
Annals of Operations Research (2022) 316:979–1011
https://doi.org/10.1007/s10479-020-03789-0

S . I . : CLA IO 2018

Amulti-start evolutionary local search for the
one-commodity pickup and delivery traveling salesman
problem

Juan D. Palacio1 · Juan Carlos Rivera1

Accepted: 9 September 2020 / Published online: 20 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This article addresses the one-commodity pickup and delivery traveling salesman problem
(1-PDTSP), which is a generalization of the well-known traveling salesman problem. The
1-PDTSP aims to find a Hamiltonian tour in which a set of supply points (pickup locations),
demand points (delivery locations) are visited and, the total traveled distance is minimized.
We propose a hybridmetaheuristic based onmulti-start evolutionary local search and variable
neighborhood descent to solve the 1-PDTSP. To test the performance of our algorithm, we
solve instances with up to 500 nodes available in the literature and we demonstrate that our
approach is able to provide competitive results when comparing to other existing strategies.
Since a direct application of the 1-PDTSP arises as the bicycle repositioning problem, we
also use our metaheuristic algorithm to solve a set of real-case instances based on EnCicla,
the bicycle sharing system in the Aburrá Valley (Antioquia, Colombia).

Keywords Pickup and delivery traveling salesman problem · Evolutionary local search ·
Variable neighborhood descent · Bicycle repositioning problem

1 Introduction

In the one-commodity pickup and delivery traveling salesman problem (1-PDTSP) a set of
locations and a capacitated vehicle are given. The locations are classified as supply points
(pickup locations) and demand points (delivery locations). One commodity is transported
between the locations using the available vehicle. Each supply point provides a certain
amount of the commodity and these units can be delivered to one or several demand points
(Hernández-Pérez and Salazar-González 2004b). Additionally, one of these locations is set
as a depot where the vehicle starts and ends the tour. Thus, the 1-PDTSP aims to find a

B Juan D. Palacio
jpalac26@eafit.edu.co

Juan Carlos Rivera
jrivera6@eafit.edu.co

1 Mathematical Modeling Research Group. Mathematical Sciences Department, School of Sciences,
Universidad EAFIT, Medellín, Colombia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-020-03789-0&domain=pdf
http://orcid.org/0000-0003-0081-8470
http://orcid.org/0000-0002-2160-3180

980 Annals of Operations Research (2022) 316:979–1011

Hamiltonian tour in which the total traveled distance is minimized and the vehicle capacity
is satisfied. Moreover, an initial load must be determined for the vehicle.

A well-known application for the 1-PDTSP relies on the operation of bicycle sharing
systems (BSSs). A BSS is mainly composed by a set of stations with limited capacity (i.e.,
number of bike slots) distributed along an urban area and also, a set of available bicycles for
users. Citizens can use the system by taking a bike from one of the available stations (origin)
and then, after a short trip, returning it to the same or a different station (destination). A
successful operation of a BSS requires an adequate number of available bikes and parking
slots at each station in such a way that the demand is satisfied and the station capacity is not
violated. To do so, at least one capacitated vehicle must visit the stations in order to pick
up or deliver bikes according to the lack or surplus at each location. From an optimization
perspective, the design of routes to ensure the system demand requirements is well known as
a bicycle repositioning problem (BRP) in BSS contexts. The BRP has been mainly tackled in
its static version which assumes that there are no changes on stations demands (this mainly
occurs at night when BSSs are not available for users). On the other hand, on dynamic BRPs,
pickup and delivery quantities may vary (e.g. the repositioning operation is performed during
the BSS operation).

So far, several mathematical programming models and exact solution strategies have been
developed for the 1-PDTSP or the BRP. Nevertheless, given the NP-hardness nature of the
problems (Hernández-Pérez and Salazar-González 2004a), these strategies are not suitable
to deal with large instances. Then, to solve the 1-PDTSP, we propose a hybrid metaheuristic
which combines an evolutionary local search (ELS) with a variable neighborhood descent
(VND) algorithm. AlthoughHernández-Pérez et al. (2009) describe a hybrid algorithm based
on GRASP and VND for the 1-PDTSP, to the best of our knowledge, there is not report of
hybrid ELS algorithms as solution strategies for the 1-PDTSP or the static BRP. In this paper,
we explore the advantages of ELS over GRASP for the 1-PDTSP since the evolutionary algo-
rithm better sample solutions near to a local optimum before leaving it (Duhamel et al. 2011).
Moreover, apart from that evolutionary nature of our algorithm and its inherent perturbation
procedure, we also state the following contributions for our work that are not considered in
Hernández-Pérez et al. (2009): firstly, we include a family of well-known neighborhoods for
TSP based on Or − opt(λ) (Or 1976) in our VND. Secondly, our ELS does not deal with
repairing procedures when unfeasible solutions appear, we discard them during the construc-
tion phase of the algorithm. Thus, our hybrid approach searches in a tighter solution space
and we do not require the use of any repairing procedure. Lastly, our solution approach is able
to find better solutions that the ones reported in Hernández-Pérez et al. (2009). This occurs
even when we set a smaller size for the VND neighborhoods to improve 1-PDTSP solutions.
Finally, based on our computational experiments, we show the benefits of the evolutionary
local search metaheuristic within a multi-start procedure as GRASP. This is also a key factor
to differentiate the GRASP algorithm for the 1-PDTSP in Hernández-Pérez et al. (2009) and
our MS-ELS.

This paper is organized as follows. Firstly, we provide a brief description of background
about models and solution strategies for the 1-PDTSP and its known application, the BRP in
Sect. 2. Then, Sect. 3 presents a formal problem description for the 1-PDTSP while in Sect. 4
the proposed metaheuristic strategy and its variants are described. Next, in Sect. 5, we report
the main results of our experiments using public instances for the 1-PDTSP and instances
related to a BSS in Aburrá Valley (Antioquia, Colombia). Finally, Sect. 6 summarizes the
main conclusions and points out some research directions.

123

Annals of Operations Research (2022) 316:979–1011 981

2 Literature review

We devote this section to briefly summarize the related work on 1-PDTSP and BRPs. We
firstly describe reported models and solution strategies for the 1-PDTSP and then, we show
some of the applications based on BSS contexts.

Initially, Hernández-Pérez and Salazar-González (2004a) introduce the 1-PDTSP. They
also develop a branch-and-cut (B&C) algorithm based on an integer linear programming
(ILP) model in which the total travel distance is minimized. The solution strategy is based on
Benders cuts, Clique inequalities generation and also, an adaptation of nearest insertion as a
heuristic to strengthen upper bounds in the tree. Optimal solutions are reported for instances
with up to 50 nodes. Later, in Hernández-Pérez and Salazar-González (2004b), authors pro-
pose two different heuristics. The first one, based on nearest neighbor, compute new values
in the distance matrix in order to penalize movements leading to unfeasible solutions (e.g.,
by avoiding edges connecting nodes with similar demand). The second heuristic consists
on modifying the original B&C algorithm to include inequalities is such a way a subset of
neighbor solutions can be explored after an initial solution for the 1-PDTSP is found. Both
heuristic strategies are able to find small gaps even when values for the vehicle capacity is
tight and the number of nodes is not larger than 60.

Hernández-Pérez et al. (2009) implement a hybrid GRASPmetaheuristic in which a VND
is used in the improvement phase, minimizing the tour total distance for the 1-PDTSP. After
the constructive phase, the local search is replaced by a VND based on edge exchange neigh-
borhoods (2-opt and 3-opt). After the GRASP scheme is executed, a second VND performs
a post-optimization phase using vertex exchange neighborhoods (forward and backward
operators). The instances are randomly generated and the number of nodes vary from 20 to
500 while the vehicle capacity ranges between 10 and 40. In the latter case, when the capacity
is large enough, the solution of the 1-PDTSP is equal to the one found by the classical TSP
model (without pickups and deliveries feature). The GRASP/VND approach is able to find
an optimal solution of 96.7% of the instances with up to 50 nodes while BKS are reported for
larger instances. The authors compare their results with those reported in Hernández-Pérez
and Salazar-González (2004a) and Hernández-Pérez and Salazar-González (2004b) for small
and large instances, respectively. Zhao et al. (2009) describe a genetic algorithm (GA) with
a pheromone-based crossover operator. This operator uses local and global information to
generate new offspring. While the local information includes edge lengths, adjacency rela-
tions, and demands on nodes, the global information is based on pheromone trails. Each
offspring is locally improved using a 2-opt and then, the mutation process is based on a sim-
ple 3−exchange operator. This evolutionary algorithm outperforms the hybrid GRASP/VND
presented in Hernández-Pérez et al. (2009) for instances up to 500 nodes, and many new best
known solutions for large instances are reported. Later, Mladenović et al. (2012) describe
a variable neighborhood search procedure with four neighborhoods based on double-bridge
and insertion operators. This strategy is able to solve 1-PDTSP instances with up to 1000
nodes.

As mentioned in Sect. 1, one of the most known applications for the 1-PDTSP arises in
BSS logistic operations and it is called the static BRP. For details on some dynamic models
and their solution strategies, we refer the reader to Contardo et al. (2012), Caggiani and
Ottomanelli (2013), Kloimüllner et al. (2014), Zhang et al. (2017), Shui and Szeto (2018)
and Legros (2019). From a static perspective of the problem, Raviv et al. (2013) formulate
two mixed-integer linear programming models (MILPs) for a BRP in which operational cost
of the routes and the number of bike shortages in each station are minimized in a weighted

123

982 Annals of Operations Research (2022) 316:979–1011

objective. The MILPs are compared by solving instances with up to 60 stations based on
certain locations of Vélib (BSS in Paris) and then, a real instance with 104 stations tested
with one or two vehicles. Chemla et al. (2013) also propose a B&C procedure for the BRP.
This algorithm is based on aMILP relaxation for the problemandprovides lower boundswhen
several visits to each node are allowed. A tabu search (TS) with four different neighborhoods
is also designed to find upper bounds. For instances with up to 60 stations average gaps over
5% are reported. For the set of largest instances, gaps increase and the local search procedure
is not quite efficient since the size of neighborhoods grows significantly.

Dell’Amico et al. (2014) present four MILPs for the multi-vehicle BRP. They solve these
mathematical models via B&C algorithm. The authors compare the performance of the pro-
posed formulations and confirm that the problem complexity not only relies on the number of
nodes but also on vehicle capacity and maximum demand on stations. The solution strategy
was tested in 65 instances adapted from 22 different BSSs around the world and the formu-
lation with best computational performance is able to solve optimally all the instances with
up to 50 nodes in less than 15min. Similar to Raviv et al. (2013) and Ho and Szeto (2014)
model penalty functions to minimize the cost associated to unsatisfied demand in a BSS. To
deal with the single-vehicle case, the authors use an iterated TS procedure and also solve
a MILP using CPLEX. The TS includes three different neighborhoods based on removal,
insertion and exchange moves and the computational experiments are based on instances up
to 400 stations.

Forma et al. (2015) propose a 3-step matheuristic based on a clustering process supported
on savings heuristic and twoMILPs for routing and repositioning in each cluster. The authors
also use a weighted sum to minimize penalization for bike shortages and the total distance or
operational cost of the route. For instances up to 150 stations, the matheuristic outperforms
the formulations in Raviv et al. (2013) obtaining smaller gaps. Dell’Amico et al. (2016)
propose a destroy and repair (D&R) metaheuristic for the BRP and for the one-commodity
pickup and delivery vehicle routing problem with maximum duration (1-PDVRPD) in which
a maximum route length constraint is added to the BRP. This D&R metaheuristic is tested
on instances with up to 500 stations. For less than 50 stations, it is possible to find optimal
solutions and best known solutions for some larger instances are presented. Szeto et al. (2016)
design a variant of chemical reaction optimization (CRO) procedure called enhanced CRO.
They address the single-vehicle case in order to minimize a weighted sum of the unmet
customer demand and the total time of the route. By testing instances up to 300 stations, it is
possible to conclude that the enhanced CRO outperforms not only the classical version of the
algorithm but also a proposedMILP solved in CPLEX. Ho and Szeto (2017) propose a hybrid
large neighborhood search (HLNS) algorithm to deal with penalty function for unsatisfied
demands as the goal of the BRP. This hybrid metaheuristic includes five removal (destroy)
operators, five insertion (repair) operators and a TS applied to the most promising solutions.
Testing instances with up to 518 stations, the HLNS is able to outperform a proposed MILP
solved by CPLEX and the matheuristic described in Forma et al. (2015).

3 The one-commodity pickup and delivery traveling salesman problem

In this section, we formally describe the one-commodity pickup and delivery traveling sales-
man problem (1-PDTSP). The 1-PDTSP is modeled on a complete graph G = (N ,A)where
N = {0, 1, . . . , n} is the set of nodes and A is the set of arcs between each pair of nodes.
Without loss of generality, the location 0 is the depot but it is also considered as a node in

123

Annals of Operations Research (2022) 316:979–1011 983

our problem. For each arc (i, j) ∈ A, we define a positive traveling cost from i to j (i �= j)
as ci j . Additionally, for each node i (i ∈ N), we also state a parameter qi (where qi ∈ Z)
that represents the demand on node i . If qi < 0, then node i requests a pickup of |qi | units.
On the other hand, if qi > 0, then a delivery operation is requested in node i and qi units
must be unloaded. These operations are performed by one available vehicle with capacity Q.
With the aim to describe a mathematical model for the 1-PDTSP, we state a binary decision
variable, yi j where (i, j) ∈ A. Variable yi j takes the value of one if the vehicle traverses the
arc (i, j) and zero otherwise. Additionally, a variable xi j denotes the load of the vehicle if
arc (i, j) is used in the solution. Finally, we also define variable zi j that saves the order in
which the arc (i, j) is used in the solution. Our mathematical formulation for the 1-PDTSP
is a mixed-integer linear programming model (MILP) described by Eqs. (1)–(9) which was
previously presented in Palacio and Rivera (2019) as follows:

min f =
∑

(i, j)∈A
ci j · yi j (1)

subject to,
∑

j∈N
i �= j

yi j = 1, ∀ i ∈ N (2)

∑

j∈N
yi j =

∑

j∈N
y ji , ∀ i ∈ N (3)

xi j ≤ Q · yi j , ∀ (i, j) ∈ A (4)
∑

j∈N
x ji −

∑

j∈N
xi j = qi , ∀ i ∈ N (5)

∑

j∈N
z ji −

∑

j∈N
zi j = 1, ∀ i ∈ N\{0} (6)

zi j ≤ |N | · yi j , ∀ (i, j) ∈ A (7)

yi j ∈ {0, 1}, ∀ (i, j) ∈ A (8)

zi j , xi j ≥ 0, ∀ (i, j) ∈ A (9)

The objective function in (1) aims to minimize the total traveled distance. Equations in (2)
ensure that each node is visited exactly once, while constraints in (3) enforce to leave a node
once it is visited. Constraints in (4) limit the maximum load when traversing any arc, to the
vehicle capacity. Equation (5) force the model to ensure a flow conservation along the used
arcs. Inspired onMiller et al. (1960), Eq. (6) state a coefficient for each arc and avoid subtours
in the solution. Constraints in (7) limit arc coefficients. It is worth to mention that for classical
TSP andVRP formulations, constraints (4) and (5) prevent subtours. Nevertheless, for pickup
and delivery operations, as qi can be negative, (4) and (5) are not enough. Constraints in (8)
and (9) define the domain of decision variables. Note that variables xi j and zi j could be
integer, but given the structure of our formulation, a continuous domain will lead to integer
values.

Each node in N , even the depot (node 0) is visited exactly once [see Eq. (2)]. However,
we assume that the depot is able to absorb or provide the remaining number of units to ensure
flow conservation for any 1-PDTSP instance as follows:

123

984 Annals of Operations Research (2022) 316:979–1011

q0 = −
|N |∑

i=1

qi (10)

Conditions described in (2) also force the vehicle to visit even the nodes with demand
equal to zero. Note that if nodes where qi = 0 must not be visited, they can be removed
from the set N as a preprocessing procedure. To describe graphically a 1-PDTSP solution,
we present in Fig. 1, the optimal tour for a vehicle with capacity Q = 10 considering an
instance with 20 nodes. While the first value near to each location represents the number of
units to pick up or deliver, the second one denotes the load of the vehicle when entering to
such location. To compute this load, we define lk as the number of units in the vehicle after
visiting k nodes. Thus, if i is the k-th visited location, lk is computed as: lk = lk−1 − qi . For
example, in this solution, the vehicle traverses the arc (0, 10) with a load of 10 units. Then,
in node 10, nine units are delivered and the vehicle arrives to node 9 with a load equal to one.
In node 9 there is not pickup or delivery operation, thus arc (9, 18) is traversed with one unit
in the vehicle. In location 18, the vehicles picks up seven units. Note that at the end of the
path, the vehicle goes into 0 with three units which represent the same initial load to begin
the tour.

Note that any Hamiltonian tour is a feasible solution for the 1-PDTSP if the load of the
vehicle does not exceed the capacity Q. Without loss of generality we may also say that a
solution is feasible if the difference between the minimum and the maximum load of the
vehicle is not greater than Q. This is a straightforward way to check feasibility in a 1-PDTSP
solution:

max
i∈N {li } − min

i∈N {li } ≤ Q (11)

Fig. 1 Optimal solution for a 1-PDTSP instance with 20 nodes (Palacio and Rivera 2019)

123

Annals of Operations Research (2022) 316:979–1011 985

4 Multi-start evolutionary local search for the 1-PDTSP

In this section, we present a multi-start evolutionary local search (MS-ELS) to deal with the
1-PDTSP. We firstly describe the general structure of the procedure. Then, we provide some
details about the main components of the proposed algorithm: construction phase based on a
greedy randomized procedure, improvement phase designed as a VND and the perturbation
operator. Finally,we also briefly describeGRASP and ILS as two particular cases ofMS-ELS.
In spite of the good performance of this algorithms in related routing problems, evolutionary
components within these strategies have shown also promising results (Prins 2009).

Evolutionary local search procedure is a metaheuristic framework mainly based on evo-
lutionary strategies and local search algorithm. ELS is initially presented in Wolf and
Merz (2007) for the solution of optimization problems in telecommunications. However,
routing problems have been also addressed with ELS procedures. Some of these problems
are the capacitated VRP (Prins 2009), the capacitated arc routing problem with split delivery
(Belenguer et al. 2010), the truck and trailer routing problem (Villegas et al. 2010) and the
multitrip cumulative capacitated vehicle routing problem (Rivera et al. 2013). In Fig. 2, we
depict the main steps of a MS-ELS: after a starting solution is build and improved, pertur-
bations are made for a number of iterations and best solutions update the incumbent in each
iteration. This process continues until a number of start solutions are reached.MS-ELS can be
also seen as a generalization of GRASP and multi-start iterated local search metaheuristics.
Firstly, the greedy randomized construction heuristic ensures diversity in the search space.
Then, the classical local search in GRASP, is replaced by an ELS which allows to explore in
a better way the solution space near to a local optimum before restart a different search from
a different starting solution (Duhamel et al. 2011).

4.1 MS-ELS framework for the 1-PDTSP

As mentioned before, ELS is a metaheuristic based on an evolutionary algorithm and a local
search procedure. In an ELS, a single solution is constructed and then, improved via local
search. For a number of iterations (MaxIterations), the obtained solution is perturbed
and next, it is improvedMaxChildren times. The algorithm returns the best overall solution
found. In a multi-start ELS, the ELS is performed MaxStarts times. For the sake of clarity,
hereinafter, we refer to a solution as a list of nodes. The order of the list denotes the path
to follow by the vehicle, obtaining a hamiltonian cycle. Needless to say, for solution s, an
objective function value is computed as sum of the travel costs traversing the arcs between
nodes in the path.

The Algorithm 1 depicts our MS-ELS for the 1-PDTSP. Starting with an incumbent value
for the objective function z̄ = ∞, MaxStarts solutions (s0) are constructed via greedy
randomized algorithm (line 4) and improved using a VND procedure (line 5). If the objective
function of resulting solution s is better than the incumbent solution s̄, the latter is updated
(lines 6–9). For each one of the predefined MaxIterations, a set of MaxChildren
perturbation processes are performed on s and immediately, the perturbed resulting solutions
sp are improved calling the VND procedure again (line 14). After each improvement, the
algorithm updates the best solution on the current iteration (s′) if improved (lines 15–18).
Similarly, lines 20–23 update the best solution of the current start and lines 25–28 update the
incumbent solution.

In the following sections, we describe the components of our algorithm depicted in Algo-
rithm 1: Sect. 4.1.1 describes the construction procedure based on a greedy randomized

123

986 Annals of Operations Research (2022) 316:979–1011

Start

Greedy randomized construction

Initialize overall best solution

Solution

Improve solution

Solution
(s)

Update overall best solution

Initialize iteration best solution

Perturb solution s Perturb solution s

Improve perturbed solution

Solution Solution

Select best solution from perturbation process

Improve perturbed solution

Perturb solution s

Solution

Improve perturbed solution

Update best solution from iteration

Update best overall solution

Return best overall solution

End

Number of iterations

Number of starts

Children solutions

Fig. 2 Flow chart for MS-ELS algorithm

algorithm. Section 4.1.2 presents the structure andmain components of the VND as improve-
ment phase of the MS-ELS, and Sect. 4.1.3 briefly describes the perturbation procedure.

4.1.1 Greedy randomized construction

In order to generate several initial solutions, we use a greedy strategy based on the nearest
neighbor algorithm. However, as Hernández-Pérez and Salazar-González (2004b) point out,

123

Annals of Operations Research (2022) 316:979–1011 987

Algorithm 1MS-ELS for the 1-PDTSP: general structure
1: function MS- ELS(MaxStarts, MaxIterations, MaxChildren)
2: z̄ ←− ∞, s̄ ←− ∅
3: for i = 1 to MaxStarts do
4: s0 ←− GreedyRandomizedAlgorithm(seed)
5: s ←− VND(s0)
6: if f (s) < z̄ then
7: s̄ ←− s
8: z̄ ←− f (s)
9: end if
10: for j = 1 to MaxIterations do
11: z′ ←− ∞, s′ ←− ∅
12: for p = 1 to MaxChildren do
13: sp ←− Perturbation(s)
14: s′′ ←− VND(sp)
15: if f (s′′) < z′ then
16: s′ ←− s′′
17: z′ ←− f (s′′)
18: end if
19: end for
20: if f (s) < z′ then
21: s′ ←− s
22: z′ ←− f (s)
23: end if
24: end for
25: if f (s′) < z̄ then
26: s̄ ←− s′
27: z̄ ←− f (s′)
28: end if
29: end for
30: return s̄
31: end function

the nearest neighbor algorithm for the TSP, hardly finds a feasible 1-PDTSP solution if the
vehicle capacity is tight. Then, following the procedure in Hernández-Pérez et al. (2009), we
redefine the traveling costs, ci j , for arcs (i, j) ∈ A by penalizing connections between pair
of nodes of the same type (e.g. two nodes with pickup requests). Thus, new values for ci j are
stored in c′

i j ∀ (i, j) ∈ A as follows (Hernández-Pérez et al. 2009):

c′
i j =

{
ci j + (K−Q)·∑(i, j)∈A ci j

10·Q·|N | · (2Q − |qi − q j |) if |qi + q j | ≤ Q,

∞ otherwise,
(12)

where K is the total sum of units delivered or picked up. Let us remark that as described in
Eq. (10), 1-PDTSP instances are balanced in terms of the demands. Thus, the total units to
deliver is equal to the total units to pick up. In order to illustrate our motivation to redefine
traveling costs in ci j , we present a feasible and an unfeasible solution for a 1-PDTSP instance
with seven nodes in Figs. 3 and 4, respectively. For both solutions and similar to example in
Fig. 1, the left side number near to each node, denotes its demand while the right side number
represents the load of the vehicle when entering that node. Note that solution in Fig. 3 is a
Hamiltonian tour in which a certain amount of units is delivered immediately after a pickup
operation is performed. On the contrary, in Fig. 4, a constructive solution starts at depot (node
0) with an initial load of zero units. Then, nodes 2 and 6 are consecutively visited picking
up seven and three units, respectively. Note that after leaving node 6 and delivering six units

123

988 Annals of Operations Research (2022) 316:979–1011

Fig. 3 Example of a feasible
solution for the 1-PDTSP

Fig. 4 Example of an unfeasible
solution for the 1-PDTSP

at node 5, the solution become unfeasible since vehicle capacity is violated if any of the
non-visited nodes (1, 3 and 4) are reached.

Once we compute values in c′
i j , the construction phase for a solution s follows:

(i) Select a node i as the first visited location at random. Let p ←− 1 and s[p] ←− i .
(ii) DefineR as the set of closest and feasible (i.e. the vehicle capacity is not violated) non-

visited nodes after the node i is served. Let |R| be the minimum between a restricted
candidate list size (ϕ) and the number of feasible non-visited nodes. Note that ifR = ∅,
the constructed solution so far leads to an unfeasible path as in Fig. 4.

(iii) If |R| > 0, then choose a node j from R at random. If R = ∅, then go to step (i).
(iv) Let p ←− p + 1 and s[p] ←− j . If p < |N | then define i ←− j and go to step (i i),

else stop.

Since each iteration of the constructive phase, requires to include a set of nodes in R,
we adapt the condition in (11), to check whether a location j is feasible to add in a partial
solution with size p − 1 (Hernández-Pérez and Salazar-González 2004b):

max
i=1,...,p−1

{li , l p−1 − q j } − min
i=1,...,p−1

{li , l p−1 − q j } ≤ Q (13)

Let us comment that our proposed constructive strategy differs from the one presented in
Hernández-Pérez et al. (2009). While our algorithm always end up with a feasible solution,
the procedure described in Hernández-Pérez et al. (2009) does not guarantee a feasible result.

123

Annals of Operations Research (2022) 316:979–1011 989

4.1.2 Variable neighborhood descent

VND is a deterministic variant of variable neighborhood search (VNS) which explores
sequentially several neighborhoods represented by local search operators (Hansen andMlade-
nović 2001; Hansen et al. 2017). Given an incumbent solution s, the set of solutions reachable
from s, Nk(s), is explored when a local search operator k (k ≤ kmax) is applied via function
LocalSearch. If LocalSearch function retrieves a solutionwith smaller cost than f (s),
then s is updated and the search starts again from the first local search operator (k = 1). On
the contrary, if s is not improved, then LocalSearch is performed using the operator k +1.
The algorithm ends up if no improvement is found throughout the set of kmax neighborhoods.

As improvement phase for our metaheuristic algorithm, we propose the VND depicted
in Algorithm 2. While the general structure of VND described above is mainly stated in
lines 4–13 of the algorithm, we embed an additional function called Reverse (line 21)
with the aim to explore different regions of the solution space. Function Reverse(s) simply
changes the orientation of the path in solution s (i.e, the function returns s in the opposite
direction). As mentioned in Hernández-Pérez and Salazar-González (2004b), the feasibility
of solution s is independent of the orientation of the path. Then, since our strategy does
not handle unfeasible solutions, function Reverse always delivers a feasible solution as
well. Note that an additional cycle is added to our VND (line 3), just to ensure that after
a solution is improved, function Reverse is applied. The sequential exploration based on
local search operators is performed h times, with hmin ≤ h ≤ hmax , and each time, after first
iteration, the operator Reverse is applied. This iterative procedure also may stop before, if
no improvement is found after its first call (b =true).

Algorithm 2 Variable neighborhood descent for the 1-PDTSP
1: function VND(s, kmax , hmin , hmax)
2: s′ ←− s, h ←− 0, b ←−False
3: while (h ≤ hmax and b =False) or (h < hmin) do
4: k ←− 1
5: while k ≤ kmax do
6: s′′ ←− LocalSearch(s′, Nk (s′))
7: if f (s′′) < f (s′) then
8: s′ ←− s′′
9: k ←− 1
10: else
11: k ←− k + 1
12: end if
13: end while
14: if f (s′) < f (s) then
15: s ←− s′
16: b ←−False
17: else
18: b ←−True
19: end if
20: if h < hmax or b = False then
21: s′ ←− Reverse(s′)
22: end if
23: h ←− h + 1
24: end while
25: return s′
26: end function

123

990 Annals of Operations Research (2022) 316:979–1011

The sequential exploration based on several neighborhoods with the aim to improve solu-
tions quality within our VND is based on the following two edge-exchange (EE) and five
chain-exchange (CE) operators for the LocalSearch function. All operators follow the
best improvement rule instead of first improvement criterion.
2-opt and 3-opt These neighborhoods are the first (for k = 1, 2-opt) and the last one (for
k = 7, 3-opt) in our VND implementation. Hernández-Pérez et al. (2009) prove the good
performance of 2-opt and 3-opt as EE local search operators within a VND to solve the
1-PDTSP. As mentioned before and contrary to Hernández-Pérez et al. (2009), we do not
deal with unfeasible solutions. In our implementation of these operators, the local search
procedures find less-cost solutions while unfeasible paths are discarded.

Both neighborhood structures follow the ideas proposed in Lin (1965) to speed up the
search process. For each node i , we store a list of its k nearest neighbors and we sort them in
increasing order according to travel costs in ci j . Thus, 2-opt operator only scans for possible
exchanges between each node i and the k closest nodes to i . Similarly, 3-opt procedure,
evaluates k interchanges for each one of the k nearest neighbors for each node i . Therefore,
the complexity of our 2-opt and 3-opt are O(|N | · k) and O(|N | · k2), respectively. Finally,
let us comment that since the number of nodes may vary significantly, adequate values for
k depend on |N |. Large values for k would lead to a scenario in which k = |N | and the
complexity becomes O(|N |2) and O(|N |3) for 2-opt and 3-opt , respectively.
Or −opt(λ)After 2-opt exploration, our VND calls Or −opt(λ) neighborhoods. Or −opt
operators are firstly described in Or (1976), and then mentioned in Babin et al. (2007) as
one of the best known CE improvement heuristics for the TSP. It aims to improve a solution
by first moving a chain of λ consecutive nodes to a different location in the solution path.
Moreover, Or − opt heuristic also allows to firstly reverse chains and then move them
as described. Our VND includes four variations on Or − opt(λ) setting λ = {2, 3} and
then, reversing chains in both cases. From now, we refer to these movements as Or −opt(2),
Or −opt(3), Or −optr (2), and Or −optr (3), respectively. Thereby, these four combinations
are neighborhoods two to five of our algorithm (k = {2, 3, 4, 5}).

Given the structure of our VND and particularly, the use of function Reverse, we adapt
Or − opt(λ) operators only to check for feasible and improvement movements in which
chains are moved to previous positions in the path. Therefore, intermediate nodes are shifted
forward λ positions. The complexity for each one of the four Or − opt(λ) movements is
O(|N |2).
Move backward This is the sixth neighborhood within our VND (k = 6). This operator
attempts to find better solutions by moving a node from its original position to a previous
one in the path. Note that this operator can be seen as a special case of our Or − opt(λ)

movements if λ = 1 and therefore, the complexity of move backward operator remains as
O(|N |2).

Finally, as mentioned before, we set an order to evaluate them within the VND: (i) 2-
opt , (i i) Or − opt(2), (i i i) Or − opt(3), (iv) Or − optr (2), (v) Or − optr (3), (vi) move
backward and (vi i) 3-opt . This particular order established for the neighborhoods relies on
their complexity. As Resende and Ribeiro (2016) point out, and appropriate order can save
a significant amount of computation time. Thus, small neighborhoods may be explored first
while more complex or large neighborhoods are evaluated later. In the case of our VND, the
complexity of all the neighborhoods from (i) to (vi) is O(|N |2) while 3-opt is computed in
O(|N |3).

123

Annals of Operations Research (2022) 316:979–1011 991

4.1.3 Perturbation

Algorithm 3 depicts the proposed perturbation function which is mainly based on the 2-opt
operator described in Sect. 4.1.2. Our function applies a 2-opt movement on np sequences
of nodes from a solution s. For each sequence, i.e. σi j = (si , si+1, . . . , s j−1, s j), the starting
point i is chosen in a random fashion between the first position in s and the position |N | −
β where β is the size of the sequence to change (line 4). It is worth to mention that the
2-opt operator used in the perturbation function (line 5) only searches the first feasible
movement. Thus, our perturbation strategy does not check whether the objective function
improves and a perturbed solution sp may end up with a higher value for the objective
function (i.e. f (sp) > f (s)). Let us comment that large values for np and β would lead to
a significant increase in computational time. Then, small values are desirable and are shown
later in Sect. 5.3. Nontheless, if no feasible movement is found along the np sequences, the
perturbation procedure delivers the initial solution s.

Algorithm 3 Perturbation
1: function Perturbation (s, np, β)
2: sp ←− s
3: for i = 1 to np do
4: Select at random r ∈ [1, |N | − β]
5: sp ←− 2-opt(sp , r , r + β)
6: end for
7: return sp
8: end function

4.2 Multi-start iterated local search

ILS was introduced by Lourenço et al. (2003) as a hybrid metaheuristic based on a heuristic
composed by a constructive algorithm, an improvement strategy as local search and a pertur-
bation function. ILS metaheuristic improves a solution s by calling a local search algorithm.
Then, an iterated process is started where the incumbent solution is perturbed and improved
by a local search algorithm on each iteration. Solution s is replaced by the local optima solu-
tion at the end of each iteration in case of improvement. An ILS with more than one initial
solution is called MS-ILS. Using the notation introduced in Sect. 4.1, MS-ILS and ILS can
be seen as special cases of MS-ELS in Algorithm 1 where MaxChildren = 1 for MS-ILS,
and MaxStarts = 1 and MaxChildren = 1 for ILS.

4.3 Greedy randomized adaptive search procedure (GRASP)

Feo and Resende (1995) define GRASP as a multi-start metaheuristic that consists of two
steps: construction and improvement (e.g. local search procedure). While the first one aims
to build a solution, the second one finds a local optimum using a local search algorithm.
After a fixed number of constructive solutions, GRASP ends and returns the best overall
solution. Note that GRASP can also be described as a special case of MS-ELS metaheuristic
in which MaxStarts > 1, MaxIterations = 0 and MaxChildren = 0 in Algorithm
1. In order to show the impact of having these values for parameters MaxIterations and

123

992 Annals of Operations Research (2022) 316:979–1011

MaxChildren or those as described in Sect. 4.2, a comparison between GRASP, MS-ILS
and MS-ELS is performed in Sect. 5.3.

5 Computational experiments

The computational experiments presented in this section are based on the MILP described
in Sect. 3 and the MS-ELS algorithm depicted in Algorithm 1. We firstly describe the sets of
instances we use in the computational experiments. Then, we show the results solving the
1-PDTSP MILP (Palacio and Rivera 2019). This model was solved via commercial solver
(Gurobi 8.1) setting a maximum computation time of 3600s for each instance. Lastly, we
describe the results obtained via MS-ELS without a fixed maximum computation time. The
mathematical model and the metaheuristic algorithmwere coded in Visual C++ forWindows
10 running on an Intel Core i7 at 2.70GHz with 8.00 gigabytes of RAM.

5.1 Data sets

To test the performance of our solution strategy on 1-PDTSP, we solved two different data
sets. The first one is a set of benchmark instances previously reported in the literature. On
the other hand, and since the BRP is a well-known application of the 1-PDTSP, we also test
our algorithm on instances generated using data from the operation of EnCicla, the BSS in
the Aburrá Valley (Antioquia, Colombia).

5.1.1 Benchmark instances

The benchmark instances are available at http://hhperez.webs.ull.es/PDsite/. These instances
are classified in two sets. The first one, composed of small number of nodes with
|N | ∈ {20, 30, 40, 50, 60} and the second set with large instances in which |N | ∈
{100, 200, 300, 400, 500}. Node demands vary from −10 to 10 (i.e., qi ∈ [−10, 10] ∀ i ∈
N). In this section, we set the vehicle capacity to ten, being the smallest possible value to
find feasible solutions and therefore, the hardest configuration to solve (Hernández-Pérez
et al. 2009). For each size of the problem, ten instances are available named from A to J.
Thus, 100 instances were solved. For a detailed description about the instances generation,
we refer the reader to Hernández-Pérez and Salazar-González (2004a) and Hernández-Pérez
and Salazar-González (2004b).

5.1.2 EnCicla BSS instances

The Aburrá Valley (Antioquia, Colombia) is a region located in the south central part of
Antioquia department in Colombia. This valley is composed by ten urban areas from north
to south: Barbosa, Girardota, Copacabana, Bello, Medellín, Envigado, Itagüí, Sabaneta, La
Estrella and Caldas. Since 1980, Área metropolitana del Valle de Aburrá (AMVA) is the
public entity responsible for planning and management on some common policies of Aburrá
Valley territory as transportation, environmental policies, among others.

AMVA as authority on mobility and transportation management is the main sponsor of
EnCicla, the public bicycle sharing system in Aburrá Valley. EnCicla began its operation
in 2011 with six stations and 105 bikes. Later, in 2013, the system increased the number
of stations and bicycles to 13 and 420, respectively. In 2017, 52 stations were available for

123

http://hhperez.webs.ull.es/PDsite/

Annals of Operations Research (2022) 316:979–1011 993

users and currently, the system is under expansion again and a total of 100 new stations are
under construction and 1000 new bikes will be added to the system. Bicycles from EnCicla
are available for users from Monday to Friday, starting at 5:30 in the morning to 22:00. On
Saturdays, the system operates from 6:30 to 16:00. Nowadays, EnCicla has more than 80,000
active users.

In order to test the performance of our solution strategy using real data from a BSS, we
designed a set of instances based on EnCicla. The information required to build the instances
was provided by Subdirección de Movilidad department (SMD) in AMVA for the operation
of EnCicla for 36 days in March and April, 2017 when 52 stations served the system. SMD
provided us with the number of bikes available at the beginning and end of the BSS operation
in each station for each one of the 36 days. Thus, we were able to compute for 35 days,
the number of bikes picked up or delivered at each station during the night repositioning
operation. To do so, let us define bt

i and et
i as the number of bikes available at station i before

starting and after finishing operations at day t , respectively. Then, the number of bikes (qt
i)

to pickup or deliver at station i at day t is calculated as:

qt
i = et−1

i − bt
i , ∀ i ∈ N\{0}, t = 1, . . . , T (14)

where T denotes the number of days to analyze (i.e., number of instances to solve). Values
for qt

0 are calculated as showed before in Eq. (10) to ensure flow conservation throughout the
system. We used google maps services to get the geographical position for each one of the
52 stations and then, calculate an euclidean distance between each pair (i, j) of them (ci j).
Finally, we fixed the vehicle capacity to 45 (i.e. the largest capacity for a vehicle in EnCicla
fleet).

5.2 Results onMILP

Tables 1, 2, 3 and 4 summarize the results obtained when solving the 1-PDTSP benchmark
instances using the MILP presented in Sect. 3. Firstly, for the 30 instances with up to 40
nodes, it is possible to find the optimal solution in less than 3600 s. Thus, Table 1 reports for
each instance, the value for the objective function (column Opt.) and the time in seconds that
the solver required to prove optimality. Secondly, for the 20 instances with 50 and 60 nodes,
the solver finds the optimal solution in eight cases (i.e. 40% of the instances). Columns LB
and UB report the lower and upper bound reported by the solver, respectively. Column gap,
computed as (U B − L B)/U B shows that this ratio is not greater than 5.50% and 11.70% for
50 and 60 nodes instances, respectively. Instances with 100 nodes are presented in Table 3.
For each one of the ten instances it was possible to find a feasible solution but no optimality
proof was delivered by the optimizer. For this size of instances, gap is always less than 30%
and around 20% on average. Lastly, for instances in which |N | is greater or equal than 200,
we report in Table 4 lower bounds since the solver is not able to find any feasible solution in
less than 3600s. Moreover, let us comment that there are five cases in which the optimizer
does not report lower bounds in less than 3600. Nonetheless, we set a naive estimation of
this bound (N L B) for instances B, D, F, G and I with 400 nodes as:

N L B =
∑

i∈N
min

j :(i, j)∈A{ci j } (15)

For the BSS instances from EnCicla operation, Table 5 reports the lower bound, upper
bound, gap and computational time required to solve each instance. Similarly to benchmark
instances, the column gap in Table 5 is computed as (U B − L B)/U B. Thus, the optimizer

123

994 Annals of Operations Research (2022) 316:979–1011

Table 1 Computational results on MILP for 1-PDTSP instances with |N | ≤ 40

|N | = 20 |N | = 30 |N | = 40

Instance Opt. Time (s) Instance Opt. Time (s) Instance Opt. Time (s)

n20q10A 4963 7.48 n30q10A 6403 101.64 n40q10A 7173 1034.12

n20q10B 4976 1.45 n30q10B 6603 9.08 n40q10B 6557 661.14

n20q10C 6333 8.23 n30q10C 6486 80.44 n40q10C 7528 222.30

n20q10D 6280 2.19 n30q10D 6652 21.85 n40q10D 8059 1675.57

n20q10E 6415 4.11 n30q10E 6070 3.30 n40q10E 6928 1574.83

n20q10F 4805 1.86 n30q10F 5737 5.20 n40q10F 7506 1635.10

n20q10G 5119 1.01 n30q10G 9371 187.46 n40q10G 7624 842.43

n20q10H 5594 2.10 n30q10H 6431 6.91 n40q10H 6791 733.63

n20q10I 5130 6.02 n30q10I 5821 21.50 n40q10I 7215 140.12

n20q10J 4410 1.29 n30q10J 6187 25.27 n40q10J 6512 212.75

Avg. 3.57 46.26 873.20

Table 2 Computational results on MILP for 1-PDTSP instances with |N | ∈ {50, 60}
|N | = 50 |N | = 60

Instance LB UB Time (s) Gap (%) Instance LB UB Time (s) Gap (%)

n50q10A 6987 6987 619.84 0.00 n60q10A 8190 8653 3600.00 5.35

n50q10B 9488 9488 2721.35 0.00 n60q10B 8514 8514 2957.56 0.00

n50q10C 8913 9110 3600.00 2.16 n60q10C 9141 9462 3600.00 3.39

n50q10D 10,085 10,294 3600.00 2.03 n60q10D 10,650 11,243 3600.00 5.27

n50q10E 9492 9492 2190.77 0.00 n60q10E 9224 9487 3600.00 2.77

n50q10F 8398 8887 3600.00 5.50 n60q10F 8388 9499 3600.00 11.70

n50q10G 7126 7126 582.89 0.00 n60q10G 8565 9153 3600.00 6.42

n50q10H 8545 9019 3600.00 5.26 n60q10H 8424 8424 2083.92 0.00

n50q10I 8329 8329 3523.04 0.00 n60q10I 8869 9524 3600.00 6.88

n50q10J 8456 8456 249.89 0.00 n60q10J 8236 9138 3600.00 9.87

Avg. 2428.78 1.49 3384.15 5.16

reports the optimal solution for 28 out of 35 instances obtaining a maximum gap of 5.29%
(see instance 6) and also a gap of 0.34% on average. Let us remark that vehicle capacity and
traveling costs are constant for the whole set of 35 instances. Hence, only demand on stations
differentiate each instance. Results in Table 5 show that objective function (UB) values are
very sensitive to changes in stations demand since UB takes values from 2534 to 3440. This
variation implies an increase in UB up to 35% with respect to its minimum value. Similarly,
changes in units to pick up and deliver at each station have an impact on the computation
time required to solve instances. While instance 34 is solved to optimality in 4.22 s, 1h is not
enough to close the gap for the instance 6 (5.29% of gap). This allow us to conclude that CPU
times required to solve EnCicla instances via commercial solver are also highly sensitive to
variations on demands.

123

Annals of Operations Research (2022) 316:979–1011 995

Table 3 Computational results
on MILP for 1-PDTSP instances
with |N | = 100

Instance LB UB Gap (%)

n100q10A 11,021 14,206 22.42

n100q10B 12,179 15,277 20.28

n100q10C 13,118 17,506 25.07

n100q10D 13,488 17,822 24.32

n100q10E 10,955 13,194 16.97

n100q10F 10,900 12,736 14.42

n100q10G 11,052 15,751 29.83

n100q10H 11,976 13,680 12.46

n100q10I 13,072 15,141 13.66

n100q10J 12,357 15,865 22.11

Avg. 20.15

Table 4 Computational results on MILP for 1-PDTSP instances with |N | ≥ 200

|N | = 200 |N | = 300 |N | = 400 |N | = 500

Instance LB Instance LB Instance LB Instance LB

n200q10A 14,954 n300q10A 17,416 n400q10A 23,112 n500q10A 20,387

n200q10B 15,530 n300q10B 17,420 n400q10B 10,612a n500q10B 19,259

n200q10C 14,010 n300q10C 16,374 n400q10C 20,939 n500q10C 22,456

n200q10D 18,033 n300q10D 19,443 n400q10D 10,517a n500q10D 22,155

n200q10E 16,215 n300q10E 20,776 n400q10E 18,021 n500q10E 22,144

n200q10F 17,999 n300q10F 18,779 n400q10F 10,282a n500q10F 20,735

n200q10G 14,883 n300q10G 18,151 n400q10G 10,348a n500q10G 19,314

n200q10H 18,032 n300q10H 16,606 n400q10H 18,463 n500q10H 26,866

n200q10I 15,245 n300q10I 18,456 n400q10I 9885a n500q10I 22,348

n200q10J 16,273 n300q10J 16,929 n400q10J 18,879 n500q10J 22,335

aNaive lower bound (N L B) computed as in Eq. (15)

5.3 Results onMS-ELS

In this section, we present the results based on the MS-ELS strategy. As mentioned
before, as MS-ELS is a generalization of GRASP and MS-ILS, we also vary the values
of parametersMaxStarts, MaxIterations and MaxChildren to run MS-ILS
and GRASP. Moreover, since running times of MS-ELS, MS-ILS and GRASP are roughly
proportional to the number of calls to the VND (Rivera et al. 2013), we fixed a number of
300 calls to control the execution time and fairly compare the algorithms performance. After
testing several configurations for MaxStarts, MaxIterations, and MaxChildren
within MS-ELS and MS-ILS, we found the best results on average with values reported in
Table 6. Let us recall that for GRASP, MaxIterations and MaxChildren are always
set to zero. Table 6 also shows the final values for parameters required in the construction
phase, VND scheme, 2-opt and 3-opt operators and perturbation function.

Table 7 presents the computational results for the set of small instances (i.e. |N | ≤ 60). In
this table, we show the name of the instance and columnOpt reports the value of the objective

123

996 Annals of Operations Research (2022) 316:979–1011

Table 5 Computational results
on MILP for EnCicla instances

Instance LB UB Gap (%) Time (s)

1 2737 2737 0.00 194.43

2 2769 2769 0.00 115.25

3 2781 2781 0.00 1315.59

4 2722 2722 0.00 400.55

5 3074 3074 0.00 3556.01

6 3258 3440 5.29 3600.00

7 3002 3068 2.15 3600.00

8 2746 2746 0.00 961.45

9 2803 2803 0.00 1731.30

10 2760 2760 0.00 69.45

11 2838 2838 0.00 944.08

12 2723 2723 0.00 47.54

13 2648 2648 0.00 19.56

14 2936 2936 0.00 2223.79

15 2621 2621 0.00 308.82

16 2793 2793 0.00 155.91

17 2777 2818 1.45 3600.00

18 2891 2891 0.00 3254.71

19 2684 2684 0.00 58.03

20 2569 2569 0.00 24.20

21 2791 2817 0.92 3600.00

22 2859 2859 0.00 3443.89

23 2794 2794 0.00 75.66

24 2653 2653 0.00 35.50

25 2878 2878 0.00 865.95

26 2595 2595 0.00 178.14

27 2874 2888 0.48 3600.00

28 2536 2536 0.00 5.09

29 2781 2781 0.00 74.07

30 2574 2574 0.00 10.44

31 2793 2793 0.00 2433.94

32 2852 2852 0.00 819.73

33 2784 2799 0.54 3600.00

34 2534 2534 0.00 4.22

35 2752 2782 1.08 3600.00

Avg. 0.34 1386.50

function for the optimal solution; these values were retrieved from our results in Sect. 5.2 and
fromHernández-Pérez et al. (2009). For each instance, we compare five different methods for
the 1-PDTSP and BRP: the hybrid GRASP/VND in Hernández-Pérez et al. (2009), the GA in
Zhao et al. (2009) and our three strategies, GRASP, MS-ILS andMS-ELS. For each strategy,
columns # opt. show the number of times the optimal solutionwas found over ten runs (for the
GRASP/VND this information is not available in Hernández-Pérez et al. (2009)). Columns

123

Annals of Operations Research (2022) 316:979–1011 997

Table 6 Parameter values for
solution strategy

MS-ELS MS-ILS GRASP

Solution framework

MaxStarts 5 15 300

MaxIterations 12 20 0

MaxChildren 5 1 0

Greedy randomized construction

ϕ 10

VND

hmin 1

hmax 2

2-opt and 3-opt

k 2 · √|N |
Perturbation

np 4

β 6

Avg. display the average value for the objective function and columns gap (%) show the
difference between the average objective function retrieved (z Avg) and the optimal solution
reported in columns Opt (z∗). This gap is computed as follows:

gap(%) = z Avg − z∗

z∗ × 100 (16)

For instances in which |N | = 20, the five strategies deliver the optimal solution in each
one of the ten runs. Similarly, GA and our three solution algorithms are able to provide
the optimal solution for instances with 30 nodes in all runs. For instances with |N | =
{40, 50, 60}, note that gaps delivered by MS-ELS are smaller than those reported by the
other four methods. Moreover, the number of times that MS-ELS finds the optimal solution
is greater or equal that the number of optimal values obtained with GRASP and MS-ILS,
except for instance n60q10I. Moreover, there exist improvements on average solutions if the
evolutionary component is added to GRASP and ILS algorithms. It is worth to mention that
quality on solutions found by GA (Zhao et al. 2009) is higher than the one delivered by
GRASP/VND from Hernández-Pérez et al. (2009) and our GRASP and MS-ILS. However,
MS-ELS outperforms GA and GRASP/VND algorithms. Note also that our GRASP is able
to find better solutions on average than the hybrid GRASP/VND fromHernández-Pérez et al.
(2009). This result allow us to conclude that Or − opt(λ) operators and function Reverse
within the VND help significantly finding better local optimum solutions for small instances.
Let us comment also, that Hernández-Pérez et al. (2009) define k = 4 · √|N | for 2-opt
and 3-opt neighborhood size while MS-ELS runs with a fixed value for k = 2 · √|N | and
therefore, less computational effort is required for these local search operators.

In Table 8, we summarize the results on large instances. Due to the outperforming
behavior of MS-ELS over GRASP and MS-ILS for the smaller instances, we only com-
pare the evolutionary local search strategy with the GRASP/VND (Hernández-Pérez et al.
2009) and GA (Zhao et al. 2009). For each one of the strategies, we report in columns Best,
the minimum value for objective function found by the algorithm (bold numbers denote the
best solution found among the three algorithms). To the best of our knowledge, optimal solu-

123

998 Annals of Operations Research (2022) 316:979–1011

Ta
bl
e
7

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
sm

al
li
ns
ta
nc
es

In
st
an
ce

O
pt
.c

G
R
A
SP

/V
N
D
a

G
A
b

G
R
A
SP

M
S-
IL
S

M
S-
E
L
S

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

|N
|=

20

n2
0q

10
A

49
63

49
63

.0
0.
00

10
49

63
.0

0.
00

10
49

63
.0

0.
00

10
49

63
.0

0.
00

10
49

63
.0

0.
00

n2
0q

10
B

49
76

49
76

.0
0.
00

10
49

76
.0

0.
00

10
49

76
.0

0.
00

10
49

76
.0

0.
00

10
49

76
.0

0.
00

n2
0q

10
C

63
33

63
33

.0
0.
00

10
63

33
.0

0.
00

10
63

33
.0

0.
00

10
63

33
.0

0.
00

10
63

33
.0

0.
00

n2
0q

10
D

62
80

62
80

.0
0.
00

10
62

80
.0

0.
00

10
62

80
.0

0.
00

10
62

80
.0

0.
00

10
62

80
.0

0.
00

n2
0q

10
E

64
15

64
15

.0
0.
00

10
64

15
.0

0.
00

10
64

15
.0

0.
00

10
64

15
.0

0.
00

10
64

15
.0

0.
00

n2
0q

10
F

48
05

48
05

.0
0.
00

10
48

05
.0

0.
00

10
48

05
.0

0.
00

10
48

05
.0

0.
00

10
48

05
.0

0.
00

n2
0q

10
G

51
19

51
19

.0
0.
00

10
51

19
.0

0.
00

10
51

19
.0

0.
00

10
51

19
.0

0.
00

10
51

19
.0

0.
00

n2
0q

10
H

55
94

55
94

.0
0.
00

10
55

94
.0

0.
00

10
55

94
.0

0.
00

10
55

94
.0

0.
00

10
55

94
.0

0.
00

n2
0q

10
I

51
30

51
30

.0
0.
00

10
51

30
.0

0.
00

10
51

30
.0

0.
00

10
51

30
.0

0.
00

10
51

30
.0

0.
00

n2
0q

10
J

44
10

44
10

.0
0.
00

10
44

10
.0

0.
00

10
44

10
.0

0.
00

10
44

10
.0

0.
00

10
44

10
.0

0.
00

A
ve
ra
ge

0.
00

0.
00

0.
00

0.
00

0.
00

|N
|=

30

n3
0q

10
A

64
03

64
06

.8
0.
06

10
64

03
.0

0.
00

10
64

03
.0

0.
00

10
64

03
.0

0.
00

10
64

03
.0

0.
00

n3
0q

10
B

66
03

66
03

.0
0.
00

10
66

03
.0

0.
00

10
66

03
.0

0.
00

10
66

03
.0

0.
00

10
66

03
.0

0.
00

n3
0q

10
C

64
86

64
86

.0
0.
00

10
64

86
.0

0.
00

10
64

86
.0

0.
00

10
64

86
.0

0.
00

10
64

86
.0

0.
00

n3
0q

10
D

66
52

66
55

.1
0.
05

10
66

52
.0

0.
00

10
66

52
.0

0.
00

10
66

52
.0

0.
00

10
66

52
.0

0.
00

n3
0q

10
E

60
70

60
70

.0
0.
00

10
60

70
.0

0.
00

10
60

70
.0

0.
00

10
60

70
.0

0.
00

10
60

70
.0

0.
00

n3
0q

10
F

57
37

57
37

.0
0.
00

10
57

37
.0

0.
00

10
57

37
.0

0.
00

10
57

37
.0

0.
00

10
57

37
.0

0.
00

n3
0q

10
G

93
71

93
71

.0
0.
00

10
93

71
.0

0.
00

10
93

71
.0

0.
00

10
93

71
.0

0.
00

10
93

71
.0

0.
00

n3
0q

10
H

64
31

64
31

.2
0.
00

10
64

31
.0

0.
00

10
64

31
. 0

0.
00

10
64

31
.0

0.
00

10
64

31
.0

0.
00

n3
0q

10
I

58
21

58
21

.0
0.
00

10
58

21
.0

0.
00

10
58

21
.0

0.
00

10
58

21
.0

0.
00

10
58

21
.0

0.
00

n3
0q

10
J

61
87

61
87

.4
0.
01

10
61

87
.0

0.
00

10
61

87
.0

0.
00

10
61

87
.0

0.
00

10
61

87
.0

0.
00

A
ve
ra
ge

0.
01

0.
00

0.
00

0.
00

0.
00

123

Annals of Operations Research (2022) 316:979–1011 999

Ta
bl
e
7

co
nt
in
ue
d

In
st
an
ce

O
pt
.c

G
R
A
SP

/V
N
D
a

G
A
b

G
R
A
SP

M
S-
IL
S

M
S-
E
L
S

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

|N
|=

40

n4
0q

10
A

71
73

71
88

.5
0.
22

8
71

79
.0

0.
08

9
71

75
.4

0.
03

8
71

82
.7

0.
14

10
71

73
.0

0.
00

n4
0q

10
B

65
57

65
68

.5
0.
18

5
65

64
.5

0.
11

4
65

66
.4

0.
14

6
65

63
.8

0.
10

7
65

61
.5

0.
07

n4
0q

10
C

75
28

75
28

.4
0.
01

10
75

28
.0

0.
00

5
75

29
.6

0.
02

7
75

28
.6

0.
01

10
75

28
.0

0.
00

n4
0q

10
D

80
59

81
35

.6
0.
95

8
80

75
.4

0.
20

4
80

97
.8

0.
48

5
80

95
.0

0.
45

10
80

59
.0

0.
00

n4
0q

10
E

69
28

69
59

.3
0.
45

10
69

28
.0

0.
00

3
69

41
.2

0.
19

3
69

31
.2

0.
05

10
69

28
.0

0.
00

n4
0q

10
F

75
06

75
90

.5
1.
13

10
75

06
.0

0.
00

4
75

44
.1

0.
51

5
75

38
.3

0.
43

10
75

06
.0

0.
00

n4
0q

10
G

76
24

76
82

.8
0.
77

10
76

24
.0

0.
00

3
76

60
.6

0.
48

6
76

45
.3

0.
28

10
76

24
.0

0.
00

n4
0q

10
H

67
91

67
95

.7
0.
07

10
67

91
.0

0.
00

5
68

01
.0

0.
15

9
67

93
.7

0.
04

10
67

91
.0

0.
00

n4
0q

10
I

72
15

72
19

.0
0.
06

8
72

15
.2

0.
00

4
72

20
.9

0.
08

6
72

17
.5

0.
03

10
72

15
.0

0.
00

n4
0q

10
J

65
12

65
13

.3
0.
02

10
65

12
.0

0.
00

10
65

12
.0

0.
00

10
65

12
.0

0.
00

10
65

12
.0

0.
00

A
ve
ra
ge

0.
38

0.
04

0.
21

0.
15

0.
01

|N
|=

50

n5
0q

10
A

69
87

69
96

.7
0.
14

10
69

87
.0

0.
00

1
69

93
.7

0.
10

6
69

89
.6

0.
04

10
69

87
.0

0.
00

n5
0q

10
B

94
88

95
12

.6
0.
26

8
95

01
.8

0.
15

2
95

13
.0

0.
26

3
94

97
.9

0.
10

10
94

88
.0

0.
00

n5
0q

10
C

91
10

91
33

.7
0.
26

1
91

19
.5

0.
10

1
91

28
.2

0.
20

2
91

43
.9

0.
37

5
91

13
.5

0.
04

n5
0q

10
D

10
,2
60

10
,4
64

.3
1.
99

2
10

,3
54

.8
0.
92

1
10

,4
58

.1
1.
93

3
10

,4
28

.5
1.
64

5
10

,2
65

.4
0.
05

n5
0q

10
E

94
92

96
25

.1
1.
40

7
95

74
.5

0.
87

1
96

56
.0

1.
73

3
95

89
.3

1.
03

10
94

92
.0

0.
00

n5
0q

10
F

86
84

87
73

.2
1.
03

8
86

92
.5

0.
10

1
87

41
.4

0.
66

4
87

35
.4

0.
59

10
86

84
.0

0.
00

n5
0q

10
G

71
26

72
17

.4
1.
28

9
71

33
.5

0.
11

1
72

30
.5

1.
47

4
71

78
.9

0.
74

10
71

26
.0

0.
00

n5
0q

10
H

88
85

90
06

.5
1.
37

1
89

56
.9

0.
81

2
90

07
.9

1.
38

1
90

62
.1

1.
99

3
88

93
.2

0.
09

n5
0q

10
I

83
29

84
12

.5
1.
00

7
83

57
.5

0.
34

1
84

22
.9

1.
13

3
83

91
.2

0.
75

3
83

44
.1

0.
18

n5
0q

10
J

84
56

86
66

.1
2.
48

1
84

75
.8

0.
23

0
85

95
.1

1.
64

2
85

29
.3

0.
87

10
84

56
.0

0.
00

A
ve
ra
ge

1.
12

0.
36

1.
05

0.
81

0.
04

123

1000 Annals of Operations Research (2022) 316:979–1011

Ta
bl
e
7

co
nt
in
ue
d

In
st
an
ce

O
pt
.c

G
R
A
SP

/V
N
D
a

G
A
b

G
R
A
SP

M
S-
IL
S

M
S-
E
L
S

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

#
O
pt

A
vg

.
G
ap

(%
)

|N
|=

60

n6
0q

10
A

86
02

87
26

.6
1.
45

5
86

34
.8

0.
38

1
87

19
.9

1.
37

1
87

09
.3

1.
25

10
86

02
.0

0.
00

n6
0q

10
B

85
14

86
83

.2
1.
99

10
85

14
.0

0.
00

2
86

04
.8

1.
07

2
85

93
.9

0.
94

10
85

14
.0

0.
00

n6
0q

10
C

94
53

95
65

.6
1.
19

3
94

85
.5

0.
34

1
95

82
.8

1.
37

1
95

85
.3

1.
40

1
94

79
.8

0.
28

n6
0q

10
D

11
,0
59

11
,3
20

.6
2.
37

1
11

,1
40

.2
0.
73

1
11

,2
82

.5
2.
02

1
11

,2
96

.0
2.
14

1
11

,1
21

.6
0.
57

n6
0q

10
E

94
87

97
24

.8
2.
51

1
95

92
.1

1.
11

0
96

14
.7

1.
35

1
96

15
.0

1.
35

5
94

94
.7

0.
08

n6
0q

10
F

90
63

94
37

.2
4.
13

1
91

92
.2

1.
43

1
92

92
.2

2.
53

1
92

21
.3

1.
75

3
91

15
.6

0.
58

n6
0q

10
G

89
12

91
07

.9
2.
20

1
89

96
.0

0.
94

1
90

82
.0

1.
91

1
90

59
.9

1.
66

1
89

55
.8

0.
49

n6
0q

10
H

84
24

84
67

.3
0.
51

3
84

72
.3

0.
57

1
84

60
.2

0.
43

1
84

58
.4

0.
41

10
84

24
. 0

0.
00

n6
0q

10
I

93
94

95
29

.6
1.
44

1
95

05
.8

1.
19

2
95

02
.2

1.
15

1
95

19
.5

1.
34

1
94

52
.9

0.
63

n6
0q

10
J

87
50

89
56

.5
2.
36

1
88

03
.3

0.
61

1
88

94
.1

1.
65

1
89

13
.6

1.
87

3
87

88
.7

0.
44

A
ve
ra
ge

2.
01

0.
73

1.
48

1.
41

0.
31

a R
es
ul
ts
ta
ke
n
fr
om

H
er
ná
nd
ez
-P
ér
ez

et
al
.(
20

09
)

b
R
es
ul
ts
ta
ke
n
fr
om

Z
ha
o
et
al
.(
20

09
)

c R
es
ul
ts
ta
ke
n
fr
om

H
er
ná
nd
ez
-P
ér
ez

et
al
.(
20

09
)

123

Annals of Operations Research (2022) 316:979–1011 1001

tions have not been reported in the literature for these instances. Columns Avg. and SD show
the average and standard deviation for objective function. Standard deviation values are not
available in Hernández-Pérez et al. (2009) for the GRASP/VND. Finally, we also present the
differences on solution quality between our solution strategy and the GRASP/VND and GA
in columns gap GRASP/VND and gap GA, respectively. As example, we compute gap GA
as follows:

gapG A(%) = BestM S−E L S − BestG A

BestG A
× 100 (17)

where BestM S−E L S and BestG A are the best solution foundbyMS-ELSandGA, respectively.
Gap GRASP/VND is computed in a similar way. Lastly, in Table8, we also show column gap
LB in which the lower bound (LB) obtained viaMILP and BestM S−E L S value are compared:

gapL B(%) = BestM S−E L S − L B

BestM S−E L S
× 100 (18)

Our evolutionary local search strategy is able to find better solutions than GA for 46 out
of 50 large instances (i.e. 92% of the instances) and outperforms GRASP/VND in all cases.
Note also that standard deviation for the MS-ELS over ten runs is less than the reported in
Zhao et al. (2009) for the GA, except for instances in which |N | = 300. Nevertheless, for this
ten instances, our MS-ELS delivers better solutions than the genetic algorithm. Moreover, it
is worth to comment that as the number of nodes increases, the average differences between
MS-ELS and the other algorithms (i.e. gap GRASP/VND and gap GA), also increase. This
is, the solution quality of our strategy on average, becomes higher than the one provided by
other methods if |N | is larger. It can be seen also, if the average solution provided by the
MS-ELS is compared with the best solution delivered by GRASP/VND and GA. In Table
9, we present the percentage of instances in which average objective function value found
via MS-ELS is less than the best solution reported using other two strategies. For the largest
subset of instances (|N | = 500) our average solutions outperform the best solution found
via GRASP/VND and GA.

Regarding computational times,wealso compareMS-ELSperformancewithGRASP/VND
and GA. In Table 10, we present the average CPU time (in seconds) required to solve each
subset of large instances. We also show the time needed to construct solutions as well as the
time that the MS-ELS requires to improve solutions via VND. In general, MS-ELS requires
more computational effort to find solutions with a better solution quality. Nevertheless, let
us comment that our strategy is able to find on average a similar solution quality within com-
putational times as those reported in Hernández-Pérez et al. (2009) and Zhao et al. (2009).
Figure5 depicts for instance n100q10A, the evolution of the objective function value for
the best solution found. Note that values for objective function solving the 1-PDTSP via
MS-ELS are similar for GRASP/VND and GA when computational times coincide with
those reported in Table 10 for instances with 100 nodes. In addition, our MS-ELS continues
improving solution until the end of time horizon (28s), which indicates that it can find even
better solutions if more time is given.

Table 11 summarizes the results obtained on EnCicla instances solving the 1-PDTSP via
MS-ELS. In this table, we show a comparison between our metaheuristic strategy and the
exact approach based on MILP in Sect. 3. For each instance, we report in column Best, the
minimum value found by the MS-ELS for the objective function as well as the number of
times this solution is delivered after 10 runs of the MS-ELS (column # best). Then, we
compare the value in column Best and the lower bound reported by the optimizer after the
MILP is solved (see Table 5) and we report whether the best solution found is the optimal.
Average for the objective function value over the ten runs is also computed (column Avg).

123

1002 Annals of Operations Research (2022) 316:979–1011

Ta
bl
e
8

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
la
rg
e
in
st
an
ce
s

G
R
A
SP

/V
N
D
a

G
A
b

M
S-
E
L
S

B
es
t

A
vg
.

B
es
t

A
vg
.

SD
B
es
t

A
vg
.

SD
G
ap

G
R
A
SP

/V
N
D
(%

)
G
ap

G
A
(%

)
G
ap

L
B
(%

)

|N
|=

10
0

n1
00

q1
0A

11
,8
74

12
,0
87

.6
11

,8
28

11
,9
22

.6
71

.3
11

,7
60

11
,8
34

.7
41

.5
−0

.9
6

−
0.
57

6.
28

n1
00

q1
0B

13
,1
72

13
,5
82

.6
13

,1
14

13
,3
01

.6
15

7.
1

12
,9
38

13
,0
84

.1
65

.0
−1

.7
8

−
1.
34

5.
87

n1
00

q1
0C

14
,0
63

14
,4
21

.3
13

,9
77

14
,0
95

.2
14

7.
2

13
,9
58

13
,9
91

.2
24

.5
−0

.7
5

−
0.
14

6.
02

n1
00

q1
0D

14
,4
90

14
,7
87

.5
14

,2
53

14
,4
06

.4
11

1.
9

14
,2
97

14
,4
07

.7
69

.7
−1

.3
3

0.
31

5.
66

n1
00

q1
0E

11
,5
46

12
,5
02

.6
11

,4
11

11
,4
36

.4
52

.4
11

,4
19

11
,5
03

.2
69

.9
−1

.1
0

0.
07

4.
06

n1
00

q1
0F

11
,7
34

12
,0
10

.7
11

,6
44

11
,6
99

34
.5

11
,6
13

11
,7
32

.5
50

.2
−1

.0
3

−
0.
27

6.
14

n1
00

q1
0G

12
,0
49

12
,3
66

.9
12

,0
38

12
,1
20

.2
10

4.
8

11
,8
89

11
,9
72

.3
39

.9
−1

.3
3

−
1 .
24

7.
04

n1
00

q1
0H

12
,8
92

13
,1
69

.2
12

,8
18

12
,9
06

.2
12

5.
1

12
,7
42

12
,7
99

.1
30

.8
−1

.1
6

−
0.
59

6.
01

n1
00

q1
0I

14
,0
48

14
,3
90

.2
14

,0
32

14
,1
37

.2
95

.9
13

,7
99

13
,9
18

.6
63

.5
−1

.7
7

−
1.
66

5.
27

n1
00

q1
0J

13
,4
30

13
,7
37

.6
13

,2
97

13
,5
16

.8
21

6.
4

13
,2
40

13
,4
02

.9
73

.5
−1

.4
1

−
0.
43

6.
67

A
ve
ra
ge

11
1.
7

52
.8

−1
.2
6

−
0.
59

5.
90

|N
|=

20
0

n2
00

q1
0A

18
,0
13

18
,5
64

17
,6
86

17
,9
87

20
1.
9

17
,6
42

17
,7
49

.1
57

.0
−2

.0
6

−
0.
25

15
.2
4

n2
00

q1
0B

18
,1
54

18
,9
32

.5
17

,7
98

18
,0
69

.4
24

3.
1

17
,3
93

17
,8
88

.2
23

2.
5

−4
.1
9

−
2.
28

10
.7
1

n2
00

q1
0C

16
,9
69

17
,2
80

.3
16

,4
66

16
,7
51

.2
24

5.
8

16
,4
30

16
,5
63

.3
11

3 .
5

−3
.1
8

−
0.
22

14
.7
3

n2
00

q1
0D

21
,5
65

22
,2
85

.7
21

,3
06

21
,5
64

.4
20

7.
3

21
,2
44

21
,5
20

.6
15

3.
0

−1
.4
9

−
0.
29

15
.1
1

n2
00

q1
0E

19
,9
13

20
,6
43

.2
19

,2
99

19
,7
13

35
8.
9

19
,4
22

19
,5
82

.8
11

7.
8

−2
.4
7

0.
64

16
.5
1

n2
00

q1
0F

21
,9
49

22
,2
84

.6
21

,9
10

22
,1
44

24
7.
7

21
,5
36

21
,6
49

.2
10

1.
9

−1
.8
8

−
1.
71

16
.4
2

n2
00

q1
0G

17
,9
56

18
,6
27

.7
17

,7
12

17
,7
97

.8
80

.6
17

,5
64

17
,7
21

.3
10

7.
4

−2
.1
8

−
0.
84

15
.2
6

n2
00

q1
0H

21
,4
63

22
,0
84

.9
21

,2
76

21
,5
84

27
8.
4

19
,9
21

21
,2
19

.3
48

0.
9

−7
.1
8

−
6.
37

9.
48

n2
00

q1
0I

18
,6
06

19
,1
84

.8
18

,3
80

18
,5
09

.8
14

9.
6

18
,0
68

18
,4
15

.2
21

3.
9

−2
.8
9

−
1.
70

15
.6
2

n2
00

q1
0J

19
,2
73

19
,8
39

.5
18

,9
70

19
,2
74

.2
20

5.
5

18
,7
63

19
,2
24

.1
20

8.
8

−2
.6
5

−
1.
09

13
.2
7

A
ve
ra
ge

22
1.
9

17
8.
7

−3
.0
2

−
1.
41

14
.2
4

123

Annals of Operations Research (2022) 316:979–1011 1003

Ta
bl
e
8

co
nt
in
ue
d G
R
A
SP

/V
N
D
a

G
A
b

M
S-
E
L
S

B
es
t

A
vg
.

B
es
t

A
vg
.

SD
B
es
t

A
vg
.

SD
G
ap

G
R
A
SP

/V
N
D
(%

)
G
ap

G
A
(%

)
G
ap

L
B
(%

)

|N
|=

30
0

n3
00

q1
0A

23
,2
44

24
,0
52

.9
23

24
2

23
59

2
26

5.
1

22
97

3
23

17
2.
6

17
6.
5

−1
.1
7

−
1.
16

24
.1
9

n3
00

q1
0B

23
,1
87

23
,8
45

.6
22

93
4

23
02

8.
6

11
4.
9

22
77

9
23

01
1.
6

14
5.
9

−1
.7
6

−
0.
68

23
.5
3

n3
00

q1
0C

21
,8
00

22
,5
16

.6
21

92
2

22
08

3.
4

18
9.
6

21
02

9
21

77
4.
6

42
9.
8

−3
.5
4

−
4.
07

22
.1
4

n3
00

q1
0D

25
,9
71

26
,4
62

.1
25

88
3

26
28

9.
8

25
3.
5

25
44

8
25

66
4.
3

18
6.
8

−2
.0
1

−
1.
68

23
.6
0

n3
00

q1
0E

27
,4
20

27
,8
92

.1
27

36
7

27
92

3.
8

35
8.
5

26
41

2
26

99
4.
3

44
6.
4

−3
.6
8

−
3.
49

21
.3
4

n3
00

q1
0F

24
,8
52

25
,2
78

.2
24

82
6

25
05

5.
4

17
1.
8

23
50

7
24

39
1.
3

58
9.
8

−5
.4
1

−
5.
31

20
.1
1

n3
00

q1
0G

24
,3
08

24
,7
60

.5
23

86
8

24
30

0.
6

41
2.
0

23
63

2
23

90
7.
8

18
4.
5

−2
.7
8

−
0.
99

23
.1
9

n3
00

q1
0H

22
,6
84

23
,1
16

.5
21

62
5

21
96

5
27

8.
5

21
51

3
22

03
1.
6

28
9.
6

−5
.1
6

−
0.
52

22
.8
1

n3
00

q1
0I

24
,6
33

25
,4
92

.6
24

51
3

24
95

9.
2

33
0.
1

24
11

2
24

69
7.
1

39
1.
0

−2
.1
2

−
1.
64

23
.4
6

n3
00

q1
0J

23
,0
86

23
,5
30

.2
22

81
0

23
04

5
35

1.
1

22
79

6
23

09
7.
3

20
1.
4

−1
.2
6

−
0.
06

25
.7
4

A
ve
ra
ge

27
2.
5

30
4.
2

−2
.8
9

−
1.
96

23
.0
1

|N
|=

40
0

n4
00

q1
0A

31
,4
86

31
,9
12

31
,6
78

31
,9
64

.4
30

9.
9

30
,5
22

30
,9
77

.2
25

7.
7

−3
.0
6

−
3.
65

24
.2
8

n4
00

q1
0B

24
,8
83

25
,6
06

.4
24

,2
62

24
,7
52

.4
28

3.
2

24
,2
26

24
,7
11

.4
19

6.
5

−2
.6
4

−
0.
15

56
.2
0

n4
00

q1
0C

28
,9
42

29
,4
63

.2
28

,7
41

29
,2
87

.4
60

3 .
6

28
,4
05

28
,5
80

.0
12

1.
6

−1
.8
6

−
1.
17

26
.2
8

n4
00

q1
0D

24
,5
97

25
,3
08

.6
24

,5
08

24
,7
94

.8
32

0.
1

23
,6
04

24
,2
23

.8
30

6.
3

−4
.0
4

−
3.
69

55
.4
4

n4
00

q1
0E

25
,5
48

26
,1
20

25
,0
71

25
,4
73

27
6.
4

24
,4
97

25
,0
87

.4
33

0.
1

−4
.1
1

−
2.
29

26
.4
4

n4
00

q1
0F

27
,1
69

27
,7
55

.1
26

,6
81

27
,3
62

.8
41

1.
6

26
,4
09

26
,9
59

.8
31

5.
2

−2
.8
0

−
1.
02

61
.0
7

n4
00

q1
0G

24
,6
26

25
,0
88

.4
23

,8
91

24
,2
90

.4
27

3.
0

24
,0
52

24
,2
87

.6
15

9.
2

−2
.3
3

0.
67

56
.9
8

n4
00

q1
0H

26
,0
30

26
,4
68

.8
25

,3
48

25
,8
11

.4
35

1.
5

25
,2
45

25
,4
96

.9
19

4.
2

−3
.0
2

−
0.
41

26
.8
6

n4
00

q1
0I

28
,9
92

29
,5
96

.6
28

,7
14

29
,2
61

.6
48

8.
7

28
,1
72

28
,6
59

.3
27

2.
6

−2
.8
3

−
1.
89

64
. 9
1

n4
00

q1
0J

26
,2
04

26
,9
16

.2
26

,0
10

26
,4
89

.4
28

1.
6

25
,4
94

25
,7
11

.3
19

1.
9

−2
.7
1

−
1.
98

25
.9
5

A
ve
ra
ge

36
0.
0

23
4.
5

−2
.9
4

−
1.
56

42
.4
4

123

1004 Annals of Operations Research (2022) 316:979–1011

Ta
bl
e
8

co
nt
in
ue
d G
R
A
SP

/V
N
D
a

G
A
b

M
S-
E
L
S

B
es
t

A
vg
.

B
es
t

A
vg
.

SD
B
es
t

A
vg
.

SD
G
ap

G
R
A
SP

/V
N
D
(%

)
G
ap

G
A
(%

)
G
ap

L
B
(%

)

|N
|=

50
0

n5
00

q1
0A

28
,7
42

29
,3
23

.6
28

,8
57

29
,2
58

.8
47

8.
3

27
,9
23

28
,2
18

.9
26

5.
1

−2
.8
5

−
3.
24

26
.9
9

n5
00

q1
0B

27
,3
35

27
,7
11

.1
26

,6
48

27
,4
54

.8
52

5.
7

26
,3
09

26
,5
96

.6
18

1.
5

−3
.7
5

−
1.
27

26
.8
0

n5
00

q1
0C

31
,1
08

31
,6
92

.7
30

,7
01

31
,4
26

.8
60

9.
4

29
,7
87

30
,4
69

.1
33

6.
6

−4
.2
5

−
2.
98

24
.6
1

n5
00

q1
0D

30
,7
94

31
,4
28

.4
30

,9
94

31
,4
42

.2
37

6.
9

30
,0
17

30
,2
00

.1
23

1.
6

−2
.5
2

−
3.
15

26
.1
9

n5
00

q1
0E

30
,6
74

31
,3
71

.7
30

,9
05

31
,1
54

.6
23

1.
3

28
,7
31

29
,8
97

.1
49

7.
7

−6
.3
3

−
7.
03

22
.9
3

n5
00

q1
0F

28
,9
57

29
,8
12

.3
28

,8
82

29
,2
41

24
4.
9

28
,1
12

28
,5
40

.6
35

3.
1

−2
.9
2

−
2.
67

26
.2
4

n5
00

q1
0G

27
,1
98

27
,9
58

.2
27

,1
07

27
,4
73

21
2.
5

26
,5
19

26
,7
38

.8
19

7.
0

−2
.5
0

−
2.
17

27
.1
7

n5
00

q1
0H

36
,8
57

37
,3
61

.1
37

,6
26

38
,1
42

.4
25

8.
8

35
,8
55

36
,1
54

.2
22

3.
5

−2
.7
2

−
4.
71

25
.0
7

n5
00

q1
0I

31
,0
45

31
,5
36

30
,7
96

31
,0
44

.6
30

6.
0

29
,7
13

30
,2
39

.3
29

3.
7

−4
.2
9

−
3.
52

24
.7
9

n5
00

q1
0J

31
,4
12

31
,8
77

.9
31

,2
55

32
,3
10

61
7.
9

30
,0
28

30
,6
18

.1
32

8.
2

−4
.4
1

−
3.
93

25
.6
2

A
ve
ra
ge

38
6.
2

29
0.
8

−3
.6
5

−
3.
47

25
.6
4

a R
es
ul
ts
ta
ke
n
fr
om

H
er
ná
nd
ez
-P
ér
ez

et
al
.(
20

09
)

b
R
es
ul
ts
ta
ke
n
fr
om

Z
ha
o
et
al
.(
20

09
)

123

Annals of Operations Research (2022) 316:979–1011 1005

Table 9 Average solution for MS-ELS versus best solutions for GRASP and GA

100 (%) 200 (%) 300 (%) 400 (%) 500 (%)

GRASP/VND 100 100 80 100 100

GA 40 20 50 50 100

Fig. 5 Objective function value versus time (s) for instance n100q10A

Table 10 CPU times (s) comparison for large instances

|N | GRASP/VNDa GAb MS-ELS

Construction VND Total

100 8.85 21.12 0.81 27.21 28.02

200 41.76 95.23 3.54 110.75 114.29

300 117.86 212.59 9.82 279.14 288.96

400 220.4 358.22 24.97 650.01 674.98

500 391.47 570.15 39.67 927.96 967.63

aResults taken from Hernández-Pérez et al. (2009)
bResults taken from Zhao et al. (2009)

Since in Table 5, a lower and upper bound (LB and UB, respectively) are available, we
show gaps between the best solution delivered by the MS-ELS and these bounds. Thus,
columns Min. gap in Table 11 are computed as follows: Min. gapL B = Best − L B/Best
and Min. gapU B = Best − U B/Best , regarding lower and upper bound values from MILP,
respectively. Average gaps over the ten runs are also reported in columns Avg. gap. Finally,
the average CPU time required to solve each instance via MS-ELS is also showed.

Note thatMS-ELS is able to find the optimal solution for 28 out of the 35EnCicla instances.
For the remaining seven instances, in which MS-ELS do not deliver the optimal value for
the objective function, the metaheuristic finds at least the same upper bound reported by the
optimizer when MILP is solved. For instances 6, 7 and 35, the MS-ELS improves the upper
bound found via commercial solver when the MILP is solved. In these cases, column Min.
gapU B shows negative values. Lastly, let us remark that our MS-ELS is able to find minimum
gap of 0.27% on average, when solutions are compared with LB values.

123

1006 Annals of Operations Research (2022) 316:979–1011

Ta
bl
e
11

C
om

pu
ta
tio

na
lr
es
ul
ts
on

M
S-
E
L
S
fo
r
E
nC

ic
la
in
st
an
ce
s

In
st
an
ce

B
es
t

#
B
es
t

O
pt
.

A
vg
.

M
IL
P
L
B

M
IL
P
U
B

A
vg
.t
im

e
(s
)

M
in
.g
ap

L
B
(%

)
A
vg
.g

ap
(%

)
M
in
.g
ap

U
B
(%

)
A
vg
.g

ap
(%

)

1
27

37
3

*
27

75
.5
7

0.
00

1.
38

0.
00

1.
38

12
.8
5

2
27

69
4

*
27

90
.6
0

0.
00

0.
77

0.
00

0.
77

14
.6
9

3
27

81
2

*
28

07
.2
0

0.
00

0.
93

0.
00

0.
93

14
.3
0

4
27

22
7

*
27

30
.5
7

0.
00

0.
31

0.
00

0.
31

15
.2
0

5
30

74
8

*
30

80
.6
7

0.
00

0.
21

0.
00

0.
21

17
.1
2

6
33

64
1

34
15

.9
3

3.
15

4.
61

−
2.
26

−
0.
72

13
.3
2

7
30

66
3

31
00

.2
3

2.
09

3.
16

−
0.
07

1.
03

13
.0
3

8
27

46
4

*
27

62
.8
3

0.
00

0.
61

0.
00

0.
61

16
.1
2

9
28

03
5

*
28

65
.1
3

0.
00

2.
15

0.
00

2.
15

14
.0
1

10
27

60
6

*
27

66
.5
7

0.
00

0.
23

0.
00

0.
23

15
.8
6

11
28

38
6

*
28

53
.9
0

0.
00

0.
55

0.
00

0.
55

15
.1
7

12
27

23
4

*
27

34
.2
0

0.
00

0.
41

0.
00

0.
41

14
.4
1

13
26

48
7

*
26

50
.8
3

0.
00

0.
11

0.
00

0.
11

15
.7
4

14
29

36
3

*
29

42
.1
0

0.
00

0.
21

0.
00

0.
21

14
.6
6

15
26

21
5

*
26

28
.7
7

0.
00

0.
29

0.
00

0.
29

16
.1
7

16
27

93
6

*
28

06
.4
0

0.
00

0.
47

0.
00

0.
47

17
.0
7

123

Annals of Operations Research (2022) 316:979–1011 1007

Ta
bl
e
11

co
nt
in
ue
d

In
st
an
ce

B
es
t

#
B
es
t

O
pt
.

A
vg
.

M
IL
P
L
B

M
IL
P
U
B

A
vg
.t
im

e
(s
)

M
in
.g
ap

L
B
(%

)
A
vg
.g

ap
(%

)
M
in
.g
ap

U
B
(%

)
A
vg
.g

ap
(%

)

17
28

18
3

28
50

.4
3

1.
45

2.
55

0.
00

1.
11

13
.5
9

18
28

91
7

*
28

94
.3
3

0.
00

0.
11

0.
00

0.
11

14
.8
7

19
26

84
6

*
26

92
.5
3

0.
00

0.
31

0.
00

0.
31

12
.9
1

20
25

69
7

*
25

75
.9
7

0.
00

0.
27

0.
00

0.
27

16
.1
5

21
28

17
3

28
32

.0
0

0.
92

1.
45

0.
00

0.
53

14
.9
7

22
28

59
2

*
28

68
.3
0

0.
00

0.
32

0.
00

0.
32

15
.1
1

23
27

94
4

*
28

44
.9
0

0.
00

1.
76

0.
00

1.
76

14
.3
7

24
26

53
6

*
26

60
.5
7

0.
00

0.
28

0.
00

0.
28

17
.0
5

25
28

78
6

*
28

87
.6
0

0.
00

0.
33

0.
00

0.
33

14
.7
3

26
25

95
5

*
26

08
.5
3

0.
00

0.
51

0.
00

0.
51

16
.2
9

27
28

88
4

29
12

.4
0

0.
48

1.
31

0.
00

0.
83

13
.3
5

28
25

36
1

*
27

81
.1
3

0.
00

2.
56

0.
00

2.
56

19
.2
9

29
27

81
3

*
28

24
.1
0

0.
00

1.
52

0.
00

1.
52

16
.3
4

30
25

74
6

*
25

97
.8
0

0.
00

0.
90

0.
00

0.
90

17
.2
9

31
27

93
2

*
28

38
.4
7

0.
00

1.
60

0.
00

1.
60

14
.7
2

32
28

52
1

*
28

92
.5
3

0.
00

1.
40

0.
00

1.
40

14
.4
0

33
27

99
3

28
10

.3
3

0.
54

0.
94

0.
00

0.
40

14
.7
6

34
25

34
7

*
25

44
.4
0

0.
00

0.
40

0.
00

0.
40

14
.8
3

35
27

77
2

27
92

.6
7

0.
90

1.
45

−
0.
18

0.
38

15
.9
4

A
vg

.
4.
34

28
12

.0
1

0.
27

1.
04

−
0.
07

0.
70

15
.1
6

123

1008 Annals of Operations Research (2022) 316:979–1011

Table 12 Computational results for EnCicla instances with warm start on MILP

Instance MILP (with warm start) MILP Δ gap(%) Δ time (%)

UB LB Gap (%) Time (s) Gap (%) Time (s)

1 2737 2737 0.00 307.19 0.00 194.43 0.00 − 58.00

2 2769 2769 0.00 142.01 0.00 115.25 0.00 − 23.22

3 2781 2781 0.00 1859.57 0.00 1315.59 0.00 − 41.35

4 2722 2722 0.00 417.00 0.00 400.55 0.00 − 4.11

5 3074 3074 0.00 2717.02 0.00 3556.00 0.00 23.59

6 3258 3361 3.06 3600.00 5.29 3600.00 2.23 0.00

7 3006 3066 1.96 3600.00 2.15 3600.00 0.19 0.00

8 2746 2746 0.00 650.15 0.00 961.45 0.00 32.38

9 2803 2803 0.00 641.21 0.00 1731.30 0.00 62.96

10 2760 2760 0.00 53.98 0.00 69.45 0.00 22.28

11 2838 2838 0.00 920.17 0.00 944.08 0.00 2.53

12 2723 2723 0.00 28.53 0.00 47.54 0.00 39.99

13 2648 2648 0.00 14.43 0.00 19.56 0.00 26.23

14 2936 2936 0.00 1498.38 0.00 2223.79 0.00 32.62

15 2621 2621 0.00 92.69 0.00 308.82 0.00 69.99

16 2793 2793 0.00 128.85 0.00 155.91 0.00 17.36

17 2796 2818 0.78 3600.00 1.45 3600.00 0.67 0.00

18 2891 2891 0.00 1094.39 0.00 3254.71 0.00 66.38

19 2684 2684 0.00 26.65 0.00 58.03 0.00 54.08

20 2569 2569 0.00 3.82 0.00 24.20 0.00 84.21

21 2784 2817 1.17 3600.00 0.92 3600.00 − 0.25 0.00

22 2831 2860 1.01 3600.00 0.00 3443.89 − 1.01 − 4.53

23 2794 2794 0.00 43.71 0.00 75.66 0.00 42.23

24 2653 2653 0.00 19.32 0.00 35.50 0.00 45.58

25 2878 2878 0.00 1010.72 0.00 865.95 0.00 − 16.72

26 2595 2595 0.00 36.66 0.00 178.14 0.00 79.42

27 2888 2888 0.00 2470.97 0.48 3600.00 0.48 31.36

28 2536 2536 0.00 4.04 0.00 5.09 0.00 20.63

29 2781 2781 0.00 18.71 0.00 74.07 0.00 74.74

30 2574 2574 0.00 7.52 0.00 10.44 0.00 27.97

31 2793 2793 0.00 1917.14 0.00 2433.94 0.00 21.23

32 2852 2852 0.00 2246.05 0.00 819.73 0.00 − 174.00

33 2788 2799 0.39 3600.00 0.54 3600.00 0.14 0.00

34 2534 2534 0.00 3.30 0.00 4.22 0.00 21.80

35 2777 2777 0.00 3029.92 1.08 3600.00 1.08 15.84

Avg. 0.24 1228.69 0.34 1386.49 0.10 16.96

123

Annals of Operations Research (2022) 316:979–1011 1009

The reader may notice that there exist limitations if a real-scenario repositioning operation
is treated as a 1-PDTSP. These limitations are derived from two main facts to remark. Firstly,
in the static version of the BRP, stations are served during the night or while bike demands are
negligible. Secondly, in the 1-PDTSP, a single vehicle is available to visit all the locations.
Then, only small size BSS can be served since services times (load and unload bikes) and
traveling times between stations are also included in the operation for one vehicle. Our
main motivation to study EnCicla instances is not related to test the 1-PDTSP in large bike
repositioning operation instances. We aim to evaluate the performance and solution quality
of our strategy on a different set of instances in which demands, and node locations were
not generated randomly. In real scenarios, for BSS with a large number of stations, the
repositioning operation using a single vehicle would lead to non-practical problems.

When solving MILP for EnCicla instances (see Table 5) it is possible to find optimal
solutions for 28 out of 35 instances in less than 1h and an average gap of 0.34%. These
results evidence an adequate performance for the exact strategy. However, we conduct an
additional experiment for this subset of instances in order to reduce the CPU time required
and improve solution quality for instances with no optimality proof. To do so, we use the
solution delivered by MS-ELS as a warm start for our MILP. This warm start (the final
solution of MS-ELS), is read by the solver as an upper bound once the branch-and-bound
process begins. Table 12 summarizes the main results obtained with this solution strategy.
For each instance, we report the upper and lower bound from the optimizer (see columns UB
and LB, respectively). Thus, the gap is computed as (U B − L B)/U B × 100. The CPU time
required in seconds to solve the mathematical model (MS-ELS times are already reported
in Table 11) is also shown. In Table 12, we recall gap and CPU time if a warm start is not
available. We do so, in order to easily display for the reader variations on performance if
warm start is used. Column Δ time shows the variation on CPU time if a start solution is
available. This variation is computed as Δ time = (timeM I L P − timeW S)/timeM I L P × 100
where timeM I L P and timeW S are the CPU times required to solve the mathematical model
avoiding and including the initial solution, respectively. Moreover, in column Δ gap, we
show the improvement on gap between solving the MILP without a start solution and the
warm start strategy: Δgap = gapM I L P − gapW S where gapM I L P and gapW S are the gaps
reported by the optimizer when solving MILP including and skipping the initial solution,
respectively.

Results in Table 12 allow to conclude that using MS-ELS as warm start for the MILP
improves the mathematical model performance, on average. CPU time improves 16.96%
while gap decreases 0.10% over the 35 instances and 0.44% over the eight instances with a
variation on gap. Computational time may improve up to 84.21% if an upper bound is com-
puted for MILP (instance 20). Warm start also helps to find new optimality proofs (instances
27 and 35) and reduce gaps even if no optimal solution is reported within the maximum
computational times (e.g. instances 6, 7 and 17). Finally, the reader may notice that there are
cases in which warm start deteriorates computational times for MILP (e.g. instances 1, 2, 3
and 32) and also gap (instances 21 and 22).

6 Concluding remarks

In this paper, we described a MS-ELS for the 1-PDTSP. In the evolutionary local search
strategy, construction of solutions is performed via a greedy randomized algorithm, and
then are improved within a VND algorithm. This improvement phase is based on seven

123

1010 Annals of Operations Research (2022) 316:979–1011

well-known local search operators for the traveling salesman problem. We also described a
GRASP and an ILS algorithm as particular cases of MS-ELS. The obtained results allow us
to conclude that MS-ELS outperforms two of the algorithms reported in the literature to deal
with the 1-PDTSP. Moreover, for small instances, it is possible to evidence the benefits if
the evolutionary component is added to GRASP and ILS algorithms. MS-ELS is able to find
better solutions than those reported via GRASP and MS-ILS for instances with 40 and 50
nodes. MS-ELS finds optimal solutions on instances with up to 60 nodes and it also delivers
better solutions for large instances up to 500 nodes inwhich optimal solutions are not reported
so far.

Fromapractical perspective, the 1-PDTSP is a simplifying representation of the staticBRP.
Nevertheless, rebalacing decisions can be made for bike-sharing operations as 1-PDTSPs in
small and medimum size BSSs if a single vehicle is able to serve station requeriments. For
large systems, mathematical models and solution strategies for the 1-PDTSP as our MS-
ELS, can be easily integrated to a clustering strategy in order to find several routes (one
per cluster) if multiple vehicles are required. Additionally, considering relevant information
from BSS (e.g. service times at stations) is straighforward in 1-PDTSP formulations and
solution strategies. However, future research directions include an extension of this work
based on multi-vehicle contexts. Some interesting approaches are based on cluster first,
route second strategies in which several clusters must be defined before routing decisions
are made. Additionally, synchronization constraints can be included in order to deal, for
example with a heterogeneous fleet problem in which large vehicles are not allowed to visit
some locations due to mobility and parking constraints. Matheuristic approaches are also a
extension for this work and for the multi-vehicle version of the problem.

Acknowledgements The present research work has been supported by Universidad EAFIT. The authors
would like to thank Subdirección de Movilidad department from Área metropolitana del Valle de Aburrá, for
providing us with information for the instances described in Sect. 5.1.2.

References

Babin, G., Deneault, S., &Laporte, G. (2007). Improvements to the or-opt heuristic for the symmetric travelling
salesman problem. Journal of the Operational Research Society, 58(3), 402–407.

Belenguer, J. M., Benavent, E., Labadi, N., Prins, C., & Reghioui, M. (2010). Split-delivery capacitated
arc-routing problem: Lower bound and metaheuristic. Transportation Science, 44(2), 206–220.

Caggiani, L., & Ottomanelli, M. (2013). A dynamic simulation based model for optimal fleet repositioning in
bike-sharing systems. Procedia-Social and Behavioral Sciences, 87, 203–210.

Chemla, D., Meunier, F., & Calvo, R.W. (2013). Bike sharing systems: Solving the static rebalancing problem.
Discrete Optimization, 10(2), 120–146.

Contardo, C., Morency, C., & Rousseau, L. M. (2012). Balancing a dynamic public bike-sharing system (Vol.
4). Canada: Cirrelt Montreal.

Dell’Amico,M., Hadjicostantinou, E., Iori, M., &Novellani, S. (2014). The bike sharing rebalancing problem:
Mathematical formulations and benchmark instances. Omega, 45, 7–19.

Dell’Amico, M., Iori, M., Novellani, S., & Stützle, T. (2016). A destroy and repair algorithm for the bike
sharing rebalancing problem. Computers and Operations Research, 71, 149–162.

Duhamel, C., Lacomme, P., Quilliot, A., & Toussaint, H. (2011). A multi-start evolutionary local search for
the two-dimensional loading capacitated vehicle routing problem. Computers and Operations Research,
38(3), 617–640.

Feo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of global
optimization, 6(2), 109–133.

Forma, I. A., Raviv, T., & Tzur, M. (2015). A 3-step math heuristic for the static repositioning problem in
bike-sharing systems. Transportation Research Part B: Methodological, 71, 230–247.

Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European
Journal of Operational Research, 130(3), 449–467.

123

Annals of Operations Research (2022) 316:979–1011 1011

Hansen, P., Mladenović, N., Todosijević, R., & Hanafi, S. (2017). Variable neighborhood search: Basics and
variants. EURO Journal on Computational Optimization, 5(3), 423–454.

Hernández-Pérez, H., & Salazar-González, J. J. (2004a). A branch-and-cut algorithm for a traveling salesman
problem with pickup and delivery. Discrete Applied Mathematics, 145(1), 126–139.

Hernández-Pérez, H., & Salazar-González, J. J. (2004b). Heuristics for the one-commodity pickup-and-
delivery traveling salesman problem. Transportation Science, 38(2), 245–255.

Hernández-Pérez, H., Rodríguez-Martín, I., & Salazar-González, J. J. (2009). A hybridGRASP/VNDheuristic
for the one-commodity pickup-and-delivery traveling salesman problem. Computers and Operations
Research, 36(5), 1639–1645.

Ho, S. C., & Szeto, W. (2014). Solving a static repositioning problem in bike-sharing systems using iterated
tabu search. Transportation Research Part E: Logistics and Transportation Review, 69, 180–198.

Ho, S. C., & Szeto, W. (2017). A hybrid large neighborhood search for the static multi-vehicle bike-
repositioning problem. Transportation Research Part B: Methodological, 95, 340–363.

Kloimüllner, C., Papazek, P., Hu, B.&Raidl, G. R. (2014). Balancing bicycle sharing systems: An approach for
the dynamic case. In European conference on evolutionary computation in combinatorial optimization
(pp. 73–84). Berlin: Springer.

Legros, B. (2019). Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to
rebalance a bike station. European Journal of Operational Research, 272(2), 740–753.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System Technical Journal, 44(10),
2245–2269.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In F. Glover & G. Kochenberger
(Eds.), Handbook of metaheuristics (pp. 320–353). Berlin: Springer.

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman
problems. Journal of the ACM (JACM), 7(4), 326–329.

Mladenović, N., Urošević, D., Ilić, A., et al. (2012). A general variable neighborhood search for the
one-commodity pickup-and-delivery travelling salesman problem. European Journal of Operational
Research, 220(1), 270–285.

Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the logistics of regional
blood banking. Ph.D. Thesis, Department of Industrial Engineering and Management Science, North-
western University.

Palacio, J. D.&Rivera, J. C. (2019).Mixed-integer linear programmingmodels for one-commodity pickup and
delivery traveling salesman problems. InWorkshop on engineering applications (pp. 735–751). Springer.

Prins, C. (2009). AGRASP× evolutionary local search hybrid for the vehicle routing problem. InBio-inspired
algorithms for the vehicle routing problem (pp. 35–53). Springer.

Raviv, T., Tzur, M., & Forma, I. A. (2013). Static repositioning in a bike-sharing system: Models and solution
approaches. EURO Journal on Transportation and Logistics, 2(3), 187–229.

Resende, M. G., & Ribeiro, C. C. (2016). Optimization by GRASP: Greedy randomized adaptive search
procedures (1st ed.). New York: Springer.

Rivera, J. C., Afsar, H. M. & Prins, C. (2013). Multistart evolutionary local search for a disaster relief problem.
In International conference on artificial evolution (evolution artificielle) (pp. 129–141). Springer.

Shui, C., & Szeto,W. (2018). Dynamic green bike repositioning problem: a hybrid rolling horizon artificial bee
colony algorithm approach. Transportation Research Part D: Transport and Environment, 60, 119–136.

Szeto, W., Liu, Y., & Ho, S. C. (2016). Chemical reaction optimization for solving a static bike repositioning
problem. Transportation Research Part D: Transport and Environment, 47, 104–135.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., & Velasco, N. (2010). GRASP/VND and multi-start
evolutionary local search for the single truck and trailer routing problemwith satellite depots.Engineering
Applications of Artificial Intelligence, 23(5), 780–794.

Wolf, S. & Merz, P. (2007). Evolutionary local search for the super-peer selection problem and the p-hub
median problem. In International workshop on hybrid metaheuristics (pp. 1–15). Springer.

Zhang, D., Yu, C., Desai, J., Lau, H., & Srivathsan, S. (2017). A time-space network flow approach to dynamic
repositioning in bicycle sharing systems. Transportation Research Part B: Methodological, 103, 188–
207.

Zhao, F., Li, S., Sun, J., & Mei, D. (2009). Genetic algorithm for the one-commodity pickup-and-delivery
traveling salesman problem. Computers and Industrial Engineering, 56(4), 1642–1648.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	A multi-start evolutionary local search for the one-commodity pickup and delivery traveling salesman problem
	Abstract
	1 Introduction
	2 Literature review
	3 The one-commodity pickup and delivery traveling salesman problem
	4 Multi-start evolutionary local search for the 1-PDTSP
	4.1 MS-ELS framework for the 1-PDTSP
	4.1.1 Greedy randomized construction
	4.1.2 Variable neighborhood descent
	4.1.3 Perturbation

	4.2 Multi-start iterated local search
	4.3 Greedy randomized adaptive search procedure (GRASP)

	5 Computational experiments
	5.1 Data sets
	5.1.1 Benchmark instances
	5.1.2 EnCicla BSS instances

	5.2 Results on MILP
	5.3 Results on MS-ELS

	6 Concluding remarks
	Acknowledgements
	References

