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Abstract

Since the seminal papers by Giannessi, an interesting topic in vector optimization
has been the characterization of (weak) efficiency through Minty and Stampacchia type
variational inequalities. Several results have been proved to extend those known for the
scalar case. However, in order to introduce a proper definition of variational inequality,
some assumptions are usually made that may eventually be questioned.
We find two major approaches in the papers we considered, that arise when defining
generalized derivatives for vector–valued functions. First, some authors introduce set–
valued derivatives for single–valued problems, thus completely changing the setting of the
problem.

Second, when dealing with Dini–type derivatives, infinite elements may occur. The
approach to handle this problem is not uniquely defined in the literature, therefore, when
considered, the definition proposed may seem arbitrary.
Indeed these problems are strictly related to the lack of a complete order in the image
space of a vector–valued function. We use an alternative approach to study vector op-
timization, by considering a set–valued counterpart defined with values in a conlinear
space. The structure of this space allows to overcome the previous difficulties and to
obtain variational inequality characterization of weak efficiency as a straightforward ap-
plication of scalar arguments.
Keywords: Set optimization, vector optimization, variational inequalities, Dini deriva-
tive, weak efficiency
AMS Subject Classification: 49J40, 49J53 , 58C06, 58E30, 90C46, 90C48

1 Introduction

Since the seminal papers by Giannessi [16, 17] one of the issues in (convex) vector optimiza-
tion has been the use of differentiable variational inequalities to characterize weak efficient
solutions of a primitive optimization problem, see e.g. [6, 15]. Given a differentiable, vector
valued, objective function ψ : S ⊆ X → Z, where X and Z are vector spaces, and the partial
order induced by a closed, convex, pointed cone with nonempty interior C ⊂ Z, the vector
optimization problem is

minψ(x), x ∈ S (VOP)
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A weak efficient solution (VOP) is x0 ∈ S such that ψ(x0) is a weakly efficient element in the
image set ψ [X] = {ψ(x) | x ∈ S}, i.e.

∀z ∈ ψ [X] : ψ(x0) /∈ {z}+ intC.

Problem (VOP) is referred to as primitive when compared to the Minty variational inequality
problem of finding x0 ∈ S s.t.

〈ψ′(x), x− x0〉 ∈ −intC ∀x ∈ S (MVIP)

or the Stampacchia variational inequality problem of finding x0 ∈ S s.t.

〈ψ′(x0), x0 − x〉 ∈ −intC ∀x ∈ S (SVIP)

Since the variational inequalities (MVIP) and (SVIP) are defined through the derivative ψ′,
they are usually referred to as differentiable. Indeed, it is rather obvious that both varia-
tional inequalities define directional derivatives of the differentiable objective function (hence
primitive to the inequality). Therefore, the problem has been soon after extended to the
nondifferentiable case by using generalized directional derivatives to replace the inner prod-
ucts in the previous formulation. Relations between the set of weak efficient solutions of
(VOP) and those of the associated (generalized) variational inequalities have been proved in
various papers compare e.g. [1, 4, 34]. The goal to be achieved in vector optimization is to
extend known results for scalar optimization, where, starting from the convex, differentiable
case, more general results have been achieved. In [5], for instance, under mild assumptions,
solutions to a Minty-type variational inequality are proven to be global minimizers of the un-
derlaying non-convex optimization problem. However, when vector optimization is involved,
several instances has to be considered. Among others, the directional derivatives that has
been proved effective in the scalar case to tackle the non differentiable case, involve upper or
lower limits of difference quotients, that are not straightforward for vector-valued functions,
mainly due to the lack of completeness in the order induced by C. To overcome these dif-
ficulties, we have found two major approaches in the literature. One involves the definition
of set–valued derivative for single–valued problems (see e.g. [15]), thus completely changing
the image space of (VOP). The other, to copy with the possibility of non finite generalized
directional derivatives, requires to introduce arbitrary notions of infinite elements for vector
spaces (e.g. [15]), or to simply avoided the possibility, imposing finiteness of the limits (e.g.
[1]).

In this paper we restrict ourselves to the convex case, in order to better exploit the problem
of differentiability. It is left as an open question and future line of research the non convex
case and the possible generalizations of results in [5]. Along the lines of [25], where a ’fresh
look’ to vector optimization has been proposed by means of set-optimization, we propose a
suitable set-optimization problem to study weak efficiency in (VOP). This approach allows
to overcome the ambiguity of infinite elements, dealing with a fully set–valued problem, and
gaining a deeper insight on the original vector–valued problem. To gain such a result, we
side ψ with its set–valued extension, ψC , mapping S into an order complete space GM, as
in [13, 14, 20, 22, 29, 31]. Moreover, we define directional derivatives, mapping into GM,
by means of upper or lower limits of difference quotients in the image space, that can be
applied to ψC in order to prove necessary and sufficient conditions in terms of Stampacchia
and Minty variational inequalities, to characterize the set of weak solutions to (VOP), under
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convexity assumptions. Eventually, results as proved in [7, 17] follow, as a special cases,
overcoming the necessity to introduce infinite elements in Z and to study the topology of the
extended vector space Z̃, that appears in the cited papers. Corresponding results for stronger
variational inequalities and minimizer rather then weak minimizers have been studied in [8]
and [10].

The remainder of the paper is organized as follows. In Section 2, we introduce the
general setting and the basic notation. Some results for the set GM are proven for subsequent
reference. Section 3 is devoted to the concept of upper and lower Dini directional derivatives
for functions mapping onto GM. We show that these concepts generalize the original definition
for proper scalar functions, compare e.g. [18]. The final Section 4 collects our main results,
applying the general scheme to (VOP). In this final section, we restrict ourselves to the case
of convex functions in order to achieve a greater simplicity of the arguments, rather then
greatest possible generality, leaving the more general case for further research.

2 Setting

In this paper we consider locally convex Hausdorff spaces X and Z, with topological dual
Z∗, and P(Z) the power set of Z, including ∅ and Z as elements. Throughout the pa-
per we denote by UX and UZ the set of all closed, convex and balanced 0 neighbour-
hoods in X and Z respectively and by clA, coA and intA, the closed hull, the convex
hull and the topological interior of a set A, respectively. The conical hull of a set A is
coneA = {ta | a ∈ A, 0 < t}. To define a solution concept to (VOP) we introduce a pre-
order on Z by a closed convex cone C 6= Z with nonempty topological interior, intC 6= ∅.
As usual, by z1 ≤ z2 we mean z2 ∈ {z1} + C. The (negative) dual cone of C is the set
C− = {z∗ ∈ Z∗ | ∀z ∈ C : z∗(z) ≤ 0}. Since intC 6= ∅ is assumed, there exists a weak∗ com-
pact base W ∗ of C−, i.e. a convex subset with C− \ {0} = coneW ∗ with z∗, tz∗ ∈ W ∗

implying t = 1 and any net in W ∗ has a weak∗ convergent subnet, compare [2, Theorem
1.5.1]. Also, for every z ∈ Z it holds inf {w∗(z) | w∗ ∈W ∗} > −∞ and for any U ∈ UZ it
holds sup {inf {w∗(u) | u ∈ U} | w∗ ∈W ∗} < 0, compare [26, Remark 3.32].
Recall that an ordering cone is Daniell, or has the Daniell property, if and only if every decreas-
ing net which is bounded from below converges to its infimum. A convex polyhedron is the in-
tersection of finitely many closed halfspaces. Especially, a closed convex cone C is polyhedral,
if and only if there is a finite set M∗ ⊆W ∗ such that C =

⋂
m∗∈M∗ {z ∈ Z | m∗(z) ≤ 0}.In the

sequel, given any vector–valued function ψ : S ⊆ X → Z, we define its set–valued extension
ψC : X → P(Z) as the function mapping x to the upper Dedekind cut of ψ(x) with respect
to C, namely

ψC(x) =

{
{ψ(x)}+ C if x ∈ S
∅ elsewhere.

Images of ψC : X → P(Z) are closed convex sets, closed under the addition with the
ordering cone C. Therefore we restrict our focus to the set

G(Z,C) = {A ∈ P(Z)|A = cl co (A+ C)}

as a natural image space for the set-valued functions throughout this paper. Properties of
G(Z,C) have been extensively studied in recent years, compare [20, 21, 29, 32]. First we
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recall that the ordering in Z can be extended to the power set of Z (compare [19, 27] and
the references therein) by setting

A1 4 A2 ⇔ A2 + C ⊆ A1 + C

for all A1, A2 ⊆ Z. By the order relation 4 defined through ⊇ on the subset G(Z,C) the
complete lattice (G(Z,C),⊇) has been introduced, compare e.g. [22].

In this framework, it is an easy exercise to apply basic set theory to the given setting to
prove that for any subset A ⊆ G(Z,C), supremum and infimum of A in G(Z,C) are given by

inf A = cl co
⋃
A∈A

A; supA =
⋂
A∈A

A,

compare [22, Proposition 5.18].
When A = ∅, we agree that inf A = ∅ and supA = Z. Hence G(Z,C) possesses a greatest

and smallest element inf G(Z,C) = Z and supG(Z,C) = ∅. The Minkowsky addition and
multiplication with non–negative reals need to be slightly adjusted to provide operations on
G(Z,C). We define

∀A,B ∈ G(Z,C) : A⊕B = cl {a+ b ∈ Z | a ∈ A, b ∈ B} ;

∀A ∈ G(Z,C), ∀0 < t : t ·A = {ta ∈ Z | a ∈ A} ; 0 ·A = C.

Note that 0 · ∅ = 0 · Z = C and ∅ dominates the addition in the sense that A⊕ ∅ = ∅ is true
for all A ∈ G(Z,C). Moreover, A ⊕ C = A is satisfied for all A ∈ G(Z,C), thus C is the
neutral element with respect to addition.

As a consequence,

∀A ⊆ G(Z,C), ∀B ∈ G(Z,C) : B ⊕ inf A = inf {B ⊕A | A ∈ A} ,

or, equivalently, the inf–residual

A−�B = inf {M ∈ G(Z,C) | B ⊕M ⊆ A}

exists for all A,B ∈ G(Z,C). It holds (compare [22, Theorem 2.1])

A−�B = {z ∈ Z | B + {z} ⊆ A} ;

A ⊇ B ⊕ (A−�B).

Overall, the structure of GM = (G(Z,C),⊕, ·, C,⊇) is that of an order complete inf–
residuated conlinear space. Since the seminal paper [20], conlinear spaces have been throughly
studied. Residuation is well known in order theory, compare [11, 13] and has been applied to
convex analysis by Mart́ınez-Legaz, Singer and Getan, compare [14, 31]. We further remark
that residuation provides a substitute for the difference operation and becomes a powerful
tool to extend calculus to set-valued functions. For the reader convenience, we briefly recall
the definition.

Definition 2.1 A nonempty set Y together with two algebraic operations + : Y × Y → Y
and · : IR+ × Y → Y is called a conlinear space with neutral element θ provided that
(C1) (Y,+, θ) is a commutative monoid with neutral element θ: For all w1, w2, w3 ∈ Y it holds
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(i) w1 +w2 = w2 +w1 ∈ Y , (ii) w1 + (w2 +w3) = (w1 +w2) +w3, (iii)w1 + θ = θ+w1 = w1;
(C2) The operations are compatible: (i) ∀w1, w2 ∈ Y , ∀r ∈ IR+: r · (w1 + w2) = r ·w1 +r ·w2,
(ii) ∀w ∈ Y , ∀r, s ∈ IR+: s · (r · w) = (rs) ·w, (iii) ∀w ∈ Y : 1 ·w = w, (iv) ∀w ∈ Y : 0 ·w = θ.
Subsequently, these operations are referred to as addition and multiplication, respectively.
A conlinear space (Y,+, ·, θ) together with an order relation 4 on Y is called partially or-
dered, lattice ordered or order complete conlinear space provided that (Y,4) has the respective
structure and the order is compatible with addition and multiplication, that is
(C3) (i) ∀w,w1, w2 ∈ Y , w1 4 w2 imply w1 + w 4 w2 + w, and (ii) ∀w1, w2 ∈ Y , w1 4 w2,
r ∈ IR+ imply r · w1 4 r · w2.

A partially ordered conlinear space (Y,+, ·, θ,4) is called inf–residuated, when for all
w1, w2 ∈ Y the element w2−�w1 = inf {u ∈ Y | w2 4 w1 + u} exists. In this case, w2−�w1 is
called the inf–residual of w2 and w1.

A partially ordered conlinear space Y is inf–residuated, if and only if for all w ∈ Y and
all A ⊆ Y such that inf A exists, it holds (w + inf A) = inf {w + a | a ∈ A} (compare [22,
Theorem 2.1]).

References and details on structural properties of conlinear spaces and inf–residuation
can be found in [13, 20, 21, 22].

Notably, (s+ t)x = sx+ tx for s, t ∈ IR+ and x ∈ Y is not assumed on a conlinear space
and is not satisfied for G(Z,C). Thus, the power set of a conlinear space is again a conlinear
space. The lack of the second associativity law is what sets conlinear spaces apart from other
concepts, such as semilinear spaces [28, p.145] or abstract convex cones [12].

The following result can easily be extended to general inf–residuated conlinear spaces.

Lemma 2.2 Let A,B,D,E ∈ GM and 0 < t, s ∈ IR. Then

(tA⊕ sB)−� (tD ⊕ sE) ⊇ t(A−�D)⊕ s(B−�E).

Proof. Since the ordering in GM is compatible with the algebraic operations and t(A−�B) =
tA−� tB is true for all 0 < t, without loss of generality we can assume t = s = 1. As GM is
inf–residuated,

(A−�D)⊕ (B−�E) = inf
{
T ∈ GM | A ⊇ D ⊕ T

}
⊕ inf

{
S ∈ GM | B ⊇ E ⊕ S

}
= inf

{
T ⊕ inf

{
S ∈ GM | B ⊇ E ⊕ S

}
∈ GM | A ⊇ D ⊕ T

}
= inf

{
T ⊕ S ∈ GM | A ⊇ D ⊕ T, B ⊇ E ⊕ S

}
but A ⊇ D ⊕ T and B ⊇ E ⊕ S together imply

A⊕B ⊇ (D ⊕ T )⊕ (E ⊕ S) = (D ⊕ E)⊕ (T ⊕ S),

hence
A⊕B ⊇ (D ⊕ E)⊕ ((A−�D)⊕ (B−�D)),

and equivalently
(A⊕B)−� (D ⊕ E) ⊇ (A−�D)⊕ (B−�E).

�

In the sequel, we will make use of the fact that IR equipped with adequate ordering and
addition can be identified with the space G(IR, IR+).
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Example 2.3 Let us consider Z = IR, C = IR+. Then G (Z,C) = {[r,+∞) | r ∈ IR}∪{IR}∪
{∅}, and GM can be identified (with respect to the algebraic and order structures which turn
G (IR, IR+) into an ordered conlinear space and a complete lattice admitting an inf-residuation)
with IR = IR ∪ {±∞} using the ’inf-addition’ +� (see [22])

r+� s = inf {a+ b ∈ IR | r ≤ a, s ≤ b} .

The inf-residuation on IR is given by

r−� s = inf
{
t ∈ IR | r ≤ s+� t

}
for all r, s ∈ IR, compare [22] for further details.

Since each element of GM is closed and convex and A = A+C, by a separation argument
A is equal to the closed halfspaces containing it, hence

∀A ∈ GM : A =
⋂

z∗∈W ∗
{z ∈ Z | − σ(z∗|A) ≤ −z∗(z)} , (2.1)

where σ(z∗|A) = sup {z∗(z) | z ∈ A} is the support function of A at z∗.
The following equivalent formulation holds as well

∀A ∈ GM \ {∅} : A =
⋂

z∗∈W ∗,
−σ(z∗|A)∈IR

{z ∈ Z | − σ(z∗|A) ≤ −z∗(z)} , (2.2)

Applying these characterizations, scalarized counterparts of infimum and supremum of a
subset of elements in GM are provided.

Lemma 2.4 [33, Proposition 3.5(c)] Let A ⊆ GM be a set, then

inf A =
⋂

z∗∈W ∗
{z ∈ Z | inf {−σ(z∗|A) | A ∈ A} ≤ −z∗(z)}

∀z∗ ∈W ∗ : −σ(z∗| inf A) = inf {−σ(z∗|A) | A ∈ A} .

Lemma 2.5 [21, Lemma 4.14] Let A ⊆ GM be a set, then

supA =
⋂

z∗∈W ∗
{z ∈ Z | sup {−σ(z∗|A) | A ∈ A} ≤ −z∗(z)}

∀z∗ ∈W ∗ : −σ(z∗| supA) ≥ sup {−σ(z∗|A) | A ∈ A} .

Setting Ai =
{

(x1, x2) ∈ IR2 | x1 > 0, x2 ≥ (i+ 1
x1

)
}
∈ G(IR2, IR2

+) and A = {Ai | i ∈ IN},
then supA = ∅ and it is easy to see that typically the inequality in Lemma 2.5 is strict, as
z∗ = (−1, 0)T ∈ IR2

+ and

sup
i∈IN
−σ(z∗|Ai) = 0 < +∞ = −σ(z∗| supA).
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Lemma 2.6 [22, Proposition 5.20] Let A,B ∈ GM, then

A−�B =
⋂

z∗∈W ∗

{
z ∈ Z | (−σ(z∗|A))−� (−σ(z∗|B)) ≤ −z∗(z)

}
;

∀z∗ ∈W ∗ : −σ(z∗|A−�B) ≥ (−σ(z∗|A))−� (−σz∗|B) .

The recession cone of a closed convex set A ⊆ Z is the set of all directions of recession of
A,

0+A = {z ∈ Z | A+ cone {z} ⊆ A} .

The recession cone 0+A is a closed convex cone, compare [35, p.6]. By definition we set
0+∅ = ∅. If A ∈ GM \ {∅}, then 0+A = A−�A and C ⊆ 0+A are satisfied. Especially,
int (0+A) 6= ∅ and (0+A)− ⊆ C−, hence W ∗ ∩ (0+A)− is a weak∗ compact base of (0+A)−.
The recession cone of a nonempty set A ∈ GM is what is referred to as a a ’generalized zero’
in [23]; it is the neutral element in G(Z, 0+A) and in the formulations of the variational
inequalities such generalized zeros, the recession cone of images of the primitive function, will
serve to replace the zero in the scalar formulation of the corresponding inequality, compare
(4.1) and (W-MVI) below.

Remark 2.7 Let A,B ∈ GM be given with A = {a} + C, a ∈ Z. Then 0+A = C and
−σ(z∗|A) = −z∗(a) is satisfied for all z∗ ∈W ∗. Moreover, B−�A = B + {−a} is true, hence

∀z∗ ∈W ∗ : −σ(z∗|B−�A) = (−σ(z∗|B))−� (−σ (z∗|A)) .

The recession cone 0+A of any element A ∈ GM is related to the values of the support
function of A as the following two lemmas show.

Lemma 2.8 Let A ∈ GM be a nonempty set, then

0+A =
⋂

z∗∈W ∗
−σ(z∗|A)∈IR

{z ∈ Z | 0 ≤ −z∗(z)} . (2.3)

Proof. Assume z /∈ 0+A, then either A = ∅ or there exists a z∗ ∈ Z∗ such that σ(z∗|A) <
z∗(a+ z) is satisfied for some a ∈ A. As z∗(a+ z) ≤ σ(z∗|A) + z∗(z), this implies −z∗(z) < 0
and −σ(z∗|A) 6= −∞. But as C ⊆ 0+A, −σ(z∗|A) 6= −∞ implies z∗ ∈ C− \ {0}. Especially,
z is not an element of the right hand side of (2.3).

On the other hand, assume z ∈ 0+A, then A is nonempty and A + {z} ⊆ A, hence for
all z∗ ∈ Z∗ it holds σ(z∗|A+ {z}) ≤ σ(z∗|A), hence σ(z∗|A) + z∗(z) ≤ σ(z∗|A). This implies
that either −σ(z∗|A) = −∞ or 0 ≤ −z∗(z) is true for all z∗ ∈ Z∗ and thus especially for
z∗ ∈ C− \ {0}.

�

Lemma 2.9 Let A ∈ GM be a nonempty set, then{
z∗ ∈ C− \ {0} | − σ(z∗|A) ∈ IR

}
⊆ (0+A)− ⊆ C−.
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Proof. Since C ⊆ 0+A is always satisfied, the last inclusion is trivial. Now take z∗ ∈
C− \ {0} such that −σ(z∗|A) ∈ IR and z ∈ 0+A, i.e. A+ z ⊆ A. Then

−σ(z∗|A) ≤ −σ(z∗|A+ z) = −σ(z∗|A)− z∗(z)

implies 0 ≤ −z∗(z), in other words z∗ ∈ (0+A)−.
�

For future reference, we collect some results on recession cones.

Lemma 2.10 Let A,B ∈ GM, A ⊆ GM and s > 0 be given.

(a) It holds 0+(sA) = 0+(A);

(b) If both A and B are nonempty, then 0+(A+B) ⊆ 0+(A) + 0+(B);

(c) If A−�B is nonempty, then 0+(A) ⊆ 0+(A−�B);

(d) If
⋂
A∈A

A is nonempty, then
⋂
A∈A

0+(A) ⊆ 0+(
⋂
A∈A

A);

(e)
⋂
A∈A

0+(A) ⊆ 0+(cl co
⋃
A∈A

A).

Proof.

(a) z ∈ 0+(A) implies a+ t
sz ∈ A for all a ∈ A, hence sa+ tz ∈ sA is true for all a ∈ A;

(b) Let a ∈ A and b ∈ B be given, z ∈ 0+(A), then a+ b+ tz ∈ A+ B is true for all t > 0,
hence 0+(A) and likewise 0+(B) is a subset of 0+(A+B);

(c) Let k ∈ A−�B, i.e. B + k ⊆ A and z ∈ 0+(A), then B + k + tz ⊆ A is true for all t > 0,
hence 0+(A) ⊆ 0+(A−�B);

(d) Let a ∈
⋂
A∈A

A be given, z ∈
⋂
A∈A

0+(A), then for all t > 0 it holds a+ tz ∈
⋂
A∈A

A, hence

z ∈ 0+(
⋂
A∈A

A);

(e) Let a ∈ cl co
⋃
A∈A

A be given. Then to any U ∈ UZ there exist a1 ∈ A1, a2 ∈ A2 with

A1, A2 ∈ A and s ∈ [0, 1] such that sa1 + (1 − s)a2 ∈ a + U is true. Let z ∈
⋂

A∈′+A
be

given, then especially z ∈ 0+A1 and z ∈ 0+A2 is true and for any t > 0 it holds

sa1 + (1− s)a2 + tz ∈ co
⋃
A∈A

A ∩ (a+ tz + U).

This implies a+tz ∈ cl co
⋃
A∈A

A is true for all t > 0, hence by definition z ∈ 0+cl co
⋃
A∈A

A.

�

In the following proposition, we state some implications that are used in the main proofs.
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Proposition 2.11 Let A,B ∈ GM be two sets, then

(a) A * intB implies

(b) ∃z∗ ∈W ∗ : −σ(z∗|A) ≤ −σ(z∗|B) 6= −∞ which in turn implies

(c) ∀U ∈ UZ : A⊕ U * B.

Proof. As intC 6= ∅, B = ∅ is equivalent to intB = ∅. In either case, A * intB implies
A 6= ∅, hence by a separation argument the inequality −σ(z∗|A) ≤ −σ(z∗|B) 6= −∞ is
satisfied for at least one z∗ ∈W ∗.

For the second implication, consider that for any U ∈ UZ and any z∗ ∈ W ∗, −σ(z∗|A +
U) = (−σ(z∗|A)) +� (−σ(z∗|U)) and by [26, Remark 3.32] there exists a µ > 0 such that for
all w∗ ∈W ∗ it holds −σ(w∗|U) ≤ −µ. Especially, if −σ(z∗|A) ≤ −σ(z∗|B) 6= −∞, then

−σ(z∗|A+ U) ≤ −σ(z∗|A)− µ < −σ(z∗|B),

implying A+ U * B. �

The reverse implications do not hold in general, as the following example shows.

Example 2.12 (a) Let Z = IR2 and C = B = IR2
+. Setting A =

{
(x, y) ∈ Z | 1x ≤ y, 0 < x

}
,

then A ⊆ intB but −∞ = −σ((0, 1)T |A) < −σ((0, 1)T |B) is true.

(b) Let Z = IR2 and C = cl cone
{

(0, 1)T
}

. Set A =
{

(x, y) ∈ Z | x2 ≤ y
}

and

∀n ∈ IN : Bn =

{
(x, y) ∈ Z | max

{
2nx− n2 − 1

n
,−2nx− n2 − 1

n

}
≤ y
}
,

and B =
⋂
n∈IN

Bn. Then for all U ∈ UZ , A + U * B is satisfied, but −σ(z∗|B) =

−σ(z∗|A) = −∞ is satisfied for z∗ ∈ cone
{

(−1, 0)T , (0,−1)T
}

while for all other z∗ ∈
W ∗ it holds −σ(z∗|B) < −σ(z∗|A).

In the reminder of this section we recall some properties and basic results about functions
mapping into G(Z,C). First we need to point out that the conlinear space structure of
the image space allows for intuitive definitions of properties of set–valued maps, namely
straightforward extensions from scalar ones. Indeed a function f : X → GM is called convex
when

∀x1, x2 ∈ X, ∀t ∈ (0, 1) : f (tx1 + (1− t)x2) ⊇ tf (x1) +� (1− t) f (x2) .

Since ⊇ stands for ≤, this definition mocks the scalar one. Moreover, f is positively homo-
geneous (see e.g. [19]) when

∀0 < t,∀x ∈ X : f (tx) = tf (x) ,

and it is called sublinear if it is positively homogeneous and convex.
Given a function f : X → GM we denote the (effective) domain by the set dom f =

{x ∈ X | f(x) 6= supGM}. Especially, if ψ : S ⊆ X → Z and f(x) = ψC(x) for all x ∈ X, then
dom f = S, even though f is defined on the whole set X. The image set of a subset A ⊆ X
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through f is denoted by f [A] = {f(x) ∈ GM | x ∈ A} ⊆ GM. A function f : X → GM is called
proper, if dom f 6= ∅ and inf GM /∈ f [X].

We introduce the family of extended real-valued functions ϕf,z∗ : X → IR∪{±∞} defined
by

∀z∗ ∈ C− \ {0} : ϕf,z∗ (x) = inf {−z∗ (z) | z ∈ f (x)}
as the family of scalarizations for f . Some properties of f are inherited by its scalarizations
and vice versa. For instance, f is convex if and only if ϕf,z∗ is convex for each z∗ ∈ W ∗.
Moreover, by (2.1) the following representation is immediate

∀x ∈ X : f (x) =
⋂

z∗∈W ∗
{z ∈ Z | ϕf,z∗ (x) ≤ −z∗ (z)} .

To state our main results, we need a notion of lower semicontinuity of set–valued functions.
The following definition recalls some notions previously used in the literature, compare [26,
30, 35], to name but a few.

Definition 2.13 (a) Let ϕ : X → IR be a function, x0 ∈ X. Then ϕ is said to be lower
semicontinuous (l.s.c.) at x0, iff

∀r ∈ IR : r < ϕf,z∗(x0) ⇒ ∃U ∈ UX : ∀u ∈ U : r < ϕf,z∗(x0 + u).

(b) Let f : X → GM be a function, M∗ ⊆ C− \ {0}. Then f is said M∗– lower semicontiuous
(M∗–l.s.c.) at x0, iff ϕf,z∗ is l.s.c. at x0 for all z∗ ∈M∗.

(c) Let f : X → GM be a function. If

f(x) ⊇ lim inf
u→0

f(x+ u) =
⋂

U∈UX

cl co
⋃
u∈U

f(x+ u)

is satisfied, then f is lattice lower semicontinuous (lattice l.s.c.) at x.

In [26], it has been proven that if f is C−\{0}–l.s.c. at x, then it is also lattice l.s.c. at x. Since
we assume intC 6= ∅, f is C− \{0}–l.s.c. at x if and only if f is W ∗–l.s.c. at x. One can show
that if f is convex, then f is lattice l.s.c. if and only if graph f = {(x, z) | z ∈ f(x)} ⊆ X ×Z
is a closed set with respect to the product topology, see [23].

Finally, we come back to weak efficiency. Obviously x ∈ S is a weak solution to (VOP) if
and only if one of the following equivalent assumptions is satisfied.

(a) ∀u ∈ X : ψC(x) * intψC(x+ u);

(b) ∀u ∈ X, ∃z∗ ∈W ∗ : − sup
{
z∗(z)|z ∈ ψC(x)

}
≤ − sup

{
z∗(z)|z ∈ ψC(x+ u)

}
6= −∞;

(c) ∀u ∈ X, ∀U ∈ UZ : ψC(x) + U * ψC(x+ u).

Remark 2.14 We note that, while

− sup
{
z∗(z)|z ∈ ψC(x)

}
=

{
−z∗ψ(x) ∈ IR if x ∈ S
+∞ elsewhere,

is true for ψ : S ⊆ X → Z, considering a more general set–valued function f : X → P(Z), it
may happen that f (x) = Z or − sup {z∗(z)|z ∈ f(x)} = −∞ occurs.
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When considering any set–valued function f : X → GM and the related (weak) optimiza-
tion problem

min f(x), x ∈ X. (P)

a point x0 ∈ dom f is called a weak minimizer of f when

f(x) = Z ∨ ∀x ∈ X ∀U ∈ UZ : f(x0)⊕ U * f(x). (W-Min)

This notion of solution can be related to others known in the literature. In [24, Definition
2.4 (1)], weak l–minimal elements of a set A ⊆ P(Z) \ {∅} are those elements A ∈ A, such
that for all B ∈ A, A ⊆ B + intC implies B ⊆ A + intC. If A ⊆ GM, intC 6= ∅ implies
intB = B + intC for all B ∈ GM. Hence A is a weak l–minimal element of A ⊆ GM, if for all
B ∈ A, A ⊆ intB implies B ⊆ intA. Thus, either A = Z, or A is weak l–minimal in A ⊆ GM,
if and only if there exists no B ∈ A such that A ⊆ intB. Therefore for any x0 ∈ dom f ,
f(x0) is a weak l–minimal element of f [X] if and only if

f(x) = Z ∨ ∀x ∈ X : f(x0) * int f(x). (W-l-Min)

Applying Proposition 2.11 it easily follows that (W-l-Min) implies

f(x0) = Z ∨ ∀x ∈ X ∃z∗ ∈W ∗ : ϕf,z∗(x0) ≤ ϕf,z∗(x) 6= −∞, (Sc-W-Min)

which in turn implies (W-Min). While in general none of these implications can be reverted,
we have some advantages when f = ψC is the GM–valued extension of a vector–valued function
ψ : S ⊆ X → Z.

Proposition 2.15 Let ψ : S ⊆ X → Z be a vector–valued function. For f = ψC : X → GM
and x0 ∈ S, the properties (W-Min), (W-l-Min) and (Sc-W-Min) are equivalent and satisfied
if and only if x0 is a weakly efficient solution of (VOP).

Proof. We only need to proof that (W-Min) implies (W-l-Min). When f = ψC and x0
is a weak minimizer, then by definition for all x ∈ X and all U ∈ UZ it holds

ψ (x0) + C + U 6⊆ ψ (x) + C,

as in this case f(x0) = Z is not possible. Assume for some x ∈ S it holds

ψ(x0) + C ⊆ int (ψ(x) + C) = ψ(x) + intC,

or equivalently
(ψ(x0)− ψ(x)) + C ⊆ intC,

implying (ψ(x0)− ψ(x)) ∈ intC. But this is true, if and only if it exists an U ∈ UZ such that

ψ(x0) + U ⊆ ψ(x) + intC,

again implying
ψ(x0) + C + U ⊆ ψ(x) + C + intC ⊆ ψ(x) + C,

a contradiction. �
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Remark 2.16 For notational simplicity we set the restriction of a set–valued function f :
X → GM to a segment with end points x0, x ∈ X as fx0,x : IR→ GM, given by

fx0,x(t) =

{
f(x0 + t(x− x0)), if t ∈ [0, 1] ;

∅, elsewhere

and the restriction of a scalar–valued function ϕ : X → IR to the same segment by

ϕx0,x(t) =

{
ϕ(x0 + t(x− x0)), if t ∈ [0, 1] ;

+∞, elsewhere.

Setting xt = x0 + t(x− x0) for all t ∈ IR, the scalarization of the restricted function fx0,x is
equal to the restriction of the scalarization of f for all z∗ ∈ C− \ {0}.

If f is convex, x0, xt ∈ dom f for some t ∈ (0, 1), then (ϕf,z∗)x0,x is lower semicontinuous

on (0, t) for all z∗ ∈ C− \ {0}, hence fx0,x is C− \ {0}–l.s.c. on (0, t).
Notice that in general, if f is C− \ {0}–l.s.c. in x0, then fx0,x is C− \ {0}–l.s.c. in 0 for

all x ∈ X, while the implication is not revertible.

3 Dini Directional Derivatives

As we anticipated in Section 2, inf–residuated and order complete structure allows for an
immediate extension of the definitions of both the difference quotient and upper and lower
limits. Thus we have the basic ingredients to define the notion of upper and lower Dini
directional derivatives.

Definition 3.1 Let f : X → GM and x, u ∈ X. The upper and lower Dini directional
derivative of f at x in direction u are given by

f↑(x, u) = lim sup
t↓0

1

t

(
f(x+ tu)−� f(x)

)
= inf

0<s
sup
0<t≤s

1

t

(
f(x+ tu)−� f(x)

)
;

f↓(x, u) = lim inf
t↓0

1

t

(
f(x+ tu)−� f(x)

)
= sup

0<s
inf

0<t≤s

1

t

(
f(x+ tu)−� f(x)

)
.

If both derivatives coincide, then f ′(x, u) = f↑(x, u) = f↓(x, u) is the Dini directional deriva-
tive of f at x in direction u.

It is easy to see that f↓(x, u) ⊇ f↑(x, u) is always satisfied, hence f ′(x, u) exists if and only
if f↑(x, u) ⊇ f↓(x, u).

The previous definition does not require f to be proper or x ∈ dom f . Clearly, if f(x) =
supGM = ∅, then f ′(x, u) = inf GM = Z is satisfied for all u ∈ X.

If 0 < s is given, then f↑(x, su) = sf↑(x, u) and f↓(x, su) = sf↓(x, u), that is, both
derivatives are positively homogeneous in the second component. We also remark that, when
u = 0, 1

t (f(x+ t0)−� f(x)) ⊇ 1
t ·C, so both derivatives in direction 0 may not be equal to C,

the neutral element in GM. This explains the choice not to include the assumption f(0) = C
in the the definition of positive homogeneity in the previous section.
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Remark 3.2 When Z = IR, Definition 3.1 provides an extension to the classical notion of
Dini derivatives for scalar functions (see [18] and the references therein), without requiring
neither x ∈ dom f nor f to be proper. However, since a vector space needs not to be order
complete, the same definition may not be applied to vector–valued functions ψ : S ⊆ X → Z.
For this reason, different Dini derivatives for vector–valued functions have been defined,
compare e.g. [1, 15].

Example 3.3 Let ϕ : X → IR be an extended scalar function. If ϕ(x + tu) ∈ IR is satisfied
for all t ∈ [0, t0] for a given 0 < t0, then the difference quotient is real

1

t
(ϕ (x+ tu)− ϕ (x)) ∈ IR.

Hence in this case the Dini derivatives coincide with the standard definition in the literature,
compare [18].
If x /∈ domϕ, then ϕ(x + tu)−�ϕ(x) = −∞ for all t > 0, so ϕ′(x, u) = −∞. On the
other hand, if ϕ(x) = −∞, then ϕ(x + tu)−�ϕ(x) = −∞, whenever ϕ(x + tu) = −∞ and
ϕ(x + tu)−�ϕ(x) = +∞, else. The value of the derivatives in this case depends on the
behaviour of ϕ in a proximity of x.

Proposition 3.4 Let f : X → GM be convex, then the Dini derivative exists for all u ∈ X
and it holds

f ′(x, u) = inf
t↓0

1

t

(
f(x+ tu)−� f(x)

)
.

Moreover, f ′ : X ×X → GM is sublinear in its second component.

Proof. Let 0 < s be given, then for all 0 < t ≤ s, there exists a 0 < h ≤ 1 such
that hs + (1 − h)0 = t and by convexity of f , f(x + tu) = f(h(x + su) + (1 − h)x) ⊇
hf(x + su)+� (1 − h)f(x). By assumption, hf(x)+� (1 − h)f(x) ⊇ f(x) is satisfied for all
h ∈ [0, 1]. Applying Lemma 2.2 we can prove

1

t

(
f(x+ tu)−� f(x)

)
⊇ 1

hs

((
hf(x+ su)+� (1− h)f(x)

)
−�
(
hf(x)+� (1− h)f(x)

))
⊇ 1

hs

((
hf(x+ su)−� hf(x)

)
+�
(
(1− h)f(x)−� (1− h)f(x)

))
=

1

hs

(
h
(
f(x+ su)−� f(x)

)
+� (1− h)

(
f(x)−� f(x)

))
⊇ 1

hs

(
h
(
f(x+ su)−� f(x)

)
+� θ
)

=
1

s

(
f(x+ su)−� f(x)

)
.

Hence especially

f↑(x, u) ⊇ inf
0<s

1

s

(
f(x+ su)−� f(x)

)
⊇ f↓(x, u)

is proven.
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Finally, let s ∈ (0, 1) and 0 < t ≤ r be given, u1, u2 ∈ X. Then

f ′(x, su1 + (1− s)u2) ⊇
1

t

(
f(x+ t(su1 + (1− s)u2))−� f(x)

)
⊇ 1

t

(
s
(
f(x+ tu1)−� f(x)

)
+� (1− s)

(
f(x+ tu2)−� f(x)

))
⊇ s1

t

(
f(x+ tu1)−� f(x)

)
+� (1− s)1

r

(
f(x+ ru2)−� f(x)

)
But as this holds for all 0 < t ≤ r,

f ′(x, su1 + (1− s)u2) ⊇ sf ′(x, u1)+� (1− s)
1

r

(
f(x+ ru2)−� f(x)

)
and ultimately

f ′(x, su1 + (1− s)u2) ⊇ sf ′(x, u1)+� (1− s)f ′(x, u2)

are true. As f ′(x, ·) : X → GM is convex and positively homogeneous, it is sublinear.
�

In the proof of Proposition 3.4, it is shown that under the given assumptions the difference
quotient is decreasing.

Lemma 3.5 Let f : X → GM be a convex function, x, u ∈ X. Then

f ′(x, u) = cl
⋃

0<t≤s

1

t

(
f(x+ tu)−� f(x)

)
is true for all s > 0. Moreover it holds

int f ′(x, u) =
⋃

0<t≤s
int

1

t

(
f(x+ tu)−� f(x)

)
.

Proof. Proposition 3.4 proves f ′(x, u) = inf
0<t≤s

1
t (f(x+ tu)−� f(x)). Moreover, since the

difference quotient is decreasing as t converges to 0,
⋃

0<t≤s

1
t (f(x+ tu)−� f(x)) is convex for

all 0 < s, the first statement is true.
As for the second statement, let z ∈ int f ′(x, u) be given. Especially there exists z̄ ∈ intC

and U ∈ UZ such that z − z̄ ∈ int f ′(x0, x) and z̄ + U ⊆ intC. Therefore, there exists 0 < t
such that (z − z̄) ∈ 1

t (f(x+ tu)−� f(x)) and

z − z̄ + z̄ + U ⊆ 1

t

(
f(x+ tu)−� f(x)

)
+ intC ⊆ 1

t

(
f(x+ tu)−� f(x)

)
,

implying z + U ⊆ 1
t (f(x+ tu)−� f(x)), or equivalently z ∈ int 1

t (f(x+ tu)−� f(x)). �

Proposition 3.6 Let f : X → GM be given, x, u ∈ X. If f↑(x, u) 6= ∅ (f↓(x, u) 6= ∅),
then 0+f(x) ⊆ 0+f↑(x, u) (0+f(x) ⊆ 0+f↓(x, u)) is true. If additionally x ∈ dom f , then
f ′(x, 0) = 0+f(x).
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Proof. First we consider the case x ∈ dom f and u = 0, then

f ′(x, 0) = f(x)−� f(x) = 0+f(x).

For arbitrary u ∈ X, let f↑(x, u) 6= ∅ be satisfied. By Lemma 2.10, it holds

0+(f↑(x, u)) ⊇ cl co
⋃
s>0

⋂
t∈(0,s)

0+(f(x+ tu)−� f(x)) ⊇ cl co 0+(f(x))

and as f(x) is itself closed and convex, this implies 0+(f↑(x, u)) ⊇ 0+(f(x)). By the same
argument,

0+(f↓(x, u)) ⊇
⋂
s>0

cl co
⋃

t∈(0,s)

0+(f(x+ tu)−� f(x)) ⊇ 0+(f(x))

holds true.
�

Especially, if f is convex, x ∈ dom f , then f ′(x, ·) : X → GM is a sublinear function
with f ′(x, 0) = 0+f(x), the neutral element in a subspace of the image space. However,
0+f(x) ⊇ C and in general, the inequality will be strict.

We are also interested in comparing the derivative of a given function with the set of the
derivatives of its scalarization. The following inequalities holds true.

Proposition 3.7 Let f : X → GM be given, x, u ∈ X and z∗ ∈W ∗. Then

f↑(x, u) ⊆
⋂

z∗∈W ∗

{
z ∈ Z | ϕ↑f,z∗(x, u) ≤ −z∗(z)

}
;

ϕ↑f,z∗(x, u) ≤ −σ(z∗|f↑(x, u))

and

f↓(x, u) ⊆
⋂

z∗∈W ∗

{
z ∈ Z | ϕ↓f,z∗(x, u) ≤ −z∗(z)

}
;

ϕ↓f,z∗(x, u) ≤ −σ(z∗|f↓(x, u)).

Proof. Combining the scalarization formula (2.1) with Lemmas 2.4 to 2.6, it holds

ϕ↑f,z∗(x, u) = inf
0<s

sup
0<t≤s

1

t

(
ϕf,z∗(x+ tu)−�ϕf,z∗(x)

)
≤ inf

0<s
sup
0<t≤s

−σ(z∗|1
t

(
f(x+ tu)−� f(x)

)
)

≤ inf
0<s
−σ(z∗|

⋂
0<t≤s

1

t

(
f(x+ tu)−� f(x)

)
)

= −σ(z∗|cl co
⋃
0<s

⋂
0<t≤s

1

t

(
f(x+ tu)−� f(x)

)
)

= −σ(z∗|f↑(x, u)).
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This immediately implies

f↑(x, u) ⊆
⋂

z∗∈W ∗

{
z ∈ Z | ϕ↑f,z∗(x, u) ≤ −z∗(z)

}
.

The same chain of arguments proves both inequalities for the lower derivative as well. �

In general, neither of the inequalities in Proposition 3.7 is satisfied with equality, as the
following counterexample shows. That is, the operations of taking the derivative and taking
the scalarization of a function do not commute.

Example 3.8 Let f : IR→ GM(IR, {0}) be defined as f(x) =
[
−
√

1− x2,
√

1− x2
]
, whenever

x ∈ [−1, 1] and f(x) = ∅, else. Then f ′(0) + z * f(t) for any t 6= 0, so f ′(0, u) = ∅. On the
other hand, ϕf,s(x) = −|s| ·

√
1− x2 for all s 6= 0 and thus ϕ′f,s(x, u) = −|s| · x√

1−x2 ·u for all

x ∈ (−1, 1), especially ϕ′f,s(0, u) = 0 for all s 6= 0. Hence,

∅ = f ′(0, u) (
⋂

z∗∈({0})−\{0}

f ′z∗(0, u) = {0}

Example 3.9 Let ψ : S ⊆ X → Z be a C–convex function with set–valued extension f =
ψC : X → GM, then for all x, x+ u ∈ S and all t ∈ (0, 1) it holds

1

t

(
f(x+ tu)−� f(x)

)
=

1

t
(ψ(x+ tu)− ψ(x)) + C.

If x /∈ S, then f ′(x, u) = Z while if x ∈ S and x + tu /∈ S is satisfied for all 0 < t, then
f ′(x, u) = ∅. Thus especially for x ∈ S,

f ′(x, u) = cl
⋃
0<t,

x+tu∈S

(
1

t
(ψ(x+ tu)− ψ(x)) + C

)
.

is satisfied. However the infimum of 1
t (ψ(x+ tu)− ψ(x)) needs not exist, even if Z is lattice

ordered.

Proposition 3.7 and the previous examples motivate to consider as a special case when
equality is satisfied in either of the inequalities stated in Proposition 3.7. In the sequel we
refer to

∀z∗ ∈ B : ϕ↓f,z∗(x, u) = −σ(z∗|f↓(x, u)) (SR)

as strong regularity assumption, in contrast to the weak regularity assumption

f↓(x, u) =
⋂
z∗∈B

{
z ∈ Z | ϕ↓f,z∗(x, u) ≤ −z∗(z)

}
. (WR)

The following proposition states that if f = ψC , then it satisfies (WR). Additionally
assuming convexity allows to prove (SR). It is left as an open question to identify necessary
and sufficient conditions for either regularity assumption to be satisfied by a set–valued
function f : X → GM.
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Proposition 3.10 Let ψ : S ⊆ X → Z be given, x, u ∈ X and f = ψC : X → GM its
set–valued extension. Then property (WR) is satisfied for the lower derivative of f ,

f↓(x, u) =
⋂
z∗∈B

{
z ∈ Z | ϕ↓f,z∗(x, u) ≤ −z∗(z)

}
.

If additionally ψ is C–convex, i.e. for all x1, x2 ∈ X and all t ∈ [0, 1] it holds

tψ(x1) + (1− t)ψ(x2) ⊆ ψ(tx1 + (1− t)x2) + C

then property (SR) is true.

Proof. Recall that for all z∗ ∈W ∗ it holds ϕf,z∗(x) = −z∗ψ(x) for all x ∈ S and ϕf,z∗(x) =
+∞, elsewhere. Hence especially

−σ(z∗|1
t

(
f(x+ tu)−� f(x)

)
) =

1

t

(
ϕf,z∗(x+ tu)−�ϕf,z∗(x)

)
is satisfied for all 0 < t, in contrast to the inequality in the case of general set–valued functions.
Applying Lemma 2.4, then

−σ(z∗| inf
0<t

1

t

(
f(x+ tu)−� f(x)

)
) = inf

0<t

1

t

(
ϕf,z∗(x+ tu)−�ϕf,z∗(x)

)
,

proving the equality in the convex case. Also, additionally applying Lemma 2.5, it holds

f↓(x, u) =
⋂
0<s

⋂
z∗∈W ∗

{
z ∈ Z | inf

0<t≤s

1

t

(
ϕf,z∗(x+ tu)−�ϕf,z∗(x)

)
≤ −z∗

}
=

⋂
z∗∈W ∗

{
z ∈ Z | sup

0<s
inf

0<t≤s

1

t

(
ϕf,z∗(x+ tu)−�ϕf,z∗(x)

)
≤ −z∗

}
.

�

Example 3.11 (a) Let Z = IR3 be ordered by the ordering cone C, the closed conical hull
of co

{
(−1, 1, 1)T , (−1, 1,−1)T , (1, 1,−1)T , (1, 1, 1)T

}
. Let ψ : S ⊆ X → Z be given with

ψ(0) = (0, 0, 0)T and

ψ(t) =

{
(−t, 0, 0)T , if ∃n ∈ IN : 1

2n ≤ t <
1

2n−1 ;

(t, 0, 0)T , if ∃n ∈ IN : 1
2n+1 ≤ t <

1
2n .

Then (ψC)↑(0, 1) = co
{

(0, 1, 1)T , (0, 1,−1)T
}
⊕ C. For z∗ = (0,−1, 0) ∈ C− \ {0}, it

holds ϕ′
(ψC),z∗

(0, 1) = 0 < −σ(z∗|(ψC)↑(0, 1)) = 1.

(b) Let Z = IR2 be ordered by the natural ordering cone C = IR2
+ and let a vector function

ψ : S ⊆ X → Z be given such that ψ(x) = (0, 0)T and ψ(t) = (1, 0)T is satisfied for all
t > 0. Then (ψC)′(0, 1) = ∅, hence −σ(z∗|(ψC)′(0, 1)) = +∞, while for z∗ = (0,−1)T ∈
C− \ {0} it holds ϕ′

(ψC),z∗
(0, 1) = 0.
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In Proposition 3.10, we basically apply set–valued arguments to obtain a definition of Dini
derivatives for vector–valued functions. In [1, 15], similar derivatives are introduced using
vector–valued arguments.
Although a careful comparison among the different types of derivatives is beyond the limits of
the paper, we conclude this section with a sneak view of some results that easily hold. First,
we stress once more that Definition 3.1 allows to introduce a Dini type derivative without
defining infinite elements in a vector space.

To compare our approach to that in [1], let C be a polyhedral cone, M∗ ⊆ W ∗ a finite
set such that coM∗ = W ∗. If ψ : S ⊆ X → Z is a C–convex function, f(x) = ψC(x) for all

x ∈ X, then z̄ ∈
⋂

m∗∈M∗

{
z ∈ Z | ϕ′f,m∗(x, u)

}
implies that for all t > 0 there exists εt > 0

such that

∀m∗ ∈M∗ :
1

t

(
ϕf,m∗(x+ tu)−�ϕf,m∗(x)

)
≤ −m∗(z̄) + εt.

As any z∗ ∈W ∗ can be represented as a convex combination of elements ofM∗, and ϕf,z∗(x) =
−z∗ψ(x) for all x ∈ S = domϕf,z∗ , this implies

∀z∗ ∈W ∗ :
1

t

(
ϕf,z∗(x+ tu)−�ϕf,z∗(x)

)
≤ −z∗(z̄) + εt,

hence z̄ ∈
⋂

z∗∈W ∗

{
z ∈ Z | ϕ′f,z∗(x, u) ≤ −z∗(z)

}
. Therefore in this case,

(ψC)′(x, u) =
⋂

m∗∈M∗

{
z ∈ Z | ϕ′f,m∗(x, u)

}
is satisfied, as (ψC)′(x, u) ⊆

⋂
m∗∈M∗

{
z ∈ Z | ϕ′f,m∗(x, u)

}
is always true. Especially, if Z = IRn

is ordered by the Pareto ordering cone, then the derivative of the set–valued extension of a
C–convex function ψ : S ⊆ X → Z is characterized by the derivatives of the finite number of
scalarizations with respect to the negative unit vectors in Z∗. This approach has been chosen
in [1], where the upper and lower Dini derivative of a function ψ : S ⊆ X → IRn is defined

through the vector (ϕ↓
ψC ,−e∗1

(x, u), ..., ϕ↓
ψC ,−e∗n

(x, u))T ∈ IR
n
, e∗i denoting the i-th unit vectors

in IRn.
In [15], a set–valued Dini derivative for vector–valued functions ψ : S ⊆ X → Z has been

defined, using the Painelevé Kuratowski limit of the difference quotient. The original image
space is extended by infinite elements z∞ = lim

t→∞
tz for all z ∈ Z \ {0}. Roughly speaking,

z∞ is an element of ψ′(x, u), if for any U ∈ UZ and any s > 0, for any t0 > 0 there exists
a t ∈ (0, t0) such that 1

t (ψ(x+ u)−�ψ(x)) ∈ sz + cone ({z} + U) and z ∈ ψ′(x, u), if z is a
cluster point of the net of difference quotients. It can be proven that if z ∈ ψ′(x, u), then
z ∈ (ψC)↓(x, u), while the situation is somewhat more complicated for infinite elements. If
z∞ ∈ ψ′(x, u) and z ∈ −intC, then (ψC)↓(x, u) = Z. With Stampacchia type variational
inequalities in mind, the following chain of implications can be proven.

If ψ′(x, u)∩ (−C ∪ {z∞ | z ∈ −C \ {0}}) = ∅, then 0 /∈ (ψC)↓(x, u), which in turn implies
ψ′(x, u) ∩ (−intC ∪ {z∞ | z ∈ intC}) = ∅.
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4 Main Results

To characterize weak minimizers of (VOP) as solutions to (weak) variational inequalities of
Stampacchia or Minty type, we first provide extensions of such inequalities for a general,
convex, set–valued function f : X → GM and study their relations with solutions of (P).

We begin by considering the following variational inequality of Stampacchia type.

Definition 4.1 Let f : X → GM be a convex function and f ′ : X × X → GM its Dini
derivative. Then x0 is a solution to the weak Stampacchia variational inequality, iff

f(x0) = Z ∨ ∀x ∈ X : 0 /∈ int f ′(x0, x− x0). (W-SVI)

Remark 4.2 An element x0 ∈ dom f solves (W-SVI) if and only if

f(x0) = Z ∨ ∀x ∈ X : 0+f(x0) * int f ′(x0, x− x0) (4.1)

is satisfied.
Indeed, 0 /∈ int f ′(x0, x − x0) implies 0+f(x0) * int f ′(x0, x − x0), as x0 ∈ dom f and

hence 0 ∈ 0+f(x0) is satisfied. On the other hand 0 ∈ int f ′(x0, x − x0) implies 0+f(x0) ⊆
0+f ′(x0, x− x0) (compare Proposition 3.6) and thus 0+f(x0) ⊆ int f ′(x0, x− x0).

According to the ordering relation introduced in GM, (4.1) can be easily read as an inequal-
ity in the conlinear space that perfectly matches the form of scalar variational inequalities.

Applying scalarization, we can prove relations between the set–valued inequality (W-SVI)
the family of variational inequalities corresponding to the scalarizations of the given set–
valued function.

Lemma 4.3 If x0 ∈ dom f satisfies

f(x0) = Z ∨ ∀x ∈ X ∃z∗ ∈W ∗ : 0 ≤ ϕ′f,z∗(x0, x− x0) (Sc-W-SVI)

then it solves (W-SVI). If additionally the regularity assumption (SR) is satisfied, the reverse
implication is true, too.

Proof. By a separation argument, 0 /∈ int f ′(x0, x − x0) is satisfied, if and only if there
exists a z∗ ∈W ∗ such that 0 ≤ −σ(z∗|f ′(x0, x−x0)). But as by Proposition 3.7 the inequality
ϕ′f,z∗(x0, x − x0) ≤ −σ(z∗|f ′(x0, x − x0)) is always satisfied, the first implication is proven.
On the other hand if (SR) is satisfied, then ϕ′f,z∗(x0, x− x0) = −σ(z∗|f ′(x0, x− x0)) is true
for all z∗ ∈W ∗ and thus the reverse implication holds true. �

Under convexity assumptions, (W-SVI) is a necessary and sufficient condition for (W-Min)
to hold.

Theorem 4.4 Let f : X → GM be a convex function, x0 ∈ dom f . Then x0 is a weak
minimizer of f if and only if it solves the Stampacchia variational inequality (W-SVI).
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Proof. An element x0 is a weak minimizer of f , iff f(x0) ⊕ U * f(x) is satisfied for all
U ∈ UZ and all x ∈ X. In other words, if and only if 0 /∈ int (f(x)−� f(x0)) is satisfied.
Obviously, if this is not satisfied, then there exists x ∈ X such that 0 ∈ int (f(x)−� f(x0)) ⊆
int f ′(x0, x− x0). Hence, if x0 solves the variational inequality, then x0 is a weak minimizer
of f . On the other hand, if x0 is a weak minimizer of f , then especially for all x ∈ X and all
t > 0 it holds 0 /∈ int 1

t (f(x0 + t(x− x0))−� f(x0)), hence by Lemma 3.5

0 /∈
⋃
t>0

int
1

t

(
f(x0 + t(x− x0))−� f(x0)

)
= int f ′(x0, x− x0).

�

In Section 2 we introduced also a scalarization of (W-Min), thorough condition (Sc-W-Min).
The following results proves that, under some regularity condition, we have also equivalence
between the scalarized optimization problem and variational inequalities.

Theorem 4.5 Let f : X → GM be a convex function, x0 ∈ dom f . If x0 solves the scalarized
Stampacchia variational inequality (Sc-W-SVI), then it satisfies (Sc-W-Min).

Proof. Since each scalarization ϕf,z∗ : X → IR is convex, 0 ≤ ϕ′f,z∗(x0, x − x0) im-
plies ϕf,z∗(x0) ≤ ϕf,z∗(x) 6= −∞. Hence if x0 solves the Stampacchia variational inequality
(Sc-W-SVI), then for all x ∈ X there exists a z∗ ∈W ∗ such that ϕf,z∗(x0) ≤ ϕf,z∗(x) 6= −∞
is satisfied and therefore x0 satisfies (Sc-W-Min).

�

The reverse implication needs further assumptions to hold.

Theorem 4.6 Let f : X → GM be a convex function, x0 ∈ dom f . If x0 satisfies (Sc-W-Min)
and any of the following conditions is satisfied:

(a) The regularity assumption (SR) is satisfied;

(b) It exists a finite subset M∗ ⊆W ∗ such that

∀x ∈ X ∃z∗ ∈M∗ : ϕf,z∗(x0) ≤ ϕf,z∗(x) 6= −∞;

then x0 solves (Sc-W-SVI)

Proof.

(a) If x0 satisfies (Sc-W-Min) and f(x0) 6= Z, then it satisfies (W-Min) and, by Theorem 4.4,
this implies that x0 solves the Stampacchia variational inequality (W-SVI). If additionally
the regularity assumption (SR) is satisfied, then by Lemma 4.3 this implies that x0 solves
(Sc-W-SVI).

(b) Let x ∈ X be given. Then for all t ∈ (0, 1) there exists a z∗ ∈M∗ such that ϕf,z∗(x0) ≤
ϕf,z∗(x0 + t(x − x0)) 6= −∞. As M∗ is finite, there exists a z∗0 ∈ M∗ and a sequence
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tn ↓ 0 in (0, 1) such that ϕf,z∗0 (x0) ≤ ϕf,z∗0 (x0 + tn(x − x0)) 6= −∞, hence by convexity
either [x0, x] ∩ dom f = {x0} and ϕ′f,z∗(x0, x− x0) = +∞, or ϕf,z∗0 (x0) 6= −∞, and

0 ≤ inf
n∈IN

1

tn

(
ϕf,z∗(x0 + tn(x− x0))−�ϕf,z∗(x0)

)
and as tn converges to 0, this implies 0 ≤ ϕ′f,z∗(x0, x− x0), hence x0 solves (Sc-W-SVI).

�

The study of variational inequalities related to optimization problems is classically divided
into two parts. The first one relates to Stampacchia-type inequalities (see eg. [16]) and
the second to Minty-type (see eg. [17]). Indeed, the differentiable Minty–type variational
inequality, roughly speaking, evaluates the directional derivatives at some point x along the
direction u = x0 − x. This motivates the following definition.

Definition 4.7 Let f : X → GM be a convex function and f ′ : X ×X → GM its directional
derivative. Then x0 is said to be a solution to the weak Minty variational inequality, iff
x0 ∈ dom f and

f(x0) = Z ∨ ∀x ∈ X : f ′(x, x0 − x) * int 0+f(x). (W-MVI)

As for Definition 4.1, we can provide a scalarization of (W-MVI) in the following lemma.
However, a complete equivalence holds only for set-valued extensions of convex vector-valued
function.

Lemma 4.8 If x0 ∈ dom f satisfies property (W-MVI), then it also satisfies

f(x0) = Z ∨ ∀x ∈ X ∃z∗ ∈W ∗ : ϕf,z∗(x) 6= −∞∧ ϕ′f,z∗(x, x0 − x) ≤ 0. (Sc-W-MVI)

Moreover, let f(x) = ψC(x) be true for some convex ψ : S ⊆ X → Z for all x ∈ X. If C
is either Daniell, or C ∩ (k + (−C)) is compact for all k ∈ intC, then then for all x ∈ S it
exists k0 ∈ intC such that f ′(x, x0 − x) = k0 + C and equivalence holds true.

Proof. By a separation argument, if f ′(x, x0 − x) * int 0+f(x) is satisfied then either
f(x) = ∅ and f ′(x, u) = Z, in which case the statement is satisfied, or there exist z∗ ∈ W ∗
and z ∈ f ′(x, x0 − x) such that ϕf,z∗(x) 6= −∞ and −σ(z∗|f ′(x, x0 − x)) ≤ −z∗(z) ≤ 0,
compare Lemma 2.8. By Proposition 3.7 the inequality ϕ′f,z∗(x, x0−x) ≤ −σ(z∗|f ′(x, x0−x))
is always satisfied, hence (W-MVI) implies (Sc-W-MVI).

On the other hand if f is the set–valued extension of a convex vector–valued function,
then by Proposition 3.10 ϕ′f,z∗(x, x0 − x) = −σ(z∗|f ′(x, x0 − x)) is true for all z∗ ∈ W ∗ and
applying Lemma 2.8 and Proposition 2.11 proves that (Sc-W-MVI) implies

f(x0) = Z ∨ ∀x ∈ X ∀U ∈ UZ : f ′(x, x0 − x)⊕ U * 0+f(x). (4.2)

It is left to prove that under the given assumptions this implies (W-MVI). If x /∈ dom f or
0+f ′(x, x0−x) 6= C, then there is nothing to prove. Hence, let x ∈ S and 0+f ′(x, x0−x) = C.
If f ′(x, x0 − x) ⊆ intC, then kt = 1

t (ψ(x+ t(x0 − x))− ψ(x)) is a monotonly decreasing net
in intC as t converges towards 0 and bounded from below by 0 ∈ Z.
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If C is Daniell, this implies the differential quotient converges towards k0 = inf
t>0

kt ∈ C
and f ′(x, x0 − x) = k0 + C. Hence especially there exists a neighbourhood U ∈ U(0) with
k0 + U ⊆ C, proving the equivalence.

If C ∩ (k+ (−C)) is compact for all k ∈ intC, then this is especially true for all kt, t > 0
and there exists a convergent subnet kti → k0 with k0 ∈ C and k0 is a lower bound of {kt}t>0.
Hence, f ′(x, x0 − x) ⊆ k0 + C and k0 ∈ cl

⋃
t>0

kt + C proves f ′(x, x0 − x) = k0 + C ⊆ intC.

Hence especially there exists a neighbourhood U ∈ U(0) with k0 + U ⊆ C, proving the
equivalence.

�

Notably, as C is closed, if Z is finite dimensional, then C ∩ (k + (−C)) is closed and
bounded, hence compact for all k ∈ Z.

In the general setting of problem (P), to prove the variational inequality characterization
of weak minimizers, we need to apply a scalarization argument. Therefore we begin to study
the scalarized version of the Minty inequality. Indeed, the next propositions show that the
solution set to (Sc-W-Min) is always a subset of the solutions of (Sc-W-MVI), while equality
is satisfied under additional regularity assumptions.

Theorem 4.9 Let f : X → GM be a convex function, x0 ∈ dom f . If x0 satisfies (Sc-W-Min)
then it solves (Sc-W-MVI).

Proof. If x0 satisfies (Sc-W-Min) then either f(x0) = Z, or for all x ∈ X there exists a
z∗ ∈W ∗ such that ϕf,z∗(x) 6= −∞ and

ϕ′f,z∗(x, x0 − x) ≤ ϕf,z∗(x0)−�ϕf,z∗(x) ≤ 0.

�

Theorem 4.10 Let f : X → GM be a convex function and x0 ∈ dom f solves (Sc-W-MVI).
If it exists a finite subset M∗ ⊆W ∗ such that fx0,x is M∗-l.s.c. in 0 ∈ dom fx0,x for all x ∈ X
and

∀x ∈ X ∃z∗ ∈M∗ : ϕf,z∗(x) 6= −∞∧ ϕ′f,z∗(x, x0 − x) ≤ 0;

then x0 satisfies (Sc-W-Min).

Proof. Let x ∈ X be given and xt = x0 + t(x− x0). By convexity of f , if ϕf,z∗(xt) 6= −∞
and ϕ′f,z∗(xt, x0 − xt) ≤ 0, then ϕf,z∗(x) 6= −∞ and ϕ′f,z∗(x, x0 − x) ≤ 0 is satisfied and
ϕf,z∗(xt) ≤ ϕf,z∗(x). As by assumption the set M∗ is finite, for any x ∈ X there exists a
z∗ ∈ M∗ such that for all t > 0 it holds ϕf,z∗(xt) 6= −∞ and ϕ′f,z∗(xt, x0 − xt) ≤ 0. As
(ϕf,z∗)x0,x is convex and l.s.c. in 0, this implies ϕf,z∗(x0) = inf

t∈[0,1]
ϕf,z∗(xt) ≤ ϕf,z∗(x).

�

Based on the previous results we can prove equivalence between solutions of Minty type
inequality and weak minimizers at least when f = ψC .
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Corollary 4.11 Let f : X → GM be a convex function.

(a) If f satisfies the regualarity assumption given in Theorem 4.10 for x0 ∈ dom f and x0
solves (W-MVI), then it also satisfies (W-Min).

(b) If Z has finite dimension or C is Daniell, then if f(x) = ψC(x) for all x ∈ X and
x0 ∈ dom f satisfies (W-Min), then x0 also solves (W-MVI).

Proof. The implication in (a) is proven in Lemma 4.8, Theorem 4.10 and Proposition 2.11,
while the implication in (b) is a corollary of Proposition 2.15, Theorem 4.9 and Lemma 4.8. �

Another regularity assumption than that in Theorem 4.10 can be found in [9].
The following example shows that we cannot obtain a result similar to Theorem 4.4 for

Minty type variational inequality.

Example 4.12 Consider Z = IR2, ordered by the natural ordering cone C = IR2
+ and X =

IR. The function f : X → GM given by

f(t) =

{{
(z1, z2)

T ∈ Z | − t ≤ z1, z2, t ≤ z1 + z2
}
, if t ∈ (0, 1) ;

∅, elsewhere

is convex and C− \ {0}–l.s.c. everywhere. Then f ′(1,−1) = (1, 1)T + C, hence there exists
t ∈ dom f and U ∈ UZ such that f ′(t, 0 − t) + U ⊆ 0+f(t) = C and obviously f ′(t, 0 − t) ⊆
int 0+f(t). However, f(0) * int f(t) for all t ∈ IR, hence f(0) is a weak-l-minimal element
of f [X] and thus especially satisfies (W-Min) and (Sc-W-Min), but the Minty variational
inequality (W-MVI) is not satisfied.

To summarize, we have proved the following chain of characterization of weak minimizers
of problem (P) for convex functions through set-valued variational inequalities.
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Finally, when additionally f = ψC we can simplify the previous results to gain a charac-
terization of weak efficiency in vector optimization.
In this case, the scalarized variational inequality (Sc-W-SVI) is equivalent to its set–valued
counterpart without further assumptions. If the ordering cone is Daniell, then the same is
true for (Sc-W-MVI) and (W-MVI).

Proposition 4.13 Let ψ : S ⊆ X → Z be a C–convex function, x0 ∈ S and f(x) = ψC(x)
for all x ∈ X. Then

(a) the Stampacchia variational inequalities of type (W-SVI) and (Sc-W-SVI) are equivalent;

(b) the Minty variational inequalities of type (W-MVI) and (Sc-W-MVI) are equivalent, if
Z has finite dimension or C is Daniell.

Proof.

(a) Assuming f(x) = ψC(x) for all x ∈ X is true, the regularity assumption (SR) is satisfied
and equivalence follows from Lemma 4.3.

(b) This is Lemma 4.8. �

Finally, we provide the classical chain of relations for weak efficiency (compare e.g. [17, 7])
for C–convex functions as corollaries of the results proved in the general case.

The following corollaries state the implications in the scheme.

Corollary 4.14 Let ψ : S ⊆ X → Z be a C–convex function and f(x) = ψC(x) for all
x ∈ X. Then x0 ∈ S solves (W-SVI) if and only if x0 is a weakly efficient solution of the
vector optimization problem (VOP).

Corollary 4.15 Let ψ : S ⊆ X → Z be a C–convex function and f(x) = ψC(x) for all
x ∈ X.

(a) If x0 ∈ S is a weakly efficient solution of the vector optimization problem (VOP), then
x0 solves (Sc-W-MVI);

(b) If additionally fx0,x is C−\{0}–l.s.c in 0 for all x ∈ X, C is polyhedral, then x0 ∈ S solves
(Sc-W-MVI) if and only if x0 is a weakly efficient solution of the vector optimization
problem (VOP).

Proof.
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(a) If x0 ∈ S is a weakly efficient solution of the vector optimization problem (VOP), then
x0 is a weak minimizer of f this implies (W-MVI)

(b) The reverse implication follows from Theorem 4.10, as ϕf,z∗(x0) = −z∗(ψ(x0)) ∈ IR is
true. �

If additionally either Z has finite dimension or C is Daniell, then the weak scalarized
Minty variational inequality can be replaced by (W-MVI), compare Lemma 4.8.

The main advantage of these results, compared with those in [6, 15] is that ψ(x0) ∈
wEffψ [X] is characterized using a Minty or Stampacchia type variational inequality for the
epigraphical extension of ψ saving us the effort of introducing ”infinite elements” of Z to
cope with possible unboundedness of the differential quotient 1

t (ψ(x0 + tu)− ψ(x0)).
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[25] F. Heyde and A. Löhne. Solution concepts in vector optimization. a fresh look at an old
story. Optimization, 60(12):1421–1440, 2011.

26



[26] F. Heyde and C. Schrage. Continuity of set–valued maps and a fundamental duality
formula for set–valued optimization. Journal of Mathematical Analysis and Applications,
397(2):772–784, 2013.

[27] D. Kuroiwa. The natural criteria in set–valued optimization. RIMS Kokyuroku 1031,
85–90, 1998.

[28] Kutateladze, S.S. and Rubinov, A.M.. Minkowski duality and its applications. Russian
Mathematical Surveys 27 (3), 137191, 1972
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[35] C. Zălinescu. Convex Analysis in General Vector Spaces. World Scientific Publishing
Co. Inc., River Edge, NJ, 2002.

27


	1 Introduction
	2 Setting
	3 Dini Directional Derivatives
	4 Main Results
	Bibliography

