section for an example. The next proposition gives an upper bound on the
relative error of an approximation of Ppy,mqpτ ă 8q in terms of the values the approximation
takes on the boundary BB; it covers cases when complex valued pβ, α, dq P H is used in the
construction of the approximation. For any z P C, let ℜpzq denote its real part.

Proposition 8.2. Let h : Z ˆ Z` ÞÑ C be BB-determined and pY,Mq-harmonic. Then

max
py,mqPBˆM

|ℜphqpy,mq ´ Ppy,mqpτ ă 8q|

Ppy,mqpτ ă 8q
ď c˚ (93)

where
c˚ .

“ max
yPBB,mPM

|hpy,mq ´ 1|. (94)

The proof is similar to that of Proposition 7.2:

Proof. That h is BB-determined pY,Mq-harmonic implies the same for its real and imaginary
parts. For any complex number z we have |ℜpzq ´ 1| ď |z ´ 1|; these and (94) give

max
y1PBB,mPM

|ℜphqpy1,mq ´ 1| ď c˚.

Then
p1 ´ c˚q1tτă8u ď ℜphqpYτ ,Mτ q1tτă8u ď p1 ` c˚q1tτă8u.

Applying Epy,mqr¨s to all terms above implies (93).
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9 Numerical example

This section demonstrates the performance of our approximation results on a numerical
example. For parameter values P , λp¨q, µ1p¨q and µ2p¨q we take those listed in (16) and (17),
for which |M| “ 3. We know by Proposition 2.6 that for P as in (16), Apβ, αq has distinct
positive eigenvalues for pβ, αq P R

2,o
` . Furthermore, the rates (17) satisfy λpmq ă µ1pmq, µ2pmq

for all m P M, therefore, the stability assumption (1) is also satisfied. Computing the right
side of (27) at pρ2, 1q shows that the parameter values (16) and (17) satisfy (27). Therefore:

1. By Proposition 7.1, the function h
2,1

is well defined and BB-determined and pY,Mq-
harmonic. Furthermore, we know by Lemma 8.1 that there are ρ2,j , j “ 2, 3, ..., |M|,
such that 0 ă ρ2,j ă ρ2 and pρ2,j, 1q P Hβα for all j. We solve

ppρ2,j , αq “ 0

for α for the parameter values assumed in the section and verify that Assumption 2
holds with mj “ |M| for all j; this and Proposition 8.1 imply that the pY,Mq-harmonic
BB-determined function h defined in (91) and satisfying (92) is well defined.

2. Propositions 2.8, 2.9 and Lemma 7.2 apply and give the BB-determined pY,Mq-harmonic
function hρ1 “ rpρ1, ρ1,d1q, ¨s,

3. Lemmas 8.2 and 8.3 apply and give the BB-determined pY,Mq-harmonic functions
hρ1,j “ rpρ1,j , ρ1,j,fjq, ¨s, j “ 2, 3, ....|M|.

In addition to these functions, we can fix an integer K ą 0, and construct K ¨ |M| further
pY,Mq-harmonic functions of the form

hk,j
.
“

|M|
ÿ

l“0

bk,jplqrpβk,j , αk,j,l,dk,j,lq, ¨s, (95)

for k “ 1, 2, ...,K, βk,j and j “ 1, 2, ...., |M|, as follows:

1. Set αk,j,0 “ R e
ik 2π

K`1 , R P p0, 1q to be determined below; note that αk,j,0 depends only
on k; including j as an index simplifies notation in (95) and below.

2. For each k, βk,j, j “ 1, 2, ...., |M|, are the β-roots of

ppαk,j,0, βq “ 0 (96)

satisfying |β| ă 1;

3. αk,j,l, l “ 1, 2, ..., |M|, are the α-roots of

ppβk,j, αq “ 0; (97)

with |α| ă 1 which are distinct from αk,j,0.

4. dk,j,l is an eigenvector of Apβk,j , αk,j,lq i,e., pβk,j, αk,j,l,dk,j,lq P H,

5. for each pk, jq the vector bk,j solves

|M|
ÿ

l“0

bk,jplqcpβk,j , αk,j,lq “ 0, (98)
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where bk,jplq is the l
th component of the vector bk,j. For hk,j, k “ 1, 2, ...,K and j “ 1, 2, ...|M|

to be well defined, pY,Mq-harmonic and BB-determined we need 1) for each k, the equation
(96) needs to have at least |M| β-roots with absolute value less than 1; 2) for each k and
j, the equation (97) needs to have at least |M| solutions different from αk,j,0 with absolute
value less than 1; 3) for each k and j the equation (98) needs to have a nontrivial solution
bk,j. Here we have two parameters to set: K and R; for the purposes of this numerical
example we set R “ 0.7, and K “ 5. Upon solving (96), (97) and (98) with these parameter
values we observe that they have sufficient number of solutions for hk,j to be well defined and
pY,Mq-harmonic and BB-determined.

We have now 1 ` 6|M|, BB-determined pY,Mq-harmonic functions to construct our ap-
proximation of Ppy,mqpτ ă 8q; the approximation will be of the form

ha,K
.

“ ℜpha˚,Kq, ha˚,K .
“ h ` φ1hρ1 `

|M|
ÿ

j“2

φjrpρ1,j , ρ1,j,d1,jq, ¨s `

K,|M|
ÿ

k“1,j“1

φj,khj,k, (99)

where φj and φj,k are C valued coefficients to be chosen so that ha,K |BB is as close to 1 as
possible. As in [10, Section 8.2], one simple way to do this is to choose these pK ` 1q|M|
coefficients so that ha,Kpy, y,mq “ 1 for y “ 0, 1, 2, ..,K and m P M. This defines a pK `
1q|M| ˆ pK `1q|M| system; for our parameter values (K “ 5 and |M| “ 3) this is an 18ˆ18
system, and it does turn out to have a unique solution. Once the φj and φj,k are determined
through this solution, an upper bound on the approximation relative error can be computed
via Proposition 8.2; it suffices to compute c˚ of (94); for ha˚,K of (99) it turns out to be

c˚ “ 0.00367;

therefore, by Proposition 8.2, ha,K approximates Ppy,mqpτ ă 8q with relative error bounded
by this quantity. By Theorem 6.1 we know that PpTnpxnq,mqpτ ă 8q approximates Ppxn,mqpτn ă

τ0q with vanishing relative error for xn “ tnxu, xp1q ą 0; it follows from these that ha,Kpn ´
xnp1q, xnp2qq will approximate Ppxn,mqpτn ă τ0q with relative error bounded by c˚ for n

large. Let us see how well this approximation works in practice. Figure 6 gives the level
curves of ´ logpha,Kpn´xp1q, xp2q, 1qq and ´ logPpx,mqpτn ă τ0q; Ppx,mqpτn ă τ0q is computed
by iterating the harmonic equation satisfied by this probability; for n “ 60, this iteration
converges in less than 1000 steps. As can be seen, and agreeing with the analysis above,
these lines completely overlap except for a narrow region around the origin.
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Figure 6: Level curves of ´ logpha,Kpn ´ xp1q, xp2q, 1qq and ´ logPpx,mqpτn ă τ0q
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Figure 7 shows the relative error

| logpha,Kpn ´ xp1q, xp2q, 1qq ´ logPpx,mqpτn ă τ0q|

| log Ppx,mqpτn ă τ0q|
,

we see that it is virtually 0 except for the same region around 0 where it is bounded by 0.02.
This narrow layer of where the relative error spikes corresponds to the region 1 ´ xp2q ă
logpρ2q{ logpρ1q identified in Theorem 6.1.

10 Comparison with earlier works

The present work shows how one can approximate the probability Ppx,mqpτn ă τ0q by
Ppy,mqpτ ă 8q with exponentially vanishing relative error and constructs analytical approxi-
mation formulas for the latter. This is done by extending the approach of [10, 11] to Markov
modulated dynamics. In this section, we compare the analysis of the modulated case treated
in this work with the non-modulated two tandem case treated in [10, 11] and the non-
modulated two dimensional simple random walk treated in [12].

Harmonic functions The nonmodulated analysis uses functions of the form
y ÞÑ rpβ, αq, ys “ βyp1q´yp2qαyp2q where pβ, αq are chosen from the roots of a characteristic
polynomial of second order associated with the process Y . Markov modulation brings an
additional state variable m, leading to functions of the form py,mq ÞÑ rpβ, α,dq, py,mqs “
βpyp1q´yp2qαyp2qdpmq. The characteristic surface is now defined in terms of eigenvalue and
eigenvector equations of a characteristic matrix depending on pβ, αq P C

2.

Geometry of the characteristic surface The characteristic surface in [10, 11, 12] is the
1-level curve of a rational function which can be represented as a second degree polynomial
in each of the β, α variables; the projection of the characteristic surface to R

2
` is a smooth

closed curve bounding a convex region. Conjugate points on this curve come in pairs and
have elementary formulas. The characteristic curve in the modulated case is the 0-level
curve of the characteristic polynomial of a characteristic matrix and can be represented as
a 2|M| degree polynomial in each of the variables; its projection to R

2
` consists of |M|

components, one for each eigenvalue Λj of the characteristic matrix. The error analysis is
based on the level curve of the largest eigenvalue while the computation of Ppy,mqpτ ă 8q
uses points on all components. There are in general no simple formulas for the roots of a
polynomial greater than degree 4 and the formulas for degree 4 are fairly complex; therefore,
for |M| ě 2 (i.e., even for the simplest nontrivial Markov modulated constrained random
walk with two modulating states) the points on these curves no longer have simple formulas
and identification of the relevant points (Propositions 2.8, 2.11 and 2.12, Lemmas 7.3, 8.1
and 8.2) requires matrix / eigenvalue analysis and the implicit function theorem.

Assumptions We use the point pρ2, 1q and its conjugate pρ2, α
˚
1q lying on L1 to define

pY,Mq-superharmonic functions to use in our limit analysis. The existence of pρ2, 1q P L1,
follows from the stability assumption (1). The identification of the conjugate point pρ2, α

˚
1q

requires the additional assumption (27) ensuring α˚
1 ă 1. A similar assumption is not needed

in the non-modulated tandem case, because when there is no modulation, i.e., when |M| “ 1,
the conjugate of pρ2, 1q is pρ2, ρ1q and ρ1 ă 1 by the stability assumption. For the constrained
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random walk representing two parallel queues treated in [12], the assumption corresponding
to (27) is r2 ă ρ2ρ1, where r is utilization rate of the whole system.

The assumption ρ1 ‰ ρ2 (see (28)) generalizes the assumption µ1 ‰ µ2 from the non-
modulated tandem case and the parallel case treated in [11, 12]. The computation of
Ppy,mqpτ ă 8q needs progressively more general versions of this assumption (see (77), Remark
7.2 and Assumption 2).

Analysis The approximation error analysis in the non-modulated case is based on the
subsolutions of a limit HJB equation and Y -harmonic functions. These works use these
subsolutions to construct supermartingales which are then used to find upper bounds on
error probabilities. In this work we construct the supermartingales directly using pY,Mq-
superharmonic functions constructed from points on the characteristic surface. Because Y

has one less constraint compared to X, these functions can be subharmonic on the boundary
where Y is not constrained. To overcome this, we introduce a decreasing term to the definition
of the supermartingale.

In the tandem case there is an explicit formula for Pypτ ă 8q; this formula is used
directly in the analysis of the error probability. There is obviously no explicit formula for the
corresponding probability in the Markov modulated case. Instead, we derive an upper bound
on it in Section 3 using again pY,Mq-superharmonic functions; this upperbound is used in
the error analysis of Section 6.

Computation of the limit probability In the non-modulated tandem case treated in
[11], Pypτ ă 8q can be represented exactly as a linear combination of hρ2 and hρ1 ; so the
computation of Pypτ ă 8q is trivial for the nonmodulated two dimensional tandem walk. In
the parallel case treated in [12], Pypτ ă 8q can be represented exactly as a linear combination
of hρ1 and hr when r2 “ ρ1ρ2; when this doesn’t hold [12] develops approximations of
Pypτ ă 8q from harmonic functions constructed from conjugate points on the characteristic
surface, which is an application of the principle of superposition. For the modulated case we
use the same principle but Markov modulation complicates the construction of the functions
used in the approximation. The identification of the points on the characteristic surface
requires the solution of 2|M| degree polynomial equations (first the α component is fixed to
identify possible β components; then for each of the identified β’s, the polynomial is solved in
α to find the relevant conjugate points). Eigenvectors corresponding to these points are then
computed and finally we solve a linear equation to find the coefficients of the exponential
functions (see, for example, the bk,j vector in (95) and (98)). The corresponding process is
trivial when there is no modulation. In [11] and [12] the function hρ2 plays a central role in
the approximation of Pypτ ă 8q because it equals approximately 1 away from the origin; due
to Markov modulation there can be in general no function constructed from a single point
and its conjugates that takes a fixed value on BB. To deal with this, we use an appropriate
linear combination of functions constructed from multiple points and their conjugates on the
characteristic surface so that the linear combination takes the value 1 away from the origin
(Proposition 8.1).

11 Conclusion

The current work develops approximate formulas for the exit probability of the two dimen-
sional tandem walk with modulated dynamics. Our main approximation Theorem 6.1 says
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that PpTnpxnq,mqpτ ă 8q approximates Ppxn,mqpτn ă τ0q with relative error vanishing expo-
nentially fast with n. To compute the exit probability, we first construct BB-determined
pY,Mq-harmonic functions from single and conjugate points on the corresponding character-
istic surface and then with their linear combinations, approximate the boundary value 1 of
the harmonic function Ppy,mqpτ ă 8q. In the non-modulated tandem case treated in [10], the
probability Pypτ ă 8q can be represented in any dimension exactly using harmonic functions
constructed from points on the characteristic surface. As is seen in the present work, even
dimension two entails considerable difficulties. Whether an extension to higher dimensions is
possible is a question we would like to tackle in future work.

The work [10] gives a formula for Pypτ ă 8q for the non-modulated tandem walk when
ρ1 “ ρ2 based on harmonic functions with polynomial terms. Whether similar computations
can be carried out for Ppy,mqpτ ă 8q in the modulated case when ρ1 “ ρ2 is another question
for future research.

The assumption (27) plays a key role in our analysis; it ensures that various functions
such as hρ2 whose construction involves the point pρ2, α

˚
1q remain bounded on BB. We think

that new ideas will be needed to treat the case when (27) doesn’t hold; this remains for future
work.

The computations and the error analysis in the present work depend on the dynamics of
the process and the geometry of the exit boundary. A significant problem for future research
is to extend these to other dynamics in two or higher dimensions and to other exit boundaries.
The simple random walk dynamics (i.e., increments p1, 0q, p´1, 0q, p0, 1q and p0,´1q) and the
rectangular exit boundary appear to be the most natural to study in immediate future work.

A Two lemmas

For a square matrix G, let Gi,j denote the matrix obtained by removing the ith row and jth

column of G.

Lemma A.1. For n0 P t2, 3, 4, ...u, suppose G is an n0 ˆn0 irreducible and aperiodic matrix
with nonnegative entries. Then det

`

pΛ1pGqI ´ Gqi,i
˘

ą 0 for all i P t1, 2, ..., n0u, where I is
the n0 ˆ n0 identity matrix.

Proof. The argument is the same for all i P t1, 2, ..., n0u; so it suffices to argue for i “ 1.
Suppose the claim is not true and

det
`

pΛ1pGqI ´ Gq1,1
˘

ď 0. (100)

Consider the function u ÞÑ gpuq “ det
`

puI ´ Gq1,1
˘

, u ě 0. The multilinearity and continuity
of det implies limuÕ8 gpuq “ 8. This implies that if (100) is true there must be u0 ě Λ1pGq
such that

det
`

pu0I ´ Gq1,1
˘

“ 0. (101)

The matrix G1,1 is nonnegative, therefore, it has a largest eigenvalue Λ1pG1,1q with an eigen-
vector v1 ě 0. The equality (101) implies

Λ1pG1,1q ě u0 ě Λ1pGq. (102)

That G is irreducible and aperiodic implies that Gn0 is strictly positive; its largest eigenvalue
is

Λ1pGn0q “ Λ1pGqn0 .
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Thematrix pGn0q1,1 has strictly positive entries and therefore its largest eigenvalue Λ1ppGn0q1,1q
has an eigenvalue v2 with strictly positive entries. For two vectors x, y P R

d, let x ě y and
x ą y denote componentwise comparison. The inequality

pGn0q1,1 ě pG1,1qn0

implies
pGn0q1,1v1 ě Λ1pG1,1qn0v1. (103)

On the other hand

Λ1ppGn0q1,1q “ suptc : Dx P R
n0´1
` , pGn0q1,1x ě cxu, (104)

(see [5, Proof of Theorem 1, Chapter 16]). This and (103) imply

Λ1ppGn0q1,1q ě Λ1pG1,1qn0 . (105)

Define v3 “ r1;v2s P R
n0 ; it follows from pGn0q1,1v2 “ Λ1ppGn0q1, 1qv2, the strict posi-

tivity of the components of Gn0 and v2 that one can choose δ ą 0 small enough so that

Gn0v3 ą
`

Λ1ppGn0q1,1 ` δ
˘

v3;

This and
Λ1pGn0q “ suptc : Dx P R

n0

` ,Gn0x ě cxu

imply
Λ1pGn0q ą Λ1

`

pGn0q1,1
˘

.

The last inequality, (105) and (102) imply

Λ1pGqn0 “ Λ1pGn0q ą Λ1ppGn0q1,1q ě Λ1pG1,1qn0 ě Λ1pGqn0 ,

which is a contradiction.

In our analysis we need the following fact from [9]; its proof is elementary and follows
from the multilinearity of the determinant function and the previous lemma.

Lemma A.2. Let G be an aperiodic and irreducible transition matrix. Then the row vector
whose ith component equals det

`

pI ´ Gqi,i
˘

is the unique (upto scaling by a positive number)
left eigenvector associated with the eigenvalue 1 of G.
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