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Abstract
The evolving field of disruptive technologies has recently gained significant interest in 
various industries, including agriculture. The fourth industrial revolution has reshaped the 
context of agricultural technology (AgriTech) with applications of artificial intelligence 
(AI) and a strong focus on data-driven analytical techniques. Motivated by the advances 
in AgriTech for agrarian operations, the study presents a state-of-the-art review of the 
research advances which are, evolving in a fast pace over the last decades (due to the dis-
ruptive potential of the technological context). Following a systematic literature approach, 
we develop a categorisation of the various types of AgriTech, as well as the associated AI-
driven techniques which form the continuously shifting definition of AgriTech. The contri-
bution primarily draws on the conceptualisation and awareness about AI-driven AgriTech 
context relevant to the agricultural operations for smart, efficient, and sustainable farming. 
The study provides a single normative reference for the definition, context and future direc-
tions of the field for further research towards the operational context of AgriTech. Our find-
ings indicate that AgriTech research and the disruptive potential of AI in the agricultural 
sector are still in infancy in Operations Research. Through the systematic review, we also 
intend to inform a wide range of agricultural stakeholders (farmers, agripreneurs, scholars 
and practitioners) and to provide research agenda for a growing field with multiple potenti-
alities for the future of the agricultural operations.
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1  Introduction

The last decade has gone through a data-driven evolution in multiple sectors and fields. 
The fourth industrial revolution (Industry 4.0) is vast and spans from the rise of social 
media to smart devices resulting in the development of ground-breaking innovative dig-
ital operating models, leading to radical changes to the lifestyle and the daily lives of 
individuals (George et al. 2014; Knippenberg et al. 2015; Mikalef and Pateli 2017). The 
data-driven evolution and emergent technologies can generate different kinds of value; 
value in terms of business and societal goals (Günther et al. 2017; Mikalef et al. 2020), 
but also can lead to the creation of sustainable societies (Pappas et  al. 2018). In the 
agricultural field, unlike most of the technological disruptions, the transition from con-
ventional operating models of farming to modern but also to smart data-driven ones 
come out of necessity to feed the ever-growing population coupled with environmen-
tal triggers (Yahya 2018). As highlighted in the United Nations Sustainable Develop-
ment Goals (UN SDGs), food security is a key goal that should bring to the table seri-
ous intent and innovative solutions as it is highlighted through subsequent UN reports 
(2017a, 2017b, 2017c), and recent studies (Sharif and Irani 2017).

The current farming methods and models of conventional agricultural processes, 
where the focus was on mass production of food, led to an unsustainable solution both 
for the environment and for the individuals and societies on a long-term basis (Tripic-
chio et al. 2015). While farming more land will not be a viable solution anymore, alter-
native ways should be followed in order to increase the yield and crops (Wolfert et al. 
2017). Therefore, the arising requirements for a redesign of the farming production 
call for innovative sustainability-oriented smart solutions applied in the farming fields 
(Fountas et al. 2015; Lampridi et al. 2019). Within this context, disruptive technologies 
have a critical role to play, through the development of breakthrough ideas for precise 
agricultural processes, data analytics and AI techniques (Miranda et  al. 2019). Feed-
ing the future population relies highly on a sustainable agricultural system; therefore an 
optimal solution for the sustainability could be viewed through the applications of smart 
and precision techniques in agrarian operations (for the problems associated with the 
arable land and environmental efficiency).

The flourishing field of Agricultural Technology (AgriTech) and the interest in relevant 
investments come as no surprise, as well as a growing enthusiasm from practitioners and 
researchers from various fields, with regards to the AI application of AgriTech in the asso-
ciated operations and practices (Boshkoska et  al. 2019; Carayannis et  al. 2018; Lezoche 
et  al. 2020). The field of Agriculture has immerse potential to benefit from the techno-
logical disruption (Kaloxylos et al. 2012; Nukala et al. 2016; Wolfert et al. 2017), through 
the use of technologies as the Internet of Things (IoT), sensors, smart devices, Big Data 
Analytics, as well as Machine Learning (ML) and a vast range of techniques of Artificial 
Intelligence (AI). Recent studies like those of Boshoska et al. (2019) present decision sup-
port systems for knowledge dissemination across agri-food value chains and also Lezoche 
et al (2020) with an initial scoping survey around the term of Agriculture 4.0, identify the 
lack of research from an operational perspective and open the way forward for more studies 
around data-driven technological advances in the fields of agricultural operations. There is 
still a wide scope in the operations field to explore the processes, practices and the overall 
disruption of the agricultural sector due to the AI applications of AgriTech. The review 
of the extant literature will define the term of AgriTech, explore the context, develop a 
research agenda, and act as a normative reference for future research.
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Initially, in this study, the focus is on exploring the AgriTech evolution throughout the 
last decade, in order to provide a definition of the term “AgriTech” associated with the 
recent advances of the field and linked to AI-driven applications. Secondly, through a syn-
thesis of 205 studies, the review identifies the various types and techniques applied in the 
agricultural operations relevant to the context of “technology for the farming operations”. 
Following this direction, through the pool of studies identified and analysed for the system-
atic review, the paper iteratively distinguishes the Artificial Intelligence (AI) techniques for 
the farm management cycle and subsequent implications for the Agricultural Operations. 
Finally, the study provides a review of the implications of AI-driven AgriTech in Agricul-
tural Operations, potential applications for the Agricultural Sector and the multiple oppor-
tunities and challenges for research and practice.

2 � The evolution of agricultural technology (AgriTech)

The introduction of technology in the agricultural processes originates back to the cen-
turies since the Agricultural Age (ancient years—appx 9000 BC), and dates to the Infor-
mation Age and the “Big Data” Evolution which recently expands to various sectors. The 
need for technology in the farming field stems from the strong motivation to feed the world 
population; which evolved the agricultural area through the years to facilitate modern prac-
tices and processes to meet the ever-growing needs (Corallo et al. 2018). Applications of 
technology in farming are attempting to enhance the agrarian operations through sophis-
ticated information and communication developments (Tsolakis, Bechtsis, and Bochtis 
2019; Tsolakis, Bechtsis, and Srai 2019). Aspects of the agricultural industry such as 
crop cultivation management and control, quality management, transport of food products 
and food preservation may all be enhanced by taking into account their domain-specific 
requirements and translating them into the respective functional design, development and 
applications by ICT experts (Barmpounakis et al. 2015; Miranda et al. 2019).

Agricultural Technology (AgriTech) is not defined always in the same way; the current 
definition is strongly associated with AI applications and refers to the progression from 
farming to smart farming, which flourished in three periods (Miranda et al. 2019; Wolfert 
et al. 2017). Initially, the Agricultural Evolution which has started from ancient years to 
approximately 1920s and infers mostly to the pre-industrial agriculture. Characteristics and 
advancements of this period include the labour intensity and essential subsistence farming 
in the form of small-scale farms (the agricultural activities as a focus on feeding the farm-
er’s family). As technology evolved rapidly during the Industrial Evolution, the model of 
industrial and massive agriculture started to arise, following a high industrialised pattern. 
The robust industrialisation of agriculture was transformed with technological advances 
like tractors, harvesters, chemical fertilisers and seeds, and developed the model of the 
large-scale commercial farms. However, the industrial model of farming was proven unsus-
tainable (Darnhofer et al. 2009; Miranda et al. 2019; Rigby et al. 2001; Wezel et al. 2009, 
2014). Recently, new practices were introduced based on data-intensive disruptive ways 
for solving agricultural problems (Miranda et al. 2019; Wolfert et al. 2017) introducing an 
unpreceded AI-driven approach for Agricultural Technology (AgriTech). Table 1 illustrates 
the progression stages from conventional farming to modern and smart farming.

The Information and Data Evolution, as well as Artificial Intelligence (AI) techniques, 
have entered the smart and precision agriculture, which is characterised by the exploitation 
of disruptive technologies (e.g. multi-source data, sensors on farm equipment and plants, 
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satellite images and weather tracking, monitoring of water and fertiliser use) for precision 
farming. The model of data-intensive agriculture is applied in both large-scale and small-
scale farms and transforms the way they operate while providing multiple forms of value 
for the farmer, consumer, as well as the society (Miranda et al. 2019).

The rapid evolution of AgriTech motivates the study herein, as the technology was 
always a part of the agricultural practices, even in pre-industrial farming operations. How-
ever, the AI applications of disruptive technologies in the agrarian fields and the modern 
smart farming operating models, present an AI-driven approach of AgriTech that should 
be further discussed. The study initially has a view to developing a categorisation of the 
various types and techniques which define the term “AgriTech” within the studies of the 
last decade and explore a future research agenda for consideration. Numerous studies dis-
parately describe AgriTech, mainly from a solution-driven perspective (more than 200 as 
identified from the systematic review). However, there are only a few of recent AgriTech 
studies to provide a clear link of AI-applications with a business and operations focus. So 
far, AgriTech research refers solely on the technical aspects and not the operational back-
ground surrounding the applications as a single source of normative text that culminates 
historical works and, outlines foresight research. Therefore, a systematic review and syn-
thesis of the extant literature will act as a single reference source to motivate new insights 
of AI-driven AgriTech research and applications from an operations perspective.

3 � Research methodology

The study follows a systematic review research design to synthesise and present a com-
prehensive, structured analysis of the normative literature in the scope of “Technology for 
Agricultural Operations”. Thus, the research builds on the Systematic Literature Review 
(SLR) methodology proposed by Tranfield et  al. (2003) to review the extant field. The 
evidence-based reviews as proposed by Tranfield et al. (2003) is a successfully employed 
methodology for a systematic and state-of-the-art comprehensive way to review the litera-
ture in the various fields of management ( see, e.g. Adams et al. 2015; Colicchia and Strozzi 
2012; Delbufalo 2012; Kitchenham et al. 2009; Sivarajah et al. 2017; Spanaki et al. 2018). 
According to Tranfield et al. (2003), undertaking a literature review to provide the manifes-
tation for enlightening policy and practice in any discipline, is a key research objective for 
the academic and practitioner communities. This further adds to the significance of such 
literature review papers that may further result in aiding evidence-based decision-making 
in future research endeavours. The study followed the methodology of evidence-based 
reviews (Denyer and Tranfield 2009; Tranfield et al. 2003) which differs from the conven-
tional narrative reviews through a systematic, structured and explicit approach in the selec-
tion of the studies in Agricultural Technology and Operations area (at every stage in this 
paper), employing rigorous and reproducible methods of evaluation.

Seminal literature on SLR process (e.g. Delbufalo 2012; Kitchenham et al. 2009, 2012) 
assert that an SLR is designed to (a) support in generating a sense of joint effort, impor-
tance and openness between the research studies in order to impede unproductive recur-
rence of effort, (b) support in connecting potential research to the queries and issues that 
have been modelled by previous research studies (e.g. most of those paper reviewed as 
part of this research exercise) and (c) develop the approaches employed to assemble and 
synthesise preceding pragmatic evidence. In the interest of parsimony, a meticulous though 
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not exhaustive SLR was carried out in this paper by following the three-stage approach 
(Tranfield et al. 2003):

•	 Stage 1—Planning the review process—defining the research aim and objectives; pre-
paring the proposal and developing the review protocol;

•	 Stage 2—Conducting the Review Process—Identifying, selecting, evaluating, and syn-
thesising the pertinent research studies; and

•	 Stage 3—Reporting and Dissemination of the Overall Research Results—Descriptive 
reporting of results and thematic reporting of journal articles.

Following the three-stage approach, the next Sect. 3.1 summarises the definition of the 
aim and objectives, including the proposal and Sect.  3.2. summarises the review proto-
col. Sect. 3.3 describes the Scopus database searching process of the relevant articles. An 
overview of the selected studies is presented in 3.4, where the study demographics are dis-
cussed in brief to provide an initial view of the field. Finally, the reporting and dissemina-
tion the overall results will be discussed in the following sections of the paper.

3.1 � Defining the research aim and objectives and preparing the proposal

As highlighted in the introduction section, this research aims to present a comprehensive 
systematic review of the Agricultural Technology (AgriTech) applications and techniques 
theorised/proposed/employed AI for Agricultural Operations to provide a holistic under-
standing of this landscape with the objective of making sound investment decisions. In 
doing so, the paper’s focus is on systematically analysing and synthesising the extant 
research published in Agricultural Operations area. More specifically, the authors seek to 
answer the following three principal questions:

•	 Question 1: What are the various disruptive technologies presented for the operations 
management processes of the Agricultural sector over the last decades?

•	 Question 2: What are the distinct types and categories of Agricultural Technology 
(AgriTech)?

•	 Question 3: What is the role of artificial intelligence (AI) for AgriTech applications in 
agricultural operations?

3.2 � The review protocol

The review protocol was developed around three questions as mentioned in a previous sec-
tion (i.e. Q1, Q2 and Q3) by following the prescriptive three-staged approach. Essentially, 
the responses to the question Q3 results from the review of the 205 papers for Q1 and Q2. 
The review process ensured that the seven conditions highlighted in Table 2 were strictly 
adhered to ensure that an effective and reproducible database examining process highlight-
ing the inclusion and exclusion criteria for each of the review process.

3.3 � Scopus database searching process and results

The use of databases step of the review protocol reports on the steps and activities of 
the database searching process and demonstrates the outcomes both descriptively and 
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synthetically by searching for relevant articles through the Scopus database (Delbufalo 
2012). In order to identify the relevant articles through the Scopus Database, the follow-
ing keywords search criteria was used following the conditions 2, 3 and 4 of Table 2. 
This process resulted in 9951 publications, of which 543 were left as relevant after fil-
tering according to the barring conditions.

A title and abstract analysis were thereafter conducted on the extracted articles based 
on the conditions 5 and 6. At the end of the process, 205 articles were considered for 
further investigation (Table 3). Finally, the authors followed the quality criteria matrix 
as adopted by Pittaway et al. (2004). In this step, the selected 205 articles (Appendix II 
-included studies) were further scanned through the criteria highlighted in conditions 6 
and 7. Besides extracting data related to Q1, Q2 and Q3, the descriptive investigation 
also produced graphs and tables designed to contain the yearly publications, geographi-
cal regions of where studies were conducted, the journal outlets and the various AI-
driven solutions published in AgriTech research for all 205 articles (Appendix I- publi-
cation demographics).

Table 2   The review protocol

Review conditions Description

Use of database Scopus database was used to undertake the search for published articles 
in the area of Technology for Agricultural Operations. The rationale for 
using this database was based on its extensive coverage of journal articles 
almost reaching 22,800 titles from over 5000 international publishers, 
including coverage of approximately 21,950 peer-reviewed journals on 
different areas

Quality control Inclusion Criteria: To ensure quality, the review considered only published 
peer-reviewed journal (including articles in press) by selecting the ‘Arti-
cle’ option from the Document Type option

Exclusion Criteria: Grey literature and other document types such as confer-
ence articles, trade publications, books series, book or book chapter, and 
editorials were omitted

Publication year Inclusion Criteria: The selected articles were published only between 1984 
and early 2020, in order to cover the whole transition from AgriTech to 
AI-driven AgriTech approaches

Publication Language Inclusion Criteria: Only articles published in the English language were 
considered

Exclusion Criteria Articles published in any other languages were not 
considered

Types of publication articles Inclusion Criteria The selected articles were only empirical-based (i.e. case-
study, survey, results, analytical, etc.), models and conceptual papers

Exclusion Criteria: Review papers were excluded; however, these studies 
were used in Stage 1 (to define the aim and objectives and the proposal)

Article suitability review Inclusion Criteria: Article suitability process was conducted by ensuring 
that selected articles contained several key phrases throughout the paper, 
including, title, abstract, keywords and thereafter the whole paper. This 
process focuses on those section(s) that explicitly referred to Agricultural 
Technology and Operations

Finalising articles Finalising article suitability for the review was done by reading the full 
remaining article for essential research perspective and manuscripts 
withempirical data. This process ensured the alignment between the 
selected articles and the research review objectives
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3.4 � Demographics of the selected studies

The included research studies of the last decades with a focus on AgriTech, present an 
evolving rise of AI-driven solutions for the agricultural stakeholders. The potential value 
of any AgriTech interventions can appear through the application of multiple advanced 
solutions that could be applied in the farming field. Agricultural stakeholders can apply the 
AgriTech solutions for processing a large volume of multi-form data and information into 
meaningful knowledge. There are multiple opportunities nowadays for agricultural stake-
holders to apply AgriTech interventions for everyday farming operations, however, in order 
these interventions to be successful, advanced solutions are required to transform the farm-
ing operations in AI-driven approaches. The review of the studies in the field indicated that 
the top three most applied solutions in the AgriTech research (Fig. 1) consist of AI-driven 
solutions and they are namely, Machine Learning (ML), Modelling and Simulation, and 
Data Analytics.

The key journal outlets where the studies in the field of AgriTech and AI have been pub-
lished appear in Fig. 2.

Many studies have been published in the Computers and Electronics in Agriculture 
outlet (C = 48). Unsurprisingly, the findings highlight the majority of the AI-driven 
AgriTech studies have been published in technical and agriculture-based outlets, such as 

Table 3   The search process and 
results

Search process

Electronic database search 9840 articles
Hand search 76 articles
Citation search 35 articles
Total 9951 articles
Title and abstract review excluded (n = 9408)
Total 543 articles
Full text analysis excluded (n = 338)
Total 205 journal articles

Fig. 1   Number and type of AI-driven AgriTech studies
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Biosystems Engineering and Remote Sensing of Environment. There is clear evidence to 
highlight the need for more research to be published in business, operations and infor-
mation technology and systems management journals (except a Special Issue in Com-
puters in Industry, where 5 studies were published in 2019) that allows exploring organ-
isational and business efficiency-related issues of applying AgriTech.

The yearly studies published in the field of AI-driven AgriTech (Fig. 2) highlight an 
evolving interest in the field, with the most significant number of publications recorded 
for the year 2019 (with C = 40, 19.6%), followed by years 2017–18 (with C = 28 and 
27, 13%).With fewer publications (i.e. below the 10 mark) were recorded from 2015 
and a range of one and two articles between 1984 and 2000. Figure 1 below illustrates 
a rise in the number of journal articles in the AgriTech and AI research area from 2015 
onwards until 2019, which is still evolving even in early 2020.

An initial screening of the identified studies revealed three interesting directions of 
the AgriTech Research:

1.	 The AgriTech studies are presenting AI-driven solutions from a technical perspective. 
However, there is a low number of conceptual and empirical studies (Fig. 1 -methodo-
logical approaches in the studies).

2.	 The AgriTech research is flourishing in mostly engineering and biosciences fields, with 
a lack of research in the field of operations and management (Fig. 2- publication outlets)

3.	 There is an evolving interest in AgriTech research in the last decade (Fig. 3 -yearly 
publications).

The demographics of the identified studies show the awareness and importance of 
this area among the academic community, practitioners, and even governments world-
wide. Despite the increase in the number of articles on disruptive technologies for Agri-
culture, AI-driven AgriTech research is still in infancy, especially in terms of conceptual 
but also empirical studies. The research domain requires further in-depth conceptual as 
well as empirical studies, especially case study and survey-based research to explain 

Fig. 2   Journals publishing AgriTech research
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the implication and the potential social and industrial change and transformation (from 
business and operations perspectives).

4 � Synthesis of the AgriTech operations and applications

The systematic review revealed various types of AgriTech in the analysed studies 
based on the representative aspects of the disruptive technology which is applied and 
described in each study. The identification of the types of AgriTech was built initially 
from the framework of Tsolakis et  al. (2019), where three categories were defined 
according to the aspects of the specific technological application (physical, cyber, and 
cyber-physical). However, the research synthesis provided here expands the typology 
of Tsolakis et  al. (2019) by scoping the studies on those on AI-driven AgriTech and 
defining the application type by operation area and the operational challenges that each 
category could support.

The categorisation in application types by operation area supports future directions for 
Operations Management by expanding the scope to an operations-oriented and process-
based approach. The physical AgriTech application types are defined as the disruptive tech-
nologies for agricultural operations which can replace not only human labour tasks (e.g. 
robotic machinery, irrigation systems etc.) but also present physical features as the “hard-
ware” of AgriTech, mostly this category refers to machinery and tools for agricultural tasks. 
On the other hand, the cyber aspects of AgriTech appear as applications which are mostly 
platform-software related and have a strong link with data analytics and decision support 
systems for agricultural operations whereas there is also a third category which is the com-
bination of the two previous, the cyber-physical application area, which refers mostly to 
smart agricultural machinery and/ or robotics for the farm which include the hardware and 
the software for data analysis and predictive/prescriptive tailored decision-making, advice 
and recommendations. The cyber-physical applications have been developed within the last 
decade and follow the design and production patterns of the fourth industrial revolution 
applying disruptive technologies and AI techniques in the farming field.

Fig. 3   Publications per year in the field of AgriTech
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4.1 � AgriTech physical aspects per operation type and application area

The Physical AgriTech aspects can be categorised and related to water operations, aer-
ial operations, land operations and a combination of them based on their relevance with 
plants or animals (livestock). Table 4 shows the different AgriTech physical applications 
per operation type, application area and the associated challenges of the agricultural sector 
addressed by each solution.

Our analysis revealed the existence of only one study for physical aerial operations 
and the non-existence of water-based physical operations. In terms of studies providing 
context around the physical aerial operations, Radcliffe et al. (2018) focussed on the tree 
canopy and sky of an orchard row to be used by an autonomous vehicle platform to navi-
gate through the centre of the tree rows. The research studies on AgriTech physical aspects 
mostly consider land operations on both plant and animal applications and their implemen-
tation using a variety of AgriTech tools and techniques such as satellite imagery, surveil-
lance systems, agricultural machinery, field training, robots, and algorithms for machine 
learning and data processing.

In terms of the physical applications on plants, Kussul et al. (2017) used architecture to 
classify land cover and crop types through multi-temporal multi-source satellite imagery 
(deep learning). Studies as the one of Ennouri et al. (2019) discussed the importance of 
remote sensing technology, while the study of Seelan et al. (2003) is extending the con-
text of remote sensing and implements a learning community approach for educating farm-
ers with the associated technologies (field training). Other approaches of remote sensing 
imagery technologies in studies about physical AgriTech for land and aerial operations, 
present training algorithms to explore image processing techniques (Pydipati et al. 2006) 
for plant colour features differentiation (data analytics, algorithm). Some studies also show 
multiple irrigation mapping algorithms through machine learning techniques (Ozdogan 
and Gutman 2008), but also odometry robotic systems for imagery collection (Ericson and 
Åstrand 2018). Robotic applications for land surveillance appear in studies such as those 
of Ko et al. (2015) that presented a mobile robotic platform for agricultural applications), 
Edan et al. (1993) presented a robot harvester for melons using 3-D, real-time animation, 
Bayar (2017) developed an autonomous detection mobile robotic system of tree trunks, and 

Table 4   AgriTech physical aspects per operation type and application area

Operation type No. of studies per application area Challenges addressed by AgriTech solution

Plant Animal (Livestock)

Water 0 0
Aerial 1 0 Tree condition checking
Land 11 3 Land and crop classification

Land & animal surveillance
Farmer education
Plant condition assessment
Irrigation mapping
Crop harvesting
Insect infestations assessment
Automated feeding of animals
Health assessment of animals

Combination 1 0 Environmental parameters monitoring
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Kounalakis et al. (2019) with robotic weed recognition for grasslands. From these applica-
tions various benefits were archived such as reduced picking time of crops, increase of 
harvest efficiency, and faster detection of plant health issues.

Regarding the physical aspects of AgriTech in animal-related application areas, the 
studies focus on automated feeding technologies for pregnant sows (Manteuffel et al. 2011) 
and surveillance systems for social interaction monitoring in dairy stalls of cows (Guzhva 
et al. 2016), behaviour and living condition monitoring through an animal-mounted sensor, 
and automatic surveillance intelligent systems to automatically and continuously monitor 
the health animals (Yazdanbakhsh et al. 2017). Also, one study with a combination of land, 
water, and aerial operations was identified (Mesas-Carrascosa et al. 2015), where an open-
source hardware system is presented for monitoring different environmental parameters.

4.2 � AgriTech cyber aspects per operation type and application area

The AgriTech cyber aspects can be categorised into three forms: analytics, virtual/simula-
tion, and algorithmic-based on the different types of tools and techniques applied (which 
will be explained further in a following designated section). These have been further clas-
sified in water, aerial, land operations or a combination of them as well as in terms of their 
application on animals or plants (see Table 5).

In the analytics categorisation, research directions are often focussed on water applica-
tions on plants and with combinations of soft-computing methods, as well as simulations 
and algorithms to improve the planning and management of water resources and to detect 

Table 5   AgriTech cyber aspects per operation type and application area

Operation type No. of studies per application area Challenges addressed by AgriTech 
solution

Analytics 
platforms

Virtual/simu-
lation

Proposed 
algorithms

Plant Animal Plant Animal Plant Animal

Water 3 4 2 0 3 1 Irrigation planning and management
Chemicals detection
Automated resource collection from 

animals
Climate control of animals housing
Water resources allocation
Soil assessment
Animal condition analysis

Aerial 4 0 0 0 0 0 Image processing for enabling precision 
agriculture

Emissions modelling
Air temperature estimation
Yield classification

Land 4 1 3 1 7 3 Crop & climatic conditions assessment
Animal behaviour prediction
Animal disease control

Combination 4 1 1 0 3 1 Yield optimisation
Natural resource availability assessment
Assessment of soil changes and their 

implications
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chemicals in the water. For example, Gocic et al. (2015) analysed different soft-computing 
methods, i.e. genetic programming (GP), support vector machine-firefly algorithm (SVM-
FFA), artificial neural network (ANN), and support vector machine-wavelet (SVM-Wave-
let) to forecast reference evapotranspiration (ET0) which is used for planning and manag-
ing water resources in agriculture. While, Wang et al. (2006) simulated agriculture derived 
groundwater nitrate pollution patterns using the artificial neural network (ANN) technique, 
and Brumbelow and Georgakakos (2007) presented an application of physiologically based 
crop models to near-optimisation of ‘‘planning-level’’ irrigation schedules.

Studies using analytics in water applications for animals use a combination of simula-
tion, optimisation and lab experiments. Halachmi (2009), for example, simulated the hier-
archical order and cow queue length in an automatic milking system. Another example 
appears in the study of Aerts and Berckmans (2004), where a virtual chicken (VirChick) 
was developed for computer-aided design and engineering of climate controllers for poul-
try house. On a similar note, Chen et  al. (2016) formulated a deterministic optimisation 
model to alleviate the impact of seasonal drought, which allocates available irrigation 
water resources to maximise annual returns in a reservoir-pond irrigation system. In the 
field of animal applications, O’Conell et al. (2015) analysed the animal conditions through 
artificial insemination in a lab environment.

AgriTech aerial analytics applications on plants are considering autonomous vehicles, 
meta-models, and image features capturing methods. Several studies used analytics for 
non-rigid image feature matching in precision agriculture via probabilistic inference with 
regularisation techniques (e.g. Yu et al. 2017), and meta-models for complex environmen-
tal and ecological processes over large geographic areas for emissions modelling of N20/
sland, climate (e.g. Perlman et al. 2014). Other studies, such as the study of Sanikhani et al. 
(2018), analysed the design and application of data-intelligent models for air temperature 
estimation without climate-based inputs using geographic factors. While in Radcliffe et al. 
(2018), the authors used an autonomous vehicle platform guided by machine vision system 
for tree canopy and sky of an orchard row.

There are numerous studies about analytics applications on land for plants that use a 
wide range of AgriTech, such as mixed spectral responses, neural networks, fuzzy logic, 
and index development. In this categorisation, some studies include approaches present-
ing training methods for vector machines (Foody and Mathur 2006), neural networks in 
combination with fuzzy techniques in the field of agro-ecological modelling (Schultz and 
Wieland 1997), presence-only geographic species distribution models, i.e. MaxEnt for 
agricultural crop suitability mapping (Heumann et al. 2011), and IoT- cloud-enabled meas-
urement indexes for temperature and humidity assessment of crops (Mekala and Viswana-
than 2019).

A combination of aerial, water and land application studies that used analytics for land 
and animals adopted a wide range of AgriTech applications. Some of these AgriTech appli-
cations are simulation models in combination with geographic information systems and 
optimisation, as well as algorithms with analytics. For example, McKinion et  al. (2001) 
investigated the use of precision agriculture in combination with simulation models, and 
geographic information systems in a cotton production system to optimise yields while 
minimising water and nitrogen inputs. Other studies in the same categorisation evaluated 
the future impact of soil degradation using simulation and optimisation (Sonneveld and 
Keyzer 2003). At the same time, other studies used innovative unmanned airborne vehicles 
to visualise and quantify soil physical changes and their influence on surface morphology 
at submillimetre resolution (Kaiser et al. 2018) and identify the yield-limiting factors for 
farmers using real crop data (Paz et al. 2002).
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With regards to simulation techniques, the analysis revealed the existence of two studies 
that used simulation for water and land applications. Specifically, the interest of simula-
tion models is about the agricultural water drainage challenge at the beginning of the crop-
ping season (Jury et al. 2003), and the combination of unsaturated flow and groundwater 
(Kumar and Singh 2003).

There is also a stream of literature discussing the simulation models problems theoreti-
cally as population dynamics and population genetics of H. zea in mixed cropping systems 
(Storer et al. 2003), and the effects of tillage and traffic on crop production in dryland farm-
ing systems (Li et al. 2008). While the study of Luecke (2012) developed a virtual reality 
interface that could be used in operating a combine when harvesting virtual crops. Other 
simulation models are presented for soil–plant-atmosphere in order to examine the influ-
ence of a winter cereal rye cover crop on nitrate–N losses (Feyereisen et al. 2007).

There is a wide range of algorithmic models presented in the reviewed studies for the 
improvement of water efficiency, optimisation of irrigation planning, and assessment of 
drainage. Such studies show stochastic dynamic programming models (SDPM) to analyse 
a farmer’s optimal investment strategy to adopt a water-efficient drip irrigation system or 
a sprinkler irrigation systems (Heumesser et al. 2012), soil and assessment tool algorithms 
to relate drainage volume to water table depth (Moriasi et al. 2011), and physiologically 
based crop models to near-optimisation of ‘‘planning-level’’ irrigation schedules (Brumbe-
low and Georgakakos 2007). Only one study was identified with algorithmic water-based 
applications on animals which used neural network applications to intelligent data analysis 
in the field of animal science (Fernández et al. 2006).

There are a plethora of studies that developed AgriTech algorithmic applications for 
land and plants. Some of the studies presented neural networks (Moshou et al. 2001) for the 
classification of crops and weeds, and hyperspectral imagery for defection segmentation 
using classifiers based on Artificial Neural Networks and Decision Trees (Gómez-Sanchis 
et al. 2012). While studies such as those of Richards et al. (2009) considered the knowl-
edge content of farmer seed systems in the light of a distinction drawn in artificial intel-
ligence research between supervised and unsupervised learning and suggested an alterna-
tive approach supported by functional genomic analysis. On a similar note, but using the 
fuzzy logic approach for decision systems, the review identified a few studies for decisions 
around specific nitrogen fertilisation (Papadopoulos et al. 2011), hybrid learning of fuzzy 
cognitive maps for sugarcane yield classification (Natarajan et al. 2016), and flexible irri-
gation scheduling for different irrigation districts and cases (Yang et al. 2017).

Algorithmic land applications on animals are not that frequent, and most of the studies 
towards this direction present mostly machine learning techniques and computer program-
ming. In this category, there are research projects applying machine learning techniques to 
detect oestrus in dairy cows (Scott Mitchell et al. 1996), convolutional neural networks for 
body condition estimation on cows from depth images (Rodríguez Alvarez et al. 2018), and 
computer programs for the prototypical knowledge base for cows (Oltjen et al. 1990).

Combinations of water and land algorithmic applications on plants are focusing on soil 
forecasting and planning. In this category, Keller et  al. (2007) developed a new model, 
‘SoilFlex-LLWR’, which combines a soil compaction model with the least limiting water 
range (LLWR) concept. Also, there are models for monthly soil moisture forecasting 
(Prasad et al. 2018), and machine learning assessments of soil drying for agricultural plan-
ning (Coopersmith et al. 2016). While algorithms and models about various applications 
related to animal and livestock conditions and welfare are very limited. In the few studies 
of that category, there are examples of studies such as Gonzalez et al. (2015) that devel-
oped an algorithm for unsupervised behavioural classification of electronic data collected 
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at high frequency from collar-mounted motion and GPS sensors in grazing cattle for auto-
matic and real-time monitoring of behaviour with a high spatial and temporal resolution.

4.3 � AgriTech cyber‑physical applications

AgriTech cyber-physical applications refer to applications that combine physical aspects 
with cyber aspects of AgriTech, e.g. smart tractors, drones connected with sensors at the 
field, and a number of smart devices for applying AI for agricultural processes. Table 6 
presents a summary of the AgriTech cyber-physical applications per application area.

There are numerous studies about AgriTech analytical cyber-physical applications for 
tasks related to land and plants that develop platforms, algorithms for robots, and decision 
support systems. These applications are presented as:

•	 A suboptimal path for agricultural mobile robots combining neural network methods 
and genetic algorithms (Noguchi and Terao 1997);

•	 a private Internet of Things (IoT) enabled platform for the research in precision agricul-
ture and ecological monitoring domains (Popović et al. 2017);

•	 a decision-making system for intelligent chemical control (Guedes et al. 2013);
•	 a research data collection platform for ISO 11,783 compatible and retrofit farm equip-

ment to control agricultural operations on the farm (Backman et al. 2019);
•	 a methodology for olive oil traceability to interconnect field and industry to share infor-

mation (Bayano-Tejero et al. 2019).

There are also several studies about AgriTech cyber-physical analytical applications on 
land and animals that used sensors, imagery, and algorithms. For example, Manteuffel et al. 
(2011) implemented a call feeding for pregnant sows which is a modular extension of a con-
ventional electronic feeder and communicates via a network. Another study (Sakai et al. 2019) 
classified goat behaviours using 9-axis multi-sensor data and a machine learning algorithm. In 
studies such as Ivushkin et al. (2019), the authors presented a method for livestock mapping of 
pastured to produce spatial–temporal consistent maps, while Bishop et al. (2019) developed 
a multi-purpose livestock vocalisation algorithm with machine learning techniques for a con-
tinuous acoustic monitoring system. Combination studies about land and water cyber-physical 

Table 6   AgriTech cyber-physical applications per application area

Operation type No. of studies per application area by technique Challenges addressed by 
AgriTech Solution

Analytics plat-
forms

Virtual/simulation Proposed algo-
rithms

Plant Animal Plant Animal Plant Animal

Water 0 0 0 0 1 0 Mimicking crop irrigation
Aerial 1 0 1 0 1 0 Insect mapping on crops

Plant analysis
Land 5 3 2 1 4 3 Traceability enhancement

Chemical control
Animal feeding
Animal condition analysis
Livestock mapping

Combination 2 0 0 0 0 0 Soil quantification
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analytics for plants are using drones and imagery technologies for soil quantification. Kaiser 
et al. (2018) used unmanned airborne vehicle to visualise and quantify soil physical changes 
and their influence on surface morphology at submillimetre resolution. Another research 
direction quantified soil pore characteristics using a high-resolution X-ray CT scanner linked 
to soil friability assessed using the drop shatter method (Munkholm et al. 2012). The review 
indicated that analytics applications of AgriTech in aerial studies of cyber-physical systems 
for plants are very limited, while for animals are absent. In this research category, there are 
studies, for example, that present Unmanned Aerial Vehicles (UAVs) to collect imagery about 
sunflower and maze crops to solve the problem of weed mapping for precision agriculture and 
proposed a method for pattern selection (Pérez-Ortiz et al. 2016).

Studies about cyber-physical simulation applications focussing on land and plants use 
Discrete Element Model (DEM) to simulate a deep tillage tool and its interaction with soil 
to address the stratified soil layers in agricultural fields (Zeng et al. 2017), and simulation 
of a comprehensive framework that transforms data acquisition platforms and makes pos-
sible the ‘‘plug-and-play’’ connection of various sensors (Fernandes et al. 2013). Only one 
study was identified that considered aerial cyber-physical application using simulation. To 
be more precise, the study of (Andersen et al. 2005) explored the potential of using area-
based binocular stereo vision for three-dimensional (3-D) analysis of single plants and esti-
mation of geometric attributes such as height and total leaf area.

Studies about algorithmic cyber-physical applications on land and plants are focussing on 
machine learning algorithms and robotics. Such studies present automatic observation sys-
tems for wheat heading stage based on computer vision (Zhu et al. 2016) remotely assessing 
soil conditions (Coopersmith et al. 2016), spiking neural networks (SNNs) for remote sens-
ing spatiotemporal analysis of image time series(Bose et al. 2016), robotic weed recognition 
applications for precision agriculture in grasslands (Kounalakis et al. 2019).

Cyber-physical algorithms for animals consider machine learning techniques and sug-
gested new algorithmic functions. An example of these is a supervised machine learning 
technique to classify cattle behaviour patterns recorded using collar systems with 3-axis 
accelerometer and magnetometer, fitted to individual dairy cows to infer their physical 
behaviours (Dutta et al. 2015). Cattle behaviours were also classified upon the ‘‘one-vs-all” 
framework (Smith et al. 2016). Studies about conditions for pig development used RGB-D 
computer vision and machine learning, physical (images from pigs), algorithm (machine 
learning and RGB-D computer vision) to estimate the muscularity of live pigs (Alsahaf 
et al. 2019). Only one study about cyber-physical water application on plants was found, 
while studies about water-based applications on animals are non-existent. On that basis, 
Viani et  al. (2017) developed an innovative methodology based on Fuzzy Logic (FL) to 
mimic the farmers’ experience and best practices for crop irrigation. No cyber-physical 
studies about aerial applications on animals and plants were found.

5 � Future considerations and the way forward

The applications of AI and disruptive technologies in Agricultural Operations are providing 
new ways to increase the yield, optimise the processes and enhance the sustainability of agri-
cultural production (Miranda et al. 2019; Wolfert et al. 2017). The focus of AgriTech and smart 
farming appears mostly around AI-driven approaches and agricultural data analytics platforms 
collecting data in order to provide planting advice, tailored recommendations and a general 
sense-making process of the data stemming from the fields (Boshkoska et al. 2019; Miranda 
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et al. 2019). The systematic review of AgriTech research has unravelled multiple opportunities 
for disruptive technologies based on AI-techniques and applications, with a focus mostly on 
creating value for the Agricultural Sector (Boshkoska et al. 2019; Tzounis et al. 2017).

Through the use of AgriTech and applications of AI, the Agricultural Sector can operate and 
transform the conventional practices through data analytics and machine learning techniques, 
which are able to provide targeted advice on each case (Kouadio et al. 2018). The use of the 
data can envisage competitive advantage even by itself not only for the farmers but also for the 
whole Agricultural Sector. By collecting data from the field, the farmer can gain knowledge 
according to each case’s requirements, as well as follow prescriptions in advance and provide 
them as a solution to broader farming problems (Kale and Sonavane 2019; Kouadio et al. 2018; 
Renuka and Terdal 2019; Tatapudi and Suresh Varma 2019). For instance, this will help farmers 
in mapping the fields, monitor crop canopy remotely, check for anomalies and take precaution-
ary actions in order to implement more proactive, resilient and sustainable agricultural practices.

AI-driven AgriTech is developed from cross-section disciplines involving a variety of smart 
and data-intensive approaches, disruptive technologies– spanning from smart devices, sensors, 
and big data to drone technology and robotics (Miranda et al. 2019; Tsolakis, Bechtsis, and 
Bochtis 2019). Smart monitoring, irrigation, images and temperature from the field, as well as 
the soil or livestock conditions, to name a few, can provide a pool of data for tailored recom-
mendations to the farmer and any interested parties (Karim et al. 2017; Manoj Athreya et al. 
2019; Tsolakis, Bechtsis, and Bochtis 2019). Data analytics, machine learning, robotics, or any 
other AI technique applied in the farm through automated practices could provide recommen-
dations, warnings, or even efficiency monitoring and enhance the farming operations, suggest-
ing opportunities for Agriculture to be viable again (Corallo et al. 2018).

The data evolution and cutting-edge, disruptive technologies have shifted the paradigm 
of conventional and modern agriculture and farming to smart and intelligent approaches. 
Following data-driven analytical technologies and high-performance computing, the AI 
context was reshaped and re-emerged in the last decade, creating numerous opportunities 
for smart and data-intensive solutions in the AgriTech domain. Hence, AgriTech could be 
defined in today’s Agricultural context as the use of data-driven smart technologies and 
analytical methods for enhancing the farming practices, operations and decision-making 
in order to achieve in multiple forms and ways the economic efficiency and environmental 
sustainability of the Agricultural field.

The authors of this research would like to highlight that the findings of this systematic 
review should be considered within the context of its methodological limitations. It is to be 
noted that In order to be thorough and conduct an exhaustive search in an SLR research, 
other notable databases need to be used which helps with being able to cross-check as well as 
explore in-depth the area of interest. So, the use of only one database (i.e. Scopus) may be con-
sidered as a limitation in this research. The authors followed a strict review protocol to conduct 
a comprehensive search through the Scopus database to mitigate the risks associated with rely-
ing on a single database. A summary of the implications of AI-driven AgriTech applications 
and the associated future research required in the field of operations is highlighted in Table 7.

6 � Implications to practice

Triggered by the urgency to deal with food security, the digital disruption of Agri-
culture is unique by its roots and therefore the motivation to adopt AgriTech should 
be genuine from farmers (CEMA—European Agricultural Machinery 2017). While 
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farmers are keen on applying innovative and emerging technologies (e.g. in previous 
centuries and decades early adopters started with the wheel, tractors, fertilisers etc.) 
the industrial revolution resulted in large-scale farming and massive production at any 
cost, in a socially and environmentally unsustainable, and economically inefficient 
way (Yahya 2018; Zambon et al. 2019). Despite the challenges, already there is a new 
range of motivated farmers and agricultural start-ups adopting disruptive technologies 
to manage their operations in digitalised and automated ways. Disruptive technolo-
gies in Agricultural Sector, often dubbed as AgriTech, can be widely used by a new 
generation of farmers but also Agripreneurs, a new category of farmer-entrepreneurs 
trialling AgriTech innovations for the farming field (Carayannis et  al. 2018). Agri-
preneurs consist of a new breed of educated entrepreneurs who merge their knowledge 
and expertise on agriculture and farming with an acquired business and management 
approach in order to bridge the gap between farming practices and applied agribusi-
ness principles. Among agribusiness principles, sustainability is becoming increas-
ingly crucial for the success of Agrichains. Sustainable Agrichains are dealing with 
continued complexities of stakeholders’ demands on Sustainable Development. As 
sustainability is becoming more complex, dealing with its challenges are also becom-
ing challenging and costly for Agripreneurs. The initial pragmatic solution is to incor-
porate Agritech interventions to tackle the sustainablity challenges in Agrichains. 
Over the last decade, advances in Agritech solutions research have made a significant 
contribution towards the understanding and implementation of sustainablity criteria in 
farming and Agrichains.

In a nutshell, with the application of new AgriTech technologies, every farmer could 
potentially become an Agripreneur and a champion of sustainability in the near future. 
Thus, the role of Operations Management is vital to bridge the research gap between 

Table 7   Future considerations for AgriTech research

Area of research Future research considerations

Farm management 
cycle and opera-
tions

How Virtual and Augmented Reality can enhance the applications of precision 
agriculture?

How can Smart Indoor Vertical Farming evolve and support farming production?
How can future AgriTech innovations reshape the farming processes?

Analytics platforms How can farming analytics (Farm to Fork Analytics) contribute to sustainability chal-
lenges?

How can Farming Analytics provide an advantage to small, medium and larger farms?
Sensor technology How can IoT-enabled platforms improve farming production for the sustainability of 

AgriFood sector?
How can IoT-enabled regenerative agriculture evolve the next decade?
What are the required data sharing policies in order to ensure privacy and competitive 

advantage for the operations of each farm?
Robotics What are the next AI and Robotics Ventures (ARV) for socially and environmentally 

responsible farming?
What is the role of AgriTech robots in the new agricultural operations?
How can 3D mapping and monitoring contribute to the sustainability goals of each 

farm?
How can hybrid (aerial-ground) drones improve operation management in an 

unmanned way for agricultural monitoring?
How can drones be used for remote agricultural operations in crisis situations?
How can hybrid drones and manned aviators collaborate for precision agriculture?
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“Agricultural Technology” and “Sustainable Agricultural Operations” and equip the future 
generation of farmers-agripreneurs.

7 � Conclusions

Drawing on the recent advances of disruptive technologies for agriculture the review pro-
vided interesting insight in the field of AI-driven AgriTech research. The synthesis of the 
literature can act as a normative reference for the Operations discipline when studying the 
thematic area of disruptive agricultural technologies. The key findings of this review in line 
with the initial three research questions are as follows:

•	 Key Types of Disruptive Technologies and Categories of AgriTech (Q1 and Q2): The 
analysis highlights that majority of the types of disruptive technologies in the agricul-
tural sector can be categorised into three application areas. The first is (1) Physical Agr-
iTech application type which highlights the use of machinery and tools for agricultural 
operations which can replace not only human labour tasks (e.g. robotic machinery, irri-
gation systems etc.) but also presents physical features as the “hardware” of AgriTech. 
The second is (2) Cyber AgriTech as applications which are mostly platform-software 
related and have a strong link with data analytics and decision support systems for agri-
cultural operations. Finally, (3) Cyber-physical application area which mainly refers to 
the use of smart agricultural machinery and/ or robotics for the farm which include the 
hardware and the software for data analysis and predictive/prescriptive tailored deci-
sion-making, advice and recommendations.

•	 Role of AI applications in Agricultural Operations (Q3): The analysis highlighted that 
AI-driven AgriTech could disrupt Agricultural Operations and provide new ways of 
farming practices. There is still an open discussion around various implications and 
future considerations in the Operations field. The Operations scholars have a key role to 
play in future AgriTech research in order to define and efficiently design the operational 
context around AI-driven AgriTech.

The findings of the systematic review will assist both academics and practitioners with 
interest in the agricultural sector to develop new solutions based on the challenges iden-
tified in this paper. Also, it integrates multiple disciplines and approaches for different 
research fields (spanning from engineering, biotechnology, to data science, cognitive pro-
cesses of decision-making, etc.). It is evident from the comprehensive review conducted 
that there is growing interest in the use of AI and data science to support the use of disrup-
tive technologies; motivated to enhance productivity, reduce cost, integrate systems and, 
promote sustainable farming and food production practice.

Appendix

See Table 8.
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Table 8   Details of the 205 included studies

Paper ID References

1 Foody GM, Mathur A (2006) The use of small training sets containing mixed pixels for accurate 
hard image classification: Training on mixed spectral responses for classification by a SVM. 
Remote Sens Environ 103:179–189. https​://doi.org/10.1016/j.rse.2006.04.001

2 Kussul N, Lavreniuk M, Skakun S, Shelestov A (2017) Deep Learning Classification of Land 
Cover and Crop Types Using Remote Sensing Data. IEEE Geosci Remote Sens Lett 14:778–
782. https​://doi.org/10.1109/LGRS.2017.26811​28

3 Seelan SK, Laguette S, Casady GM, Seielstad GA (2003) Remote sensing applications for preci-
sion agriculture: A learning community approach. Remote Sens Environ 88:157–169. https​://
doi.org/10.1016/j.rse.2003.04.007

4 Pydipati R, Burks TF, Lee WS (2006) Identification of citrus disease using color texture features 
and discriminant analysis. Comput Electron Agric 52:49–59. https​://doi.org/10.1016/j.compa​
g.2006.01.004

5 Ozdogan M, Gutman G (2008) A new methodology to map irrigated areas using multi-temporal 
MODIS and ancillary data: An application example in the continental US. Remote Sens Envi-
ron 112:3520–3537. https​://doi.org/10.1016/j.rse.2008.04.010

6 Bourennane H, Douay F, Sterckeman T, et al. (2010) Mapping of anthropogenic trace elements 
inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma 
157:165–174. https​://doi.org/10.1016/j.geode​rma.2010.04.009

7 Keller T, Défossez P, Weisskopf P, et al. (2007) SoilFlex: A model for prediction of soil 
stresses and soil compaction due to agricultural field traffic including a synthesis of analytical 
approaches. Soil Tillage Res 93:391–411. https​://doi.org/10.1016/j.still​.2006.05.012

8 Storer NP, Peck SL, Gould F, et al. (2003) Spatial Processes in the Evolution of Resistance in 
Helicoverpa zea (Lepidoptera: Noctuidae) to Bt Transgenic Corn and Cotton in a Mixed Agro-
ecosystem: A Biology-rich Stochastic Simulation Model. J Econ Entomol 96:156–172

9 Rushton J, Thornton PK, Otte MJ (1999) Methods of economic impact assesment. OIE Rev Sci 
Tech 18:315–342. https​://doi.org/10.20506​/rst.18.2.1172

10 Matthews KB, Schwarz G, Buchan K, et al. (2008) Wither agricultural DSS? Comput Electron 
Agric 61:149–159. https​://doi.org/10.1016/j.compa​g.2007.11.001

11 Berenstein R, Shahar OB, Shapiro A, Edan Y (2010) Grape clusters and foliage detection 
algorithms for autonomous selective vineyard sprayer. Intell Serv Robot 3:233–243. https​://doi.
org/10.1007/s1137​0-010-0078-z

12 Pérez-Ortiz M, Peña JM, Gutiérrez PA, et al. (2016) Selecting patterns and features for between- 
and within- crop-row weed mapping using UAV-imagery. Expert Syst Appl 47:85–94. https​://
doi.org/10.1016/j.eswa.2015.10.043

13 Bouma J, Stoorvogel J, Van Alphen BJ, Booltink HWG (1999) Pedology, precision agriculture, 
and the changing paradigm of agricultural research. Soil Sci Soc Am J 63:1763–1768

14 Munkholm LJ, Heck RJ, Deen B (2012) Soil pore characteristics assessed from X-ray micro-
CT derived images and correlations to soil friability. Geoderma 181–182:22–29. https​://doi.
org/10.1016/j.geode​rma.2012.02.024

15 Noguchi N, Terao H (1997) Path planning of an agricultural mobile robot by neural network and 
genetic algorithm. Comput Electron Agric 18:187–204

16 Minervini M, Abdelsamea MM, Tsaftaris SA (2014) Image-based plant phenotyping with incre-
mental learning and active contours. Ecol Inform 23:35–48. https​://doi.org/10.1016/j.ecoin​
f.2013.07.004

17 Gocić M, Motamedi S, Shamshirband S, et al. (2015) Soft computing approaches for forecasting 
reference evapotranspiration. Comput Electron Agric 113:164–173. https​://doi.org/10.1016/j.
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