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Abstract

In this paper we introduce the Γ value, a new value for cooperative
games with transferable utility. We also provide an axiomatic charac-
terization of the Γ value based on a property concerning the so-called
necessary players. A necessary players of a game is one without which
the characteristic function is zero. We illustrate the performance of
the Γ value in a particular cost allocation problem that arises when
the owners of the apartments in a building plan to install an elevator
and share its installation cost; in the resulting example we compare
the proposals of the Γ value, the equal division value and the Shapley
value in two different scenarios. In addition, we propose an extension
of the Γ value for cooperative games with transferable utility and with
a coalition structure. Finally, we provide axiomatic characterizations
of the coalitional Γ value and of the Owen and Banzhaf-Owen values
using alternative properties concerning necessary players.

Keywords: cooperative game, necessary player, coalition structure, value.

1 Introduction

The Shapley value, introduced in Shapley (1953), is a rule for distributing
the benefits that a set of agents N can generate, taking into account the
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contributions of each agent and of each possible subset of N . The Shapley
value is one of the most important solutions of cooperative game theory and
it has many applications in a wide variety of fields. For instance, in recent
years the Shapley value has been applied to cancer research (see Albino et
al., 2008), to machine learning (see Strumbelj and Kononenko, 2010), to data
envelopment analysis (see Yang and Zhang, 2015), to image classification (see
Gurran et al., 2016), to project management (see Bergantiños et al., 2018,
and Gonçalves-Dosantos et al., 2020), etc. Moretti and Patrone (2008) is a
survey explaining the transversality of the Shapley value.

The game theory literature provides many alternatives to the Shapley
value, such as the nucleolus (Schmeidler, 1969), the Banzhaf Value (Owen,
1975), the τ -value (Tijs, 1981), the equal-surplus division value (Driessen and
Funaki, 1991) or, more recently, the consensus value (Ju et al., 2007) and the
ie-Banzhaf value (Alonso-Meijide et al., 2019b). All those alternative values
have appealing properties and could be used instead of the Shapley value. In
order to decide what is the most appropriate value for a particular problem it
is helpful to know the properties that are essentially connected to each value.
This is why game theory is interested in the so-called characterizations: to
characterize a value in a class of games is to find a set of properties so that
it is the only value that fulfills them in that class. For instance, in Luchetti
et al. (2010), two relevance indexes for genes are compared, one based on
the Shapley value and the other based on the Banzhaf value, and for that
purpose they are characterized in the corresponding class of games, the so-
called microarray games.

In this article we introduce a value for cooperative games that results
from proposing a new property for so-called necessary players that, in a way,
corrects the properties for such players met by the Shapley and Banzhaf val-
ues. Informally, necessary players are those without whom the characteristic
function of the game would be zero. These players have attracted the atten-
tion of game theorists for axiomatic studies in the last years. For instance,
Alonso-Meijide et al. (2019a) and Béal and Navarro (2020) are two recent
papers dealing with necessary players and characterizations. Apart from in-
troducing a new value, in this paper we provide an axiomatic characterization
of it, which allows to compare the new value with other solution concepts for
cooperative games. Furthermore, we extend and characterize the new value
for cooperative games with a coalition structure. A cooperative game with
a coalition structure models those situations where the agents in a set N

aim to distribute the benefits they generate taking into account the contri-
butions of each agent and of each possible subset of N , as well as a coalition
structure (a partition of N) that conditions the distribution, in the sense
that distribution among the classes of the partition is made first and, then,
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a distribution within those classes is performed. Cooperative games with a
coalition structure have been applied in several fields like political analysis
(see, for instance, Carreras and Puente, 2015), infrastructure management
(see Costa, 2016), cost allocation (see Fragnelli and Iandolino, 2004), etc.
The Owen value (Owen, 1977) and the Banzhaf-Owen value (Owen, 1982)
are, respectively, the variations of the Shapley value and the Banzhaf value
for cooperative games with a coalition structure. In this paper we also pro-
vide new characterizations of the Owen and the Banzhaf-Owen values using
properties involving necessary players.

The structure of this paper is as follows. In Section 2 we introduce the
Γ value, a new value for cooperative games. We also provide an axiomatic
characterization of the Γ value and illustrate its behaviour in a practical
example that arises in a problem of sharing the costs of installing an elevator.
In Section 3 we provide new characterizations of the Owen and Banzhaf-
Owen values and introduce and characterize an extension of the Γ value for
cooperative games with a coalitional structure. We finish the paper with a
section of concluding remarks.

2 Values and necessary players

A cooperative game is a pair (N, v) given by a finite set of players N and
a characteristic function v : 2N → R, that assigns to each coalition S ⊆
N a real number v(S) that indicates the benefits that coalition S is able
to generate; by definition v(∅) = 0. We denote by GN the family of all
cooperative games with player set N .

A value for cooperative games is a map f that assigns to every game
(N, v) ∈ GN a vector f(N, v) ∈ R

N . Two of the most important values for
cooperative games are the Shapley value (Shapley, 1953) and the Banzhaf
value (Owen, 1975). A number of characterizations of these two values can
be found on the literature. For example, Alonso-Meijide et al. (2019a) pro-
vides characterizations of those values using only three properties for each
of them: two common properties and one extra property concerning the so-
called necessary players that differs for the Shapley and the Banzhaf values.
In this paper we concentrate on characterizations of values involving nec-
essary players. Let us first remember the formal definition of a necessary
player.

Definition 1 A player i ∈ N is said to be necessary in the cooperative game
(N, v) if v(S) = 0 for all S ⊆ N \ {i}.
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In words, a necessary player is one without whom cooperation does not
produce any results. In fact, notice that if i is necessary in (N, v), then
v(S) =

∑

j∈S v({j}) = 0 for all S ⊆ N \ {i}; hence, the game resulting after
the elimination of i is additive and null. Necessary players often arise in real
situations. Take, for instance, the following example.

Example 2 Consider a council formed by three entities with 24, 15 and 9
votes, respectively. Any proposal must receive at least 25 votes to be approved.
In the resulting voting game, it is easy to see that the entity with 24 votes is
a necessary player because, without it, the other two entities cannot get any
proposals approved.

In some specific problems, as in the example above, the necessary players
arise in a natural way and, therefore, a characterization based on such players
can be relevant in deciding what value to use in those problems. We start
by remembering the characterizations of the Shapley and Banzhaf values in
Alonso-Meijide et al. (2019a) and some other preliminary material. The
Shapley value ϕ is defined as

ϕi (N, v) =
1

n

∑

S⊆N\{i}

1
(

n−1
s

)(v (S ∪ {i})− v (S))

for all (N, v) ∈ GN and all i ∈ N ; n and s denote the cardinalities of N and
S, respectively. The Banzhaf value β is defined as

βi (N, v) =
1

2n−1

∑

S⊆N\{i}

(v (S ∪ {i})− v (S))

for all (N, v) ∈ GN and all i ∈ N . Both the Shapley and the Banzhaf value
are additive. This means that they satisfy the following condition.

Additivity. A value for cooperative games f satisfies the property of addi-
tivity if for any pair of cooperative games (N, v) , (N,w) it holds that

f (N, v + w) = f (N, v) + f (N,w) .

Additivity is a good property because, at the same time that it is natural
and easily interpretable, it greatly facilitates the mathematical analysis of the
values that comply with it and the calculation of such values; for instance,
Benati et al. (2019) provides a method to approximate additive values in
cooperative games that is useful when the number of players is large.
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Another reasonable property that is satisfied by the Shapley and Banzhaf
value concerns null players. Remember that a null player of (N, v) is an i ∈ N

such that v(S) = v(S ∪ {i}) for all S ⊆ N \ {i}.

Null Player. A value for cooperative games f satisfies the property of null
player if for any cooperative game (N, v) and for any i ∈ N null player of
(N, v), it holds that fi (N, v) = 0.

Now let us see two alternative properties for necessary players introduced
in Alonso-Meijide et al. (2019a) and the main result concerning them.

Necessary Players Get the Weighted Mean. A value for cooperative
games f satisfies the property of necessary players get the weighted mean if,
for all cooperative game (N, v) and for all i ∈ N necessary player in (N, v),
it holds that

fi (N, v) =
1

n

∑

S⊆N,i∈S

1
(

n−1
s−1

)v(S).

Necessary Players Get the Mean. A value for cooperative games f

satisfies the property of necessary players get the mean if, for all cooperative
game (N, v) and for all i ∈ N necessary player in (N, v), it holds that

fi (N, v) =
1

2n−1

∑

S⊆N,i∈S

v(S).

Observe that the two properties above are similar. Both establish that a
necessary player must receive the average of the values of the coalitions to
which that player belongs, although the former takes into account the size of
such coalitions and the latter does not.

Theorem 3 (Alonso-Meijide et al., 2019a).
1. The Shapley value is the unique value for cooperative games that satisfies
the properties of additivity, null player and necessary players get the weighted
mean.
2. The Banzhaf value is the unique value for cooperative games that satisfies
the properties of additivity, null player and necessary players get the mean.

Now we remember two widely known properties for values that will be
relevant in the subsequent discussion.

Efficiency. A value for cooperative games f satisfies the property of effi-
ciency if for all cooperative game (N, v), it holds that

∑

i∈N

fi (N, v) = v (N) .

5



We say that players i, j ∈ N are symmetric in (N, v) ∈ GN if v(S∪{i}) =
v(S ∪ {j}) for every S ⊆ N \ {i, j}.

Symmetry. A value for cooperative games f satisfies the property of sym-
metry if for all cooperative game (N, v) and for all i, j ∈ N symmetric players
in (N, v), it holds that

fi (N, v) = fj (N, v) .

It is well-known that the Shapley and Banzhaf values satisfy the symme-
try property. However, only the Shapley value is efficient. In some problems,
efficiency is not an essential property for a value, see for example microarray
games in Lucchetti et al. (2010). In many cases, however, efficiency will be
required for a value to make sense; this happens, for example, when we are
faced with cost allocation problems. One question we can ask is whether
there is a value that fulfills the necessary players get the mean property and
the efficiency property. The answer is negative because those properties are
incompatible. Indeed, assume that a value for cooperative games f satis-
fies both properties and for every non-empty S ⊆ N denote by (N, eS) the
cooperative game in GN given, for every T ⊆ N , by:

eS(T ) =

{

1 if T = S,
0 otherwise.

(1)

Since f satisfies efficiency, it holds that
∑

i∈N

fi (N, eN) = 1. (2)

Notice now that every i ∈ N is necessary in (N, eN) and then, since f satisfies
the necessary players get the mean property, it holds that

∑

i∈N

fi (N, eN ) =
∑

i∈N

1

2n−1
=

n

2n−1
. (3)

Observe that (2) and (3) are incompatible for n > 2, which implies that
necessary players get the mean and efficiency are incompatible properties.
Such incompatibility vanishes when we consider the next weak version of the
former property.

(Weak) Necessary Players Get the Mean. A value for cooperative
games f satisfies the (weak) necessary players get the mean property if, for
all cooperative game (N, v) with v(N) = 0 and for all i ∈ N necessary player
in (N, v), it holds that

fi (N, v) =
1

2n−1

∑

S⊆N,i∈S

v(S).
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With this new property we can prove the following proposition.

Theorem 4 There exists a unique value for cooperative games that satisfies
the properties of additivity, (weak) necessary players get the mean, efficiency
and symmetry. This value that we denote by G is given, for all (N, v) ∈ GN

and all i ∈ N , by:

Gi (N, v) =
1

2n−1

(

∑

S⊂N,i∈S

v(S)−
∑

S⊂N,i 6∈S

s

n− s
v(S)

)

+
v(N)

n
. (4)

Proof. (Existence). It is clear that G satisfies additivity. To check that it
satisfies the (weak) necessary players get the mean property, take a cooper-
ative game (N, v) with v(N) = 0 and such that i ∈ N is a necessary player
in (N, v). Then expression (4) reduces to

Gi(N, v) =
1

2n−1

∑

S⊂N,i∈S

v(S) =
1

2n−1

∑

S⊆N,i∈S

v(S).

To check that G satisfies efficiency notice that, for every cooperative game
(N, v),

∑

i∈N

Gi(N, v) =
1

2n−1

∑

i∈N

(

∑

S⊂N,i∈S

v(S)−
∑

S⊂N,i 6∈S

s

n− s
v(S)

)

+ v(N)

=
1

2n−1

(

∑

S⊂N

sv(S)−
∑

S⊂N

(n− s)
s

n− s
v(S)

)

+ v(N)

= v(N).

To check that G satisfies symmetry take a cooperative game (N, v) and a
pair of symmetric players in (N, v) i, j ∈ N . Notice that

∑

S⊂N,i∈S

v(S)−
∑

S⊂N,i6∈S

s

n− s
v(S) =

∑

S⊆N\{i,j}

(v(S ∪ {i})) +
∑

S⊂N\{i,j}

(v(S ∪ {i, j}))

−
∑

S⊆N\{i,j}

(

s

n− s
v(S) +

s+ 1

n− s− 1
v(S ∪ {j})

)

.

Now, since i, j are symmetric in (N, v), the last expression is equal to

∑

S⊆N\{i,j}

(v(S ∪ {j})) +
∑

S⊂N\{i,j}

(v(S ∪ {i, j}))−
∑

S⊆N\{i,j}

(

s

n− s
v(S) +

s+ 1

n− s− 1
v(S ∪ {i})

)

and then it is clear that Gi(N, v) = Gj(N, v).
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(Uniqueness). Take f , a value for cooperative games that satisfies efficiency,
symmetry, (weak) necessary players get the mean and additivity and take
a cooperative game (N, v). We prove now that f(N, v) = G(N, v). Indeed,
consider the canonical basis of the vector space of characteristic functions
of cooperative games with set of players N : {eS}S∈2N\∅ (see expression (1)).
Observe that v can be written in a unique way as a linear combination of
the elements of the canonical basis: v =

∑

S∈2N\∅ v(S)eS. Since f satisfies
additivity,

f(N, v) =
∑

S∈2N\∅

f(N, v(S)eS).

Note that efficiency, symmetry and (weak) necessary players get the mean
characterize a unique value in the class {(N, v(S)eS) | S ⊂ N, S 6= ∅}. Be-
sides, efficiency and symmetry characterize a unique value for (N, v(N)eN).
Hence f(N, v) = G(N, v). ✷

Surprisingly enough, the new value G introduced in Proposition 4 looks
a lot like the e-Banzhaf value defined in Alonso-Meijide et al. (2019b) but
it is not the same, because n−s

s
is changed by s

n−s
and, moreover, those two

parameters do not multiply the same summands in the expressions of G and
of the e-Banzhaf value. Indeed, such parameters do not seem to have a clear
interpretation from the point of view of fairness, which leads us to think
that perhaps the (weak) necessary players get the mean property should be
reformulated. In fact, it is more reasonable to ask that a necessary player be
entitled to the average of the per capita values of the coalitions that contain it
rather than the average of the values of those coalitions; in fact, such players
are necessary for coalitions to have a value other than zero, but they require
the other coalition members to generate such a value. Thus we propose the
new property formulated below.

Necessary Players Get the Per Capita Mean. A value for cooperative
games f satisfies the necessary players get the per capita mean property if,
for all cooperative game (N, v) with v(N) = 0 and for all i ∈ N necessary
player in (N, v), it holds that

fi (N, v) =
1

2n−1

∑

S⊆N,i∈S

v(S)

s
.

The next result introduces and characterizes a new value for cooperative
games.
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Theorem 5 There exists a unique value for cooperative games that satis-
fies the properties of additivity, necessary players get the per capita mean,
efficiency and symmetry. This value that we denote by γ is given, for all
(N, v) ∈ GN and all i ∈ N , by:

γi (N, v) =
1

2n−1

(

∑

S⊂N,i∈S

v(S)

s
−

∑

S⊂N,i 6∈S

v(S)

n− s

)

+
v(N)

n
. (5)

Proof. (Existence). It is clear that γ satisfies additivity. To check that
it satisfies the necessary players get the per capita mean property take a
cooperative game (N, v) with v(N) = 0 and such that i ∈ N is a necessary
player in (N, v). Then expression (5) reduces to

γi(N, v) =
1

2n−1

∑

S⊂N,i∈S

v(S)

s
=

1

2n−1

∑

S⊆N,i∈S

v(S)

s
.

To check that γ satisfies efficiency notice that, for every cooperative game
(N, v),

∑

i∈N

γi(N, v) =
1

2n−1

∑

i∈N

(

∑

S⊂N,i∈S

v(S)

s
−

∑

S⊂N,i 6∈S

v(S)

n− s

)

+ v(N)

=
1

2n−1

(

∑

S⊂N

s
v(S)

s
−
∑

S⊂N

(n− s)
v(S)

n− s

)

+ v(N)

= v(N).

To check that γ satisfies symmetry take a cooperative game (N, v) and a pair
of symmetric players in (N, v) i, j ∈ N . Notice that

∑

S⊂N,i∈S

v(S)

s
−

∑

S⊂N,i 6∈S

v(S)

n− s
=

∑

S⊆N\{i,j}

v(S ∪ {i})

s+ 1
+

∑

S⊂N\{i,j}

v(S ∪ {i, j})

s+ 2
−

∑

S⊆N\{i,j}

(

v(S)

n− s
+

v(S ∪ {j})

n− s− 1

)

.

Now, since i, j are symmetric in (N, v), the last expression is equal to

∑

S⊆N\{i,j}

v(S ∪ {j})

s+ 1
+

∑

S⊂N\{i,j}

v(S ∪ {i, j})

s+ 2
−

∑

S⊆N\{i,j}

(

v(S)

n− s
+

v(S ∪ {i})

n− s− 1

)

and then it is clear that γi(N, v) = γj(N, v).

9



(Uniqueness). Take f , a value for cooperative games that satisfies efficiency,
symmetry, necessary players get the per capita mean and additivity and take
a cooperative game (N, v). We prove now that f(N, v) = γ(N, v). Indeed,
consider the basis of the vector space of characteristic functions of cooperative
games with set of players N : {eS}S∈2N\∅ (see expression (1)). Observe that
v can be written in a unique way as a linear combination of the elements of
the basis: v =

∑

S∈2N\∅ v(S)eS. Since f satisfies additivity,

f(N, v) =
∑

S∈2N\∅

f(N, v(S)eS).

Notice that efficiency, symmetry and necessary players get the per capita
mean characterize a unique value in the class of games {(N, v(S)eS) | S ⊂
N, S 6= ∅}. Besides, efficiency and symmetry characterize a unique value for
(N, v(N)eN ). Hence f(N, v) = γ(N, v). ✷

A very desirable property for values for cooperative games is the invari-
ance to S-equivalence, which we remember below. Two cooperative games
with the same sets of players (N, v) and (N,w) are said to be S-equivalent
if there exist a ∈ R with a > 0 and b ∈ R

N such that, for every T ⊆ N , it
holds that

w(T ) = av(T ) +
∑

j∈T

bj .

When (N, v) and (N,w) are S-equivalent we can transform v into w simply by
changing the scale and translating the players’ utilities. In these conditions
it seems reasonable to ask a value for cooperative games f that f(N, v) is
transformed into f(N,w) by doing the corresponding change of scale and
translations.

Invariance to S-equivalence (INV). A value for cooperative games f

satisfies invariance to S-equivalence if for any pair of S-equivalent cooperative
games (N, v) and (N,w) such that w(T ) = av(T ) +

∑

j∈T bj for all T ⊆ N

(with a ∈ R, a > 0 and b ∈ R
N) it holds that, for every i ∈ N ,

fi(N,w) = afi(N, v) + bi.

Unfortunately, the value γ defined by (5) is not invariant to S-equivalence.
Then, we make an adjustment of γ that leads us to the Γ value for cooperative
games that we define below.

Definition 6 The Γ value for cooperative games is given for every (N, v) ∈
GN and every i ∈ N by:

Γi(N, v) = v({i}) + γi(N, v0), (6)
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where v0(S) = v(S)−
∑

j∈S v({j}) for all S ⊆ N .

It is easy to check that Γ satisfies the invariance to S-equivalence. In
order to characterize it, we introduce below a new property concerning the
necessary players.

Necessary Players Get the 0-Normalized Per Capita Mean. A value
for cooperative games f satisfies the necessary players get the 0-normalized
per capita mean property if, for all cooperative game (N, v) with v(N) =
∑

j∈N v({j}) and for all i ∈ N necessary player in (N, v), it holds that

fi (N, v) = v({i}) +
1

2n−1

∑

S⊆N,i∈S

v0(S)

s
.

Theorem 7 Γ is the unique value for cooperative games that satisfies the
properties of additivity, necessary players get the 0-normalized per capita
mean, efficiency and symmetry.

Proof. (Existence). Since γ satisfies additivity, efficiency and symmetry,
it is clear that Γ also satisfies those properties. To check that it fulfils the
necessary players get the 0-normalized per capita mean property take a co-
operative game (N, v) with v(N) =

∑

j∈N v({j}) and such that i ∈ N is a
necessary player in (N, v). Then expression (6) reduces to

Γi(N, v) = v({i}) +
1

2n−1

∑

S⊂N,i∈S

v0(S)

s
= v({i}) +

1

2n−1

∑

S⊆N,i∈S

v0(S)

s
.

(Uniqueness). Take f a value for cooperative games that satisfies efficiency,
symmetry, necessary players get the 0-normalized per capita mean and ad-
ditivity and take a cooperative game (N, v). We prove now that f(N, v) =
Γ(N, v). Indeed, consider the basis of the vector space of characteristic func-
tions of cooperative games with set of players N given by:

{e{i} + eN | i ∈ N} ∪ {eS | S ∈ 2N , |S| ≥ 2}.

Observe that v can be written in a unique way as a linear combination of the
elements of this basis. Since f satisfies additivity and, moreover, the prop-
erties of efficiency, symmetry and necessary players get the 0-normalized per
capita mean characterize a unique value in the games of the basis, the proof
is concluded. ✷

Now we analyse an example in order to make some comments on the Γ
value. It is based on a similar example in Alonso-Meijide et al. (2020).
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Example 8 Consider a three-storey building with one apartment on each
floor, the three apartments having the same surface. The three corresponding
owners have agreed to install an elevator and share the corresponding cost.
Such a cost is 120 (in thousands of euros), 50 of which correspond to the
machine, 40 to the works to make the hollow of the elevator (a fixed cost of
10 plus a cost of 10 for the owner of the apartment in the first floor that is
incremented by 10 for the owner of the apartment in the second floor and by
an additional 10 for the owner of the apartment in the third floor), and 30 to
the works to be done on each floor to allow access to the elevator (10 in each
of them). According to this, the cost c(i) in which each player is involved is:

• 50 (machine) + 10 (floor) + 20 (hollow) = 80 for i = 1, the player of
the first floor,

• 50 (machine) + 10 (floor) + 30 (hollow) = 90 for i = 2, the player of
the second floor,

• 50 (machine) + 10 (floor) + 40 (hollow) = 100 for i = 3, the player
of the third floor.

The rest of the corresponding cost game is given by: c({1, 2}) = 100, c({1, 3}) =
c({2, 3}) = 110, c(N) = 120. Table 1 below shows the distribution of costs
for each of the apartments according to the Egalitarian value, the Shapley
value and Γ. In European city centres it is common to find buildings coping
with situations like the one described in this example. It is not uncommon
for the owners of the lower floors to be less favourable to installing an ele-
vator because of the costs involved. According to Spanish legislation, when
owners decide to make an investment in the common elements of a build-
ing, the corresponding costs will be distributed in proportion to the owners’
shares (which, in turn, sometimes depend only on the surface areas of the
apartments). Therefore, the distribution due to the Egalitarian value will be
the one proposed by the legislation in some occasions. Note that the proposed
Shapley value and Γ distributions tend to favour the owners of the lower
floors. In short, Γ seems to be the least controversial distribution in view of
the usual dynamics of homeowners’ communities, because it tends to favour
the owners of the lowest floor, who are usually the most reluctant to bear the
costs of installing an elevator.

It is not uncommon that in real situations such as those described in this
example not all the owners are in favour of the elevator. When this occurs,
sometimes the elevator will not be installed immediately even if the owners
in favour of it have a majority. The reason for this is that the unfavourable
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Egalitarian Shapley Γ
1 40 33.3333 32.5
2 40 38.3333 38.75
3 40 48.3333 48.75

Table 1: The Egalitarian value, the Shapley value and Γ for (N, c)

owners (generally those on the lower floors) may refuse to pay the financial
amounts due to them and the owners’ community can only force them to do
so by initiating legal proceedings which may be long, economically costly and
which, moreover, may profoundly damage coexistence in the building. The
practical consequence of this is that negotiations often take place within the
owners’ community to try to ensure that the installation of the elevator is
possible without damaging coexistence in the building. One possible solution
is that the owners not in favour of the elevator give up its service; this means
that the elevator will not have stops on the corresponding floors, so that the
works to give access to the elevator on those floors will not be necessary and
the total cost of the installation will be lower. Assume, for instance that
in the three-storey building in this example the owner of the apartment in
the first floor is not in favour to install the elevator and, moreover, declares
that he will not pay any costs unless a court decision obliges him to do so.
Negotiation in the community may propose that the elevator does not serve
the first floor. In that case, the cost d(i) in which each player is involved is:

• 0 for i = 1, the player of the first floor,

• 50 (machine) + 10 (floor) + 30 (hollow) = 90 for i = 2, the player of
the second floor,

• 50 (machine) + 10 (floor) + 40 (hollow) = 100 for i = 3, the player
of the third floor.

The rest of the corresponding cost game is given by: d({1, 2}) = 90, d({1, 3}) =
100, d({2, 3}) = 110, d(N) = 110. Table 2 below shows the distribution of
costs for each of the apartments according to the Egalitarian value, the Shap-
ley value and Γ. Note that the distribution given by the Egalitarian rule does
not seem to facilitate the agreement on the installation of the elevator because
the owner of the first floor will continue to pay a considerable amount and, in
addition, will give up the service of the elevator. The distributions given by
the Shapley value and by Γ, however, do seem to facilitate a final settlement.
According to the Shapley value, the owner of the first floor will waive elevator
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service but pay nothing in return. According to Γ, the owner of the first floor
will even receive a small compensation for the inconvenience caused to him
by the works and the installation.

Egalitarian Shapley Γ
1 36.6666 0 -6.6666
2 36.6666 50 53.3333
3 36.6666 60 63.3333

Table 2: The Egalitarian value, the Shapley value and Γ for (N, d)

3 Coalitional values and necessary players

In this section we extend the Γ value to cooperative games with a coali-
tion structure. We start by remembering the mean features concerning that
model.

We denote by P (N) the set of all partitions of a finite set N . Each
P ∈ P (N), of the form P = {P1, . . . , Pm}, is called a coalition structure on
N . We call unions of P to its elements P1, . . . , Pm. We denote by M the set
{1, ..., m}.

A cooperative game with a coalition structure is a triple (N, v, P ) where
(N, v) ∈ GN and P ∈ P (N). Gcs

N denotes the family of all cooperative games
with a coalition structure and with player set N . Note that the first two
elements of a cooperative game with a coalition structure, (N, v), characterize
a cooperative game.

By a coalitional value we mean a map g that assigns to every game with
a coalition structure (N, v, P ) a vector g(N, v, P ) ∈ R

N with components
gi(N, v, P ), i ∈ N . Two of the most important coalitional values are the
Owen value (Owen, 1977) and the Banzhaf-Owen value (Owen, 1982). In
a similar way to the Shapley and Banzhaf values, the value of a particular
player is a weighted sum of his contributions. In the case of the Shapley
and Banzhaf values all possible contributions are taken into account, but for
the coalitional values only the contributions to some coalitions are used to
compute the values.

The Owen value Φ is the coalitional value defined by:

Φi(N, v, P ) =
1

m

1

pk

∑

R⊆M\{k}

∑

T⊆Pk\{i}

1
(

m−1
r

)

1
(

pk−1
t

)

[

v(
⋃

r∈R

Pr∪T∪{i})−v(
⋃

r∈R

Pr∪T )
]
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for all (N, v, P ) ∈ Gcs
N and all i ∈ N , where Pk ∈ P is the union such that

i ∈ Pk; m, pk, r and t are the cardinalities of M , Pk, R and T , respectively.
The Banzhaf–Owen value Ψ is the coalitional value defined as

Ψi(N, v, P ) =
1

2m−1

1

2pk−1

∑

R⊆M\{k}

∑

T⊆Pk\{i}

[

v(
⋃

r∈R

Pr∪T ∪{i})−v(
⋃

r∈R

Pr∪T )
]

for all (N, v, P ) ∈ Gcs
N and all i ∈ N , where Pk ∈ P is the union such that

i ∈ Pk; m, pk, r and t are the cardinalities of M , Pk, R and T , respectively.
In the literature, we can find several characterizations of the Owen and

the Banzhaf-Owen coalitional values; see for example Vázquez et al. (1997),
Amer et al. (2002), Khmelnitskaya and Yanovskaya (2007), Alonso-Meijide
et al. (2007), Casajus (2010) and Lorenzo-Freire (2016). We contribute to
this research line providing a new characterization of these two coalitional
values using necessary players. Only three properties are used in our results
and the difference between them is the assigned payoff to necessary players.

Necessary Players Get the Weighted Coalitional Mean. A coalitional
value g satisfies the property of necessary players get the weighted coalitional
mean if for any coalitional game (N, v, P ) and for any necessary player i ∈ Pk

in (N, v), it holds that

gi (N, v, P ) =
1

m

1

pk

∑

R⊆M\{k}

∑

T⊆Pk

1
(

m−1
r

)

1
(

pk−1
t−1

)v(
⋃

r∈R

Pr ∪ T ).

Necessary Players Get the Coalitional Mean. A coalitional value g

satisfies the property of necessary players get the coalitional mean if for any
coalitional game (N, v, P ) and for any necessary player i ∈ Pk in (N, v), it
holds that

gi (N, v, P ) =
1

2m−1

1

2pk−1

∑

R⊆M\{k}

∑

T⊆Pk

v(
⋃

r∈R

Pr ∪ T ).

Both properties propose that a necessary player must receive the average
worth over all coalitions that are compatible with the partitions (i.e., those
that are formed by some complete unions and a subset of another union),
but the first one takes into account the size of the coalitions while the second
one assigns the same weight to all compatible coalitions. With these new
properties we can prove the following results.
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Theorem 9 The Banzhaf-Owen value is the unique coalitional value that
satisfies the properties of additivity, null player and necessary players get the
coalitional mean.

Proof. (Existence). It is known that the Banzhaf-Owen value satisfies addi-
tivity and null player. Now let us see that it satisfies the property of necessary
players get the coalitional mean. Take a cooperative game with a coalition
structure (N, v, P ) and take i ∈ Pk a necessary player in (N, v). Then the
Banzhaf-Owen value is reduced to

Ψi(N, v, P ) =
1

2m−1

1

2pk−1

∑

R⊆M\{k}

∑

T⊆Pk\{i}

[

v(
⋃

r∈R

Pr ∪ T ∪ {i})− v(
⋃

r∈R

Pr ∪ T )
]

=
1

2m−1

1

2pk−1

∑

R⊆M\{k}

∑

T⊆Pk\{i}

v(
⋃

r∈R

Pr ∪ T ∪ {i})

=
1

2m−1

1

2pk−1

∑

R⊆M\{k}

∑

T⊆Pk

v(
⋃

r∈R

Pr ∪ T ).

(Uniqueness). For every S ⊆ N , S 6= ∅, the unanimity game (N, uS) is
given, for every T ⊆ N , by:

uS(T ) =

{

1 if S ⊆ T ,
0 otherwise.

(7)

Take a coalitional value g that satisfies additivity, null player and necessary
players get the coalitional mean and take a cooperative game with a coalition
structure (N, v, P ). We prove now that g(N, v, P ) = Ψ(N, v, P ). Given
S ⊆ N , in the unanimity game (N, uS) every i ∈ S is a necessary player and
every i ∈ N\S is a null player. Let us fix P , a finite set S ⊆ N and c ∈ R.
By additivity it is sufficient to prove that for all i ∈ N , gi(N, cuS, P ) =
Ψi(N, cuS, P ). If i ∈ N\S, applying the null player property gi(N, cuS, P ) =
Ψi(N, cuS, P ) = 0. If i ∈ S, applying neccesary players get the coalitional
mean, we have that

gi(N, cuS, P ) = Ψi(N, cuS, P ) = c
1

2m−1

1

2pk−1

∑

R⊆M\k

∑

T⊆Pk

uS(
⋃

r∈R

Pr ∪ T ),

where Pk is the union such that i ∈ Pk. ✷

Theorem 10 The Owen value is the unique coalitional value that satisfies
the properties of additivity, null player and necessary players get the weighted
coalitional mean.
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Proof. (Existence). It is known that the Owen value satisfies additivity
and null player. Let us see that it satisfies the property of necessary players
get the weighted coalitional mean. Suppose that i is a necessary player with
i ∈ Pk; then the Owen value is

Φi(N, v, P ) =
1

m

1

pk

∑

R⊆M\{k}

∑

T⊆Pk\{i}

1
(

m−1
r

)

1
(

pk−1
t

)

[

v(
⋃

r∈R

Pr ∪ T ∪ {i})− v(
⋃

r∈R

Pr ∪ T )
]

=
1

m

1

pk

∑

R⊆M\{k}

∑

T⊆Pk\{i}

1
(

m−1
r

)

1
(

pk−1
t

)v(
⋃

r∈R

Pr ∪ T ∪ {i})

=
1

m

1

pk

∑

R⊆M\{k}

∑

T⊆Pk

1
(

m−1
r

)

1
(

pk−1
t−1

)v(
⋃

r∈R

Pr ∪ T ).

(Uniqueness) Take a coalitional value g that satisfies additivity, null
player and necessary players get the weighted coalitional mean and take a
cooperative game with a coalition structure (N, v, P ). We prove now that
g(N, v, P ) = Φ(N, v, P ). Given S ⊆ N , in the unanimity game (N, uS) every
i ∈ S is a necessary player and every i ∈ N\S is a null player. Let us fix
P , a finite set S ⊆ N and c ∈ R. By additivity it is sufficient to prove that
for all i ∈ N , gi(N, cuS, P ) = Φi(N, cuS, P ). If i ∈ N\S, applying the null
player property

gi(N, cuS, P ) = Φi(N, cuS, P ) = 0.

If i ∈ S, applying necessary players get the weighted coalitional mean, we
have that

gi(N, cuS, P ) = Φi(N, cuS, P ) = c
1

2m−1

1

2pk−1

∑

R⊆M\k

∑

T⊆Pk

uS(
⋃

r∈R

Pr ∪ T ),

where Pk is the union such that i ∈ Pk. ✷

We are now willing to extend the Γ value, defined in Section 2, to coop-
erative games with a coalition structure. We next remind some properties
that are relevant for our aim.

Symmetry Inside Unions. A coalitional value g satisfies the property of
symmetry inside unions if for all cooperative game with a coalition structure
(N, v, P ), it holds that

gi (N, v, P ) = gj (N, v, P ) .

for all i, j symmetric players in (N, v) with i, j ∈ Pk, Pk ∈ P .
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We say that unions Pk, Pl ∈ P are symmetric in (N, v, P ) ∈ Gcs
N if v(S ∪

Pk) = v(S ∪ Pl), for every S = ∪j∈RPj with R ⊆ M\{k, l}.

Symmetry Among Unions. A coalitional value g satisfies the property of
symmetry among unions if for all cooperative game with a coalition structure
(N, v, P ), it holds that

∑

i∈Pk

gi (N, v, P ) =
∑

j∈Pr

gj (N, v, P )

for all Pk, Pr ∈ P , symmetric unions in (N, v, P ).

Given the properties of efficiency, additivity, symmetry inside unions and
symmetry among unions one can expect to extend the Γ value to cooperative
games with a coalition structure and to characterize the new value using a
property for necessary players that somewhat adapts the necessary players
get the 0-normalized per capita mean property. First at all, let us see how
to extend the γ value, since the Γ value depends on it.

Definition 11 The γC value for cooperative games with a coalition structure
is given for every (N, v, P ) ∈ Gcs

N and every i ∈ Pk by:

γC
i (N, v, P ) =

1

2m−1

1

2pk−1





∑

R⊆M\k

∑

T⊂Pk,i∈T

v(
⋃

r∈R

Pr ∪ T )

t

−
∑

R⊆M\k

∑

T⊂Pk,i/∈T,T 6=∅

v(
⋃

r∈R

Pr ∪ T )

pk − t





+
1

2m−1

1

pk





∑

R⊂M,k∈R

v(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v(
⋃

r∈R

Pr)

m− r



+
v(N)

mpk
.

(8)

Let us see that γC is an reasonable extension of γ. To check it, we can
see that γC is a coalitional value of γ, that is γC(N, v, P n) = γ(N, v) for all
(N, v, P n) ∈ Gcs

N where P n = {{1}, ..., {n}}. In fact

γC
i (N, v, P n) =

1

2m−1





∑

R⊂M,k∈R

v(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v(
⋃

r∈R

Pr)

m− r



+
v(N)

mpk

=
1

2n−1





∑

S⊂N,i∈S

v(S)

s
−

∑

S⊆N\{i}

v(S)

n− s



+
v(N)

n
= γi (N, v) .
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The next lemma proves that γC satisfies an interesting property for co-
operative games with a coalition structure.

Lemma 12 The γC value satisfies the quotient game property, i.e., that

∑

i∈Pk

γC
i (N, v, P ) = γC

k

(

M, vP , Pm
)

for all Pk ∈ P , where vP (R) = v(∪r∈RPr) for all R ⊆ M , and Pm =
{{1} , . . . , {m}}.

Proof. Take a cooperative game with a coalition structure (N, v, P ) and
Pk ∈ P . Then

∑

i∈Pk

γC
i (N, v, P )

=
1

2m−1

1

2pk−1

∑

i∈Pk





∑

R⊆M\k

∑

T⊂Pk,i∈T

v(
⋃

r∈R

Pr ∪ T )

t
−
∑

R⊆M\k

∑

T⊂Pk,i/∈T,T 6=∅

v(
⋃

r∈R

Pr ∪ T )

pk − t





+
1

2m−1

1

pk

∑

i∈Pk





∑

R⊂M,k∈R

v(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v(
⋃

r∈R

Pr)

m− r



+
∑

i∈Pk

v(N)

mpk

=
1

2m−1

1

2pk−1





∑

R⊆M\k

∑

T⊂Pk

tv(
⋃

r∈R

Pr ∪ T )

t
−
∑

R⊆M\k

∑

T⊂Pk

(pk − t)v(
⋃

r∈R

Pr ∪ T )

pk − t





+
1

2m−1





∑

R⊂M,k∈R

v(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v(
⋃

r∈R

Pr)

m− r



+
v(N)

m

=
1

2m−1





∑

R⊂M,k∈R

v(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v(
⋃

r∈R

Pr)

m− r



+
v(N)

m
= γC

k

(

M, vP , Pm
)

.

✷

The quotient game is an interesting property because it guarantees that
the total worth obtained by the players of a union coincides with the worth
obtained by the union in the game played by the unions with the trivial
coalition structure. Note that the Banzhaf-Owen value does not satisfy this
property; however, Alonso-Meijide and Fiestras-Janeiro (2002) introduces the
so-called symmetric coalitional Banzhaf value, which is an extension of the
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Banzhaf value to cooperative games with a coalition structure that satisfies
the quotient game property.

In order to characterize γC , we introduce a new property for necessary
players.

Necessary Players Get the Per Capita Coalitional Mean. A coali-
tional value g satisfies the property of necessary players get the per capita
coalitional mean if for any coalitional game (N, v, P ) with v(N) = 0 and for
any necessary player i ∈ Pk in (N, v), it holds that

gi (N, v, P ) =
1

2m−1





1

2pk−1

∑

R⊆M\k

∑

T⊂Pk,i∈T

v(
⋃

r∈R

Pr ∪ T )

t
+

1

pk

∑

R⊆M,k∈R

v(
⋃

r∈R

Pr)

r





where t = |T | and r = |R| for all T ⊂ Pk and R ⊆ M .

Theorem 13 The γC value is the unique value for cooperative games with a
coalition structure that satisfies the properties of additivity, necessary players
get the per capita coalitional mean, efficiency, symmetry inside unions and
symmetry among unions.

Proof. (Existence). It is clear that γC satisfies additivity. To check that it
satisfies the necessary players get the per capita coalitional mean property
take a cooperative game with a coalition structure (N, v, P ) with v(N) = 0
and such that i ∈ Pk ⊆ N is a necessary player in (N, v). Then expression
(8) reduces to

γC
i (N, v, P ) =

1

2m−1

1

2pk−1





∑

R⊆M\k

∑

T⊂Pk,i∈T

v(
⋃

r∈R

Pr ∪ T )

t



 +
1

2m−1

1

pk





∑

R⊂M,k∈R

v(
⋃

r∈R

Pr)

r





=
1

2m−1

1

2pk−1

∑

R⊆M\k

∑

T⊂Pk

v(
⋃

r∈R

Pr ∪ T )

t
+

1

2m−1

1

pk

∑

R⊆M

v(
⋃

r∈R

Pr)

r
.

To check that γC satisfies symmetry inside coalitions take a cooperative
game with a coalition structure (N, v, P ) and a pair of symmetric players in
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(N, v) i, j ∈ Pk with Pk ∈ P . Notice that, for a fixed R ⊆ M\k,

∑

T⊂Pk,i∈T

v(
⋃

r∈R

Pr ∪ T )

t
−

∑

T⊂Pk,i/∈T,T 6=∅

v(
⋃

r∈R

Pr ∪ T )

pk − t

=
∑

T⊆Pk\{i,j}

v(
⋃

r∈R

Pr ∪ T ∪ {i})

t + 1
+

∑

T⊂Pk\{i,j}

v(
⋃

r∈R

Pr ∪ T ∪ {i, j})

t+ 2

−
∑

T⊆Pk\{i,j},T 6=∅

v(
⋃

r∈R

Pr ∪ T )

pk − t
−

∑

T⊆Pk\{i,j}

v(
⋃

r∈R

Pr ∪ T ∪ {j})

pk − t− 1
.

Now, since i, j are symmetric in (N, v), the last expression is equal to

∑

T⊆Pk\{i,j}

v(
⋃

r∈R

Pr ∪ T ∪ {j})

t+ 1
+

∑

T⊂Pk\{i,j}

v(
⋃

r∈R

Pr ∪ T ∪ {i, j})

t+ 2

−
∑

T⊆Pk\{i,j},T 6=∅

v(
⋃

r∈R

Pr ∪ T )

pk − t
−

∑

T⊆Pk\{i,j}

v(
⋃

r∈R

Pr ∪ T ∪ {i})

pk − t− 1

and then it is clear that γC
i (N, v, P ) = γC

j (N, v, P ).
Since γC satisfies the quotient game property and it is a coalitional value

of γ, then
∑

i∈Pk

γC
i (N, v, P ) = γC

k

(

M, vP , Pm
)

= γk(M, vP ).

Now, the efficiency and the symmetry properties of γ imply that γC satisfies
symmetry among unions and efficiency.
(Uniqueness). Take g, a value for cooperative games with a coalition struc-
ture that satisfies efficiency, symmetry inside unions, symmetry among unions,
necessary players get the per capita coalitional mean and additivity, and take
a cooperative game with a coalition structure (N, v, P ). We prove now that
g(N, v, P ) = γC(N, v, P ). Indeed, consider the basis of the vector space of
characteristic functions of cooperative games with set of players N given by:
{eS}S∈2N\∅ (see expression (1)). Observe that v can be written in a unique
way as a linear combination of the elements of the basis: v =

∑

S∈2N\∅ v(S)eS.
Since g satisfies additivity,

g(N, v, P ) =
∑

S∈2N\∅

g(N, v(S)eS, P ).
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Notice that efficiency, symmetry inside unions, symmetry among unions, and
necessary players get the per capita coalitional mean characterize a unique
value in the class of games {(N, v(S)eS, P ) | S ⊂ N, S 6= ∅}. Besides, effi-
ciency, symmetry inside unions and symmetry among unions, characterize a
unique value for (N, v(N)eN , P ). Hence g(N, v, P ) = γC(N, v, P ). ✷

Now, in an analogous way as we obtain Γ from γ, we introduce the fol-
lowing value.

Definition 14 The ΓC value for cooperative games with a coalition structure
is given for every (N, v, P ) ∈ Gcs

N and every i ∈ Pk by:

ΓC
i (N, v, P ) = v({i}) +

v(Pk)−
∑

j∈Pk
v({j})

pk
+ γC

i (N, v0
′

, P ), (9)

where v0
′
(S) = v(S) −

∑

r∈R v(Pr) −
∑

j∈S\(∪r∈RPr)
v({j}) and R = {r ∈

M | Pr ⊆ S} for all S ⊆ N .

As for γC , we check that ΓC is a coalitional value of Γ. Take the cooper-
ative game with a coalition structure (N, v, P n). Then

ΓC
i (N, v, P n) = v({i}) +

v(Pk)−
∑

j∈Pk
v({j})

pk

+
1

2m−1







∑

R⊂M,k∈R

v0
′
(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v0
′
(
⋃

r∈R

Pr)

m− r






+

v0
′
(N)

mpk

= v({i}) +
1

2n−1





∑

S⊂N,i∈S

v0(S)

s
−

∑

S⊆N\{i}

v0(S)

n− s



 +
v0(N)

n

= Γi (N, v) .

Now we provide an axiomatic characterization of ΓC . We start with a
lemma concerning the quotient game property.

Lemma 15 The ΓC value satisfies the quotient game property, i.e., that

∑

i∈Pk

ΓC
i (N, v, P ) = ΓC

k

(

M, vP , Pm
)

for all Pk ∈ P , where vP (R) = v(∪r∈RPr) for all R ⊆ M , and Pm =
{{1} , . . . , {m}}.
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Proof. Take a cooperative game with a coalition structure (N, v, P ) and
i ∈ N such that Pk ∈ P . Then

∑

i∈Pk

ΓC
i (N, v, P )

= v(Pk) +
1

2m−1

1

2pk−1

∑

i∈Pk







∑

R⊆M\k

∑

T⊂Pk,i∈T

v0
′
(
⋃

r∈R

Pr ∪ T )

t

−
∑

R⊆M\k

∑

T⊂Pk,i/∈T,T 6=∅

v0
′
(
⋃

r∈R

Pr ∪ T )

pk − t







+
1

2m−1

1

pk

∑

i∈Pk







∑

R⊂M,k∈R

v0
′
(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v0
′
(
⋃

r∈R

Pr)

m− r






+
∑

i∈Pk

v0
′
(N)

mpk

= v(Pk)

+
1

2m−1

1

2pk−1







∑

R⊆M\k

∑

T⊂Pk

tv0
′
(
⋃

r∈R

Pr ∪ T )

t
−
∑

R⊆M\k

∑

T⊂Pk

(pk − t)v0
′
(
⋃

r∈R

Pr ∪ T )

pk − t







+
1

2m−1







∑

R⊂M,k∈R

v0
′
(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v0
′
(
⋃

r∈R

Pr)

m− r






+

v0
′
(N)

m

= v(Pk) +
1

2m−1







∑

R⊂M,k∈R

v0
′
(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v0
′
(
⋃

r∈R

Pr)

m− r






+

v0
′
(N)

m

= ΓC
k

(

M, vP , Pm
)

.

✷

In order to characterize ΓC , we introduce a new property for necessary
players.

Necessary Players Get the 0-Normalized Per Capita Coalitional
Mean. A coalitional value g satisfies the property of necessary players get the
0-normalized per capita coalitional mean if for any coalitional game (N, v, P )
with v(N) =

∑

r∈M v(Pr) and for any necessary player i ∈ Pk in (N, v), it
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holds that

gi (N, v, P ) = v({i}) +
v(Pk)−

∑

j∈Pk
v({j})

pk

+
1

2m−1

1

2pk−1

∑

R⊆M\k

∑

T⊂Pk

v0
′
(
⋃

r∈R

Pr ∪ T )

t
+

1

2m−1

1

pk

∑

R⊆M

v0
′
(
⋃

r∈R

Pr)

r
,

where t = |T | and r = |R| for all T ⊂ Pk and R ⊆ M .

Theorem 16 ΓC is the unique coalitional value for cooperative games with a
coalition structure that satisfies the properties of additivity, necessary players
get the 0-normalized per capita coalitional mean, efficiency, symmetry inside
unions and symmetry among unions.

Proof. (Existence). Since γC satisfies additivity and symmetry inside
unions, it is clear that ΓC also satisfies those properties. To check that
it fulfils the necessary players get the 0-normalized per capita coalitional
mean take a cooperative game with a coalition structure (N, v, P ) with
v(N) =

∑

r∈M v(Pr) and such that i ∈ N , with i ∈ Pk ∈ P , is a neces-
sary player in (N, v). Then expression (9) reduces to

ΓC
i (N, v, P ) = v({i}) +

v(Pk)−
∑

j∈Pk
v({j})

pk

+
1

2m−1

1

2pk−1







∑

R⊆M\k

∑

T⊂Pk

v0
′
(
⋃

r∈R

Pr ∪ T )

t






+

1

2m−1

1

pk







∑

R⊂M

v0
′
(
⋃

r∈R

Pr)

r






.

Since this solution satisfies the quotient game property and it is a coali-
tional value of Γ, for a cooperative game with a coalition structure (N, v, P )
and Pk ∈ P it holds that

∑

i∈Pk

ΓC
i (N, v, P ) = ΓC

k

(

M, vP , Pm
)

= Γk(M, vP ).

Then it is easy to check that ΓC satisfies symmetry among unions and effi-
ciency taking into account that Γ satisfies efficiency and symmetry.
(Uniqueness). Take g, a value for cooperative games with a coalition struc-
ture that satisfies efficiency, symmetry, necessary players get the 0-normalized
per capita coalitional mean and additivity and take a cooperative game with
a coalition structure (N, v, P ). We prove now that g(N, v, P ) = ΓC(N, v, P ).
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Indeed, consider the basis of the vector space of characteristic functions of
cooperative games with set of players N given by:

{ePr
+ eN | r ∈ M} ∪ {eS | S ∈ 2N , S 6= Pr, r ∈ M}.

Observe that v can be written in a unique way as a linear combination of the
elements of this basis. Since g satisfies additivity and, moreover, the prop-
erties of efficiency, symmetry and necessary players get the 0-normalized per
capita coalitional mean characterize a unique value in the games of the basis,
the proof is concluded. ✷

4 Concluding Remarks

Notice that G, γ and Γ, the three values introduced in Section 2, satisfy
the properties of additivity, efficiency and symmetry and then they can be
written using the formula provided in Ruiz et al. (1998). Moreover, it is clear
that G and γ satisfy the property of coalitional monotonicity dealt with in
Wang et al. (2019) and thus, in view of Theorem 3.2 in Wang et al. (2019),
they belong to the family of ideal values. Moreover, it is not difficult to
prove that Γ also satisfies the property of coalitional monotonicity and then
it is also an ideal value. We provide next such a proof; to start with, we
remember the property of coalitional monotonicity.

Coalitional Monotonicity. A value for cooperative games f satisfies the
property of coalitional monotonicity if for any pair of cooperative games
(N, v) and (N,w) fulfilling that there exists T ⊆ N with v(T ) > w(T ) and
v(S) = w(S) for all S ⊆ N , S 6= T , it holds that

fi(N, v) ≥ fi(N,w)

for all i ∈ T .

In view of expressions (4) and (5), it is clear that G and γ satisfy the property
of coalitional monotonicity. With respect to Γ notice that, in view of expres-
sions (5) and (6), for every TU-game (N, u) and for every i ∈ N , Γi(N, u)
can be written as:
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Γi(N, u) =
1

2n−1

∑

S⊂N,i∈S

1

s

(

u(S)−
∑

j∈S

u(j)

)

−
1

2n−1

∑

S⊂N,i 6∈S

1

n− s

(

u(S)−
∑

j∈S

u(j)

)

(10)

+
1

n

(

u(N)−
∑

j∈N

u(j)

)

+ u(i).

Take now (N, v), (N,w) and T ⊆ N as in the statement of coalitional mono-
tonicity. Using (10) it is clear that if T has two or more elements, then
Γi(N, v) ≥ Γi(N,w) for all i ∈ T . Assume now that T = {i} (i ∈ N). Ac-
cording to (6), the coefficients of v(i) and w(i) in Γi(N, v) and Γi(N,w) are
identical and given by:

−
1

2n−1

∑

S⊂N,i∈S,S 6=i

1

s
−

1

n
+ 1

= −
1

2n−1

n−1
∑

s=2

1

s

(

n− 1
s− 1

)

−
1

n
+ 1

= −
1

2n−1

n−1
∑

s=2

1

n

(

n

s

)

−
1

n
+ 1

= −
1

2n−1

1

n
(2n − 1− n− 1)−

1

n
+ 1 =

n− 3

n
+

2 + n

2n−1n
.

It is easy to check that n−3
n

+ 2+n
2n−1n

> 0 for all n ≥ 1, which implies that
Γi(N, v) > Γi(N,w) and completes the proof.

We finish this paper with a remark on the relation between our new values
and the equal division and the equal surplus division values, that we denote
by ED and ESD (see, for instance Alonso-Meijide et al., 2020). It is clear
that, for every (N, v) ∈ GN and every i ∈ N ,

γi (N, v) = EDi(N, v) +
1

2n−1

(

∑

S⊂N,i∈S

v(S)

s
−

∑

S⊂N,i 6∈S

v(S)

n− s

)

,

Γi (N, v) = ESDi(N, v) +
1

2n−1

(

∑

S⊂N,i∈S

v0(S)

s
−

∑

S⊂N,i 6∈S

v0(S)

n− s

)

.
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Now, if EDU and ESD2U are the extensions of ED and ESD for coop-
erative games with a coalition structure introduced in Alonso-Meijide et al.
(2020), then for every (N, v, P ) ∈ Gcs

N and every i ∈ N it holds that

γC
i (N, v, P ) = EDU

i (N, v, P )

+
1

2m−1

1

2pk−1





∑

R⊆M\k

∑

T⊂Pk,i∈T

v(
⋃

r∈R

Pr ∪ T )

t
−
∑

R⊆M\k

∑

T⊂Pk,i/∈T,T 6=∅

v(
⋃

r∈R

Pr ∪ T )

pk − t





+
1

2m−1

1

pk





∑

R⊂M,k∈R

v(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v(
⋃

r∈R

Pr)

m− r



 ,

ΓC
i (N, v, P ) = ESD2Ui (N, v, P )

+
1

2m−1

1

2pk−1







∑

R⊆M\k

∑

T⊂Pk,i∈T

v0
′
(
⋃

r∈R

Pr ∪ T )

t
−
∑

R⊆M\k

∑

T⊂Pk,i/∈T,T 6=∅

v0
′
(
⋃

r∈R

Pr ∪ T )

pk − t







+
1

2m−1

1

pk







∑

R⊂M,k∈R

v0
′
(
⋃

r∈R

Pr)

r
−
∑

R⊆M\k

v0
′
(
⋃

r∈R

Pr)

m− r






.
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